IceClear
upload files
42f2c22
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# //
# // Licensed under the Apache License, Version 2.0 (the "License");
# // you may not use this file except in compliance with the License.
# // You may obtain a copy of the License at
# //
# // http://www.apache.org/licenses/LICENSE-2.0
# //
# // Unless required by applicable law or agreed to in writing, software
# // distributed under the License is distributed on an "AS IS" BASIS,
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# // See the License for the specific language governing permissions and
# // limitations under the License.
"""
Distributed ops for supporting sequence parallel.
"""
from collections import defaultdict
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
from torch import Tensor
from common.cache import Cache
from common.distributed.advanced import (
get_sequence_parallel_group,
get_sequence_parallel_rank,
get_sequence_parallel_world_size,
)
from .basic import get_device
_SEQ_DATA_BUF = defaultdict(lambda: [None, None, None])
_SEQ_DATA_META_SHAPES = defaultdict()
_SEQ_DATA_META_DTYPES = defaultdict()
_SEQ_DATA_ASYNC_COMMS = defaultdict(list)
_SYNC_BUFFER = defaultdict(dict)
def single_all_to_all(
local_input: Tensor,
scatter_dim: int,
gather_dim: int,
group: dist.ProcessGroup,
async_op: bool = False,
):
"""
A function to do all-to-all on a tensor
"""
seq_world_size = dist.get_world_size(group)
prev_scatter_dim = scatter_dim
if scatter_dim != 0:
local_input = local_input.transpose(0, scatter_dim)
if gather_dim == 0:
gather_dim = scatter_dim
scatter_dim = 0
inp_shape = list(local_input.shape)
inp_shape[scatter_dim] = inp_shape[scatter_dim] // seq_world_size
input_t = local_input.reshape(
[seq_world_size, inp_shape[scatter_dim]] + inp_shape[scatter_dim + 1 :]
).contiguous()
output = torch.empty_like(input_t)
comm = dist.all_to_all_single(output, input_t, group=group, async_op=async_op)
if async_op:
# let user's code transpose & reshape
return output, comm, prev_scatter_dim
# first dim is seq_world_size, so we can split it directly
output = torch.cat(output.split(1), dim=gather_dim + 1).squeeze(0)
if prev_scatter_dim:
output = output.transpose(0, prev_scatter_dim).contiguous()
return output
def _all_to_all(
local_input: Tensor,
scatter_dim: int,
gather_dim: int,
group: dist.ProcessGroup,
):
seq_world_size = dist.get_world_size(group)
input_list = [
t.contiguous() for t in torch.tensor_split(local_input, seq_world_size, scatter_dim)
]
output_list = [torch.empty_like(input_list[0]) for _ in range(seq_world_size)]
dist.all_to_all(output_list, input_list, group=group)
return torch.cat(output_list, dim=gather_dim).contiguous()
class SeqAllToAll(torch.autograd.Function):
@staticmethod
def forward(
ctx: Any,
group: dist.ProcessGroup,
local_input: Tensor,
scatter_dim: int,
gather_dim: int,
async_op: bool,
) -> Tensor:
ctx.group = group
ctx.scatter_dim = scatter_dim
ctx.gather_dim = gather_dim
ctx.async_op = async_op
if async_op:
output, comm, prev_scatter_dim = single_all_to_all(
local_input, scatter_dim, gather_dim, group, async_op=async_op
)
ctx.prev_scatter_dim = prev_scatter_dim
return output, comm
return _all_to_all(local_input, scatter_dim, gather_dim, group)
@staticmethod
def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]:
if ctx.async_op:
input_t = torch.cat(grad_output[0].split(1), dim=ctx.gather_dim + 1).squeeze(0)
if ctx.prev_scatter_dim:
input_t = input_t.transpose(0, ctx.prev_scatter_dim)
else:
input_t = grad_output[0]
return (
None,
_all_to_all(input_t, ctx.gather_dim, ctx.scatter_dim, ctx.group),
None,
None,
None,
