File size: 20,030 Bytes
51ac68d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9486d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
---
title: TheoremExplainAgent
emoji: πŸŽ“
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: "4.44.0"
app_file: app.py
pinned: false
license: mit
---

# πŸŽ“ Theorem-Explain-Agent Video Generation

Generate educational videos explaining mathematical theorems and concepts using AI.

## Features

- πŸ€– Multiple AI model support (Gemini, OpenAI, Anthropic)
- 🎬 Automated video generation with Manim
- 🎡 Text-to-speech narration
- πŸ“Š Real-time status tracking
- πŸ”„ Background processing

## How to Use

1. **Start Generation**: Enter a Model, Topic, and Context
2. **Get Task ID**: Copy the generated task ID
3. **Check Status**: Monitor progress in the Check Status tab
4. **Download**: Get your video when generation completes

## Supported Models

- `gemini/gemini-1.5-flash` (recommended)
- `gemini/gemini-1.5-pro`
- `openai/gpt-4o`
- `openai/o3-mini`
- `anthropic/claude-3-opus-20240229`

## Requirements

This application requires API keys for the AI models you want to use. Set them in the Space's Repository Secrets:

- `GEMINI_API_KEY`
- `OPENAI_API_KEY`
- `LANGFUSE_PUBLIC_KEY`
- `LANGFUSE_SECRET_KEY`

## Example Usage

**Topic**: "The Pythagorean Theorem"
**Context**: "In a right-angled triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the other two sides."
**Model**: "gemini/gemini-1.5-flash"

The system will generate an educational video explaining the theorem with visual animations and narration.

# TheoremExplainAgent (TEA) 🍡
[![arXiv](https://img.shields.io/badge/arXiv-2502.19400-b31b1b.svg)](https://arxiv.org/abs/2502.19400)
<a href='https://huggingface.co/papers/2502.19400'><img src='https://img.shields.io/static/v1?label=Paper&message=Huggingface&color=orange'></a> 

[**🌐 Homepage**](https://tiger-ai-lab.github.io/TheoremExplainAgent/)  | [**πŸ“– arXiv**](https://arxiv.org/abs/2502.19400) | [**πŸ€— HuggingFace Dataset**](https://huggingface.co/datasets/TIGER-Lab/TheoremExplainBench) | [πŸŽ₯Video Data](https://drive.google.com/file/d/18kmzXvbxaFGyJw-g51jnq9m93v_ez4aJ/view)

[![contributors](https://img.shields.io/github/contributors/TIGER-AI-Lab/TheoremExplainAgent)](https://github.com/TIGER-AI-Lab/TheoremExplainAgent/graphs/contributors)
[![license](https://img.shields.io/github/license/TIGER-AI-Lab/TheoremExplainAgent.svg)](https://github.com/TIGER-AI-Lab/TheoremExplainAgent/blob/main/LICENSE)
[![GitHub](https://img.shields.io/github/stars/TIGER-AI-Lab/TheoremExplainAgent?style=social)](https://github.com/TIGER-AI-Lab/TheoremExplainAgent)
[![Hits](https://hits.seeyoufarm.com/api/count/incr/badge.svg?url=https%3A%2F%2Fgithub.com%2FTIGER-AI-Lab%2FTheoremExplainAgent&count_bg=%23C83DB9&title_bg=%23555555&icon=&icon_color=%23E7E7E7&title=visitors&edge_flat=false)](https://hits.seeyoufarm.com)

This repo contains the codebase for our paper [TheoremExplainAgent: Towards Video-based Multimodal Explanations for LLM Theorem Understanding](https://arxiv.org/abs/2502.19400)

**ACL 2025 main**

## Introduction
TheoremExplainAgent is an AI system that generates long-form Manim videos to visually explain theorems, proving its deep understanding while uncovering reasoning flaws that text alone often hides.



https://github.com/user-attachments/assets/17f2f4f2-8f2c-4abc-b377-ac92ebda69f3


## πŸ“° News
* 2025 Jun 8: We released our generated video data for researchers to serve as baselines.
* 2025 May 15: Paper accepted to ACL 2025 main conference.
* 2025 Mar 3: Generation code and Evaluation code released. Thanks for the wait!
<!--* 2025 Mar 3: Reach 404 stars without code.-->
* 2025 Feb 27: Paper available on [Arxiv](https://arxiv.org/abs/2502.19400). Thanks AK for putting our paper on [HF Daily](https://huggingface.co/papers/2502.19400).

