Spaces:
Sleeping
Sleeping
Pulkit-bristol
commited on
Commit
·
8aa0b4b
1
Parent(s):
9057373
second try
Browse files- agent/agent_1.py +60 -58
- requirements.txt +2 -1
agent/agent_1.py
CHANGED
@@ -8,21 +8,30 @@ from langchain_google_genai import ChatGoogleGenerativeAI
|
|
8 |
from langchain_groq import ChatGroq
|
9 |
from langchain_huggingface import HuggingFaceEmbeddings
|
10 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
11 |
-
from langchain_community.document_loaders import WikipediaLoader
|
12 |
-
from langchain_community.document_loaders import ArxivLoader
|
13 |
from langchain_community.vectorstores import FAISS
|
14 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
15 |
from langchain_core.tools import tool
|
16 |
from langchain.tools.retriever import create_retriever_tool
|
17 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
18 |
import torch
|
|
|
|
|
|
|
19 |
|
20 |
load_dotenv()
|
21 |
|
|
|
|
|
|
|
|
|
|
|
22 |
class LocalChatModel:
|
23 |
-
|
24 |
-
|
25 |
-
print("Loading LLM on CPU...")
|
26 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
27 |
self.model = AutoModelForCausalLM.from_pretrained(model_name)
|
28 |
self.model.eval()
|
@@ -47,7 +56,7 @@ class LocalChatModel:
|
|
47 |
with torch.no_grad():
|
48 |
outputs = self.model.generate(
|
49 |
**inputs,
|
50 |
-
max_new_tokens=
|
51 |
do_sample=True,
|
52 |
temperature=0.7,
|
53 |
pad_token_id=self.tokenizer.eos_token_id
|
@@ -58,25 +67,21 @@ class LocalChatModel:
|
|
58 |
return AIMessage(content=response)
|
59 |
|
60 |
@tool
|
61 |
-
|
62 |
def multiply(a: int, b: int) -> int:
|
63 |
"""Multiply two integers."""
|
64 |
return a * b
|
65 |
|
66 |
@tool
|
67 |
-
|
68 |
def add(a: int, b: int) -> int:
|
69 |
"""Add two integers."""
|
70 |
return a + b
|
71 |
|
72 |
@tool
|
73 |
-
|
74 |
def subtract(a: int, b: int) -> int:
|
75 |
"""Subtract second integer from first."""
|
76 |
return a - b
|
77 |
|
78 |
@tool
|
79 |
-
|
80 |
def divide(a: int, b: int) -> float:
|
81 |
"""Divide first integer by second. Raises error if divisor is zero."""
|
82 |
if b == 0:
|
@@ -84,61 +89,67 @@ def divide(a: int, b: int) -> float:
|
|
84 |
return a / b
|
85 |
|
86 |
@tool
|
87 |
-
|
88 |
def modulus(a: int, b: int) -> int:
|
89 |
"""Get the modulus (remainder) of first integer divided by second."""
|
90 |
return a % b
|
91 |
|
92 |
@tool
|
93 |
-
|
94 |
def wiki_search(query: str) -> str:
|
95 |
"""Search Wikipedia for a query and return formatted results."""
|
96 |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
97 |
-
|
98 |
-
[
|
99 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
100 |
-
for doc in search_docs
|
101 |
-
])
|
102 |
-
return {"wiki_results": formatted_search_docs}
|
103 |
|
104 |
@tool
|
105 |
-
|
106 |
def web_search(query: str) -> str:
|
107 |
"""Search Tavily for a query and return formatted results."""
|
108 |
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
109 |
-
|
110 |
-
[
|
111 |
-
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
|
112 |
-
for doc in search_docs
|
113 |
-
])
|
114 |
-
return {"web_results": formatted_search_docs}
|
115 |
|
116 |
@tool
|
117 |
-
|
118 |
def arvix_search(query: str) -> str:
|
119 |
"""Search Arxiv for a query and return formatted results."""
|
120 |
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
system_prompt = f.read()
|
132 |
|
133 |
sys_msg = SystemMessage(content=system_prompt)
|
134 |
|
135 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
136 |
vector_store = FAISS.from_texts(["Sample text 1", "Sample text 2"], embedding=embeddings)
|
137 |
-
create_retriever_tool = create_retriever_tool(
|
138 |
-
retriever=vector_store.as_retriever(),
|
139 |
-
name="Question Search",
|
140 |
-
description="A tool to retrieve similar questions from a vector store."
