Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,572 Bytes
42f2c22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 |
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# //
# // Licensed under the Apache License, Version 2.0 (the "License");
# // you may not use this file except in compliance with the License.
# // You may obtain a copy of the License at
# //
# // http://www.apache.org/licenses/LICENSE-2.0
# //
# // Unless required by applicable law or agreed to in writing, software
# // distributed under the License is distributed on an "AS IS" BASIS,
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# // See the License for the specific language governing permissions and
# // limitations under the License.
"""
Distributed ops for supporting sequence parallel.
"""
from collections import defaultdict
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
from torch import Tensor
from common.cache import Cache
from common.distributed.advanced import (
get_sequence_parallel_group,
get_sequence_parallel_rank,
get_sequence_parallel_world_size,
)
from .basic import get_device
_SEQ_DATA_BUF = defaultdict(lambda: [None, None, None])
_SEQ_DATA_META_SHAPES = defaultdict()
_SEQ_DATA_META_DTYPES = defaultdict()
_SEQ_DATA_ASYNC_COMMS = defaultdict(list)
_SYNC_BUFFER = defaultdict(dict)
def single_all_to_all(
local_input: Tensor,
scatter_dim: int,
gather_dim: int,
group: dist.ProcessGroup,
async_op: bool = False,
):
"""
A function to do all-to-all on a tensor
"""
seq_world_size = dist.get_world_size(group)
prev_scatter_dim = scatter_dim
if scatter_dim != 0:
local_input = local_input.transpose(0, scatter_dim)
if gather_dim == 0:
gather_dim = scatter_dim
scatter_dim = 0
inp_shape = list(local_input.shape)
inp_shape[scatter_dim] = inp_shape[scatter_dim] // seq_world_size
input_t = local_input.reshape(
[seq_world_size, inp_shape[scatter_dim]] + inp_shape[scatter_dim + 1 :]
).contiguous()
output = torch.empty_like(input_t)
comm = dist.all_to_all_single(output, input_t, group=group, async_op=async_op)
if async_op:
# let user's code transpose & reshape
return output, comm, prev_scatter_dim
# first dim is seq_world_size, so we can split it directly
output = torch.cat(output.split(1), dim=gather_dim + 1).squeeze(0)
if prev_scatter_dim:
output = output.transpose(0, prev_scatter_dim).contiguous()
return output
def _all_to_all(
local_input: Tensor,
scatter_dim: int,
gather_dim: int,
group: dist.ProcessGroup,
):
seq_world_size = dist.get_world_size(group)
input_list = [
t.contiguous() for t in torch.tensor_split(local_input, seq_world_size, scatter_dim)
]
output_list = [torch.empty_like(input_list[0]) for _ in range(seq_world_size)]
dist.all_to_all(output_list, input_list, group=group)
return torch.cat(output_list, dim=gather_dim).contiguous()
class SeqAllToAll(torch.autograd.Function):
@staticmethod
def forward(
ctx: Any,
group: dist.ProcessGroup,
local_input: Tensor,
scatter_dim: int,
gather_dim: int,
async_op: bool,
) -> Tensor:
ctx.group = group
ctx.scatter_dim = scatter_dim
ctx.gather_dim = gather_dim
ctx.async_op = async_op
if async_op:
output, comm, prev_scatter_dim = single_all_to_all(
local_input, scatter_dim, gather_dim, group, async_op=async_op
)
ctx.prev_scatter_dim = prev_scatter_dim
return output, comm
return _all_to_all(local_input, scatter_dim, gather_dim, group)
@staticmethod
def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]:
if ctx.async_op:
input_t = torch.cat(grad_output[0].split(1), dim=ctx.gather_dim + 1).squeeze(0)
if ctx.prev_scatter_dim:
input_t = input_t.transpose(0, ctx.prev_scatter_dim)
else:
input_t = grad_output[0]
return (
None,