)
class Slice(torch.autograd.Function):
@staticmethod
def forward(ctx: Any, group: dist.ProcessGroup, local_input: Tensor, dim: int) -> Tensor:
ctx.group = group
ctx.rank = dist.get_rank(group)
seq_world_size = dist.get_world_size(group)
ctx.seq_world_size = seq_world_size
ctx.dim = dim
dim_size = local_input.shape[dim]
return local_input.split(dim_size // seq_world_size, dim=dim)[ctx.rank].contiguous()
@staticmethod
def backward(ctx: Any, grad_output: Tensor) -> Tuple[None, Tensor, None]:
dim_size = list(grad_output.size())
split_size = dim_size[0]
dim_size[0] = dim_size[0] * ctx.seq_world_size
output = torch.empty(dim_size, dtype=grad_output.dtype, device=torch.cuda.current_device())
dist._all_gather_base(output, grad_output, group=ctx.group)
return (None, torch.cat(output.split(split_size), dim=ctx.dim), None)
class Gather(torch.autograd.Function):
@staticmethod
def forward(
ctx: Any,
group: dist.ProcessGroup,
local_input: Tensor,
dim: int,
grad_scale: Optional[bool] = False,
) -> Tensor:
ctx.group = group
ctx.rank = dist.get_rank(group)
ctx.dim = dim
ctx.grad_scale = grad_scale
seq_world_size = dist.get_world_size(group)
ctx.seq_world_size = seq_world_size
dim_size = list(local_input.size())
split_size = dim_size[0]
ctx.part_size = dim_size[dim]
dim_size[0] = dim_size[0] * seq_world_size
output = torch.empty(dim_size, dtype=local_input.dtype, device=torch.cuda.current_device())
dist._all_gather_base(output, local_input.contiguous(), group=ctx.group)
return torch.cat(output.split(split_size), dim=dim)
@staticmethod
def backward(ctx: Any, grad_output: Tensor) -> Tuple[None, Tensor]:
if ctx.grad_scale:
grad_output = grad_output * ctx.seq_world_size
return (
None,
grad_output.split(ctx.part_size, dim=ctx.dim)[ctx.rank].contiguous(),
None,
None,
)
def gather_seq_scatter_heads_qkv(
qkv_tensor: Tensor,
*,
seq_dim: int,
qkv_shape: Optional[Tensor] = None,
cache: Cache = Cache(disable=True),
restore_shape: bool = True,
):
"""
A func to sync splited qkv tensor
qkv_tensor: the tensor we want to do alltoall with. The last dim must
be the projection_idx, which we will split into 3 part. After
spliting, the gather idx will be projecttion_idx + 1
seq_dim: gather_dim for all2all comm
restore_shape: if True, output will has the same shape length as input
"""
group = get_sequence_parallel_group()
if not group:
return qkv_tensor
world = get_sequence_parallel_world_size()
orig_shape = qkv_tensor.shape
scatter_dim = qkv_tensor.dim()
bef_all2all_shape = list(orig_shape)
qkv_proj_dim = bef_all2all_shape[-1]
bef_all2all_shape = bef_all2all_shape[:-1] + [3, qkv_proj_dim // 3]
qkv_tensor = qkv_tensor.view(bef_all2all_shape)
qkv_tensor = SeqAllToAll.apply(group, qkv_tensor, scatter_dim, seq_dim, False)
if restore_shape:
out_shape = list(orig_shape)
out_shape[seq_dim] *= world
out_shape[-1] = qkv_proj_dim // world
qkv_tensor = qkv_tensor.view(out_shape)
# remove padding
if qkv_shape is not None:
unpad_dim_size = cache(
"unpad_dim_size", lambda: torch.sum(torch.prod(qkv_shape, dim=-1)).item()
)
if unpad_dim_size % world != 0:
padding_size = qkv_tensor.size(seq_dim) - unpad_dim_size
qkv_tensor = _unpad_tensor(qkv_tensor, seq_dim, padding_size)
return qkv_tensor
def slice_inputs(x: Tensor, dim: int, padding: bool = True):
"""
A func to slice the input sequence in sequence parallel
"""
group = get_sequence_parallel_group()
if group is None:
return x
sp_rank = get_sequence_parallel_rank()
sp_world = get_sequence_parallel_world_size()
dim_size = x.shape[dim]
unit = (dim_size + sp_world - 1) // sp_world
if padding and dim_size % sp_world:
padding_size = sp_world - (dim_size % sp_world)