|
141 |
-
)
|
142 |
|
143 |
tools = [
|
144 |
multiply,
|
@@ -149,6 +160,9 @@ tools = [
|
|
149 |
wiki_search,
|
150 |
web_search,
|
151 |
arvix_search,
|
|
|
|
|
|
|
152 |
]
|
153 |
|
154 |
def build_graph(provider: str = "huggingface"):
|
@@ -157,36 +171,24 @@ def build_graph(provider: str = "huggingface"):
|
|
157 |
elif provider == "groq":
|
158 |
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
|
159 |
elif provider == "huggingface":
|
160 |
-
llm = LocalChatModel(
|
161 |
else:
|
162 |
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
|
163 |
|
164 |
def assistant(state: MessagesState):
|
165 |
return {"messages": [llm.invoke(state["messages"]) ]}
|
166 |
|
167 |
-
def retriever(state: MessagesState):
|
168 |
-
similar_question = vector_store.similarity_search(state["messages"][0].content)
|
169 |
-
example_msg = HumanMessage(
|
170 |
-
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
|
171 |
-
)
|
172 |
-
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
|
173 |
-
|
174 |
builder = StateGraph(MessagesState)
|
175 |
-
builder.add_node("retriever", retriever)
|
176 |
builder.add_node("assistant", assistant)
|
177 |
builder.add_node("tools", ToolNode(tools))
|
178 |
-
builder.add_edge(START, "
|
179 |
-
builder.
|
180 |
-
builder.add_conditional_edges(
|
181 |
-
"assistant",
|
182 |
-
tools_condition,
|
183 |
-
)
|
184 |
builder.add_edge("tools", "assistant")
|
185 |
|
186 |
return builder.compile()
|
187 |
|
188 |
if __name__ == "__main__":
|
189 |
-
question = "
|
190 |
graph = build_graph(provider="huggingface")
|
191 |
messages = [HumanMessage(content=question)]
|
192 |
messages = graph.invoke({"messages": messages})
|
|
|
8 |
from langchain_groq import ChatGroq
|
9 |
from langchain_huggingface import HuggingFaceEmbeddings
|
10 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
11 |
+
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
|
|
12 |
from langchain_community.vectorstores import FAISS
|
13 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
14 |
from langchain_core.tools import tool
|
15 |
from langchain.tools.retriever import create_retriever_tool
|
16 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BlipProcessor, BlipForConditionalGeneration
|
17 |
+
from youtube_transcript_api import YouTubeTranscriptApi
|
18 |
+
from PIL import Image
|
19 |
+
import requests
|
20 |
import torch
|
21 |
+
import pandas as pd
|
22 |
+
import numpy as np
|
23 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
24 |
|
25 |
load_dotenv()
|
26 |
|
27 |
+
# Load QA pairs and compute embeddings once
|
28 |
+
qa_df = pd.read_csv("/statics/qa_pairs.csv")
|
29 |
+
embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
30 |
+
qa_embeddings = embeddings_model.embed_documents(qa_df["question"].tolist())
|
31 |
+
|
32 |
class LocalChatModel:
|
33 |
+
def __init__(self, model_name="TinyLlama/TinyLlama-1.1B-Chat-v1.0"):
|
34 |
+
print(f"Loading {model_name} on CPU...")
|
|
|
35 |
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
36 |
self.model = AutoModelForCausalLM.from_pretrained(model_name)
|
37 |
self.model.eval()
|
|
|
56 |
with torch.no_grad():
|
57 |
outputs = self.model.generate(
|
58 |
**inputs,
|
59 |
+
max_new_tokens=512,
|
60 |
do_sample=True,
|
61 |
temperature=0.7,
|
62 |
pad_token_id=self.tokenizer.eos_token_id
|
|
|
67 |
return AIMessage(content=response)
|
68 |
|
69 |
@tool
|
|
|
70 |
def multiply(a: int, b: int) -> int:
|
71 |
"""Multiply two integers."""
|
72 |
return a * b
|
73 |
|
74 |
@tool
|
|
|
75 |
def add(a: int, b: int) -> int:
|
76 |
"""Add two integers."""
|
77 |
return a + b
|
78 |
|
79 |
@tool
|
|
|
80 |
def subtract(a: int, b: int) -> int:
|
81 |
"""Subtract second integer from first."""
|
82 |
return a - b
|
83 |
|
84 |
@tool
|
|
|
85 |
def divide(a: int, b: int) -> float:
|
86 |
"""Divide first integer by second. Raises error if divisor is zero."""
|
87 |
if b == 0:
|
|
|
89 |
return a / b
|
90 |
|
91 |
@tool
|
|
|
92 |
def modulus(a: int, b: int) -> int:
|
93 |
"""Get the modulus (remainder) of first integer divided by second."""
|
94 |
return a % b
|
95 |
|
96 |
@tool
|
|
|
97 |
def wiki_search(query: str) -> str:
|
98 |
"""Search Wikipedia for a query and return formatted results."""
