Spaces:
Runtime error
Runtime error
title: TheoremExplainAgent | |
emoji: π | |
colorFrom: blue | |
colorTo: purple | |
sdk: gradio | |
sdk_version: "4.44.0" | |
app_file: app.py | |
pinned: false | |
license: mit | |
# π Theorem-Explain-Agent Video Generation | |
Generate educational videos explaining mathematical theorems and concepts using AI. | |
## Features | |
- π€ Multiple AI model support (Gemini, OpenAI, Anthropic) | |
- π¬ Automated video generation with Manim | |
- π΅ Text-to-speech narration | |
- π Real-time status tracking | |
- π Background processing | |
## How to Use | |
1. **Start Generation**: Enter a Model, Topic, and Context | |
2. **Get Task ID**: Copy the generated task ID | |
3. **Check Status**: Monitor progress in the Check Status tab | |
4. **Download**: Get your video when generation completes | |
## Supported Models | |
- `gemini/gemini-1.5-flash` (recommended) | |
- `gemini/gemini-1.5-pro` | |
- `openai/gpt-4o` | |
- `openai/o3-mini` | |
- `anthropic/claude-3-opus-20240229` | |
## Requirements | |
This application requires API keys for the AI models you want to use. Set them in the Space's Repository Secrets: | |
- `GEMINI_API_KEY` | |
- `OPENAI_API_KEY` | |
- `LANGFUSE_PUBLIC_KEY` | |
- `LANGFUSE_SECRET_KEY` | |
## Example Usage | |
**Topic**: "The Pythagorean Theorem" | |
**Context**: "In a right-angled triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the other two sides." | |
**Model**: "gemini/gemini-1.5-flash" | |
The system will generate an educational video explaining the theorem with visual animations and narration. | |
# TheoremExplainAgent (TEA) π΅ | |
[](https://arxiv.org/abs/2502.19400) | |
<a href='https://huggingface.co/papers/2502.19400'><img src='https://img.shields.io/static/v1?label=Paper&message=Huggingface&color=orange'></a> | |
[**π Homepage**](https://tiger-ai-lab.github.io/TheoremExplainAgent/) | [**π arXiv**](https://arxiv.org/abs/2502.19400) | [**π€ HuggingFace Dataset**](https://huggingface.co/datasets/TIGER-Lab/TheoremExplainBench) | [π₯Video Data](https://drive.google.com/file/d/18kmzXvbxaFGyJw-g51jnq9m93v_ez4aJ/view) | |
[](https://github.com/TIGER-AI-Lab/TheoremExplainAgent/graphs/contributors) | |
[](https://github.com/TIGER-AI-Lab/TheoremExplainAgent/blob/main/LICENSE) | |
[](https://github.com/TIGER-AI-Lab/TheoremExplainAgent) | |
[](https://hits.seeyoufarm.com) | |
This repo contains the codebase for our paper [TheoremExplainAgent: Towards Video-based Multimodal Explanations for LLM Theorem Understanding](https://arxiv.org/abs/2502.19400) | |
**ACL 2025 main** | |
## Introduction | |
TheoremExplainAgent is an AI system that generates long-form Manim videos to visually explain theorems, proving its deep understanding while uncovering reasoning flaws that text alone often hides. | |
https://github.com/user-attachments/assets/17f2f4f2-8f2c-4abc-b377-ac92ebda69f3 | |
## π° News | |
* 2025 Jun 8: We released our generated video data for researchers to serve as baselines. | |
* 2025 May 15: Paper accepted to ACL 2025 main conference. | |
* 2025 Mar 3: Generation code and Evaluation code released. Thanks for the wait! | |
<!--* 2025 Mar 3: Reach 404 stars without code.--> | |
* 2025 Feb 27: Paper available on [Arxiv](https://arxiv.org/abs/2502.19400). Thanks AK for putting our paper on [HF Daily](https://huggingface.co/papers/2502.19400). | |
## Downloading Generated Video Data | |
Skip this section if you just want to try out the code. | |
If you are researchers who just need the baseline videos as baseline comparison, download it here: | |
```shell | |
