Pulkit-bristol commited on
Commit
91b597b
·
1 Parent(s): 8aa0b4b

second try

Browse files
agent/__pycache__/agent_1.cpython-312.pyc CHANGED
Binary files a/agent/__pycache__/agent_1.cpython-312.pyc and b/agent/__pycache__/agent_1.cpython-312.pyc differ
 
agent/agent_1.py CHANGED
@@ -25,7 +25,7 @@ from sklearn.metrics.pairwise import cosine_similarity
25
  load_dotenv()
26
 
27
  # Load QA pairs and compute embeddings once
28
- qa_df = pd.read_csv("/statics/qa_pairs.csv")
29
  embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
30
  qa_embeddings = embeddings_model.embed_documents(qa_df["question"].tolist())
31
 
@@ -143,7 +143,7 @@ def qa_reference(query: str) -> str:
143
  top_idx = int(np.argmax(sims))
144
  return f"Similar question: {qa_df.question[top_idx]}\nAnswer: {qa_df.answer[top_idx]}"
145
 
146
- with open("system_prompt.txt", "r", encoding="utf-8") as f:
147
  system_prompt = f.read()
148
 
149
  sys_msg = SystemMessage(content=system_prompt)
 
25
  load_dotenv()
26
 
27
  # Load QA pairs and compute embeddings once
28
+ qa_df = pd.read_csv("statics/qa_pairs.csv")
29
  embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
30
  qa_embeddings = embeddings_model.embed_documents(qa_df["question"].tolist())
31
 
 
143
  top_idx = int(np.argmax(sims))
144
  return f"Similar question: {qa_df.question[top_idx]}\nAnswer: {qa_df.answer[top_idx]}"
145
 
146
+ with open("statics/system_prompt.txt", "r", encoding="utf-8") as f:
147
  system_prompt = f.read()
148
 
149
  sys_msg = SystemMessage(content=system_prompt)