File size: 14,280 Bytes
9a2edf3
 
 
 
 
 
defb3ac
4168c5d
defb3ac
9c6982b
 
defb3ac
 
9c6982b
 
9a2edf3
4168c5d
9a2edf3
d044a6c
4168c5d
9a2edf3
defb3ac
d044a6c
 
 
 
defb3ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d044a6c
defb3ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d044a6c
 
defb3ac
d044a6c
defb3ac
d044a6c
 
 
 
defb3ac
d044a6c
 
defb3ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4168c5d
d044a6c
 
defb3ac
d044a6c
e59fdf7
d044a6c
defb3ac
d044a6c
defb3ac
 
 
 
 
 
d044a6c
 
defb3ac
 
 
 
 
 
d044a6c
defb3ac
d044a6c
 
defb3ac
d044a6c
 
 
 
defb3ac
 
 
 
 
 
d044a6c
defb3ac
d044a6c
 
defb3ac
9a2edf3
 
defb3ac
 
 
 
 
 
d044a6c
 
 
 
9a2edf3
 
 
 
d044a6c
 
 
defb3ac
4168c5d
 
d044a6c
defb3ac
d044a6c
 
defb3ac
 
 
 
 
 
 
d044a6c
defb3ac
d044a6c
defb3ac
d044a6c
defb3ac
 
d044a6c
 
 
 
 
 
 
 
defb3ac
d044a6c
 
 
defb3ac
d044a6c
 
defb3ac
d044a6c
 
 
 
 
 
 
defb3ac
d044a6c
 
defb3ac
d044a6c
 
 
 
 
 
 
 
 
defb3ac
4168c5d
 
d044a6c
defb3ac
9a2edf3
 
defb3ac
4168c5d
d044a6c
 
 
3d07c4d
 
 
 
 
 
 
 
 
d044a6c
 
 
3d07c4d
 
d044a6c
 
3d07c4d
 
d044a6c
3d07c4d
 
 
 
 
 
 
 
d044a6c
9a2edf3
4168c5d
d044a6c
 
3d07c4d
 
0996932
 
 
 
 
 
 
d044a6c
 
9a2edf3
 
9c6982b
 
 
 
 
 
 
 
 
 
 
3d07c4d
 
 
 
 
 
 
 
 
 
 
9c6982b
3d07c4d
 
fe8e690
 
9c6982b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9affd94
9c6982b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9affd94
9c6982b
 
defb3ac
9c6982b
d044a6c
9c6982b
 
 
defb3ac
 
 
 
 
4168c5d
defb3ac
9c6982b
d044a6c
4168c5d
9c6982b
 
 
 
 
 
 
92169cd
9c6982b
 
 
 
 
 
 
 
92169cd
9c6982b
defb3ac
 
97394ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import cv2
import torch
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
import time
import os
import json
from typing import Dict, List, Any
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.responses import JSONResponse, HTMLResponse
import uuid
from pathlib import Path
import gradio as gr
import tempfile

app = FastAPI()

# Global variable to store the history of largest face detections
largest_face_detections = []

# EmotionCNN model definition
class EmotionCNN(torch.nn.Module):
    def __init__(self, num_classes=7):
        super(EmotionCNN, self).__init__()
        
        # First convolutional block
        self.conv1 = torch.nn.Sequential(
            torch.nn.Conv2d(1, 64, kernel_size=3, padding=1),
            torch.nn.BatchNorm2d(64),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(kernel_size=2, stride=2)
        )
        
        # Second convolutional block
        self.conv2 = torch.nn.Sequential(
            torch.nn.Conv2d(64, 128, kernel_size=3, padding=1),
            torch.nn.BatchNorm2d(128),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(kernel_size=2, stride=2)
        )
        
        # Third convolutional block
        self.conv3 = torch.nn.Sequential(
            torch.nn.Conv2d(128, 256, kernel_size=3, padding=1),
            torch.nn.BatchNorm2d(256),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(kernel_size=2, stride=2)
        )
        
        # Fourth convolutional block
        self.conv4 = torch.nn.Sequential(
            torch.nn.Conv2d(256, 512, kernel_size=3, padding=1),
            torch.nn.BatchNorm2d(512),
            torch.nn.ReLU(),
            torch.nn.MaxPool2d(kernel_size=2, stride=2)
        )
        
        # Fifth convolutional block with residual connection
        self.conv5 = torch.nn.Sequential(
            torch.nn.Conv2d(512, 512, kernel_size=3, padding=1),
            torch.nn.BatchNorm2d(512),
            torch.nn.ReLU()
        )
        
        # Attention mechanism
        self.attention = torch.nn.Sequential(
            torch.nn.Conv2d(512, 1, kernel_size=1),
            torch.nn.Sigmoid()
        )
        