wget --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=18kmzXvbxaFGyJw-g51jnq9m93v_ez4aJ' -O /tmp/gdrive.html && wget --load-cookies /tmp/cookies.txt -O baseline_videos.zip "https://drive.usercontent.google.com/download?id=18kmzXvbxaFGyJw-g51jnq9m93v_ez4aJ&export=download&confirm=$(sed -rn 's/.*name="confirm" value="([^"]+)".*/\\1/p' /tmp/gdrive.html)&uuid=$(sed -rn 's/.*name="uuid" value="([^"]+)".*/\\1/p' /tmp/gdrive.html)" && rm /tmp/gdrive.html /tmp/cookies.txt | |
``` | |
## Installation | |
> **Look at the [FAQ section in this README doc](https://github.com/TIGER-AI-Lab/TheoremExplainAgent?tab=readme-ov-file#-faq) if you encountered any errors. If that didnt help, create a issue**<br> | |
1. Setting up conda environment | |
```shell | |
conda create --name tea python=3.12.8 | |
conda activate tea | |
pip install -r requirements.txt | |
``` | |
2. You may also need to install latex and other dependencies for Manim Community. Look at [Manim Installation Docs](https://docs.manim.community/en/stable/installation.html) for more details. | |
```shell | |
# You might need these dependencies if you are using Linux Ubuntu: | |
sudo apt-get install portaudio19-dev | |
sudo apt-get install libsdl-pango-dev | |
``` | |
3. Then Download the Kokoro model and voices using the commands to enable TTS service. | |
```shell | |
mkdir -p models && wget -P models https://github.com/thewh1teagle/kokoro-onnx/releases/download/model-files/kokoro-v0_19.onnx && wget -P models https://github.com/thewh1teagle/kokoro-onnx/releases/download/model-files/voices.bin | |
``` | |
4. Create `.env` based on `.env.template`, filling in the environmental variables according to the models you choose to use. | |
See [LiteLLM](https://docs.litellm.ai/docs/providers) for reference. | |
```shell | |
touch .env | |
``` | |
Then open the `.env` file and edit it with whatever text editor you like. | |
Your `.env` file should look like the following: | |
```shell | |
# OpenAI | |
OPENAI_API_KEY="" | |
# Azure OpenAI | |
AZURE_API_KEY="" | |
AZURE_API_BASE="" | |
AZURE_API_VERSION="" | |
# Google Vertex AI | |
VERTEXAI_PROJECT="" | |
VERTEXAI_LOCATION="" | |
GOOGLE_APPLICATION_CREDENTIALS="" | |
# Google Gemini | |
GEMINI_API_KEY="" | |
... | |
# Kokoro TTS Settings | |
KOKORO_MODEL_PATH="models/kokoro-v0_19.onnx" | |
KOKORO_VOICES_PATH="models/voices.bin" | |
KOKORO_DEFAULT_VOICE="af" | |
KOKORO_DEFAULT_SPEED="1.0" | |
KOKORO_DEFAULT_LANG="en-us" | |
``` | |
Fill in the API keys according to the model you wanted to use. | |
5. Configure Python path. Note that you need to configure the python path to make it work. Otherwise you may encounter import issues (like not being able to import src etc.) | |
```shell | |
export PYTHONPATH=$(pwd):$PYTHONPATH | |
``` | |
6. (Optional) To setup RAG, See [https://github.com/TIGER-AI-Lab/TheoremExplainAgent?tab=readme-ov-file#generation-with-rag](https://github.com/TIGER-AI-Lab/TheoremExplainAgent?tab=readme-ov-file#generation-with-rag). | |
> **Look at the [FAQ section in this README doc](https://github.com/TIGER-AI-Lab/TheoremExplainAgent?tab=readme-ov-file#-faq) if you encountered any errors. If that didnt help, create a issue**<br> | |
## Generation | |
### Supported Models | |
<!--You can customize the allowed models by editing the `src/utils/allowed_models.json` file. This file specifies which `model` and `helper_model` the system is permitted to use.--> | |
The model naming follows the LiteLLM convention. For details on how models should be named, please refer to the [LiteLLM documentation](https://docs.litellm.ai/docs/providers). | |
### Generation (Single topic) | |
```shell | |
python generate_video.py \ | |
--model "openai/o3-mini" \ | |
--helper_model "openai/o3-mini" \ | |
--output_dir "output/your_exp_name" \ | |
--topic "your_topic" \ | |
--context "description of your topic, e.g. 'This is a topic about the properties of a triangle'" \ | |
``` | |
Example: | |
```shell | |
python generate_video.py \ | |
--model "openai/o3-mini" \ | |
--helper_model "openai/o3-mini" \ | |
