Spaces:
Running
Running
Rivalcoder
commited on
Commit
Β·
defb3ac
1
Parent(s):
c73c7d8
New Try
Browse files- README.md +7 -10
- app.py +206 -55
- requirements.txt +4 -7
README.md
CHANGED
@@ -1,12 +1,9 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk:
|
7 |
-
|
8 |
-
app_file: app.py
|
9 |
pinned: false
|
10 |
-
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Emotion Detection API
|
3 |
+
emoji: π
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: purple
|
6 |
+
sdk: docker
|
7 |
+
app_port: 8000
|
|
|
8 |
pinned: false
|
9 |
+
---
|
|
|
|
app.py
CHANGED
@@ -1,79 +1,201 @@
|
|
1 |
-
import os
|
2 |
import cv2
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
import torchvision.transforms as transforms
|
7 |
import time
|
|
|
8 |
import json
|
9 |
-
from typing import Dict, Any
|
10 |
-
from fastapi import FastAPI,
|
11 |
-
from
|
12 |
-
import
|
13 |
-
import
|
14 |
|
15 |
app = FastAPI()
|
16 |
|
17 |
# Global variable to store the history of largest face detections
|
18 |
largest_face_detections = []
|
19 |
|
20 |
-
# EmotionCNN model definition
|
21 |
class EmotionCNN(torch.nn.Module):
|
22 |
def __init__(self, num_classes=7):
|
23 |
super(EmotionCNN, self).__init__()
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def forward(self, x):
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
# Load emotion model
|
33 |
def load_emotion_model(model_path, device='cuda' if torch.cuda.is_available() else 'cpu'):
|
|
|
34 |
checkpoint = torch.load(model_path, map_location=device)
|
|
|
35 |
model = EmotionCNN(num_classes=7)
|
36 |
model.load_state_dict(checkpoint['model_state_dict'])
|
37 |
model.to(device)
|
38 |
model.eval()
|
|
|
39 |
return model
|
40 |
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
global largest_face_detections
|
44 |
largest_face_detections = [] # Reset detections for new video
|
45 |
|
46 |
-
#
|
47 |
face_cascade_path = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
|
48 |
-
emotion_model_path = "best_emotion_model.pth"
|
49 |
|
|
|
50 |
if not os.path.exists(face_cascade_path):
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
if not os.path.exists(emotion_model_path):
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
55 |
|
|
|
56 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
57 |
|
|
|
58 |
try:
|
59 |
face_cascade = cv2.CascadeClassifier(face_cascade_path)
|
60 |
emotion_model = load_emotion_model(emotion_model_path, device)
|
61 |
except Exception as e:
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
63 |
|
|
|
64 |
emotions = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral']
|
65 |
|
66 |
-
#
|
67 |
-
temp_dir = tempfile.mkdtemp()
|
68 |
-
video_path = os.path.join(temp_dir, "uploaded_video")
|
69 |
-
|
70 |
-
# Open the video file stream and save it as a local file
|
71 |
-
with open(video_path, "wb") as f:
|
72 |
-
f.write(await video_file.read())
|
73 |
-
|
74 |
cap = cv2.VideoCapture(video_path)
|
75 |
if not cap.isOpened():
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
frame_count = 0
|
79 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
@@ -85,15 +207,27 @@ async def process_video(video_file: UploadFile) -> Dict[str, Any]:
|
|
85 |
|
86 |
frame_count += 1
|
87 |
|
|
|
88 |
largest_face_area = 0
|
89 |
current_detection = None
|
90 |
|
|
|
91 |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
92 |
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
|
|
95 |
for (x, y, w, h) in faces:
|
|
|
96 |
face_area = w * h
|
|
|
|
|
97 |
margin = 20
|
98 |
x1 = max(0, x - margin)
|
99 |