## Downloading Generated Video Data
Skip this section if you just want to try out the code.
If you are researchers who just need the baseline videos as baseline comparison, download it here:
```shell
wget --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=18kmzXvbxaFGyJw-g51jnq9m93v_ez4aJ' -O /tmp/gdrive.html && wget --load-cookies /tmp/cookies.txt -O baseline_videos.zip "https://drive.usercontent.google.com/download?id=18kmzXvbxaFGyJw-g51jnq9m93v_ez4aJ&export=download&confirm=$(sed -rn 's/.*name="confirm" value="([^"]+)".*/\\1/p' /tmp/gdrive.html)&uuid=$(sed -rn 's/.*name="uuid" value="([^"]+)".*/\\1/p' /tmp/gdrive.html)" && rm /tmp/gdrive.html /tmp/cookies.txt
```

## Installation

> **Look at the [FAQ section in this README doc](https://github.com/TIGER-AI-Lab/TheoremExplainAgent?tab=readme-ov-file#-faq) if you encountered any errors. If that didnt help, create a issue**<br>

1. Setting up conda environment
```shell
conda create --name tea python=3.12.8
conda activate tea
pip install -r requirements.txt
```

2. You may also need to install latex and other dependencies for Manim Community. Look at [Manim Installation Docs](https://docs.manim.community/en/stable/installation.html) for more details.
```shell
# You might need these dependencies if you are using Linux Ubuntu:
sudo apt-get install portaudio19-dev
sudo apt-get install libsdl-pango-dev
```

3. Then Download the Kokoro model and voices using the commands to enable TTS service.

```shell
mkdir -p models && wget -P models https://github.com/thewh1teagle/kokoro-onnx/releases/download/model-files/kokoro-v0_19.onnx && wget -P models https://github.com/thewh1teagle/kokoro-onnx/releases/download/model-files/voices.bin
```

4. Create `.env` based on `.env.template`, filling in the environmental variables according to the models you choose to use.
See [LiteLLM](https://docs.litellm.ai/docs/providers) for reference.

```shell
touch .env
```
Then open the `.env` file and edit it with whatever text editor you like.

Your `.env` file should look like the following:
```shell
# OpenAI
OPENAI_API_KEY=""

# Azure OpenAI
AZURE_API_KEY=""
AZURE_API_BASE=""
AZURE_API_VERSION=""

# Google Vertex AI
VERTEXAI_PROJECT=""
VERTEXAI_LOCATION=""
GOOGLE_APPLICATION_CREDENTIALS=""

# Google Gemini
GEMINI_API_KEY=""

...

# Kokoro TTS Settings
KOKORO_MODEL_PATH="models/kokoro-v0_19.onnx"
KOKORO_VOICES_PATH="models/voices.bin"
KOKORO_DEFAULT_VOICE="af"
KOKORO_DEFAULT_SPEED="1.0"
KOKORO_DEFAULT_LANG="en-us"
```
Fill in the API keys according to the model you wanted to use.

5. Configure Python path. Note that you need to configure the python path to make it work. Otherwise you may encounter import issues (like not being able to import src etc.)
```shell
export PYTHONPATH=$(pwd):$PYTHONPATH
```

6. (Optional) To setup RAG, See [https://github.com/TIGER-AI-Lab/TheoremExplainAgent?tab=readme-ov-file#generation-with-rag](https://github.com/TIGER-AI-Lab/TheoremExplainAgent?tab=readme-ov-file#generation-with-rag).

> **Look at the [FAQ section in this README doc](https://github.com/TIGER-AI-Lab/TheoremExplainAgent?tab=readme-ov-file#-faq) if you encountered any errors. If that didnt help, create a issue**<br>

## Generation

### Supported Models
<!--You can customize the allowed models by editing the `src/utils/allowed_models.json` file. This file specifies which `model` and `helper_model` the system is permitted to use.--> 
The model naming follows the LiteLLM convention. For details on how models should be named, please refer to the [LiteLLM documentation](https://docs.litellm.ai/docs/providers).