x = _pad_tensor(x, dim, padding_size)
slc = [slice(None)] * len(x.shape)
slc[dim] = slice(unit * sp_rank, unit * (sp_rank + 1))
return x[slc]
def remove_seqeunce_parallel_padding(x: Tensor, dim: int, unpad_dim_size: int):
"""
A func to remove the padding part of the tensor based on its original shape
"""
group = get_sequence_parallel_group()
if group is None:
return x
sp_world = get_sequence_parallel_world_size()
if unpad_dim_size % sp_world == 0:
return x
padding_size = sp_world - (unpad_dim_size % sp_world)
assert (padding_size + unpad_dim_size) % sp_world == 0
return _unpad_tensor(x, dim=dim, padding_size=padding_size)
def gather_heads_scatter_seq(x: Tensor, head_dim: int, seq_dim: int) -> Tensor:
"""
A func to sync attention result with alltoall in sequence parallel
"""
group = get_sequence_parallel_group()
if not group:
return x
dim_size = x.size(seq_dim)
sp_world = get_sequence_parallel_world_size()
if dim_size % sp_world != 0:
padding_size = sp_world - (dim_size % sp_world)
x = _pad_tensor(x, seq_dim, padding_size)
return SeqAllToAll.apply(group, x, seq_dim, head_dim, False)
def gather_seq_scatter_heads(x: Tensor, seq_dim: int, head_dim: int) -> Tensor:
"""
A func to sync embedding input with alltoall in sequence parallel
"""
group = get_sequence_parallel_group()
if not group:
return x
return SeqAllToAll.apply(group, x, head_dim, seq_dim, False)
def scatter_heads(x: Tensor, dim: int) -> Tensor:
"""
A func to split heads before attention in sequence parallel
"""
group = get_sequence_parallel_group()
if not group:
return x
return Slice.apply(group, x, dim)
def gather_heads(x: Tensor, dim: int, grad_scale: Optional[bool] = False) -> Tensor:
"""
A func to gather heads for the attention result in sequence parallel
"""
group = get_sequence_parallel_group()
if not group:
return x
return Gather.apply(group, x, dim, grad_scale)
def gather_outputs(
x: Tensor,
*,
gather_dim: int,
padding_dim: Optional[int] = None,
unpad_shape: Optional[Tensor] = None,
cache: Cache = Cache(disable=True),
scale_grad=True,
):
"""
A func to gather the outputs for the model result in sequence parallel
"""
group = get_sequence_parallel_group()
if not group:
return x
x = Gather.apply(group, x, gather_dim, scale_grad)
if padding_dim is not None:
unpad_dim_size = cache(
"unpad_dim_size", lambda: torch.sum(torch.prod(unpad_shape, dim=1)).item()
)
x = remove_seqeunce_parallel_padding(x, padding_dim, unpad_dim_size)
return x
def _pad_tensor(x: Tensor, dim: int, padding_size: int):
shape = list(x.shape)
shape[dim] = padding_size
pad = torch.zeros(shape, dtype=x.dtype, device=x.device)
return torch.cat([x, pad], dim=dim)
def _unpad_tensor(x: Tensor, dim: int, padding_size):
slc = [slice(None)] * len(x.shape)
slc[dim] = slice(0, -padding_size)
return x[slc]
def _broadcast_data(data, shape, dtype, src, group, async_op):
comms = []
if isinstance(data, (list, tuple)):
for i, sub_shape in enumerate(shape):
comms += _broadcast_data(data[i], sub_shape, dtype[i], src, group, async_op)
elif isinstance(data, dict):
for key, sub_data in data.items():
comms += _broadcast_data(sub_data, shape[key], dtype[key], src, group, async_op)
elif isinstance(data, Tensor):
comms.append(dist.broadcast(data, src=src, group=group, async_op=async_op))
return comms
def _traverse(data: Any, op: Callable) -> Union[None, List, Dict, Any]:
if isinstance(data, (list, tuple)):
return [_traverse(sub_data, op) for sub_data in data]
elif isinstance(data, dict):
return {key: _traverse(sub_data, op) for key, sub_data in data.items()}
elif isinstance(data, Tensor):
return op(data)
else:
return None
