File size: 7,781 Bytes
dd9cc55
7127fcb
aeb2715
3251884
 
7384c00
 
fe176a4
7127fcb
7384c00
e6a37ce
 
 
 
 
7384c00
7127fcb
 
7384c00
 
 
 
 
 
7127fcb
7384c00
 
e6a37ce
7127fcb
e6a37ce
 
7384c00
e6a37ce
 
7127fcb
 
7384c00
af4dae9
 
 
 
 
 
7127fcb
fe176a4
 
7127fcb
fe176a4
 
 
7127fcb
fe176a4
 
7127fcb
fe176a4
7127fcb
fe176a4
7127fcb
 
 
 
fe176a4
 
 
7127fcb
fe176a4
 
 
 
7127fcb
 
fe176a4
7127fcb
fe176a4
7127fcb
fe176a4
7127fcb
fe176a4
7127fcb
 
fe176a4
7127fcb
fe176a4
7127fcb
fe176a4
7127fcb
fe176a4
 
7127fcb
 
 
 
 
 
 
 
 
 
 
 
 
fe176a4
7127fcb
 
 
 
 
 
 
 
 
 
 
fe176a4
5083bb3
 
e6a37ce
 
7127fcb
5083bb3
 
 
 
 
 
 
3251884
7127fcb
 
e6a37ce
7127fcb
5083bb3
 
af4dae9
 
 
 
5083bb3
 
81a43fe
7127fcb
 
 
 
e6a37ce
7127fcb
f5949bf
7127fcb
e6a37ce
5083bb3
 
e6a37ce
7127fcb
e6a37ce
 
 
fe176a4
5083bb3
 
 
 
f3b1ac7
bdcfb66
5083bb3
3251884
5083bb3
7127fcb
 
 
 
 
 
 
 
 
 
5083bb3
 
 
fe176a4
7127fcb
 
 
fe176a4
7384c00
7127fcb
 
fe176a4
7127fcb
3251884
7127fcb
 
3251884
 
 
7127fcb
3251884
7127fcb
3251884
7127fcb
3251884
7127fcb
fe176a4
3251884
7127fcb
3251884
7127fcb
aeb2715
5083bb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import tweepy
from transformers import pipeline, GPT2LMHeadModel, GPT2Tokenizer
import os
import streamlit as st
from datetime import datetime
import time
from tenacity import retry, stop_after_attempt, wait_exponential
import re
from collections import Counter

def debug_print(message):
    """Função para imprimir mensagens de debug tanto no console quanto no Streamlit"""
    print(message)
    st.text(message)

@retry(
    stop=stop_after_attempt(2),  # Reduzido para 2 tentativas
    wait=wait_exponential(multiplier=1, min=2, max=4),  # Tempo de espera reduzido
    retry=lambda e: isinstance(e, tweepy.errors.TooManyRequests)
)
def fetch_tweets(client, query, tweet_fields):
    try:
        tweets = client.search_recent_tweets(
            query=query,
            max_results=10,  # Reduzido para 10 tweets
            tweet_fields=tweet_fields
        )
        
        if not hasattr(tweets, 'data') or tweets.data is None:
            return None
            
        return tweets
        
    except Exception as e:
        debug_print(f"Erro na busca: {str(e)}")
        return None

def post_tweet(client, text):
    try:
        response = client.create_tweet(text=text)
        return response
    except Exception as e:
        debug_print(f"Erro ao postar tweet: {str(e)}")
        return None

def extract_context_from_tweets(tweets_data):
    """Versão simplificada da extração de contexto"""
    all_text = " ".join([tweet.text for tweet in tweets_data])
    clean_text = re.sub(r'http\S+|@\S+|RT|[^\w\s]', ' ', all_text)
    
    # Encontrar nomes capitalizados frequentes
    words = clean_text.split()
    capitalized_words = [word for word in words if word.istitle() and len(word) > 2]
    participants = Counter(capitalized_words).most_common(3)  # Reduzido para 3
    
    # Eventos simplificados
    events = []
    event_keywords = ['paredão', 'prova', 'líder', 'eliminação', 'briga']
    for keyword in event_keywords:
        if keyword in clean_text.lower():
            events.append(keyword)
    
    return {
        'participants': [p[0] for p in participants],
        'events': events[:2],  # Limitado a 2 eventos
        'raw_text': clean_text
    }

def generate_comment(context, sentiment_ratio, model, tokenizer):
    """Versão otimizada da geração de comentários"""
    # Determinar o tom com base no sentimento
    if sentiment_ratio['positive'] > 0.5:
        tone = "clima animado"
    elif sentiment_ratio['negative'] > 0.5:
        tone = "clima tenso"
    else:
        tone = "opiniões divididas"
    