--output_dir "output/my_exp_name" \ | |
--topic "Big O notation" \ | |
--context "most common type of asymptotic notation in computer science used to measure worst case complexity" \ | |
``` | |
### Generation (in batch) | |
```shell | |
python generate_video.py \ | |
--model "openai/o3-mini" \ | |
--helper_model "openai/o3-mini" \ | |
--output_dir "output/my_exp_name" \ | |
--theorems_path data/thb_easy/math.json \ | |
--max_scene_concurrency 7 \ | |
--max_topic_concurrency 20 \ | |
``` | |
### Generation with RAG | |
Before using RAG, download the RAG documentation from this [Google Drive link](https://drive.google.com/file/d/1Tn6J_JKVefFZRgZbjns93KLBtI9ullRv/view?usp=sharing). After downloading, unzip the file. For example, if you unzip it to `data/rag/manim_docs`, then you should set `--manim_docs_path` to `data/rag/manim_docs`. The vector database will be created the first time you run with RAG. | |
```shell | |
python generate_video.py \ | |
--model "openai/o3-mini" \ | |
--helper_model "openai/o3-mini" \ | |
--output_dir "output/with_rag/o3-mini/vtutorbench_easy/math" \ | |
--topic "Big O notation" \ | |
--context "most common type of asymptotic notation in computer science used to measure worst case complexity" \ | |
--use_rag \ | |
--chroma_db_path "data/rag/chroma_db" \ | |
--manim_docs_path "data/rag/manim_docs" \ | |
--embedding_model "vertex_ai/text-embedding-005" | |
``` | |
We support more options for generation, see below for more details: | |
```shell | |
usage: generate_video.py [-h] | |
[--model] | |
[--topic TOPIC] [--context CONTEXT] | |
[--helper_model] | |
[--only_gen_vid] [--only_combine] [--peek_existing_videos] [--output_dir OUTPUT_DIR] [--theorems_path THEOREMS_PATH] | |
[--sample_size SAMPLE_SIZE] [--verbose] [--max_retries MAX_RETRIES] [--use_rag] [--use_visual_fix_code] | |
[--chroma_db_path CHROMA_DB_PATH] [--manim_docs_path MANIM_DOCS_PATH] | |
[--embedding_model {azure/text-embedding-3-large,vertex_ai/text-embedding-005}] [--use_context_learning] | |
[--context_learning_path CONTEXT_LEARNING_PATH] [--use_langfuse] [--max_scene_concurrency MAX_SCENE_CONCURRENCY] | |
[--max_topic_concurrency MAX_TOPIC_CONCURRENCY] [--debug_combine_topic DEBUG_COMBINE_TOPIC] [--only_plan] [--check_status] | |
[--only_render] [--scenes SCENES [SCENES ...]] | |
Generate Manim videos using AI | |
options: | |
-h, --help show this help message and exit | |
--model Select the AI model to use | |
--topic TOPIC Topic to generate videos for | |
--context CONTEXT Context of the topic | |
--helper_model Select the helper model to use | |
--only_gen_vid Only generate videos to existing plans | |
--only_combine Only combine videos | |
--peek_existing_videos, --peek | |
Peek at existing videos | |
--output_dir OUTPUT_DIR | |
Output directory | |
--theorems_path THEOREMS_PATH | |
Path to theorems json file | |
--sample_size SAMPLE_SIZE, --sample SAMPLE_SIZE | |
Number of theorems to sample | |
--verbose Print verbose output | |
--max_retries MAX_RETRIES | |
Maximum number of retries for code generation | |
--use_rag, --rag Use Retrieval Augmented Generation | |
--use_visual_fix_code, --visual_fix_code | |
Use VLM to fix code with rendered visuals | |
--chroma_db_path CHROMA_DB_PATH | |
Path to Chroma DB | |
--manim_docs_path MANIM_DOCS_PATH | |
Path to manim docs | |
--embedding_model {azure/text-embedding-3-large,vertex_ai/text-embedding-005} | |
Select the embedding model to use | |
--use_context_learning | |
Use context learning with example Manim code | |
--context_learning_path CONTEXT_LEARNING_PATH | |
Path to context learning examples | |
--use_langfuse Enable Langfuse logging | |
--max_scene_concurrency MAX_SCENE_CONCURRENCY | |
Maximum number of scenes to process concurrently | |
--max_topic_concurrency MAX_TOPIC_CONCURRENCY | |
Maximum number of topics to process concurrently | |
--debug_combine_topic DEBUG_COMBINE_TOPIC | |
Debug combine videos | |
--only_plan Only generate scene outline and implementation plans | |
--check_status Check planning and code status for all theorems | |
--only_render Only render scenes without combining videos | |
--scenes SCENES [SCENES ...] | |
Specific scenes to process (if theorems_path is provided) | |
``` | |
## Evaluation | |
Note that Gemini and GPT4o is required for evaluation. | |
Currently, evaluation requires a video file and a subtitle file (SRT format). | |
Video evaluation: | |
```shell | |
usage: evaluate.py [-h] | |
[--model_text {gemini/gemini-1.5-pro-002,gemini/gemini-1.5-flash-002,gemini/gemini-2.0-flash-001,vertex_ai/gemini-1.5-flash-002,vertex_ai/gemini-1.5-pro-002,vertex_ai/gemini-2.0-flash-001,openai/o3-mini,gpt-4o,azure/gpt-4o,azure/gpt-4o-mini,bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0,bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0,bedrock/anthropic.claude-3-5-haiku-20241022-v1:0,bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0}] | |
[--model_video {gemini/gemini-1.5-pro-002,gemini/gemini-2.0-flash-exp,gemini/gemini-2.0-pro-exp-02-05}] | |
[--model_image {gemini/gemini-1.5-pro-002,gemini/gemini-1.5-flash-002,gemini/gemini-2.0-flash-001,vertex_ai/gemini-1.5-flash-002,vertex_ai/gemini-1.5-pro-002,vertex_ai/gemini-2.0-flash-001,openai/o3-mini,gpt-4o,azure/gpt-4o,azure/gpt-4o-mini,bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0,bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0,bedrock/anthropic.claude-3-5-haiku-20241022-v1:0,bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0}] | |
[--eval_type {text,video,image,all}] --file_path FILE_PATH --output_folder OUTPUT_FOLDER [--retry_limit RETRY_LIMIT] [--combine] [--bulk_evaluate] [--target_fps TARGET_FPS] | |
[--use_parent_folder_as_topic] [--max_workers MAX_WORKERS] | |
Automatic evaluation of theorem explanation videos with LLMs | |
options: | |
-h, --help show this help message and exit | |
--model_text {gemini/gemini-1.5-pro-002,gemini/gemini-1.5-flash-002,gemini/gemini-2.0-flash-001,vertex_ai/gemini-1.5-flash-002,vertex_ai/gemini-1.5-pro-002,vertex_ai/gemini-2.0-flash-001,openai/o3-mini,gpt-4o,azure/gpt-4o,azure/gpt-4o-mini,bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0,bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0,bedrock/anthropic.claude-3-5-haiku-20241022-v1:0,bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0} | |
Select the AI model to use for text evaluation | |
--model_video {gemini/gemini-1.5-pro-002,gemini/gemini-2.0-flash-exp,gemini/gemini-2.0-pro-exp-02-05} | |
Select the AI model to use for video evaluation | |
--model_image {gemini/gemini-1.5-pro-002,gemini/gemini-1.5-flash-002,gemini/gemini-2.0-flash-001,vertex_ai/gemini-1.5-flash-002,vertex_ai/gemini-1.5-pro-002,vertex_ai/gemini-2.0-flash-001,openai/o3-mini,gpt-4o,azure/gpt-4o,azure/gpt-4o-mini,bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0,bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0,bedrock/anthropic.claude-3-5-haiku-20241022-v1:0,bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0} | |
Select the AI model to use for image evaluation | |
--eval_type {text,video,image,all} | |
Type of evaluation to perform | |
--file_path FILE_PATH | |
Path to a file or a theorem folder | |
--output_folder OUTPUT_FOLDER | |
Directory to store the evaluation files | |
--retry_limit RETRY_LIMIT | |
Number of retry attempts for each inference | |
--combine Combine all results into a single JSON file | |
--bulk_evaluate Evaluate a folder of theorems together | |
--target_fps TARGET_FPS | |
Target FPS for video processing. If not set, original video FPS will be used | |
--use_parent_folder_as_topic | |