|
99 |
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
100 |
+
return "\n\n---\n\n".join([doc.page_content for doc in search_docs])
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
@tool
|
|
|
103 |
def web_search(query: str) -> str:
|
104 |
"""Search Tavily for a query and return formatted results."""
|
105 |
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
|
106 |
+
return "\n\n---\n\n".join([doc.page_content for doc in search_docs])
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
@tool
|
|
|
109 |
def arvix_search(query: str) -> str:
|
110 |
"""Search Arxiv for a query and return formatted results."""
|
111 |
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
|
112 |
+
return "\n\n---\n\n".join([doc.page_content[:1000] for doc in search_docs])
|
113 |
+
|
114 |
+
@tool
|
115 |
+
def youtube_summary(video_url: str) -> str:
|
116 |
+
"""Fetch and summarize a YouTube video using transcript (if available)."""
|
117 |
+
import re
|
118 |
+
match = re.search(r"(?<=v=|youtu.be/)[^&#]+", video_url)
|
119 |
+
if not match:
|
120 |
+
return "Invalid YouTube URL."
|
121 |
+
video_id = match.group()
|
122 |
+
try:
|
123 |
+
transcript = YouTubeTranscriptApi.get_transcript(video_id)
|
124 |
+
return " ".join([seg["text"] for seg in transcript])[:3000]
|
125 |
+
except Exception as e:
|
126 |
+
return f"Transcript not available or error: {e}"
|
127 |
+
|
128 |
+
@tool
|
129 |
+
def image_caption(image_url: str) -> str:
|
130 |
+
"""Generate a description of an image from a public URL."""
|
131 |
+
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
132 |
+
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
133 |
+
image = Image.open(requests.get(image_url, stream=True).raw).convert("RGB")
|
134 |
+
inputs = processor(image, return_tensors="pt")
|
135 |
+
out = model.generate(**inputs)
|
136 |
+
return processor.decode(out[0], skip_special_tokens=True)
|
137 |
+
|
138 |
+
@tool
|
139 |
+
def qa_reference(query: str) -> str:
|
140 |
+
"""Search example QA dataset for similar questions and return the closest answer."""
|
141 |
+
query_embedding = embeddings_model.embed_query(query)
|
142 |
+
sims = cosine_similarity([query_embedding], qa_embeddings)[0]
|
143 |
+
top_idx = int(np.argmax(sims))
|
144 |
+
return f"Similar question: {qa_df.question[top_idx]}\nAnswer: {qa_df.answer[top_idx]}"
|
145 |
+
|
146 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
147 |
system_prompt = f.read()
|
148 |
|
149 |
sys_msg = SystemMessage(content=system_prompt)
|
150 |
|
151 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
152 |
vector_store = FAISS.from_texts(["Sample text 1", "Sample text 2"], embedding=embeddings)
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
tools = [
|
155 |
multiply,
|
|
|
160 |
wiki_search,
|
161 |
web_search,
|
162 |
arvix_search,
|
163 |
+
youtube_summary,
|
164 |
+
image_caption,
|
165 |
+
qa_reference,
|
166 |
]
|
167 |
|
168 |
def build_graph(provider: str = "huggingface"):
|
|
|
171 |
elif provider == "groq":
|
172 |
llm = ChatGroq(model="qwen-qwq-32b", temperature=0)
|
173 |
elif provider == "huggingface":
|
174 |
+
llm = LocalChatModel()
|
175 |
else:
|
176 |
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
|
177 |
|
178 |
def assistant(state: MessagesState):
|
179 |
return {"messages": [llm.invoke(state["messages"]) ]}
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
builder = StateGraph(MessagesState)
|
|
|
182 |
builder.add_node("assistant", assistant)
|
183 |
builder.add_node("tools", ToolNode(tools))
|
184 |
+
builder.add_edge(START, "assistant")
|
185 |
+
builder.add_conditional_edges("assistant", tools_condition)
|
|
|
|
|
|
|
|
|
186 |
builder.add_edge("tools", "assistant")
|
187 |
|
188 |
return builder.compile()
|
189 |
|
190 |
if __name__ == "__main__":
|
191 |
+
question = "Describe this image: https://example.com/sample.jpg"
|
192 |
graph = build_graph(provider="huggingface")
|
193 |
messages = [HumanMessage(content=question)]
|
194 |
messages = graph.invoke({"messages": messages})
|
requirements.txt
CHANGED
@@ -17,4 +17,5 @@ wikipedia
|
|
17 |
pgvector
|
18 |
python-dotenv
|
19 |
faiss-cpu
|
20 |
-
sentencepiece
|
|
|
|
17 |
pgvector
|
18 |
python-dotenv
|
19 |
faiss-cpu
|
20 |
+
sentencepiece
|
21 |
+
youtube-transcript-api
|