Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,999 Bytes
f4cccb0 dd1f1fd f4cccb0 dd1f1fd f4cccb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
import base64
import logging
import os
from io import BytesIO
from typing import Optional
import yaml
from openai import AzureOpenAI, OpenAI # pip install openai
from PIL import Image
from tenacity import (
retry,
stop_after_attempt,
stop_after_delay,
wait_random_exponential,
)
from embodied_gen.utils.process_media import combine_images_to_base64
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class GPTclient:
"""A client to interact with the GPT model via OpenAI or Azure API."""
def __init__(
self,
endpoint: str,
api_key: str,
model_name: str = "yfb-gpt-4o",
api_version: str = None,
verbose: bool = False,
):
if api_version is not None:
self.client = AzureOpenAI(
azure_endpoint=endpoint,
api_key=api_key,
api_version=api_version,
)
else:
self.client = OpenAI(
base_url=endpoint,
api_key=api_key,
)
self.endpoint = endpoint
self.model_name = model_name
self.image_formats = {".png", ".jpg", ".jpeg", ".webp", ".bmp", ".gif"}
self.verbose = verbose
logger.info(f"Using GPT model: {self.model_name}.")
@retry(
wait=wait_random_exponential(min=1, max=20),
stop=(stop_after_attempt(10) | stop_after_delay(30)),
)
def completion_with_backoff(self, **kwargs):
return self.client.chat.completions.create(**kwargs)
def query(
self,
text_prompt: str,
image_base64: Optional[list[str | Image.Image]] = None,
system_role: Optional[str] = None,
) -> Optional[str]:
"""Queries the GPT model with a text and optional image prompts.
Args:
text_prompt (str): The main text input that the model responds to.
image_base64 (Optional[List[str]]): A list of image base64 strings
or local image paths or PIL.Image to accompany the text prompt.
system_role (Optional[str]): Optional system-level instructions
that specify the behavior of the assistant.
Returns:
Optional[str]: The response content generated by the model based on
the prompt. Returns `None` if an error occurs.
"""
if system_role is None:
system_role = "You are a highly knowledgeable assistant specializing in physics, engineering, and object properties." # noqa
content_user = [
{
"type": "text",
"text": text_prompt,
},
]
# Process images if provided
if image_base64 is not None:
image_base64 = (
image_base64
if isinstance(image_base64, list)
else [image_base64]
)
for img in image_base64:
if isinstance(img, Image.Image):
buffer = BytesIO()
img.save(buffer, format=img.format or "PNG")
buffer.seek(0)
image_binary = buffer.read()
img = base64.b64encode(image_binary).decode("utf-8")
elif (
len(os.path.splitext(img)) > 1
and os.path.splitext(img)[-1].lower() in self.image_formats
):
if not os.path.exists(img):
raise FileNotFoundError(f"Image file not found: {img}")
with open(img, "rb") as f:
img = base64.b64encode(f.read()).decode("utf-8")
content_user.append(
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{img}"},
}
)
payload = {
"messages": [
{"role": "system", "content": system_role},
{"role": "user", "content": content_user},
],
"temperature": 0.1,
"max_tokens": 500,
"top_p": 0.1,
"frequency_penalty": 0,
"presence_penalty": 0,
"stop": None,
}
payload.update({"model": self.model_name})
response = None
try:
response = self.completion_with_backoff(**payload)
response = response.choices[0].message.content
except Exception as e:
logger.error(f"Error GPTclint {self.endpoint} API call: {e}")
response = None
if self.verbose:
logger.info(f"Prompt: {text_prompt}")
logger.info(f"Response: {response}")
return response
with open("embodied_gen/utils/gpt_config.yaml", "r") as f:
config = yaml.safe_load(f)
agent_type = config["agent_type"]
agent_config = config.get(agent_type, {})
# Prefer environment variables, fallback to YAML config
endpoint = os.environ.get("ENDPOINT", agent_config.get("endpoint"))
api_key = os.environ.get("API_KEY", agent_config.get("api_key"))
api_version = os.environ.get("API_VERSION", agent_config.get("api_version"))
model_name = os.environ.get("MODEL_NAME", agent_config.get("model_name"))
GPT_CLIENT = GPTclient(
endpoint=endpoint,
api_key=api_key,
api_version=api_version,
model_name=model_name,
)
if __name__ == "__main__":
if "openrouter" in GPT_CLIENT.endpoint:
response = GPT_CLIENT.query(
text_prompt="What is the content in each image?",
image_base64=combine_images_to_base64(
[
"apps/assets/example_image/sample_02.jpg",
"apps/assets/example_image/sample_03.jpg",
]
), # input raw image_path if only one image
)
print(response)
else:
response = GPT_CLIENT.query(
text_prompt="What is the content in the images?",
image_base64=[
Image.open("apps/assets/example_image/sample_02.jpg"),
Image.open("apps/assets/example_image/sample_03.jpg"),
],
)
print(response)
# test2: text prompt
response = GPT_CLIENT.query(
text_prompt="What is the capital of China?"
)
print(response)
|