def _get_shapes(data):
return _traverse(data, op=lambda x: x.shape)
def _get_dtypes(data):
return _traverse(data, op=lambda x: x.dtype)
def _construct_broadcast_buffer(shapes, dtypes, device):
if isinstance(shapes, torch.Size):
return torch.empty(shapes, dtype=dtypes, device=device)
if isinstance(shapes, (list, tuple)):
buffer = []
for i, sub_shape in enumerate(shapes):
buffer.append(_construct_broadcast_buffer(sub_shape, dtypes[i], device))
elif isinstance(shapes, dict):
buffer = {}
for key, sub_shape in shapes.items():
buffer[key] = _construct_broadcast_buffer(sub_shape, dtypes[key], device)
else:
return None
return buffer
class SPDistForward:
"""A forward tool to sync different result across sp group
Args:
module: a function or module to process users input
sp_step: current training step to judge which rank to broadcast its result to all
name: a distinct str to save meta and async comm
comm_shape: if different ranks have different shape, mark this arg to True
device: the device for current rank, can be empty
"""
def __init__(
self,
name: str,
comm_shape: bool,
device: torch.device = None,
):
self.name = name
self.comm_shape = comm_shape
if device:
self.device = device
else:
self.device = get_device()
def __call__(self, inputs) -> Any:
group = get_sequence_parallel_group()
if not group:
yield inputs
else:
device = self.device
sp_world = get_sequence_parallel_world_size()
sp_rank = get_sequence_parallel_rank()
for local_step in range(sp_world):
src_rank = dist.get_global_rank(group, local_step)
is_src = sp_rank == local_step
local_shapes = []
local_dtypes = []
if local_step == 0:
local_result = inputs
_SEQ_DATA_BUF[self.name][-1] = local_result
local_shapes = _get_shapes(local_result)
local_dtypes = _get_dtypes(local_result)
if self.comm_shape:
group_shapes_lists = [None] * sp_world
dist.all_gather_object(group_shapes_lists, local_shapes, group=group)
_SEQ_DATA_META_SHAPES[self.name] = group_shapes_lists
else:
_SEQ_DATA_META_SHAPES[self.name] = [local_shapes] * sp_world
_SEQ_DATA_META_DTYPES[self.name] = local_dtypes
shapes = _SEQ_DATA_META_SHAPES[self.name][local_step]
dtypes = _SEQ_DATA_META_DTYPES[self.name]
buf_id = local_step % 2
if local_step == 0:
sync_data = (
local_result
if is_src
else _construct_broadcast_buffer(shapes, dtypes, device)
)
_broadcast_data(sync_data, shapes, dtypes, src_rank, group, False)
_SEQ_DATA_BUF[self.name][buf_id] = sync_data
# wait for async comm ops
if _SEQ_DATA_ASYNC_COMMS[self.name]:
for comm in _SEQ_DATA_ASYNC_COMMS[self.name]:
comm.wait()
# before return the sync result, do async broadcast for next batch
if local_step < sp_world - 1:
next_buf_id = 1 - buf_id
shapes = _SEQ_DATA_META_SHAPES[self.name][local_step + 1]
src_rank = dist.get_global_rank(group, local_step + 1)
is_src = sp_rank == local_step + 1
next_sync_data = (
_SEQ_DATA_BUF[self.name][-1]
if is_src
else _construct_broadcast_buffer(shapes, dtypes, device)
)
_SEQ_DATA_ASYNC_COMMS[self.name] = _broadcast_data(
next_sync_data, shapes, dtypes, src_rank, group, True
)
_SEQ_DATA_BUF[self.name][next_buf_id] = next_sync_data
yield _SEQ_DATA_BUF[self.name][buf_id]
sync_inputs = SPDistForward(name="bef_fwd", comm_shape=True)
def sync_data(data, sp_idx, name="tmp"):
group = get_sequence_parallel_group()
if group is None:
return data
# if sp_idx in _SYNC_BUFFER[name]:
# return _SYNC_BUFFER[name][sp_idx]
sp_rank = get_sequence_parallel_rank()
src_rank = dist.get_global_rank(group, sp_idx)
objects = [data] if sp_rank == sp_idx else [None]
dist.broadcast_object_list(objects, src=src_rank, group=group)
# _SYNC_BUFFER[name] = {sp_idx: objects[0]}
return objects[0]