Spaces:
Running
Running
Rivalcoder
commited on
Commit
·
4168c5d
1
Parent(s):
4dd5fdd
Add Files
Browse files- app.py +120 -158
- models +0 -0
- requirements.txt +5 -5
app.py
CHANGED
@@ -4,208 +4,170 @@ import numpy as np
|
|
4 |
from PIL import Image
|
5 |
import torchvision.transforms as transforms
|
6 |
from ultralytics import YOLO
|
|
|
7 |
import time
|
8 |
import os
|
9 |
-
import
|
10 |
-
from flask import Flask, request, jsonify
|
11 |
import gradio as gr
|
|
|
|
|
12 |
|
13 |
-
# Initialize
|
14 |
-
app =
|
15 |
|
16 |
-
# Global variable
|
17 |
-
|
18 |
|
19 |
-
#
|
20 |
-
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
29 |
def __init__(self, num_classes=7):
|
30 |
-
super().__init__()
|
31 |
-
self.
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
torch.nn.MaxPool2d(2)
|
41 |
-
)
|
42 |
-
self.classifier = torch.nn.Sequential(
|
43 |
-
torch.nn.Dropout(0.5),
|
44 |
-
torch.nn.Linear(256*6*6, 1024),
|
45 |
-
torch.nn.ReLU(),
|
46 |
-
torch.nn.Dropout(0.5),
|
47 |
-
torch.nn.Linear(1024, num_classes)
|
48 |
-
)
|
49 |
-
|
50 |
def forward(self, x):
|
51 |
-
x = self.
|
52 |
-
x =
|
53 |
-
x = self.
|
54 |
return x
|
55 |
-
|
56 |
-
emotion_model = EmotionCNN()
|
57 |
-
|
58 |
-
|
|
|
59 |
emotion_model.eval()
|
60 |
-
|
61 |
-
|
62 |
|
63 |
-
|
|
|
64 |
|
65 |
-
# Preprocessing function
|
66 |
def preprocess_face(face_img):
|
|
|
67 |
transform = transforms.Compose([
|
68 |
transforms.Resize((48, 48)),
|
69 |
-
transforms.Grayscale(),
|
70 |
transforms.ToTensor(),
|
71 |
transforms.Normalize(mean=[0.5], std=[0.5])
|
72 |
])
|
73 |
-
face_pil = Image.fromarray(cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB))
|
74 |
-
return transform(face_pil).unsqueeze(0)
|
75 |
-
|
76 |
-
# Process video function
|
77 |
-
def process_video(video_path):
|
78 |
-
global detection_history
|
79 |
-
detection_history = []
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
cap = cv2.VideoCapture(video_path)
|
82 |
if not cap.isOpened():
|
83 |
-
return {"
|
84 |
-
|
85 |
-
frame_count = 0
|
86 |
-
fps = cap.get(cv2.CAP_PROP_FPS)
|
87 |
-
frame_skip = int(fps / 3) # Process ~3 frames per second
|
88 |
-
|
89 |
while True:
|
90 |
ret, frame = cap.read()
|
91 |
if not ret:
|
92 |
break
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
# Face detection
|
99 |
-
results = face_model(frame)
|
100 |
-
|
101 |
for result in results:
|
102 |
boxes = result.boxes
|
103 |
-
if len(boxes) == 0:
|
104 |
-
continue
|
105 |
-
|
106 |
for box in boxes:
|
107 |
-
x1, y1, x2, y2 = map(int, box.xyxy[0].