        # Fully connected layers
        self.fc = torch.nn.Sequential(
            torch.nn.Dropout(0.5),
            torch.nn.Linear(512 * 3 * 3, 1024),
            torch.nn.ReLU(),
            torch.nn.Dropout(0.5),
            torch.nn.Linear(1024, 512),
            torch.nn.ReLU(),
            torch.nn.Dropout(0.3),
            torch.nn.Linear(512, num_classes)
        )
        
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        
        # Fifth conv block with residual connection
        x_res = x
        x = self.conv5(x)
        x = x + x_res
        
        # Apply attention
        attn = self.attention(x)
        x = x * attn
        
        # Flatten
        x = x.view(x.size(0), -1)
        
        # Fully connected
        x = self.fc(x)
        return x

def load_emotion_model(model_path, device='cuda' if torch.cuda.is_available() else 'cpu'):
    """Load the emotion recognition model"""
    checkpoint = torch.load(model_path, map_location=device)
    
    model = EmotionCNN(num_classes=7)
    model.load_state_dict(checkpoint['model_state_dict'])
    model.to(device)
    model.eval()
    
    return model

def preprocess_face(face_img, size=(48, 48)):
    """Preprocess face image for emotion detection"""
    transform = transforms.Compose([
        transforms.Resize(size),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.5], std=[0.5])
    ])
    
    # Convert to PIL Image
    if isinstance(face_img, np.ndarray):
        face_img = Image.fromarray(cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB))
    
    # Convert to grayscale
    face_img = face_img.convert('L')
    
    # Apply transformations
    face_tensor = transform(face_img).unsqueeze(0)
    return face_tensor

def process_video(video_path: str) -> Dict[str, Any]:
    """
    Process a video file and return emotion detection results.
    
    Args:
        video_path (str): Path to the video file
        
    Returns:
        Dict containing:
        - success (bool): Whether processing was successful
        - message (str): Status message
        - results (List[Dict]): List of emotion detection results
        - error (str): Error message if any
    """
    global largest_face_detections
    largest_face_detections = []  # Reset detections for new video
    
    # Paths - adjust these paths according to your Hugging Face Space
    face_cascade_path = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
    emotion_model_path = "./models/best_emotion_model.pth"  # Path in Hugging Face Space
    
    # Check if models exist
    if not os.path.exists(face_cascade_path):
        return {
            "success": False,
            "message": "Face cascade classifier not found",
            "results": [],
            "error": f"Error: Face cascade classifier not found at {face_cascade_path}"
        }
        
    if not os.path.exists(emotion_model_path):
        return {
            "success": False,
            "message": "Emotion model not found",
            "results": [],
            "error": f"Error: Emotion model not found at {emotion_model_path}"
        }
    
    # Set device
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    # Load models
    try:
        face_cascade = cv2.CascadeClassifier(face_cascade_path)
        emotion_model = load_emotion_model(emotion_model_path, device)
    except Exception as e:
        return {
            "success": False,
            "message": "Error loading models",
            "results": [],
            "error": str(e)
        }
        
    # Emotion labels
    emotions = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral']
    
    # Open video
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        return {
            "success": False,
            "message": "Could not open video file",
            "results": [],
            "error": f"Error: Could not open video file at {video_path}"
        }
    
    frame_count = 0
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    
    while True:
        ret, frame = cap.read()
        if not ret:
            break
            
        frame_count += 1
        
        # Variables to track largest face
        largest_face_area = 0
        current_detection = None
        
        # Convert frame to grayscale for face detection
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        
        # Detect faces using Haar Cascade
        faces = face_cascade.detectMultiScale(
            gray,
            scaleFactor=1.1,
            minNeighbors=5,
            minSize=(30, 30)
        )
        
        # Process each detected face
        for (x, y, w, h) in faces:
            # Calculate face area
            face_area = w * h
            
            # Extract face region with margin
            margin = 20
            x1 = max(0, x - margin)
            y1 = max(0, y - margin)
            x2 = min(frame.shape[1], x + w + margin)
            y2 = min(frame.shape[0], y + h + margin)
            
            face_img = frame[y1:y2, x1:x2]
            
            # Skip if face is too small
            if face_img.size == 0 or face_img.shape[0] < 20 or face_img.shape[1] < 20:
                continue
            
            # Convert face to PIL Image and preprocess
            face_tensor = preprocess_face(face_img)
            
            # Predict emotion
            with torch.no_grad():
                face_tensor = face_tensor.to(device)
                output = emotion_model(face_tensor)
                probabilities = torch.nn.functional.softmax(output, dim=1)
                emotion_idx = torch.argmax(output, dim=1).item()
                confidence = probabilities[0][emotion_idx].item()
              
            # Get emotion label
            emotion = emotions[emotion_idx]
            
            # Update largest face if current face is larger
            if face_area > largest_face_area:
                largest_face_area = face_area
                current_detection = {
                    'emotion': emotion,
                    'confidence': confidence,
                    'timestamp': time.time(),
                    'frame_number': frame_count
                }
        
