xinjie.wang
update
8600d7f
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
import base64
import logging
import os
from io import BytesIO
from typing import Optional
import yaml
from openai import AzureOpenAI, OpenAI # pip install openai
from PIL import Image
from tenacity import (
retry,
stop_after_attempt,
stop_after_delay,
wait_random_exponential,
)
from embodied_gen.utils.process_media import combine_images_to_base64
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class GPTclient:
"""A client to interact with the GPT model via OpenAI or Azure API."""
def __init__(
self,
endpoint: str,
api_key: str,
model_name: str = "yfb-gpt-4o",
api_version: str = None,
verbose: bool = False,
):
if api_version is not None:
self.client = AzureOpenAI(
azure_endpoint=endpoint,
api_key=api_key,
api_version=api_version,
)
else:
self.client = OpenAI(
base_url=endpoint,
api_key=api_key,
)
self.endpoint = endpoint
self.model_name = model_name
self.image_formats = {".png", ".jpg", ".jpeg", ".webp", ".bmp", ".gif"}
self.verbose = verbose
logger.info(f"Using GPT model: {self.model_name}.")
@retry(
wait=wait_random_exponential(min=1, max=20),
stop=(stop_after_attempt(10) | stop_after_delay(30)),
)
def completion_with_backoff(self, **kwargs):
return self.client.chat.completions.create(**kwargs)
def query(
self,
text_prompt: str,
image_base64: Optional[list[str | Image.Image]] = None,
system_role: Optional[str] = None,
) -> Optional[str]:
"""Queries the GPT model with a text and optional image prompts.
Args:
text_prompt (str): The main text input that the model responds to.
image_base64 (Optional[List[str]]): A list of image base64 strings
or local image paths or PIL.Image to accompany the text prompt.
system_role (Optional[str]): Optional system-level instructions
that specify the behavior of the assistant.
Returns:
Optional[str]: The response content generated by the model based on
the prompt. Returns `None` if an error occurs.
"""
if system_role is None:
system_role = "You are a highly knowledgeable assistant specializing in physics, engineering, and object properties." # noqa
content_user = [
{
"type": "text",
"text": text_prompt,
},
]
# Process images if provided
if image_base64 is not None:
image_base64 = (
image_base64
if isinstance(image_base64, list)
else [image_base64]
)
for img in image_base64:
if isinstance(img, Image.Image):
buffer = BytesIO()
img.save(buffer, format=img.format or "PNG")
buffer.seek(0)
image_binary = buffer.read()
img = base64.b64encode(image_binary).decode("utf-8")
elif (
len(os.path.splitext(img)) > 1
and os.path.splitext(img)[-1].lower() in self.image_formats
):
if not os.path.exists(img):
raise FileNotFoundError(f"Image file not found: {img}")
with open(img, "rb") as f:
img = base64.b64encode(f.read()).decode("utf-8")
content_user.append(
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{img}"},
}
)
payload = {
"messages": [
{"role": "system", "content": system_role},
{"role": "user", "content": content_user},
],
"temperature": 0.1,
"max_tokens": 500,
"top_p": 0.1,
"frequency_penalty": 0,
"presence_penalty": 0,
"stop": None,
}
payload.update({"model": self.model_name})
response = None
try:
response = self.completion_with_backoff(**payload)
response = response.choices[0].message.content
except Exception as e:
logger.error(f"Error GPTclint {self.endpoint} API call: {e}")
response = None
if self.verbose:
logger.info(f"Prompt: {text_prompt}")
logger.info(f"Response: {response}")
return response
with open("embodied_gen/utils/gpt_config.yaml", "r") as f:
config = yaml.safe_load(f)
agent_type = config["agent_type"]
agent_config = config.get(agent_type, {})
# Prefer environment variables, fallback to YAML config
endpoint = os.environ.get("ENDPOINT", agent_config.get("endpoint"))
api_key = os.environ.get("API_KEY", agent_config.get("api_key"))
api_version = os.environ.get("API_VERSION", agent_config.get("api_version"))
model_name = os.environ.get("MODEL_NAME", agent_config.get("model_name"))
GPT_CLIENT = GPTclient(
endpoint=endpoint,
api_key=api_key,
api_version=api_version,
model_name=model_name,
)
if __name__ == "__main__":
if "openrouter" in GPT_CLIENT.endpoint:
response = GPT_CLIENT.query(
text_prompt="What is the content in each image?",
image_base64=combine_images_to_base64(
[
"apps/assets/example_image/sample_02.jpg",
"apps/assets/example_image/sample_03.jpg",
]
), # input raw image_path if only one image
)
print(response)
else:
response = GPT_CLIENT.query(
text_prompt="What is the content in the images?",
image_base64=[
Image.open("apps/assets/example_image/sample_02.jpg"),
Image.open("apps/assets/example_image/sample_03.jpg"),
],
)
print(response)
# test2: text prompt
response = GPT_CLIENT.query(
text_prompt="What is the capital of China?"
)
print(response)