y1 = max(0, y - margin)
|
@@ -102,11 +236,14 @@ async def process_video(video_file: UploadFile) -> Dict[str, Any]:
|
|
102 |
|
103 |
face_img = frame[y1:y2, x1:x2]
|
104 |
|
|
|
105 |
if face_img.size == 0 or face_img.shape[0] < 20 or face_img.shape[1] < 20:
|
106 |
continue
|
107 |
|
|
|
108 |
face_tensor = preprocess_face(face_img)
|
109 |
|
|
|
110 |
with torch.no_grad():
|
111 |
face_tensor = face_tensor.to(device)
|
112 |
output = emotion_model(face_tensor)
|
@@ -114,8 +251,10 @@ async def process_video(video_file: UploadFile) -> Dict[str, Any]:
|
|
114 |
emotion_idx = torch.argmax(output, dim=1).item()
|
115 |
confidence = probabilities[0][emotion_idx].item()
|
116 |
|
|
|
117 |
emotion = emotions[emotion_idx]
|
118 |
|
|
|
119 |
if face_area > largest_face_area:
|
120 |
largest_face_area = face_area
|
121 |
current_detection = {
|
@@ -125,11 +264,14 @@ async def process_video(video_file: UploadFile) -> Dict[str, Any]:
|
|
125 |
'frame_number': frame_count
|
126 |
}
|
127 |
|
|
|
128 |
if current_detection:
|
129 |
largest_face_detections.append(current_detection)
|
130 |
|
|
|
131 |
cap.release()
|
132 |
|
|
|
133 |
if not largest_face_detections:
|
134 |
return {
|
135 |
"success": True,
|
@@ -138,11 +280,13 @@ async def process_video(video_file: UploadFile) -> Dict[str, Any]:
|
|
138 |
"error": None
|
139 |
}
|
140 |
|
|
|
141 |
emotions_count = {}
|
142 |
for detection in largest_face_detections:
|
143 |
emotion = detection['emotion']
|
144 |
emotions_count[emotion] = emotions_count.get(emotion, 0) + 1
|
145 |
|
|
|
146 |
dominant_emotion = max(emotions_count.items(), key=lambda x: x[1])[0]
|
147 |
|
148 |
return {
|
@@ -160,32 +304,39 @@ async def process_video(video_file: UploadFile) -> Dict[str, Any]:
|
|
160 |
"error": None
|
161 |
}
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
# FastAPI endpoint for processing the video file
|
167 |
-
@app.post("/api/video")
|
168 |
-
async def process_video_request(file: UploadFile = File(...)):
|
169 |
try:
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
except Exception as e:
|
|
|
|
|
|
|
173 |
raise HTTPException(status_code=500, detail=str(e))
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
# This function now accepts WebM files and other video formats.
|
179 |
-
return process_video(video_file)
|
180 |
-
|
181 |
-
# Remove the `type` argument from `gr.Video()`
|
182 |
-
interface = gr.Interface(
|
183 |
-
fn=process_gradio_video,
|
184 |
-
inputs=gr.Video(), # This will automatically handle file uploads
|
185 |
-
outputs="json"
|
186 |
-
)
|
187 |
-
|
188 |
-
return interface
|
189 |
-
|
190 |
-
# Launch Gradio Interface on FastAPI
|
191 |
-
gradio_interface().launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
1 |
import cv2
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
import torchvision.transforms as transforms
|
6 |
import time
|
7 |
+
import os
|
8 |
import json
|
9 |
+
from typing import Dict, List, Any
|
10 |
+
from fastapi import FastAPI, UploadFile, File, Form, HTTPException
|
11 |
+
from fastapi.responses import JSONResponse
|
12 |
+
import uuid
|
13 |
+
from pathlib import Path
|
14 |
|
15 |
app = FastAPI()
|
16 |
|
17 |
# Global variable to store the history of largest face detections
|
18 |
largest_face_detections = []
|
19 |
|
20 |
+
# EmotionCNN model definition
|
21 |
class EmotionCNN(torch.nn.Module):
|
22 |
def __init__(self, num_classes=7):
|
23 |
super(EmotionCNN, self).__init__()
|
24 |
|
25 |
+
# First convolutional block
|
26 |
+
self.conv1 = torch.nn.Sequential(
|
27 |
+
torch.nn.Conv2d(1, 64, kernel_size=3, padding=1),
|
28 |
+
torch.nn.BatchNorm2d(64),
|
29 |
+
torch.nn.ReLU(),
|
30 |
+
torch.nn.MaxPool2d(kernel_size=2, stride=2)
|
31 |
+
)
|
32 |
+
|
33 |
+
# Second convolutional block
|
34 |
+
self.conv2 = torch.nn.Sequential(
|
35 |
+
torch.nn.Conv2d(64, 128, kernel_size=3, padding=1),
|
36 |
+
torch.nn.BatchNorm2d(128),
|
37 |
+
torch.nn.ReLU(),
|
38 |
+
torch.nn.MaxPool2d(kernel_size=2, stride=2)
|
39 |
+
)
|
40 |
+
|
41 |
+
# Third convolutional block
|
42 |
+
self.conv3 = torch.nn.Sequential(
|
43 |
+
torch.nn.Conv2d(128, 256, kernel_size=3, padding=1),
|
44 |
+
torch.nn.BatchNorm2d(256),
|
45 |
+
torch.nn.ReLU(),
|
46 |
+
torch.nn.MaxPool2d(kernel_size=2, stride=2)
|
47 |
+
)
|
48 |
+
|
49 |
+
# Fourth convolutional block
|
50 |
+
self.conv4 = torch.nn.Sequential(
|
51 |
+
torch.nn.Conv2d(256, 512, kernel_size=3, padding=1),
|
52 |
+
torch.nn.BatchNorm2d(512),
|
53 |
+
torch.nn.ReLU(),
|
54 |
+
torch.nn.MaxPool2d(kernel_size=2, stride=2)
|
55 |
+
)
|
56 |
+
|
57 |
+
# Fifth convolutional block with residual connection
|
58 |
+
self.conv5 = torch.nn.Sequential(
|
59 |
+
torch.nn.Conv2d(512, 512, kernel_size=3, padding=1),
|
60 |
+
torch.nn.BatchNorm2d(512),
|
61 |
+
torch.nn.ReLU()
|
62 |
+
)
|
63 |
+
|
64 |
+
# Attention mechanism
|
65 |
+
self.attention = torch.nn.Sequential(
|
66 |
+
torch.nn.Conv2d(512, 1, kernel_size=1),
|
67 |
+
torch.nn.Sigmoid()
|
68 |
+
)
|
69 |
+
|
70 |
+
# Fully connected layers
|
71 |
+
self.fc = torch.nn.Sequential(
|
72 |
+
torch.nn.Dropout(0.5),
|
73 |
+
torch.nn.Linear(512 * 3 * 3, 1024),
|
74 |
+
torch.nn.ReLU(),
|
75 |
+
torch.nn.Dropout(0.5),
|
76 |
+
torch.nn.Linear(1024, 512),
|
77 |
+
torch.nn.ReLU(),
|
78 |
+
torch.nn.Dropout(0.3),
|
79 |
+
torch.nn.Linear(512, num_classes)
|
80 |
+
)
|
81 |
+
|
82 |
def forward(self, x):
|
83 |
+
x = self.conv1(x)
|
84 |
+
x = self.conv2(x)
|
85 |
+
x = self.conv3(x)
|
86 |
+
x = self.conv4(x)
|
87 |
+
|
88 |
+
# Fifth conv block with residual connection
|
89 |
+
x_res = x
|
90 |
+
x = self.conv5(x)
|
91 |
+
x = x + x_res
|
92 |
+
|
93 |
+
# Apply attention
|
94 |
+
attn = self.attention(x)
|
95 |
+
x = x * attn
|
96 |
+
|
97 |
+
# Flatten
|
98 |
+
x = x.view(x.size(0), -1)
|
99 |
+
|
100 |
+
# Fully connected
|
101 |
+
x = self.fc(x)
|
102 |
+
return x
|
103 |
|
|
|
104 |
def load_emotion_model(model_path, device='cuda' if torch.cuda.is_available() else 'cpu'):
|
105 |
+
"""Load the emotion recognition model"""
|
106 |
checkpoint = torch.load(model_path, map_location=device)
|
107 |
+
|
108 |
model = EmotionCNN(num_classes=7)
|
109 |
model.load_state_dict(checkpoint['model_state_dict'])
|
110 |
model.to(device)
|
111 |
model.eval()
|
112 |
+
|
113 |
return model
|
114 |
|
115 |
+
def preprocess_face(face_img, size=(48, 48)):
|
116 |
+
"""Preprocess face image for emotion detection"""
|
117 |
+
transform = transforms.Compose([
|
118 |
+
transforms.Resize(size),
|
119 |
+
transforms.ToTensor(),
|
120 |
+
transforms.Normalize(mean=[0.5], std=[0.5])
|
121 |
+
])
|
122 |
+
|
123 |
+
# Convert to PIL Image
|
124 |
+
if isinstance(face_img, np.ndarray):
|
125 |
+
face_img = Image.fromarray(cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB))
|
126 |
+
|
127 |
+
# Convert to grayscale
|
128 |
+
face_img = face_img.convert('L')
|
129 |
+
|
130 |
+
# Apply transformations
|
131 |
+
face_tensor = transform(face_img).unsqueeze(0)
|
132 |
+
return face_tensor
|
133 |
+
|
134 |
+
def process_video(video_path: str) -> Dict[str, Any]:
|
135 |
+
"""
|
136 |
+
Process a video file and return emotion detection results.