### Generation (Single topic)
```shell
python generate_video.py \
      --model "openai/o3-mini" \
      --helper_model "openai/o3-mini" \
      --output_dir "output/your_exp_name" \
      --topic "your_topic" \
      --context "description of your topic, e.g. 'This is a topic about the properties of a triangle'" \
```

Example:
```shell
python generate_video.py \
      --model "openai/o3-mini" \
      --helper_model "openai/o3-mini" \
      --output_dir "output/my_exp_name" \
      --topic "Big O notation" \
      --context "most common type of asymptotic notation in computer science used to measure worst case complexity" \
```

### Generation (in batch)
```shell
python generate_video.py \
      --model "openai/o3-mini" \
      --helper_model "openai/o3-mini" \
      --output_dir "output/my_exp_name" \
      --theorems_path data/thb_easy/math.json \
      --max_scene_concurrency 7 \
      --max_topic_concurrency 20 \
```

### Generation with RAG
Before using RAG, download the RAG documentation from this [Google Drive link](https://drive.google.com/file/d/1Tn6J_JKVefFZRgZbjns93KLBtI9ullRv/view?usp=sharing). After downloading, unzip the file. For example, if you unzip it to `data/rag/manim_docs`, then you should set `--manim_docs_path` to `data/rag/manim_docs`. The vector database will be created the first time you run with RAG.

```shell
python generate_video.py \
            --model "openai/o3-mini" \
            --helper_model "openai/o3-mini" \
            --output_dir "output/with_rag/o3-mini/vtutorbench_easy/math" \
            --topic "Big O notation" \
            --context "most common type of asymptotic notation in computer science used to measure worst case complexity" \
            --use_rag \
            --chroma_db_path "data/rag/chroma_db" \
            --manim_docs_path "data/rag/manim_docs" \
            --embedding_model "vertex_ai/text-embedding-005"
```

We support more options for generation, see below for more details:
```shell
usage: generate_video.py [-h]
                         [--model]
                         [--topic TOPIC] [--context CONTEXT]
                         [--helper_model]
                         [--only_gen_vid] [--only_combine] [--peek_existing_videos] [--output_dir OUTPUT_DIR] [--theorems_path THEOREMS_PATH]
                         [--sample_size SAMPLE_SIZE] [--verbose] [--max_retries MAX_RETRIES] [--use_rag] [--use_visual_fix_code]
                         [--chroma_db_path CHROMA_DB_PATH] [--manim_docs_path MANIM_DOCS_PATH]
                         [--embedding_model {azure/text-embedding-3-large,vertex_ai/text-embedding-005}] [--use_context_learning]
                         [--context_learning_path CONTEXT_LEARNING_PATH] [--use_langfuse] [--max_scene_concurrency MAX_SCENE_CONCURRENCY]
                         [--max_topic_concurrency MAX_TOPIC_CONCURRENCY] [--debug_combine_topic DEBUG_COMBINE_TOPIC] [--only_plan] [--check_status]
                         [--only_render] [--scenes SCENES [SCENES ...]]

Generate Manim videos using AI

options:
  -h, --help            show this help message and exit
  --model               Select the AI model to use
  --topic TOPIC         Topic to generate videos for
  --context CONTEXT     Context of the topic
  --helper_model        Select the helper model to use
  --only_gen_vid        Only generate videos to existing plans
  --only_combine        Only combine videos
  --peek_existing_videos, --peek
                        Peek at existing videos
  --output_dir OUTPUT_DIR
                        Output directory
  --theorems_path THEOREMS_PATH
                        Path to theorems json file
  --sample_size SAMPLE_SIZE, --sample SAMPLE_SIZE
                        Number of theorems to sample
  --verbose             Print verbose output
  --max_retries MAX_RETRIES
                        Maximum number of retries for code generation
  --use_rag, --rag      Use Retrieval Augmented Generation
  --use_visual_fix_code, --visual_fix_code
                        Use VLM to fix code with rendered visuals
  --chroma_db_path CHROMA_DB_PATH
                        Path to Chroma DB
  --manim_docs_path MANIM_DOCS_PATH
                        Path to manim docs
  --embedding_model {azure/text-embedding-3-large,vertex_ai/text-embedding-005}
                        Select the embedding model to use
  --use_context_learning
                        Use context learning with example Manim code
  --context_learning_path CONTEXT_LEARNING_PATH
                        Path to context learning examples
  --use_langfuse        Enable Langfuse logging
  --max_scene_concurrency MAX_SCENE_CONCURRENCY
                        Maximum number of scenes to process concurrently
  --max_topic_concurrency MAX_TOPIC_CONCURRENCY
                        Maximum number of topics to process concurrently
  --debug_combine_topic DEBUG_COMBINE_TOPIC
                        Debug combine videos
  --only_plan           Only generate scene outline and implementation plans
  --check_status        Check planning and code status for all theorems
  --only_render         Only render scenes without combining videos
  --scenes SCENES [SCENES ...]
                        Specific scenes to process (if theorems_path is provided)
```

