Spaces:
Running
Running
File size: 13,235 Bytes
9a2edf3 defb3ac 4168c5d defb3ac 9c6982b defb3ac 9c6982b 9a2edf3 4168c5d 9a2edf3 d044a6c 4168c5d 9a2edf3 defb3ac d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac 4168c5d d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac 9a2edf3 defb3ac d044a6c 9a2edf3 d044a6c defb3ac 4168c5d d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac d044a6c defb3ac 4168c5d d044a6c defb3ac 9a2edf3 defb3ac 4168c5d d044a6c defb3ac d044a6c defb3ac d044a6c 9a2edf3 4168c5d d044a6c 9a2edf3 9c6982b defb3ac 9c6982b d044a6c 9c6982b defb3ac 4168c5d defb3ac 9c6982b d044a6c 4168c5d 9c6982b defb3ac 97394ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import cv2
import torch
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
import time
import os
import json
from typing import Dict, List, Any
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.responses import JSONResponse, HTMLResponse
import uuid
from pathlib import Path
import gradio as gr
import tempfile
app = FastAPI()
# Global variable to store the history of largest face detections
largest_face_detections = []
# EmotionCNN model definition
class EmotionCNN(torch.nn.Module):
def __init__(self, num_classes=7):
super(EmotionCNN, self).__init__()
# First convolutional block
self.conv1 = torch.nn.Sequential(
torch.nn.Conv2d(1, 64, kernel_size=3, padding=1),
torch.nn.BatchNorm2d(64),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2, stride=2)
)
# Second convolutional block
self.conv2 = torch.nn.Sequential(
torch.nn.Conv2d(64, 128, kernel_size=3, padding=1),
torch.nn.BatchNorm2d(128),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2, stride=2)
)
# Third convolutional block
self.conv3 = torch.nn.Sequential(
torch.nn.Conv2d(128, 256, kernel_size=3, padding=1),
torch.nn.BatchNorm2d(256),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2, stride=2)
)
# Fourth convolutional block
self.conv4 = torch.nn.Sequential(
torch.nn.Conv2d(256, 512, kernel_size=3, padding=1),
torch.nn.BatchNorm2d(512),
torch.nn.ReLU(),
torch.nn.MaxPool2d(kernel_size=2, stride=2)
)
# Fifth convolutional block with residual connection
self.conv5 = torch.nn.Sequential(
torch.nn.Conv2d(512, 512, kernel_size=3, padding=1),
torch.nn.BatchNorm2d(512),
torch.nn.ReLU()
)
# Attention mechanism
self.attention = torch.nn.Sequential(
torch.nn.Conv2d(512, 1, kernel_size=1),
torch.nn.Sigmoid()
)
# Fully connected layers
self.fc = torch.nn.Sequential(
torch.nn.Dropout(0.5),
torch.nn.Linear(512 * 3 * 3, 1024),
torch.nn.ReLU(),
torch.nn.Dropout(0.5),
torch.nn.Linear(1024, 512),
torch.nn.ReLU(),
torch.nn.Dropout(0.3),
torch.nn.Linear(512, num_classes)
)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = self.conv4(x)
# Fifth conv block with residual connection
x_res = x
x = self.conv5(x)
x = x + x_res
# Apply attention
attn = self.attention(x)
x = x * attn
# Flatten
x = x.view(x.size(0), -1)
# Fully connected
x = self.fc(x)
return x
def load_emotion_model(model_path, device='cuda' if torch.cuda.is_available() else 'cpu'):
"""Load the emotion recognition model"""
checkpoint = torch.load(model_path, map_location=device)
model = EmotionCNN(num_classes=7)
model.load_state_dict(checkpoint['model_state_dict'])
model.to(device)
model.eval()
return model
def preprocess_face(face_img, size=(48, 48)):
"""Preprocess face image for emotion detection"""
transform = transforms.Compose([
transforms.Resize(size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])
])
# Convert to PIL Image
if isinstance(face_img, np.ndarray):
face_img = Image.fromarray(cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB))
# Convert to grayscale
face_img = face_img.convert('L')
# Apply transformations
face_tensor = transform(face_img).unsqueeze(0)
return face_tensor
def process_video(video_path: str) -> Dict[str, Any]:
"""
Process a video file and return emotion detection results.