|
137 |
+
|
138 |
+
Args:
|
139 |
+
video_path (str): Path to the video file
|
140 |
+
|
141 |
+
Returns:
|
142 |
+
Dict containing:
|
143 |
+
- success (bool): Whether processing was successful
|
144 |
+
- message (str): Status message
|
145 |
+
- results (List[Dict]): List of emotion detection results
|
146 |
+
- error (str): Error message if any
|
147 |
+
"""
|
148 |
global largest_face_detections
|
149 |
largest_face_detections = [] # Reset detections for new video
|
150 |
|
151 |
+
# Paths - adjust these paths according to your Hugging Face Space
|
152 |
face_cascade_path = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
|
153 |
+
emotion_model_path = "/data/best_emotion_model.pth" # Path in Hugging Face Space
|
154 |
|
155 |
+
# Check if models exist
|
156 |
if not os.path.exists(face_cascade_path):
|
157 |
+
return {
|
158 |
+
"success": False,
|
159 |
+
"message": "Face cascade classifier not found",
|
160 |
+
"results": [],
|
161 |
+
"error": f"Error: Face cascade classifier not found at {face_cascade_path}"
|
162 |
+
}
|
163 |
|
164 |
if not os.path.exists(emotion_model_path):
|
165 |
+
return {
|
166 |
+
"success": False,
|
167 |
+
"message": "Emotion model not found",
|
168 |
+
"results": [],
|
169 |
+
"error": f"Error: Emotion model not found at {emotion_model_path}"
|
170 |
+
}
|
171 |
|
172 |
+
# Set device
|
173 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
174 |
|
175 |
+
# Load models
|
176 |
try:
|
177 |
face_cascade = cv2.CascadeClassifier(face_cascade_path)
|
178 |
emotion_model = load_emotion_model(emotion_model_path, device)
|
179 |
except Exception as e:
|
180 |
+
return {
|
181 |
+
"success": False,
|
182 |
+
"message": "Error loading models",
|
183 |
+
"results": [],
|
184 |
+
"error": str(e)
|
185 |
+
}
|
186 |
|
187 |
+
# Emotion labels
|
188 |
emotions = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral']
|
189 |
|
190 |
+
# Open video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
cap = cv2.VideoCapture(video_path)
|
192 |
if not cap.isOpened():
|
193 |
+
return {
|
194 |
+
"success": False,
|
195 |
+
"message": "Could not open video file",
|
196 |
+
"results": [],
|
197 |
+
"error": f"Error: Could not open video file at {video_path}"
|
198 |
+
}
|
199 |
|
200 |
frame_count = 0
|
201 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
207 |
|
208 |
frame_count += 1
|
209 |
|
210 |
+
# Variables to track largest face
|
211 |
largest_face_area = 0
|
212 |
current_detection = None
|
213 |
|
214 |
+
# Convert frame to grayscale for face detection
|
215 |
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
216 |
|
217 |
+
# Detect faces using Haar Cascade
|
218 |
+
faces = face_cascade.detectMultiScale(
|
219 |
+
gray,
|
220 |
+
scaleFactor=1.1,
|
221 |
+
minNeighbors=5,
|
222 |
+
minSize=(30, 30)
|
223 |
+
)
|
224 |
|
225 |
+
# Process each detected face
|
226 |
for (x, y, w, h) in faces:
|
227 |
+
# Calculate face area
|
228 |
face_area = w * h
|
229 |
+
|
230 |
+
# Extract face region with margin
|
231 |
margin = 20
|
232 |
x1 = max(0, x - margin)
|
233 |
y1 = max(0, y - margin)
|
|
|
236 |
|
237 |
face_img = frame[y1:y2, x1:x2]
|
238 |
|
239 |
+
# Skip if face is too small
|
240 |
if face_img.size == 0 or face_img.shape[0] < 20 or face_img.shape[1] < 20:
|
241 |
continue
|
242 |
|
243 |
+
# Convert face to PIL Image and preprocess
|
244 |
face_tensor = preprocess_face(face_img)
|
245 |
|
246 |
+
# Predict emotion
|
247 |
with torch.no_grad():
|
248 |
face_tensor = face_tensor.to(device)
|
249 |
output = emotion_model(face_tensor)
|
|
|
251 |
emotion_idx = torch.argmax(output, dim=1).item()
|
252 |
confidence = probabilities[0][emotion_idx].item()
|
253 |
|
254 |
+
# Get emotion label
|
255 |
emotion = emotions[emotion_idx]
|
256 |
|
257 |
+
# Update largest face if current face is larger
|
258 |
if face_area > largest_face_area:
|
259 |
largest_face_area = face_area
|
260 |
current_detection = {
|
|
|
264 |
'frame_number': frame_count
|
265 |
}
|
266 |
|
267 |
+
# Add current detection to history if a face was detected
|
268 |
if current_detection:
|
269 |
largest_face_detections.append(current_detection)
|
270 |
|
271 |
+
# Release resources
|
272 |
cap.release()
|
273 |
|
274 |
+
# Process results
|
275 |
if not largest_face_detections:
|
276 |
return {
|
277 |
"success": True,
|
|
|
280 |
"error": None
|
281 |
}
|
282 |
|
283 |
+
# Calculate summary statistics
|
284 |
emotions_count = {}
|
285 |
for detection in largest_face_detections:
|
286 |
emotion = detection['emotion']
|
287 |
emotions_count[emotion] = emotions_count.get(emotion, 0) + 1
|
288 |
|
289 |
+
# Get dominant emotion
|
290 |
dominant_emotion = max(emotions_count.items(), key=lambda x: x[1])[0]
|
291 |
|
292 |
return {
|
|
|
304 |
"error": None
|
305 |
}
|
306 |
|
307 |
+
@app.post("/analyze-video")
|
308 |
+
async def analyze_video(file: UploadFile = File(...)):
|
|
|
|
|
|
|
|
|
309 |
try:
|
310 |
+
# Create uploads directory if it doesn't exist
|
311 |
+
upload_dir = Path("uploads")
|
312 |
+
upload_dir.mkdir(exist_ok=True)
|
313 |
+
|
314 |
+
# Generate unique filename
|
315 |
+
file_ext = file.filename.split(".")[-1]
|
316 |
+
temp_filename = f"{uuid.uuid4()}.{file_ext}"
|
317 |
+
temp_path = upload_dir / temp_filename
|
318 |
+
|
319 |
+
# Save the uploaded file
|
320 |
+
with open(temp_path, "wb") as buffer:
|
321 |
+
buffer.write(await file.read())
|
322 |
+
|
323 |
+
# Process the video
|
324 |
+
result = process_video(str(temp_path))
|
325 |
+
|
326 |
+
# Clean up - remove the temporary file
|
327 |
+
os.remove(temp_path)
|
328 |
+
|
329 |
+
if not result["success"]:
|
330 |
+
raise HTTPException(status_code=400, detail=result.get("error", "Processing failed"))
|
331 |
+
|
332 |
+
return JSONResponse(content=result)
|
333 |
+
|
334 |
except Exception as e:
|
335 |
+
# Clean up if file was created
|
336 |
+
if 'temp_path' in locals() and os.path.exists(temp_path):
|
337 |
+
os.remove(temp_path)
|
338 |
raise HTTPException(status_code=500, detail=str(e))
|
339 |
|
340 |
+
if __name__ == "__main__":
|
341 |
+
import uvicorn
|
342 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,11 +1,8 @@
|
|
1 |
-
ultralytics
|
2 |
-
torch
|
3 |
-
torchvision
|
4 |
-
gradio
|
5 |
fastapi
|
6 |
uvicorn
|
|
|
|
|
7 |
opencv-python
|
8 |
-
pillow
|
9 |
-
opencv-python-headless
|
10 |
numpy
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
fastapi
|
2 |
uvicorn
|
3 |
+
torch
|
4 |
+
torchvision
|
5 |
opencv-python
|
|
|
|
|
6 |
numpy
|
7 |
+
Pillow
|
8 |
+
python-multipart
|