File size: 7,340 Bytes
114c0af
 
 
 
 
 
 
 
 
 
8aa0b4b
114c0af
 
 
 
8aa0b4b
 
 
 
114c0af
8aa0b4b
 
 
3393b20
114c0af
 
 
8aa0b4b
91b597b
6c0394e
8aa0b4b
 
6924057
6c0394e
 
61af560
 
114c0af
3ef6f19
8aa0b4b
114c0af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8aa0b4b
114c0af
 
 
 
 
 
 
 
 
 
 
e0f8475
114c0af
 
 
 
e0f8475
114c0af
 
 
 
e0f8475
114c0af
 
 
e0f8475
 
114c0af
 
 
 
 
 
e0f8475
114c0af
 
 
 
e0f8475
114c0af
8aa0b4b
114c0af
 
 
e0f8475
114c0af
8aa0b4b
114c0af
 
 
e0f8475
114c0af
8aa0b4b
 
fec1d93
8aa0b4b
2ac32ad
8aa0b4b
 
 
 
 
 
 
 
 
 
 
 
 
2ac32ad
8aa0b4b
 
 
 
 
fec1d93
 
8aa0b4b
 
 
 
 
 
 
 
 
91b597b
114c0af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c66628
 
8aa0b4b
114c0af
 
36eb930
114c0af
 
 
 
 
8aa0b4b
114c0af
 
 
 
 
 
 
 
 
8aa0b4b
 
114c0af
 
 
 
 
8aa0b4b
114c0af
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_community.vectorstores import FAISS
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from transformers import AutoModelForCausalLM, AutoTokenizer, BlipProcessor, BlipForConditionalGeneration
from youtube_transcript_api import YouTubeTranscriptApi
from PIL import Image
import requests
import torch
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
#from load_agent import QAResponder

load_dotenv()

# Load QA pairs and compute embeddings once
qa_df = pd.read_csv("statics/qa_pairs.csv")

embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
qa_embeddings = embeddings_model.embed_documents(qa_df["question"].tolist())

# facebook/blenderbot-400M-distill
# TinyLlama/TinyLlama-1.1B-Chat-v1.0
# gpt2
# mistralai/Mistral-Small-Instruct-2409
class LocalChatModel:
    def __init__(self, model_name="TinyLlama/TinyLlama-1.1B-Chat-v1.0"):
        print(f"Loading {model_name} on CPU...")
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModelForCausalLM.from_pretrained(model_name)
        self.model.eval()

    def invoke(self, messages: list) -> AIMessage:
        chat = []
        for msg in messages:
            if isinstance(msg, SystemMessage):
                chat.append({"role": "system", "content": msg.content})
            elif isinstance(msg, HumanMessage):
                chat.append({"role": "user", "content": msg.content})
            elif isinstance(msg, AIMessage):
                chat.append({"role": "assistant", "content": msg.content})

        prompt = self.tokenizer.apply_chat_template(
            chat,
            tokenize=False,
            add_generation_prompt=True
        )
        inputs = self.tokenizer(prompt, return_tensors="pt")

        with torch.no_grad():
            outputs = self.model.generate(
                **inputs,
                max_new_tokens=512,
                do_sample=True,
                temperature=0.7,
                pad_token_id=self.tokenizer.eos_token_id
            )

        response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
        response = response[len(prompt):].strip()
        return AIMessage(content=response)

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two integers."""
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two integers."""
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract second integer from first."""
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """Divide first integer by second. Raises error if divisor is zero."""
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus (remainder) of first integer divided by second."""
    return a % b

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return formatted results."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    return "\n\n---\n\n".join([doc.page_content for doc in search_docs])

@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return formatted results."""
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    return "\n\n---\n\n".join([doc.page_content for doc in search_docs])

@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return formatted results."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    return "\n\n---\n\n".join([doc.page_content[:1000] for doc in search_docs])

@tool
def youtube_summary(video_url: str) -> str:
    "Fetch and summarize a YouTube video using transcript (if available)."
    import re
    match = re.search(r"(?<=v=|youtu.be/)[^&#]+", video_url)
    if not match:
        return "Invalid YouTube URL."
    video_id = match.group()
    try:
        transcript = YouTubeTranscriptApi.get_transcript(video_id)
        return " ".join([seg["text"] for seg in transcript])[:3000]
    except Exception as e:
        return f"Transcript not available or error: {e}"

@tool
def image_caption(image_url: str) -> str:
    "Generate a description of an image from a public URL."
    processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
    model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
    image = Image.open(requests.get(image_url, stream=True).raw).convert("RGB")
    inputs = processor(image, return_tensors="pt")
    out = model.generate(**inputs)
    return processor.decode(out[0], skip_special_tokens=True)


@tool
def qa_reference(query: str) -> str:
    """Search example QA dataset for similar questions and return the closest answer."""
    query_embedding = embeddings_model.embed_query(query)
    sims = cosine_similarity([query_embedding], qa_embeddings)[0]
    top_idx = int(np.argmax(sims))
    return f"Similar question: {qa_df.question[top_idx]}\nAnswer: {qa_df.answer[top_idx]}"

with open("statics/system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()

sys_msg = SystemMessage(content=system_prompt)

embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
vector_store = FAISS.from_texts(["Sample text 1", "Sample text 2"], embedding=embeddings)

tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    web_search,
    arvix_search,
    youtube_summary,
    image_caption,
    qa_reference,
]

def build_graph(provider: str = "huggingface"):
    if provider == "google":
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    elif provider == "groq":
        llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
    elif provider == "huggingface":
        llm = LocalChatModel()
    else:
        raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")

    def assistant(state: MessagesState):
        return {"messages": [llm.invoke(state["messages"]) ]}

    builder = StateGraph(MessagesState)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "assistant")
    builder.add_conditional_edges("assistant", tools_condition)
    builder.add_edge("tools", "assistant")

    return builder.compile()

if __name__ == "__main__":
    question = "Describe this image: https://example.com/sample.jpg"
    graph = build_graph(provider="huggingface")
    messages = [HumanMessage(content=question)]
    messages = graph.invoke({"messages": messages})
    for m in messages["messages"]:
        m.pretty_print()