        # Add current detection to history if a face was detected
        if current_detection:
            largest_face_detections.append(current_detection)
    
    # Release resources
    cap.release()
    
    # Process results
    if not largest_face_detections:
        return {
            "success": True,
            "message": "No faces detected in video",
            "results": {
                "average_emotions": {},
                "dominant_emotion": None,
                "detections": [],
                "summary": {
                    "total_frames": total_frames,
                    "total_detections": 0
                }
            },
            "error": None
        }
    
    emotion_scores = {e: [] for e in emotions}  # Initialize with all emotion types
    
    for detection in largest_face_detections:
        emotion = detection['emotion']
        confidence = detection['confidence']
        emotion_scores[emotion].append(confidence)
    
    # Calculate summary statistics
    average_emotions = {
        e: sum(scores)/len(scores) if scores else 0 
        for e, scores in emotion_scores.items()
    }
    
    # Get dominant emotion based on average confidence
    dominant_emotion = max(average_emotions.items(), key=lambda x: x[1])[0]
    
    return {
        "success": True,
        "message": "Video processed successfully",
        "results": {
            "average_emotions": average_emotions,
            "dominant_emotion": dominant_emotion,
            # "detections": largest_face_detections,  # Optional: include all detections
            # "summary": {
            #     "total_frames": total_frames,
            #     "total_detections": len(largest_face_detections),
            #     "emotions_count": {e: len(s) for e, s in emotion_scores.items()},
            #     "dominant_emotion": dominant_emotion
            # }
        },
        "error": None
    }

# Gradio Interface Functions
def gradio_analyze_video(video_path: str):
    """Wrapper function for Gradio interface"""
    result = process_video(video_path)
    if not result["success"]:
        return {"error": result.get("error", "Processing failed")}
    
    # Format results for better Gradio display
    summary = result["results"]["summary"]
    detections = result["results"]["detections"]
    
    # output = {
    #     "summary": {
    #         "total_frames": summary["total_frames"],
    #         "faces_detected": summary["total_detections"],
    #         "dominant_emotion": summary["dominant_emotion"],
    #         "emotion_distribution": summary["emotions_count"]
    #     },
    #     "sample_detections": detections[:5]  # Show first 5 detections
    # }
    # return output

    output = {
        "average_emotions": result["results"]["average_emotions"],
        "dominant_emotion": result["results"]["dominant_emotion"],
        # "frames_analyzed": result["results"]["summary"]["total_frames"],
        # "faces_detected": result["results"]["summary"]["total_detections"]
    }
    return output

def save_upload_file_tmp(upload_file: UploadFile) -> str:
    """Save uploaded file to temporary location"""
    try:
        suffix = Path(upload_file.filename).suffix
        with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
            tmp.write(upload_file.file.read())
            return tmp.name
    finally:
        upload_file.file.close()

# Gradio Interface
with gr.Blocks(title="Video Emotion Detection", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # 🎭 Video Emotion Detection
    Upload a video to analyze facial emotions frame by frame
    """)
    
    with gr.Row():
        with gr.Column():
            video_input = gr.Video(
                label="Upload Video", 
                sources=["upload"]  # Corrected line
            )
            submit_btn = gr.Button("Analyze Video", variant="primary")
            
        with gr.Column():
            output_json = gr.JSON(label="Analysis Results")
            gr.Markdown("""
            ### Results Interpretation
            - **Dominant Emotion**: Most frequently detected emotion
            - **Emotion Distribution**: Count of each emotion detected
            - **Sample Detections**: First 5 emotion detections
            """)
    
    submit_btn.click(
        fn=gradio_analyze_video,
        inputs=video_input,
        outputs=output_json,
        api_name="predict"
    )


# FastAPI Endpoints
@app.post("/api/analyze-video")
async def analyze_video(file: UploadFile = File(...)):
    """Original FastAPI endpoint"""
    try:
        temp_path = save_upload_file_tmp(file)
        result = process_video(temp_path)
        os.unlink(temp_path)
        
        if not result["success"]:
            raise HTTPException(status_code=400, detail=result.get("error", "Processing failed"))
        return JSONResponse(content=result)
    
    except Exception as e:
        if 'temp_path' in locals() and os.path.exists(temp_path):
            os.unlink(temp_path)
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/", response_class=HTMLResponse)
async def root():
    """Redirect root to Gradio interface"""
    return """
    <html>
        <head>
            <title>Video Emotion Detection</title>
            <meta http-equiv="refresh" content="0; url=/gradio/" />
        </head>
        <body>
            <p>Redirecting to Gradio interface... <a href="/gradio">Click here</a> if not redirected.</p>
        </body>
    </html>
    """

# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, demo, path="/gradio")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)