Args:
video_path (str): Path to the video file
Returns:
Dict containing:
- success (bool): Whether processing was successful
- message (str): Status message
- results (List[Dict]): List of emotion detection results
- error (str): Error message if any
"""
global largest_face_detections
largest_face_detections = [] # Reset detections for new video
# Paths - adjust these paths according to your Hugging Face Space
face_cascade_path = cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
emotion_model_path = "/data/best_emotion_model.pth" # Path in Hugging Face Space
# Check if models exist
if not os.path.exists(face_cascade_path):
return {
"success": False,
"message": "Face cascade classifier not found",
"results": [],
"error": f"Error: Face cascade classifier not found at {face_cascade_path}"
}
if not os.path.exists(emotion_model_path):
return {
"success": False,
"message": "Emotion model not found",
"results": [],
"error": f"Error: Emotion model not found at {emotion_model_path}"
}
# Set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Load models
try:
face_cascade = cv2.CascadeClassifier(face_cascade_path)
emotion_model = load_emotion_model(emotion_model_path, device)
except Exception as e:
return {
"success": False,
"message": "Error loading models",
"results": [],
"error": str(e)
}
# Emotion labels
emotions = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral']
# Open video
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return {
"success": False,
"message": "Could not open video file",
"results": [],
"error": f"Error: Could not open video file at {video_path}"
}
frame_count = 0
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
while True:
ret, frame = cap.read()
if not ret:
break
frame_count += 1
# Variables to track largest face
largest_face_area = 0
current_detection = None
# Convert frame to grayscale for face detection
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Detect faces using Haar Cascade
faces = face_cascade.detectMultiScale(
gray,
scaleFactor=1.1,
minNeighbors=5,
minSize=(30, 30)
)
# Process each detected face
for (x, y, w, h) in faces:
# Calculate face area
face_area = w * h
# Extract face region with margin
margin = 20
x1 = max(0, x - margin)
y1 = max(0, y - margin)
x2 = min(frame.shape[1], x + w + margin)
y2 = min(frame.shape[0], y + h + margin)
face_img = frame[y1:y2, x1:x2]
# Skip if face is too small
if face_img.size == 0 or face_img.shape[0] < 20 or face_img.shape[1] < 20:
continue
# Convert face to PIL Image and preprocess
face_tensor = preprocess_face(face_img)
# Predict emotion
with torch.no_grad():
face_tensor = face_tensor.to(device)
output = emotion_model(face_tensor)
probabilities = torch.nn.functional.softmax(output, dim=1)
emotion_idx = torch.argmax(output, dim=1).item()
confidence = probabilities[0][emotion_idx].item()
# Get emotion label
emotion = emotions[emotion_idx]
# Update largest face if current face is larger
if face_area > largest_face_area:
largest_face_area = face_area
current_detection = {
'emotion': emotion,
'confidence': confidence,
'timestamp': time.time(),
'frame_number': frame_count
}
# Add current detection to history if a face was detected
if current_detection:
largest_face_detections.append(current_detection)
# Release resources
cap.release()
# Process results
if not largest_face_detections:
return {
"success": True,
"message": "No faces detected in video",
"results": [],
"error": None
}
# Calculate summary statistics
emotions_count = {}
for detection in largest_face_detections:
emotion = detection['emotion']
emotions_count[emotion] = emotions_count.get(emotion, 0) + 1
# Get dominant emotion
dominant_emotion = max(emotions_count.items(), key=lambda x: x[1])[0]
return {
"success": True,
"message": "Video processed successfully",
"results": {
"detections": largest_face_detections,
"summary": {
"total_frames": total_frames,
"total_detections": len(largest_face_detections),
"emotions_count": emotions_count,
"dominant_emotion": dominant_emotion
}
},
"error": None
}
# Gradio Interface Functions
def gradio_analyze_video(video_path: str):
"""Wrapper function for Gradio interface"""
result = process_video(video_path)
if not result["success"]:
return {"error": result.get("error", "Processing failed")}
# Format results for better Gradio display
summary = result["results"]["summary"]
detections = result["results"]["detections"]
output = {
"summary": {
"total_frames": summary["total_frames"],
"faces_detected": summary["total_detections"],
"dominant_emotion": summary["dominant_emotion"],
"emotion_distribution": summary["emotions_count"]
},
"sample_detections": detections[:5] # Show first 5 detections
}
return output
def save_upload_file_tmp(upload_file: UploadFile) -> str:
"""Save uploaded file to temporary location"""
try:
suffix = Path(upload_file.filename).suffix
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp:
tmp.write(upload_file.file.read())
return tmp.name
finally:
upload_file.file.close()
# Gradio Interface
with gr.Blocks(title="Video Emotion Detection", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# 🎭 Video Emotion Detection
Upload a video to analyze facial emotions frame by frame
""")
with gr.Row():
with gr.Column():
video_input = gr.Video(
label="Upload Video",
sources=["upload"],
type="filepath"
)
submit_btn = gr.Button("Analyze Video", variant="primary")
with gr.Column():
output_json = gr.JSON(label="Analysis Results")
gr.Markdown("""
### Results Interpretation
- **Dominant Emotion**: Most frequently detected emotion
- **Emotion Distribution**: Count of each emotion detected
- **Sample Detections**: First 5 emotion detections
""")
submit_btn.click(
fn=gradio_analyze_video,
inputs=video_input,
outputs=output_json,
api_name="predict"
)
# FastAPI Endpoints
@app.post("/api/analyze-video")
async def analyze_video(file: UploadFile = File(...)):
"""Original FastAPI endpoint"""
try:
temp_path = save_upload_file_tmp(file)
result = process_video(temp_path)
os.unlink(temp_path)
if not result["success"]:
raise HTTPException(status_code=400, detail=result.get("error", "Processing failed"))
return JSONResponse(content=result)
except Exception as e:
if 'temp_path' in locals() and os.path.exists(temp_path):
os.unlink(temp_path)
raise HTTPException(status_code=500, detail=str(e))
@app.get("/", response_class=HTMLResponse)
async def root():
"""Redirect root to Gradio interface"""
return """
<html>
<head>
<title>Video Emotion Detection</title>
<meta http-equiv="refresh" content="0; url=/gradio" />
</head>
<body>
<p>Redirecting to Gradio interface... <a href="/gradio">Click here</a> if not redirected.</p>
</body>
</html>
"""
# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, demo, path="/gradio")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |