# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates # // # // Licensed under the Apache License, Version 2.0 (the "License"); # // you may not use this file except in compliance with the License. # // You may obtain a copy of the License at # // # // http://www.apache.org/licenses/LICENSE-2.0 # // # // Unless required by applicable law or agreed to in writing, software # // distributed under the License is distributed on an "AS IS" BASIS, # // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # // See the License for the specific language governing permissions and # // limitations under the License. """ Distributed ops for supporting sequence parallel. """ from collections import defaultdict from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch import torch.distributed as dist from torch import Tensor from common.cache import Cache from common.distributed.advanced import ( get_sequence_parallel_group, get_sequence_parallel_rank, get_sequence_parallel_world_size, ) from .basic import get_device _SEQ_DATA_BUF = defaultdict(lambda: [None, None, None]) _SEQ_DATA_META_SHAPES = defaultdict() _SEQ_DATA_META_DTYPES = defaultdict() _SEQ_DATA_ASYNC_COMMS = defaultdict(list) _SYNC_BUFFER = defaultdict(dict) def single_all_to_all( local_input: Tensor, scatter_dim: int, gather_dim: int, group: dist.ProcessGroup, async_op: bool = False, ): """ A function to do all-to-all on a tensor """ seq_world_size = dist.get_world_size(group) prev_scatter_dim = scatter_dim if scatter_dim != 0: local_input = local_input.transpose(0, scatter_dim) if gather_dim == 0: gather_dim = scatter_dim scatter_dim = 0 inp_shape = list(local_input.shape) inp_shape[scatter_dim] = inp_shape[scatter_dim] // seq_world_size input_t = local_input.reshape( [seq_world_size, inp_shape[scatter_dim]] + inp_shape[scatter_dim + 1 :] ).contiguous() output = torch.empty_like(input_t) comm = dist.all_to_all_single(output, input_t, group=group, async_op=async_op) if async_op: # let user's code transpose & reshape return output, comm, prev_scatter_dim # first dim is seq_world_size, so we can split it directly output = torch.cat(output.split(1), dim=gather_dim + 1).squeeze(0) if prev_scatter_dim: output = output.transpose(0, prev_scatter_dim).contiguous() return output def _all_to_all( local_input: Tensor, scatter_dim: int, gather_dim: int, group: dist.ProcessGroup, ): seq_world_size = dist.get_world_size(group) input_list = [ t.contiguous() for t in torch.tensor_split(local_input, seq_world_size, scatter_dim) ] output_list = [torch.empty_like(input_list[0]) for _ in range(seq_world_size)] dist.all_to_all(output_list, input_list, group=group) return torch.cat(output_list, dim=gather_dim).contiguous() class SeqAllToAll(torch.autograd.Function): @staticmethod def forward( ctx: Any, group: dist.ProcessGroup, local_input: Tensor, scatter_dim: int, gather_dim: int, async_op: bool, ) -> Tensor: ctx.group = group ctx.scatter_dim = scatter_dim ctx.gather_dim = gather_dim ctx.async_op = async_op if async_op: output, comm, prev_scatter_dim = single_all_to_all( local_input, scatter_dim, gather_dim, group, async_op=async_op ) ctx.prev_scatter_dim = prev_scatter_dim return output, comm return _all_to_all(local_input, scatter_dim, gather_dim, group) @staticmethod def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]: if ctx.async_op: input_t = torch.cat(grad_output[0].split(1), dim=ctx.gather_dim + 1).squeeze(0) if ctx.prev_scatter_dim: input_t = input_t.transpose(0, ctx.prev_scatter_dim) else: input_t = grad_output[0] return ( None, _all_to_all(input_t, ctx.gather_dim, ctx.scatter_dim, ctx.group), None, None, None, ) class Slice(torch.autograd.Function): @staticmethod def forward(ctx: Any, group: dist.ProcessGroup, local_input: Tensor, dim: int) -> Tensor: ctx.group = group ctx.rank = dist.get_rank(group) seq_world_size = dist.get_world_size(group) ctx.seq_world_size = seq_world_size ctx.dim = dim dim_size = local_input.shape[dim] return local_input.split(dim_size // seq_world_size, dim=dim)[ctx.rank].contiguous() @staticmethod def backward(ctx: Any, grad_output: Tensor) -> Tuple[None, Tensor, None]: dim_size = list(grad_output.size()) split_size = dim_size[0] dim_size[0] = dim_size[0] * ctx.seq_world_size output = torch.empty(dim_size, dtype=grad_output.dtype, device=torch.cuda.current_device()) dist._all_gather_base(output, grad_output, group=ctx.group) return (None, torch.cat(output.split(split_size), dim=ctx.dim), None) class Gather(torch.autograd.Function): @staticmethod def forward( ctx: Any, group: dist.ProcessGroup, local_input: Tensor, dim: int, grad_scale: Optional[bool] = False, ) -> Tensor: ctx.group = group ctx.rank = dist.get_rank(group) ctx.dim = dim ctx.grad_scale = grad_scale seq_world_size = dist.get_world_size(group) ctx.seq_world_size = seq_world_size dim_size = list(local_input.size()) split_size = dim_size[0] ctx.part_size = dim_size[dim] dim_size[0] = dim_size[0] * seq_world_size output = torch.empty(dim_size, dtype=local_input.dtype, device=torch.cuda.current_device()) dist._all_gather_base(output, local_input.contiguous(), group=ctx.group) return torch.cat(output.split(split_size), dim=dim) @staticmethod def backward(ctx: Any, grad_output: Tensor) -> Tuple[None, Tensor]: if ctx.grad_scale: grad_output = grad_output * ctx.seq_world_size return ( None, grad_output.split(ctx.part_size, dim=ctx.dim)[ctx.rank].contiguous(), None, None, ) def gather_seq_scatter_heads_qkv( qkv_tensor: Tensor, *, seq_dim: int, qkv_shape: Optional[Tensor] = None, cache: Cache = Cache(disable=True), restore_shape: bool = True, ): """ A func to sync splited qkv tensor qkv_tensor: the tensor we want to do alltoall with. The last dim must be the projection_idx, which we will split into 3 part. After spliting, the gather idx will be projecttion_idx + 1 seq_dim: gather_dim for all2all comm restore_shape: if True, output will has the same shape length as input """ group = get_sequence_parallel_group() if not group: return qkv_tensor world = get_sequence_parallel_world_size() orig_shape = qkv_tensor.shape scatter_dim = qkv_tensor.dim() bef_all2all_shape = list(orig_shape) qkv_proj_dim = bef_all2all_shape[-1] bef_all2all_shape = bef_all2all_shape[:-1] + [3, qkv_proj_dim // 3] qkv_tensor = qkv_tensor.view(bef_all2all_shape) qkv_tensor = SeqAllToAll.apply(group, qkv_tensor, scatter_dim, seq_dim, False) if restore_shape: out_shape = list(orig_shape) out_shape[seq_dim] *= world out_shape[-1] = qkv_proj_dim // world qkv_tensor = qkv_tensor.view(out_shape) # remove padding if qkv_shape is not None: unpad_dim_size = cache( "unpad_dim_size", lambda: torch.sum(torch.prod(qkv_shape, dim=-1)).item() ) if unpad_dim_size % world != 0: padding_size = qkv_tensor.size(seq_dim) - unpad_dim_size qkv_tensor = _unpad_tensor(qkv_tensor, seq_dim, padding_size) return qkv_tensor def slice_inputs(x: Tensor, dim: int, padding: bool = True): """ A func to slice the input sequence in sequence parallel """ group = get_sequence_parallel_group() if group is None: return x sp_rank = get_sequence_parallel_rank() sp_world = get_sequence_parallel_world_size() dim_size = x.shape[dim] unit = (dim_size + sp_world - 1) // sp_world if padding and dim_size % sp_world: padding_size = sp_world - (dim_size % sp_world) x = _pad_tensor(x, dim, padding_size) slc = [slice(None)] * len(x.shape) slc[dim] = slice(unit * sp_rank, unit * (sp_rank + 1)) return x[slc] def remove_seqeunce_parallel_padding(x: Tensor, dim: int, unpad_dim_size: int): """ A func to remove the padding part of the tensor based on its original shape """ group = get_sequence_parallel_group() if group is None: return x sp_world = get_sequence_parallel_world_size() if unpad_dim_size % sp_world == 0: return x padding_size = sp_world - (unpad_dim_size % sp_world) assert (padding_size + unpad_dim_size) % sp_world == 0 return _unpad_tensor(x, dim=dim, padding_size=padding_size) def gather_heads_scatter_seq(x: Tensor, head_dim: int, seq_dim: int) -> Tensor: """ A func to sync attention result with alltoall in sequence parallel """ group = get_sequence_parallel_group() if not group: return x dim_size = x.size(seq_dim) sp_world = get_sequence_parallel_world_size() if dim_size % sp_world != 0: padding_size = sp_world - (dim_size % sp_world) x = _pad_tensor(x, seq_dim, padding_size) return SeqAllToAll.apply(group, x, seq_dim, head_dim, False) def gather_seq_scatter_heads(x: Tensor, seq_dim: int, head_dim: int) -> Tensor: """ A func to sync embedding input with alltoall in sequence parallel """ group = get_sequence_parallel_group() if not group: return x return SeqAllToAll.apply(group, x, head_dim, seq_dim, False) def scatter_heads(x: Tensor, dim: int) -> Tensor: """ A func to split heads before attention in sequence parallel """ group = get_sequence_parallel_group() if not group: return x return Slice.apply(group, x, dim) def gather_heads(x: Tensor, dim: int, grad_scale: Optional[bool] = False) -> Tensor: """ A func to gather heads for the attention result in sequence parallel """ group = get_sequence_parallel_group() if not group: return x return Gather.apply(group, x, dim, grad_scale) def gather_outputs( x: Tensor, *, gather_dim: int, padding_dim: Optional[int] = None, unpad_shape: Optional[Tensor] = None, cache: Cache = Cache(disable=True), scale_grad=True, ): """ A func to gather the outputs for the model result in sequence parallel """ group = get_sequence_parallel_group() if not group: return x x = Gather.apply(group, x, gather_dim, scale_grad) if padding_dim is not None: unpad_dim_size = cache( "unpad_dim_size", lambda: torch.sum(torch.prod(unpad_shape, dim=1)).item() ) x = remove_seqeunce_parallel_padding(x, padding_dim, unpad_dim_size) return x def _pad_tensor(x: Tensor, dim: int, padding_size: int): shape = list(x.shape) shape[dim] = padding_size pad = torch.zeros(shape, dtype=x.dtype, device=x.device) return torch.cat([x, pad], dim=dim) def _unpad_tensor(x: Tensor, dim: int, padding_size): slc = [slice(None)] * len(x.shape) slc[dim] = slice(0, -padding_size) return x[slc] def _broadcast_data(data, shape, dtype, src, group, async_op): comms = [] if isinstance(data, (list, tuple)): for i, sub_shape in enumerate(shape): comms += _broadcast_data(data[i], sub_shape, dtype[i], src, group, async_op) elif isinstance(data, dict): for key, sub_data in data.items(): comms += _broadcast_data(sub_data, shape[key], dtype[key], src, group, async_op) elif isinstance(data, Tensor): comms.append(dist.broadcast(data, src=src, group=group, async_op=async_op)) return comms def _traverse(data: Any, op: Callable) -> Union[None, List, Dict, Any]: if isinstance(data, (list, tuple)): return [_traverse(sub_data, op) for sub_data in data] elif isinstance(data, dict): return {key: _traverse(sub_data, op) for key, sub_data in data.items()} elif isinstance(data, Tensor): return op(data) else: return None def _get_shapes(data): return _traverse(data, op=lambda x: x.shape) def _get_dtypes(data): return _traverse(data, op=lambda x: x.dtype) def _construct_broadcast_buffer(shapes, dtypes, device): if isinstance(shapes, torch.Size): return torch.empty(shapes, dtype=dtypes, device=device) if isinstance(shapes, (list, tuple)): buffer = [] for i, sub_shape in enumerate(shapes): buffer.append(_construct_broadcast_buffer(sub_shape, dtypes[i], device)) elif isinstance(shapes, dict): buffer = {} for key, sub_shape in shapes.items(): buffer[key] = _construct_broadcast_buffer(sub_shape, dtypes[key], device) else: return None return buffer class SPDistForward: """A forward tool to sync different result across sp group Args: module: a function or module to process users input sp_step: current training step to judge which rank to broadcast its result to all name: a distinct str to save meta and async comm comm_shape: if different ranks have different shape, mark this arg to True device: the device for current rank, can be empty """ def __init__( self, name: str, comm_shape: bool, device: torch.device = None, ): self.name = name self.comm_shape = comm_shape if device: self.device = device else: self.device = get_device() def __call__(self, inputs) -> Any: group = get_sequence_parallel_group() if not group: yield inputs else: device = self.device sp_world = get_sequence_parallel_world_size() sp_rank = get_sequence_parallel_rank() for local_step in range(sp_world): src_rank = dist.get_global_rank(group, local_step) is_src = sp_rank == local_step local_shapes = [] local_dtypes = [] if local_step == 0: local_result = inputs _SEQ_DATA_BUF[self.name][-1] = local_result local_shapes = _get_shapes(local_result) local_dtypes = _get_dtypes(local_result) if self.comm_shape: group_shapes_lists = [None] * sp_world dist.all_gather_object(group_shapes_lists, local_shapes, group=group) _SEQ_DATA_META_SHAPES[self.name] = group_shapes_lists else: _SEQ_DATA_META_SHAPES[self.name] = [local_shapes] * sp_world _SEQ_DATA_META_DTYPES[self.name] = local_dtypes shapes = _SEQ_DATA_META_SHAPES[self.name][local_step] dtypes = _SEQ_DATA_META_DTYPES[self.name] buf_id = local_step % 2 if local_step == 0: sync_data = ( local_result if is_src else _construct_broadcast_buffer(shapes, dtypes, device) ) _broadcast_data(sync_data, shapes, dtypes, src_rank, group, False) _SEQ_DATA_BUF[self.name][buf_id] = sync_data # wait for async comm ops if _SEQ_DATA_ASYNC_COMMS[self.name]: for comm in _SEQ_DATA_ASYNC_COMMS[self.name]: comm.wait() # before return the sync result, do async broadcast for next batch if local_step < sp_world - 1: next_buf_id = 1 - buf_id shapes = _SEQ_DATA_META_SHAPES[self.name][local_step + 1] src_rank = dist.get_global_rank(group, local_step + 1) is_src = sp_rank == local_step + 1 next_sync_data = ( _SEQ_DATA_BUF[self.name][-1] if is_src else _construct_broadcast_buffer(shapes, dtypes, device) ) _SEQ_DATA_ASYNC_COMMS[self.name] = _broadcast_data( next_sync_data, shapes, dtypes, src_rank, group, True ) _SEQ_DATA_BUF[self.name][next_buf_id] = next_sync_data yield _SEQ_DATA_BUF[self.name][buf_id] sync_inputs = SPDistForward(name="bef_fwd", comm_shape=True) def sync_data(data, sp_idx, name="tmp"): group = get_sequence_parallel_group() if group is None: return data # if sp_idx in _SYNC_BUFFER[name]: # return _SYNC_BUFFER[name][sp_idx] sp_rank = get_sequence_parallel_rank() src_rank = dist.get_global_rank(group, sp_idx) objects = [data] if sp_rank == sp_idx else [None] dist.broadcast_object_list(objects, src=src_rank, group=group) # _SYNC_BUFFER[name] = {sp_idx: objects[0]} return objects[0]