Use parent folder name as topic name for single file evaluation | |
--max_workers MAX_WORKERS | |
Maximum number of concurrent workers for parallel processing | |
``` | |
* For `file_path`, it is recommended to pass a folder containing both an MP4 file and an SRT file. | |
## Misc: Modify the system prompt in TheoremExplainAgent | |
If you want to modify the system prompt, you need to: | |
1. Modify files in `task_generator/prompts_raw` folder. | |
2. Run `task_generator/parse_prompt.py` to rebuild the `__init__.py` file. | |
```python | |
cd task_generator | |
python parse_prompt.py | |
cd .. | |
``` | |
## TheoremExplainBench (TEB) | |
TheoremExplainBench can be found on https://huggingface.co/datasets/TIGER-Lab/TheoremExplainBench. | |
How to use: | |
```python | |
import datasets | |
dataset = datasets.load_dataset("TIGER-Lab/TheoremExplainBench") | |
``` | |
Dataset info: | |
```shell | |
DatasetDict({ | |
train: Dataset({ | |
features: ['uid', 'subject', 'difficulty', 'theorem', 'description', 'subfield'], | |
num_rows: 240 | |
}) | |
}) | |
``` | |
## β FAQ | |
The FAQ should cover the most common errors you could encounter. If you see something new, report it on issues. | |
Q: Error `src.utils.kokoro_voiceover import KokoroService # You MUST import like this as this is our custom voiceover service. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ModuleNotFoundError: No module named 'src'`. <br> | |
A: Please run `export PYTHONPATH=$(pwd):$PYTHONPATH` when you start a new terminal. <br> | |
Q: Error `Files not found` <br> | |
A: Check your Manim installation. <br> | |
Q: Error `latex ...` <br> | |
A: Check your latex installation. <br> | |
Q: The output log is not showing response? <br> | |
A: It could be API-related issues. Make sure your `.env` file is properly configured (fill in your API keys), or you can enable litellm debug mode to figure out the issues. <be> | |
Q: Plans / Scenes are missing? <br> | |
A: It could be API-related issues. Make sure your `.env` file is properly configured (fill in your API keys), or you can enable litellm debug mode to figure out the issues. <br> | |
## ποΈ Citation | |
Please kindly cite our paper if you use our code, data, models or results: | |
```bibtex | |
@misc{ku2025theoremexplainagentmultimodalexplanationsllm, | |
title={TheoremExplainAgent: Towards Multimodal Explanations for LLM Theorem Understanding}, | |
author={Max Ku and Thomas Chong and Jonathan Leung and Krish Shah and Alvin Yu and Wenhu Chen}, | |
year={2025}, | |
eprint={2502.19400}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.AI}, | |
url={https://arxiv.org/abs/2502.19400}, | |
} | |
``` | |
## π« License | |
This project is released under the [the MIT License](LICENSE). | |
## β Star History | |
[](https://star-history.com/#TIGER-AI-Lab/TheoremExplainAgent&Date) | |
## π Acknowledgements | |
We want to thank [Votee AI](https://votee.ai/) for sponsoring API keys to access the close-sourced models. | |
The code is built upon the below repositories, we thank all the contributors for open-sourcing. | |
* [Manim Community](https://www.manim.community/) | |
* [kokoro-manim-voiceover](https://github.com/xposed73/kokoro-manim-voiceover) | |
* [manim-physics](https://github.com/Matheart/manim-physics) | |
* [manim-Chemistry](https://github.com/UnMolDeQuimica/manim-Chemistry) | |
* [ManimML](https://github.com/helblazer811/ManimML) | |
* [manim-dsa](https://github.com/F4bbi/manim-dsa) | |
* [manim-circuit](https://github.com/Mr-FuzzyPenguin/manim-circuit) | |
## π¨ Disclaimer | |
**This work is intended for research purposes only. The authors do not encourage or endorse the use of this codebase for commercial applications. The code is provided "as is" without any warranties, and users assume all responsibility for its use.** | |
Tested Environment: MacOS, Linux | |