File size: 10,319 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f e58a39e a2b71c9 e58a39e 16cea37 3db6293 e80aab9 98f9e13 8264839 e58a39e a9a3c73 9651da6 a9a3c73 9651da6 a9a3c73 9651da6 a9a3c73 9651da6 a9a3c73 9651da6 a9a3c73 9651da6 a9a3c73 9651da6 a9a3c73 9651da6 a9a3c73 9651da6 a9a3c73 e58a39e 31243f4 8264839 a16c650 a9a3c73 a2b71c9 9651da6 a2b71c9 66cd014 6d395ab 8264839 e58a39e 31243f4 e58a39e 36ed51a 3c4371f e58a39e eccf8e4 31243f4 7d65c66 617f091 31243f4 e58a39e 7d65c66 e58a39e e80aab9 7d65c66 e58a39e 31243f4 e58a39e 31243f4 d1aeb28 3c7394d 7cefee9 3c7394d c356279 e58a39e 31243f4 e58a39e 31243f4 e58a39e 31243f4 e58a39e 7d65c66 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e58a39e 7d65c66 e58a39e 31243f4 e58a39e e80aab9 31243f4 e58a39e e80aab9 7e4a06b e80aab9 31243f4 9088b99 7d65c66 e58a39e e80aab9 e58a39e e80aab9 3c4371f e58a39e 7d65c66 3c4371f e58a39e 16cea37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import asyncio
from smolagents import ToolCallingAgent, InferenceClientModel, OpenAIServerModel
from smolagents import DuckDuckGoSearchTool, Tool, CodeAgent
from huggingface_hub import login
#h
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
#login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])
openai_key = os.environ.get("OPENAI_API_KEY")
search_tool = DuckDuckGoSearchTool()
##Tool 2
from smolagents import Tool
from huggingface_hub import hf_hub_download
import pandas as pd
class ExcelAnalysisTool(Tool):
name = "excel_analysis"
description = (
"Loads an Excel file from the GAIA dataset on Hugging Face and calculates "
"the total sales for items labeled as 'food', excluding drinks. "
"Provide input as a string with the filename, e.g., 'sales_data.xlsx'."
)
inputs = {
"filename": {
"type": "string",
"description": "The name of the Excel file (e.g., 'sales_data.xlsx')"
}
}
output_type = "string"
repo_id = "gaia-benchmark/GAIA"
def forward(self, filename: str) -> str:
try:
file_path = hf_hub_download(
repo_id=self.repo_id,
filename=filename,
repo_type="dataset"
)
df = pd.read_excel(file_path)
food_sales = df[
(df['category'].str.lower() == 'food') &
(df['item'].str.lower() != 'drinks')
]
total_sales = food_sales['sales'].sum()
return f"Total sales for food items: ${total_sales:.2f}"
except FileNotFoundError:
return "Error: The specified file was not found."
except KeyError as e:
return f"Error: Missing expected column in the Excel file: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
##Tool 3
import wikipedia
from smolagents import Tool
class WikiTool(Tool):
name = "wiki_tool"
description = (
"Performs Wikipedia lookups. Actions supported: 'summary' and 'is_historical_country'."
)
inputs = {
"action": {
"type": "string",
"description": "The action to perform: 'summary' or 'is_historical_country'"
},
"topic": {
"type": "string",
"description": "The topic or country name to look up"
}
}
output_type = "string"
def forward(self, action: str, topic: str) -> str:
if action == "summary":
return self.fetch_summary(topic)
elif action == "is_historical_country":
return self.is_historical_country(topic)
else:
return "Error: Unknown action. Use 'summary' or 'is_historical_country'."
def fetch_summary(self, topic: str) -> str:
try:
return wikipedia.summary(topic, sentences=3)
except wikipedia.DisambiguationError as e:
return f"Disambiguation: {e.options[:5]}"
except wikipedia.PageError:
return "No page found."
except Exception as e:
return f"Unexpected error: {str(e)}"
def is_historical_country(self, topic: str) -> str:
try:
summary = wikipedia.summary(topic, sentences=2).lower()
keywords = [
"former country", "no longer exists", "historical country",
"was a country", "defunct", "dissolved", "existed until",
"disestablished", "merged into"
]
return "yes" if any(k in summary for k in keywords) else "no"
except:
return "no"
wiki_tool = WikiTool()
excel_tool = ExcelAnalysisTool()
async def run_and_submit_all(profile: gr.OAuthProfile | None):
log_output = ""
try:
agent = ToolCallingAgent(
tools=[search_tool, wiki_tool, excel_tool],
model=OpenAIServerModel(
model_id="gpt-4o", # β
valid OpenAI model name
api_key=os.environ["OPENAI_API_KEY"] # β
securely load from environment
),
max_steps=20,
verbosity_level=2
)
except Exception as e:
yield f"Error initializing agent: {e}", None, log_output
return
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
questions_url = f"{DEFAULT_API_URL}/questions"
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
yield "Fetched questions list is empty or invalid format.", None, log_output
return
except Exception as e:
yield f"Error fetching questions: {e}", None, log_output
return
results_log = []
answers_payload = []
loop = asyncio.get_event_loop()
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
log_output += f"π Solving Task ID: {task_id}...\n"
yield None, None, log_output
try:
system_prompt = (
"""You must only reply with a single line:
FINAL ANSWER: [your answer]
Never include reasoning, markdown, Task Outcome, Explanation, or examples.
NEVER use numbered points or extra formatting.
If your answer is a string, write it in lowercase, no articles, no quotes.
If your answer is a number, use digits only. If the answer is "no one" or "none", write exactly that.
DO NOT provide any explanation or context. Just the line: FINAL ANSWER: ...
"""
)
full_prompt = system_prompt + f"Question: {question_text.strip()}"
agent_result = await loop.run_in_executor(None, agent, full_prompt)
# Extract final answer cleanly
if isinstance(agent_result, dict) and "final_answer" in agent_result:
final_answer = str(agent_result["final_answer"]).strip()
elif isinstance(agent_result, str):
response_text = agent_result.strip()
# Remove known boilerplate
if "Here is the final answer from your managed agent" in response_text:
response_text = response_text.split(":", 1)[-1].strip()
if "FINAL ANSWER:" in response_text:
_, final_answer = response_text.rsplit("FINAL ANSWER:", 1)
final_answer = final_answer.strip()
else:
final_answer = response_text
else:
final_answer = str(agent_result).strip()
answers_payload.append({
"task_id": task_id,
"submitted_answer": final_answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": final_answer
})
log_output += f"β
Done: {task_id} β Answer: {final_answer[:60]}\n"
yield None, None, log_output
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
log_output += f"βοΈ Error: {task_id} β {e}\n"
yield None, None, log_output
if not answers_payload:
yield "Agent did not produce any answers to submit.", pd.DataFrame(results_log), log_output
return
username = profile.username if profile else "unknown"
submit_url = f"{DEFAULT_API_URL}/submit"
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
yield final_status, results_df, log_output
except Exception as e:
status_message = f"Submission Failed: {e}"
results_df = pd.DataFrame(results_log)
yield status_message, results_df, log_output
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Clone this space and define your agent logic.
2. Log in to your Hugging Face account.
3. Click 'Run Evaluation & Submit All Answers'.
---
**Note:**
The run may take time. Async is now used to improve responsiveness.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
progress_log = gr.Textbox(label="Progress Log", lines=10, interactive=False)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table, progress_log])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"β
SPACE_HOST: https://{space_host_startup}.hf.space")
if space_id_startup:
print(f"β
SPACE_ID: https://huggingface.co/spaces/{space_id_startup}")
print("Launching Gradio Interface...")
demo.launch(debug=True, share=False) |