Spaces:
Sleeping
Sleeping
File size: 7,340 Bytes
114c0af 8aa0b4b 114c0af 8aa0b4b 114c0af 8aa0b4b 3393b20 114c0af 8aa0b4b 91b597b 6c0394e 8aa0b4b 6924057 6c0394e 61af560 114c0af 3ef6f19 8aa0b4b 114c0af 8aa0b4b 114c0af e0f8475 114c0af e0f8475 114c0af e0f8475 114c0af e0f8475 114c0af e0f8475 114c0af e0f8475 114c0af 8aa0b4b 114c0af e0f8475 114c0af 8aa0b4b 114c0af e0f8475 114c0af 8aa0b4b fec1d93 8aa0b4b 2ac32ad 8aa0b4b 2ac32ad 8aa0b4b fec1d93 8aa0b4b 91b597b 114c0af 1c66628 8aa0b4b 114c0af 36eb930 114c0af 8aa0b4b 114c0af 8aa0b4b 114c0af 8aa0b4b 114c0af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import FAISS
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from transformers import AutoModelForCausalLM, AutoTokenizer, BlipProcessor, BlipForConditionalGeneration
from youtube_transcript_api import YouTubeTranscriptApi
from PIL import Image
import requests
import torch
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
#from load_agent import QAResponder
load_dotenv()
# Load QA pairs and compute embeddings once
qa_df = pd.read_csv("statics/qa_pairs.csv")
embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
qa_embeddings = embeddings_model.embed_documents(qa_df["question"].tolist())
# facebook/blenderbot-400M-distill
# TinyLlama/TinyLlama-1.1B-Chat-v1.0
# gpt2
# mistralai/Mistral-Small-Instruct-2409
class LocalChatModel:
def __init__(self, model_name="TinyLlama/TinyLlama-1.1B-Chat-v1.0"):
print(f"Loading {model_name} on CPU...")
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForCausalLM.from_pretrained(model_name)
self.model.eval()
def invoke(self, messages: list) -> AIMessage:
chat = []
for msg in messages:
if isinstance(msg, SystemMessage):
chat.append({"role": "system", "content": msg.content})
elif isinstance(msg, HumanMessage):
chat.append({"role": "user", "content": msg.content})
elif isinstance(msg, AIMessage):
chat.append({"role": "assistant", "content": msg.content})
prompt = self.tokenizer.apply_chat_template(
chat,
tokenize=False,
add_generation_prompt=True
)
inputs = self.tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
pad_token_id=self.tokenizer.eos_token_id
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response[len(prompt):].strip()
return AIMessage(content=response)
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two integers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two integers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract second integer from first."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide first integer by second. Raises error if divisor is zero."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus (remainder) of first integer divided by second."""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return formatted results."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
return "\n\n---\n\n".join([doc.page_content for doc in search_docs])
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return formatted results."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
return "\n\n---\n\n".join([doc.page_content for doc in search_docs])
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return formatted results."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
return "\n\n---\n\n".join([doc.page_content[:1000] for doc in search_docs])
@tool
def youtube_summary(video_url: str) -> str:
"Fetch and summarize a YouTube video using transcript (if available)."
import re
match = re.search(r"(?<=v=|youtu.be/)[^&#]+", video_url)
if not match:
return "Invalid YouTube URL."
video_id = match.group()
try:
transcript = YouTubeTranscriptApi.get_transcript(video_id)
return " ".join([seg["text"] for seg in transcript])[:3000]
except Exception as e:
return f"Transcript not available or error: {e}"
@tool
def image_caption(image_url: str) -> str:
"Generate a description of an image from a public URL."
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
image = Image.open(requests.get(image_url, stream=True).raw).convert("RGB")
inputs = processor(image, return_tensors="pt")
out = model.generate(**inputs)
return processor.decode(out[0], skip_special_tokens=True)
@tool
def qa_reference(query: str) -> str:
"""Search example QA dataset for similar questions and return the closest answer."""
query_embedding = embeddings_model.embed_query(query)
sims = cosine_similarity([query_embedding], qa_embeddings)[0]
top_idx = int(np.argmax(sims))
return f"Similar question: {qa_df.question[top_idx]}\nAnswer: {qa_df.answer[top_idx]}"
with open("statics/system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
sys_msg = SystemMessage(content=system_prompt)
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
vector_store = FAISS.from_texts(["Sample text 1", "Sample text 2"], embedding=embeddings)
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arvix_search,
youtube_summary,
image_caption,
qa_reference,
]
def build_graph(provider: str = "huggingface"):
if provider == "google":
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "groq":
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
elif provider == "huggingface":
llm = LocalChatModel()
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
def assistant(state: MessagesState):
return {"messages": [llm.invoke(state["messages"]) ]}
builder = StateGraph(MessagesState)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "assistant")
builder.add_conditional_edges("assistant", tools_condition)
builder.add_edge("tools", "assistant")
return builder.compile()
if __name__ == "__main__":
question = "Describe this image: https://example.com/sample.jpg"
graph = build_graph(provider="huggingface")
messages = [HumanMessage(content=question)]
messages = graph.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()
|