_all_to_all(input_t, ctx.gather_dim, ctx.scatter_dim, ctx.group),
None,
None,
None,
)
class Slice(torch.autograd.Function):
@staticmethod
def forward(ctx: Any, group: dist.ProcessGroup, local_input: Tensor, dim: int) -> Tensor:
ctx.group = group
ctx.rank = dist.get_rank(group)
seq_world_size = dist.get_world_size(group)
ctx.seq_world_size = seq_world_size
ctx.dim = dim
dim_size = local_input.shape[dim]
return local_input.split(dim_size // seq_world_size, dim=dim)[ctx.rank].contiguous()
@staticmethod
def backward(ctx: Any, grad_output: Tensor) -> Tuple[None, Tensor, None]:
dim_size = list(grad_output.size())
split_size = dim_size[0]
dim_size[0] = dim_size[0] * ctx.seq_world_size
output = torch.empty(dim_size, dtype=grad_output.dtype, device=torch.cuda.current_device())
dist._all_gather_base(output, grad_output, group=ctx.group)
return (None, torch.cat(output.split(split_size), dim=ctx.dim), None)
class Gather(torch.autograd.Function):
@staticmethod
def forward(
ctx: Any,
group: dist.ProcessGroup,
local_input: Tensor,
dim: int,
grad_scale: Optional[bool] = False,
) -> Tensor:
ctx.group = group
ctx.rank = dist.get_rank(group)
ctx.dim = dim
ctx.grad_scale = grad_scale
seq_world_size = dist.get_world_size(group)
ctx.seq_world_size = seq_world_size
dim_size = list(local_input.size())
split_size = dim_size[0]
ctx.part_size = dim_size[dim]
dim_size[0] = dim_size[0] * seq_world_size
output = torch.empty(dim_size, dtype=local_input.dtype, device=torch.cuda.current_device())
dist._all_gather_base(output, local_input.contiguous(), group=ctx.group)
return torch.cat(output.split(split_size), dim=dim)
@staticmethod
def backward(ctx: Any, grad_output: Tensor) -> Tuple[None, Tensor]:
if ctx.grad_scale:
grad_output = grad_output * ctx.seq_world_size
return (
None,
grad_output.split(ctx.part_size, dim=ctx.dim)[ctx.rank].contiguous(),
None,
None,
)
def gather_seq_scatter_heads_qkv(
qkv_tensor: Tensor,
*,
seq_dim: int,
qkv_shape: Optional[Tensor] = None,
cache: Cache = Cache(disable=True),
restore_shape: bool = True,
):
"""
A func to sync splited qkv tensor
qkv_tensor: the tensor we want to do alltoall with. The last dim must
be the projection_idx, which we will split into 3 part. After
spliting, the gather idx will be projecttion_idx + 1
seq_dim: gather_dim for all2all comm
restore_shape: if True, output will has the same shape length as input
"""
group = get_sequence_parallel_group()
if not group:
return qkv_tensor
world = get_sequence_parallel_world_size()
orig_shape = qkv_tensor.shape
scatter_dim = qkv_tensor.dim()
bef_all2all_shape = list(orig_shape)
qkv_proj_dim = bef_all2all_shape[-1]
bef_all2all_shape = bef_all2all_shape[:-1] + [3, qkv_proj_dim // 3]
qkv_tensor = qkv_tensor.view(bef_all2all_shape)
qkv_tensor = SeqAllToAll.apply(group, qkv_tensor, scatter_dim, seq_dim, False)
if restore_shape:
out_shape = list(orig_shape)
out_shape[seq_dim] *= world
out_shape[-1] = qkv_proj_dim // world
qkv_tensor = qkv_tensor.view(out_shape)
# remove padding
if qkv_shape is not None:
unpad_dim_size = cache(
"unpad_dim_size", lambda: torch.sum(torch.prod(qkv_shape, dim=-1)).item()
)
if unpad_dim_size % world != 0:
padding_size = qkv_tensor.size(seq_dim) - unpad_dim_size
qkv_tensor = _unpad_tensor(qkv_tensor, seq_dim, padding_size)
return qkv_tensor
def slice_inputs(x: Tensor, dim: int, padding: bool = True):
"""
A func to slice the input sequence in sequence parallel
"""
group = get_sequence_parallel_group()
if group is None:
return x
sp_rank = get_sequence_parallel_rank()
sp_world = get_sequence_parallel_world_size()
dim_size = x.shape[dim]
unit = (dim_size + sp_world - 1) // sp_world
if padding and dim_size % sp_world:
padding_size = sp_world - (dim_size % sp_world)
x = _pad_tensor(x, dim, padding_size)
slc = [slice(None)] * len(x.shape)
slc[dim] = slice(unit * sp_rank, unit * (sp_rank + 1))
return x[slc]
def remove_seqeunce_parallel_padding(x: Tensor, dim: int, unpad_dim_size: int):
"""
A func to remove the padding part of the tensor based on its original shape
"""
group = get_sequence_parallel_group()
if group is None:
return x
sp_world = get_sequence_parallel_world_size()
if unpad_dim_size % sp_world == 0:
return x
padding_size = sp_world - (unpad_dim_size % sp_world)
assert (padding_size + unpad_dim_size) % sp_world == 0
return _unpad_tensor(x, dim=dim, padding_size=padding_size)
def gather_heads_scatter_seq(x: Tensor, head_dim: int, seq_dim: int) -> Tensor:
"""
A func to sync attention result with alltoall in sequence parallel
"""
group = get_sequence_parallel_group()
if not group:
return x
dim_size = x.size(seq_dim)
sp_world = get_sequence_parallel_world_size()
if dim_size % sp_world != 0:
padding_size = sp_world - (dim_size % sp_world)
x = _pad_tensor(x, seq_dim, padding_size)
return SeqAllToAll.apply(group, x, seq_dim, head_dim, False)
def gather_seq_scatter_heads(x: Tensor, seq_dim: int, head_dim: int) -> Tensor:
"""
A func to sync embedding input with alltoall in sequence parallel
"""
group = get_sequence_parallel_group()
if not group:
return x
return SeqAllToAll.apply(group, x, head_dim, seq_dim, False)
def scatter_heads(x: Tensor, dim: int) -> Tensor:
"""
A func to split heads before attention in sequence parallel
"""
group = get_sequence_parallel_group()
if not group:
return x
return Slice.apply(group, x, dim)
def gather_heads(x: Tensor, dim: int, grad_scale: Optional[bool] = False) -> Tensor:
"""
A func to gather heads for the attention result in sequence parallel
"""
group = get_sequence_parallel_group()
if not group:
return x
return Gather.apply(group, x, dim, grad_scale)
def gather_outputs(
x: Tensor,
*,
gather_dim: int,
padding_dim: Optional[int] = None,
unpad_shape: Optional[Tensor] = None,
cache: Cache = Cache(disable=True),
scale_grad=True,
):
"""
A func to gather the outputs for the model result in sequence parallel
"""
group = get_sequence_parallel_group()
if not group:
return x
x = Gather.apply(group, x, gather_dim, scale_grad)
if padding_dim is not None:
unpad_dim_size = cache(
"unpad_dim_size", lambda: torch.sum(torch.prod(unpad_shape, dim=1)).item()
)
x = remove_seqeunce_parallel_padding(x, padding_dim, unpad_dim_size)
return x
def _pad_tensor(x: Tensor, dim: int, padding_size: int):
shape = list(x.shape)
shape[dim] = padding_size
pad = torch.zeros(shape, dtype=x.dtype, device=x.device)
return torch.cat([x, pad], dim=dim)
def _unpad_tensor(x: Tensor, dim: int, padding_size):
slc = [slice(None)] * len(x.shape)
slc[dim] = slice(0, -padding_size)
return x[slc]
def _broadcast_data(data, shape, dtype, src, group, async_op):
comms = []
if isinstance(data, (list, tuple)):
for i, sub_shape in enumerate(shape):
comms += _broadcast_data(data[i], sub_shape, dtype[i], src, group, async_op)
elif isinstance(data, dict):
for key, sub_data in data.items():
comms += _broadcast_data(sub_data, shape[key], dtype[key], src, group, async_op)
elif isinstance(data, Tensor):
comms.append(dist.broadcast(data, src=src, group=group, async_op=async_op))
return comms
def _traverse(data: Any, op: Callable) -> Union[None, List, Dict, Any]:
if isinstance(data, (list, tuple)):
return [_traverse(sub_data, op) for sub_data in data]
elif isinstance(data, dict):
return {key: _traverse(sub_data, op) for key, sub_data in data.items()}
elif isinstance(data, Tensor):
return op(data)