## Evaluation
Note that Gemini and GPT4o is required for evaluation.

Currently, evaluation requires a video file and a subtitle file (SRT format).

Video evaluation:
```shell
usage: evaluate.py [-h]
                   [--model_text {gemini/gemini-1.5-pro-002,gemini/gemini-1.5-flash-002,gemini/gemini-2.0-flash-001,vertex_ai/gemini-1.5-flash-002,vertex_ai/gemini-1.5-pro-002,vertex_ai/gemini-2.0-flash-001,openai/o3-mini,gpt-4o,azure/gpt-4o,azure/gpt-4o-mini,bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0,bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0,bedrock/anthropic.claude-3-5-haiku-20241022-v1:0,bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0}]
                   [--model_video {gemini/gemini-1.5-pro-002,gemini/gemini-2.0-flash-exp,gemini/gemini-2.0-pro-exp-02-05}]
                   [--model_image {gemini/gemini-1.5-pro-002,gemini/gemini-1.5-flash-002,gemini/gemini-2.0-flash-001,vertex_ai/gemini-1.5-flash-002,vertex_ai/gemini-1.5-pro-002,vertex_ai/gemini-2.0-flash-001,openai/o3-mini,gpt-4o,azure/gpt-4o,azure/gpt-4o-mini,bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0,bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0,bedrock/anthropic.claude-3-5-haiku-20241022-v1:0,bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0}]
                   [--eval_type {text,video,image,all}] --file_path FILE_PATH --output_folder OUTPUT_FOLDER [--retry_limit RETRY_LIMIT] [--combine] [--bulk_evaluate] [--target_fps TARGET_FPS]
                   [--use_parent_folder_as_topic] [--max_workers MAX_WORKERS]

Automatic evaluation of theorem explanation videos with LLMs

options:
  -h, --help            show this help message and exit
  --model_text {gemini/gemini-1.5-pro-002,gemini/gemini-1.5-flash-002,gemini/gemini-2.0-flash-001,vertex_ai/gemini-1.5-flash-002,vertex_ai/gemini-1.5-pro-002,vertex_ai/gemini-2.0-flash-001,openai/o3-mini,gpt-4o,azure/gpt-4o,azure/gpt-4o-mini,bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0,bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0,bedrock/anthropic.claude-3-5-haiku-20241022-v1:0,bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0}
                        Select the AI model to use for text evaluation
  --model_video {gemini/gemini-1.5-pro-002,gemini/gemini-2.0-flash-exp,gemini/gemini-2.0-pro-exp-02-05}
                        Select the AI model to use for video evaluation
  --model_image {gemini/gemini-1.5-pro-002,gemini/gemini-1.5-flash-002,gemini/gemini-2.0-flash-001,vertex_ai/gemini-1.5-flash-002,vertex_ai/gemini-1.5-pro-002,vertex_ai/gemini-2.0-flash-001,openai/o3-mini,gpt-4o,azure/gpt-4o,azure/gpt-4o-mini,bedrock/anthropic.claude-3-5-sonnet-20240620-v1:0,bedrock/anthropic.claude-3-5-sonnet-20241022-v2:0,bedrock/anthropic.claude-3-5-haiku-20241022-v1:0,bedrock/us.anthropic.claude-3-7-sonnet-20250219-v1:0}
                        Select the AI model to use for image evaluation
  --eval_type {text,video,image,all}
                        Type of evaluation to perform
  --file_path FILE_PATH
                        Path to a file or a theorem folder
  --output_folder OUTPUT_FOLDER
                        Directory to store the evaluation files
  --retry_limit RETRY_LIMIT
                        Number of retry attempts for each inference
  --combine             Combine all results into a single JSON file
  --bulk_evaluate       Evaluate a folder of theorems together
  --target_fps TARGET_FPS
                        Target FPS for video processing. If not set, original video FPS will be used
  --use_parent_folder_as_topic
                        Use parent folder name as topic name for single file evaluation
  --max_workers MAX_WORKERS
                        Maximum number of concurrent workers for parallel processing
```
* For `file_path`, it is recommended to pass a folder containing both an MP4 file and an SRT file.