|
108 |
face_img = frame[y1:y2, x1:x2]
|
109 |
|
110 |
if face_img.size == 0:
|
111 |
continue
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
with torch.no_grad():
|
116 |
output = emotion_model(face_tensor)
|
117 |
-
|
118 |
-
|
119 |
-
confidence =
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
"confidence": confidence
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
129 |
cap.release()
|
130 |
|
131 |
-
if not
|
132 |
-
return {"
|
133 |
-
|
134 |
return {
|
135 |
-
"
|
136 |
-
"
|
137 |
-
|
138 |
-
"fps": fps,
|
139 |
-
"duration": frame_count / fps
|
140 |
-
}
|
141 |
}
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
if file.filename == '':
|
151 |
-
return jsonify({"error": "No selected file"}), 400
|
152 |
-
|
153 |
-
# Save to temp file
|
154 |
-
temp_path = os.path.join(tempfile.gettempdir(), file.filename)
|
155 |
-
file.save(temp_path)
|
156 |
-
|
157 |
-
# Process video
|
158 |
-
result = process_video(temp_path)
|
159 |
-
|
160 |
-
# Clean up
|
161 |
-
os.remove(temp_path)
|
162 |
-
|
163 |
-
return jsonify(result)
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
187 |
-
cv2.putText(frame, f"{last_det['emotion']} ({last_det['confidence']:.2f})",
|
188 |
-
(x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
189 |
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
|
195 |
-
# Create Gradio interface
|
196 |
-
demo = gr.Interface(
|
197 |
-
fn=gradio_predict,
|
198 |
-
inputs=gr.Video(label="Upload Video"),
|
199 |
-
outputs=[
|
200 |
-
gr.Image(label="Detection Preview"),
|
201 |
-
gr.JSON(label="Results")
|
202 |
-
],
|
203 |
-
title="Video Emotion Detection",
|
204 |
-
description="Upload a video to detect emotions in faces"
|
205 |
-
)
|
206 |
-
|
207 |
-
# Mount Gradio app
|
208 |
app = gr.mount_gradio_app(app, demo, path="/")
|
209 |
|
210 |
if __name__ == "__main__":
|
211 |
-
|
|
|
4 |
from PIL import Image
|
5 |
import torchvision.transforms as transforms
|
6 |
from ultralytics import YOLO
|
7 |
+
import tempfile
|
8 |
import time
|
9 |
import os
|
10 |
+
import json
|
|
|
11 |
import gradio as gr
|
12 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
13 |
+
import uvicorn
|
14 |
|
15 |
+
# Initialize FastAPI
|
16 |
+
app = FastAPI()
|
17 |
|
18 |
+
# Global variable for face detections
|
19 |
+
largest_face_detections = []
|
20 |
|
21 |
+
# Load models
|
22 |
+
yolo_model_path = "yolov8n-face.pt"
|
23 |
+
emotion_model_path = "best_emotion_model.pth"
|
24 |
|
25 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
26 |
+
|
27 |
+
# Check if models exist
|
28 |
+
if os.path.exists(yolo_model_path):
|
29 |
+
yolo_model = YOLO(yolo_model_path)
|
30 |
+
else:
|
31 |
+
raise FileNotFoundError(f"YOLO model not found at {yolo_model_path}")
|
32 |
+
|
33 |
+
if os.path.exists(emotion_model_path):
|
34 |
+
from torch import nn
|
35 |
+
|
36 |
+
class EmotionCNN(nn.Module):
|
37 |
def __init__(self, num_classes=7):
|
38 |
+
super(EmotionCNN, self).__init__()
|
39 |
+
self.conv1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=3, padding=1),
|
40 |
+
nn.BatchNorm2d(64),
|
41 |
+
nn.ReLU(),
|
42 |
+
nn.MaxPool2d(kernel_size=2, stride=2))
|
43 |
+
|
44 |
+
self.fc = nn.Sequential(nn.Linear(64 * 24 * 24, 1024),
|
45 |
+
nn.ReLU(),
|
46 |
+
nn.Linear(1024, num_classes))
|
47 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def forward(self, x):
|
49 |
+
x = self.conv1(x)
|
50 |
+
x = x.view(x.size(0), -1)
|
51 |
+
x = self.fc(x)
|
52 |
return x
|
53 |
+
|
54 |
+
emotion_model = EmotionCNN(num_classes=7)
|
55 |
+
checkpoint = torch.load(emotion_model_path, map_location=device)
|
56 |
+
emotion_model.load_state_dict(checkpoint['model_state_dict'])
|
57 |
+
emotion_model.to(device)
|
58 |
emotion_model.eval()
|
59 |
+
else:
|
60 |
+
raise FileNotFoundError(f"Emotion model not found at {emotion_model_path}")
|
61 |
|
62 |
+
# Emotion labels
|
63 |
+
emotions = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral']
|
64 |
|
|
|
65 |
def preprocess_face(face_img):
|
66 |
+
"""Preprocess face image for emotion detection"""
|
67 |
transform = transforms.Compose([
|
68 |
transforms.Resize((48, 48)),