else:
return None
def _get_shapes(data):
return _traverse(data, op=lambda x: x.shape)
def _get_dtypes(data):
return _traverse(data, op=lambda x: x.dtype)
def _construct_broadcast_buffer(shapes, dtypes, device):
if isinstance(shapes, torch.Size):
return torch.empty(shapes, dtype=dtypes, device=device)
if isinstance(shapes, (list, tuple)):
buffer = []
for i, sub_shape in enumerate(shapes):
buffer.append(_construct_broadcast_buffer(sub_shape, dtypes[i], device))
elif isinstance(shapes, dict):
buffer = {}
for key, sub_shape in shapes.items():
buffer[key] = _construct_broadcast_buffer(sub_shape, dtypes[key], device)
else:
return None
return buffer
class SPDistForward:
"""A forward tool to sync different result across sp group
Args:
module: a function or module to process users input
sp_step: current training step to judge which rank to broadcast its result to all
name: a distinct str to save meta and async comm
comm_shape: if different ranks have different shape, mark this arg to True
device: the device for current rank, can be empty
"""
def __init__(
self,
name: str,
comm_shape: bool,
device: torch.device = None,
):
self.name = name
self.comm_shape = comm_shape
if device:
self.device = device
else:
self.device = get_device()
def __call__(self, inputs) -> Any:
group = get_sequence_parallel_group()
if not group:
yield inputs
else:
device = self.device
sp_world = get_sequence_parallel_world_size()
sp_rank = get_sequence_parallel_rank()
for local_step in range(sp_world):
src_rank = dist.get_global_rank(group, local_step)
is_src = sp_rank == local_step
local_shapes = []
local_dtypes = []
if local_step == 0:
local_result = inputs
_SEQ_DATA_BUF[self.name][-1] = local_result
local_shapes = _get_shapes(local_result)
local_dtypes = _get_dtypes(local_result)
if self.comm_shape:
group_shapes_lists = [None] * sp_world
dist.all_gather_object(group_shapes_lists, local_shapes, group=group)
_SEQ_DATA_META_SHAPES[self.name] = group_shapes_lists
else:
_SEQ_DATA_META_SHAPES[self.name] = [local_shapes] * sp_world
_SEQ_DATA_META_DTYPES[self.name] = local_dtypes
shapes = _SEQ_DATA_META_SHAPES[self.name][local_step]
dtypes = _SEQ_DATA_META_DTYPES[self.name]
buf_id = local_step % 2
if local_step == 0:
sync_data = (
local_result
if is_src
else _construct_broadcast_buffer(shapes, dtypes, device)
)
_broadcast_data(sync_data, shapes, dtypes, src_rank, group, False)
_SEQ_DATA_BUF[self.name][buf_id] = sync_data
# wait for async comm ops
if _SEQ_DATA_ASYNC_COMMS[self.name]:
for comm in _SEQ_DATA_ASYNC_COMMS[self.name]:
comm.wait()
# before return the sync result, do async broadcast for next batch
if local_step < sp_world - 1:
next_buf_id = 1 - buf_id
shapes = _SEQ_DATA_META_SHAPES[self.name][local_step + 1]
src_rank = dist.get_global_rank(group, local_step + 1)
is_src = sp_rank == local_step + 1
next_sync_data = (
_SEQ_DATA_BUF[self.name][-1]
if is_src
else _construct_broadcast_buffer(shapes, dtypes, device)
)
_SEQ_DATA_ASYNC_COMMS[self.name] = _broadcast_data(
next_sync_data, shapes, dtypes, src_rank, group, True
)
_SEQ_DATA_BUF[self.name][next_buf_id] = next_sync_data
yield _SEQ_DATA_BUF[self.name][buf_id]
sync_inputs = SPDistForward(name="bef_fwd", comm_shape=True)
def sync_data(data, sp_idx, name="tmp"):
group = get_sequence_parallel_group()
if group is None:
return data
# if sp_idx in _SYNC_BUFFER[name]:
# return _SYNC_BUFFER[name][sp_idx]
sp_rank = get_sequence_parallel_rank()
src_rank = dist.get_global_rank(group, sp_idx)
objects = [data] if sp_rank == sp_idx else [None]
dist.broadcast_object_list(objects, src=src_rank, group=group)
# _SYNC_BUFFER[name] = {sp_idx: objects[0]}
return objects[0]
|