## Misc: Modify the system prompt in TheoremExplainAgent

If you want to modify the system prompt, you need to:

1. Modify files in `task_generator/prompts_raw` folder.
2. Run `task_generator/parse_prompt.py` to rebuild the `__init__.py` file.

```python
cd task_generator
python parse_prompt.py
cd ..
```

## TheoremExplainBench (TEB)

TheoremExplainBench can be found on https://huggingface.co/datasets/TIGER-Lab/TheoremExplainBench.

How to use:
```python
import datasets
dataset = datasets.load_dataset("TIGER-Lab/TheoremExplainBench")
```

Dataset info:
```shell
DatasetDict({
    train: Dataset({
        features: ['uid', 'subject', 'difficulty', 'theorem', 'description', 'subfield'],
        num_rows: 240
    })
})
```

## ❓ FAQ

The FAQ should cover the most common errors you could encounter. If you see something new, report it on issues.

Q: Error `src.utils.kokoro_voiceover import KokoroService  # You MUST import like this as this is our custom voiceover service. ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ModuleNotFoundError: No module named 'src'`. <br>
A: Please run `export PYTHONPATH=$(pwd):$PYTHONPATH` when you start a new terminal. <br>

Q: Error `Files not found` <br>
A: Check your Manim installation. <br>

Q: Error `latex ...` <br>
A: Check your latex installation. <br>

Q: The output log is not showing response? <br>
A: It could be API-related issues. Make sure your `.env` file is properly configured (fill in your API keys), or you can enable litellm debug mode to figure out the issues. <be>

Q: Plans / Scenes are missing? <br>
A: It could be API-related issues. Make sure your `.env` file is properly configured (fill in your API keys), or you can enable litellm debug mode to figure out the issues. <br>


## πŸ–ŠοΈ Citation

Please kindly cite our paper if you use our code, data, models or results:
```bibtex
@misc{ku2025theoremexplainagentmultimodalexplanationsllm,
      title={TheoremExplainAgent: Towards Multimodal Explanations for LLM Theorem Understanding}, 
      author={Max Ku and Thomas Chong and Jonathan Leung and Krish Shah and Alvin Yu and Wenhu Chen},
      year={2025},
      eprint={2502.19400},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2502.19400}, 
}
```

## 🎫 License

This project is released under the [the MIT License](LICENSE).

## ⭐ Star History

[![Star History Chart](https://api.star-history.com/svg?repos=TIGER-AI-Lab/TheoremExplainAgent&type=Date)](https://star-history.com/#TIGER-AI-Lab/TheoremExplainAgent&Date)

## πŸ’ž Acknowledgements

We want to thank [Votee AI](https://votee.ai/) for sponsoring API keys to access the close-sourced models.

The code is built upon the below repositories, we thank all the contributors for open-sourcing.
* [Manim Community](https://www.manim.community/)
* [kokoro-manim-voiceover](https://github.com/xposed73/kokoro-manim-voiceover)
* [manim-physics](https://github.com/Matheart/manim-physics)
* [manim-Chemistry](https://github.com/UnMolDeQuimica/manim-Chemistry)
* [ManimML](https://github.com/helblazer811/ManimML)
* [manim-dsa](https://github.com/F4bbi/manim-dsa)
* [manim-circuit](https://github.com/Mr-FuzzyPenguin/manim-circuit)

## 🚨 Disclaimer

**This work is intended for research purposes only. The authors do not encourage or endorse the use of this codebase for commercial applications. The code is provided "as is" without any warranties, and users assume all responsibility for its use.**

Tested Environment: MacOS, Linux