|
|
|
69 |
transforms.ToTensor(),
|
70 |
transforms.Normalize(mean=[0.5], std=[0.5])
|
71 |
])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
face_img = Image.fromarray(cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)).convert('L')
|
74 |
+
face_tensor = transform(face_img).unsqueeze(0)
|
75 |
+
return face_tensor
|
76 |
+
|
77 |
+
def process_video(video_path: str):
|
78 |
+
"""Process video and return emotion results"""
|
79 |
+
global largest_face_detections
|
80 |
+
largest_face_detections = []
|
81 |
+
|
82 |
cap = cv2.VideoCapture(video_path)
|
83 |
if not cap.isOpened():
|
84 |
+
return {"success": False, "message": "Could not open video file"}
|
85 |
+
|
|
|
|
|
|
|
|
|
86 |
while True:
|
87 |
ret, frame = cap.read()
|
88 |
if not ret:
|
89 |
break
|
90 |
+
|
91 |
+
largest_face_area = 0
|
92 |
+
current_detection = None
|
93 |
+
|
94 |
+
results = yolo_model(frame, stream=True)
|
|
|
|
|
|
|
95 |
for result in results:
|
96 |
boxes = result.boxes
|
|
|
|
|
|
|
97 |
for box in boxes:
|
98 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy())
|
99 |
face_img = frame[y1:y2, x1:x2]
|
100 |
|
101 |
if face_img.size == 0:
|
102 |
continue
|
103 |
+
|
104 |
+
face_tensor = preprocess_face(face_img).to(device)
|
105 |
+
|
106 |
with torch.no_grad():
|
107 |
output = emotion_model(face_tensor)
|
108 |
+
probabilities = torch.nn.functional.softmax(output, dim=1)
|
109 |
+
emotion_idx = torch.argmax(output, dim=1).item()
|
110 |
+
confidence = probabilities[0][emotion_idx].item()
|
111 |
+
|
112 |
+
emotion = emotions[emotion_idx]
|
113 |
+
|
114 |
+
if (x2 - x1) * (y2 - y1) > largest_face_area:
|
115 |
+
largest_face_area = (x2 - x1) * (y2 - y1)
|
116 |
+
current_detection = {"emotion": emotion, "confidence": confidence}
|
117 |
+
|
118 |
+
if current_detection:
|
119 |
+
largest_face_detections.append(current_detection)
|
120 |
+
|
121 |
cap.release()
|
122 |
|
123 |
+
if not largest_face_detections:
|
124 |
+
return {"success": True, "message": "No faces detected", "results": []}
|
125 |
+
|
126 |
return {
|
127 |
+
"success": True,
|
128 |
+
"message": "Video processed",
|
129 |
+
"results": largest_face_detections
|
|
|
|
|
|
|
130 |
}
|
131 |
|
132 |
+
@app.post("/api/video")
|
133 |
+
async def handle_video(file: UploadFile = File(...)):
|
134 |
+
"""API endpoint for video emotion detection"""
|
135 |
+
try:
|
136 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp:
|
137 |
+
tmp.write(await file.read())
|
138 |
+
video_path = tmp.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
+
result = process_video(video_path)
|
141 |
+
os.remove(video_path)
|
142 |
+
return result
|
143 |
+
|
144 |
+
except Exception as e:
|
145 |
+
return {"success": False, "message": "Error processing video", "error": str(e)}
|
146 |
+
|
147 |
+
# Gradio UI
|
148 |
+
def gradio_process(video):
|
149 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp:
|
150 |
+
tmp.write(video)
|
151 |
+
video_path = tmp.name
|
152 |
+
|
153 |
+
result = process_video(video_path)
|
154 |
+
os.remove(video_path)
|
155 |
+
return result
|
156 |
+
|
157 |
+
with gr.Blocks() as demo:
|
158 |
+
gr.Markdown("# Video Emotion Analysis")
|
159 |
|
160 |
+
with gr.Row():
|
161 |
+
with gr.Column():
|
162 |
+
video_input = gr.File(label="Upload a video", file_types=[".mp4"])
|
163 |
+
submit_btn = gr.Button("Analyze")
|
|
|
|
|
|
|
164 |
|
165 |
+
with gr.Column():
|
166 |
+
output = gr.JSON(label="Results")
|
167 |
+
|
168 |
+
submit_btn.click(fn=gradio_process, inputs=video_input, outputs=output)
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
app = gr.mount_gradio_app(app, demo, path="/")
|
171 |
|
172 |
if __name__ == "__main__":
|
173 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
models
DELETED
File without changes
|
requirements.txt
CHANGED
@@ -1,8 +1,8 @@
|
|
|
|
1 |
torch
|
2 |
torchvision
|
3 |
-
opencv-python
|
4 |
-
ultralytics
|
5 |
gradio
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
1 |
+
ultralytics
|
2 |
torch
|
3 |
torchvision
|
|
|
|
|
4 |
gradio
|
5 |
+
fastapi
|
6 |
+
uvicorn
|
7 |
+
opencv-python
|
8 |
+
pillow
|