    # Construir prompt base
    prompt = f"BBB25 com {tone}"
    
    # Adicionar contexto se disponível
    if context['participants']:
        prompt += f", {context['participants'][0]}"
    if context['events']:
        prompt += f", {context['events'][0]}"
    
    # Gerar texto
    try:
        inputs = tokenizer.encode(prompt, return_tensors='pt', max_length=100, truncation=True)
        outputs = model.generate(
            inputs,
            max_length=150,  # Reduzido para melhor performance
            num_return_sequences=1,  # Apenas uma sequência
            temperature=0.8,
            top_k=40,
            do_sample=True,
            pad_token_id=tokenizer.eos_token_id
        )
        
        text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        text = re.sub(r'\s+', ' ', text).strip()
        
        # Adicionar hashtags
        hashtags = " #BBB25"
        if len(text) + len(hashtags) > 280:
            text = text[:277-len(hashtags)] + "..."
        
        return text + hashtags
        
    except Exception as e:
        debug_print(f"Erro na geração: {str(e)}")
        return f"BBB25: {tone} hoje! #BBB25"  # Fallback simples

def main():
    try:
        st.title("Análise de Sentimentos - BBB25")
        
        # Verificação simplificada de variáveis de ambiente
        required_vars = [
            'TWITTER_API_KEY',
            'TWITTER_API_SECRET_KEY',
            'TWITTER_ACCESS_TOKEN',
            'TWITTER_ACCESS_TOKEN_SECRET',
            'TWITTER_BEARER_TOKEN'
        ]

        if any(os.getenv(var) is None for var in required_vars):
            raise ValueError("Faltam variáveis de ambiente necessárias")
        
        # Autenticação Twitter
        client = tweepy.Client(
            bearer_token=os.getenv('TWITTER_BEARER_TOKEN'),
            consumer_key=os.getenv('TWITTER_API_KEY'),
            consumer_secret=os.getenv('TWITTER_API_SECRET_KEY'),
            access_token=os.getenv('TWITTER_ACCESS_TOKEN'),
            access_token_secret=os.getenv('TWITTER_ACCESS_TOKEN_SECRET'),
            wait_on_rate_limit=True
        )

        # Inicializar modelo
        model_name = "pierreguillou/gpt2-small-portuguese"
        tokenizer = GPT2Tokenizer.from_pretrained(model_name)
        model = GPT2LMHeadModel.from_pretrained(model_name)

        # Buscar tweets
        query = 'BBB25 lang:pt -is:retweet -is:reply'
        tweet_fields = ['text', 'created_at']
        
        with st.spinner('Buscando tweets...'):
            tweets = fetch_tweets(client, query, tweet_fields)
            
            if tweets is None or not tweets.data:
                st.error("Não foi possível obter tweets")
                return
            
            context = extract_context_from_tweets(tweets.data)

        # Análise de sentimentos
        with st.spinner('Analisando sentimentos...'):
            sentiment_pipeline = pipeline(
                "sentiment-analysis",
                model="nlptown/bert-base-multilingual-uncased-sentiment"
            )
            
            sentiments = []
            for tweet in tweets.data[:10]:  # Limitado a 10 tweets
                result = sentiment_pipeline(tweet.text[:512])  # Limitado a 512 caracteres
                rating = int(result[0]['label'].split()[0])
                if rating >= 4:
                    sentiments.append('positive')
                elif rating <= 2:
                    sentiments.append('negative')
                else:
                    sentiments.append('neutral')
            
        # Calcular taxas
        if sentiments:
            total = len(sentiments)
            sentiment_ratios = {
                'positive': sentiments.count('positive') / total,
                'negative': sentiments.count('negative') / total,
                'neutral': sentiments.count('neutral') / total
            }
            
            # Gerar e postar tweet
            with st.spinner('Gerando e postando tweet...'):
                tweet_text = generate_comment(context, sentiment_ratios, model, tokenizer)
                post_tweet(client, tweet_text)
            
            # Interface
            st.title("Resultados")
            
            col1, col2, col3 = st.columns(3)
            with col1:
                st.metric("Positivo", f"{sentiment_ratios['positive']:.1%}")
            with col2:
                st.metric("Neutro", f"{sentiment_ratios['neutral']:.1%}")
            with col3:
                st.metric("Negativo", f"{sentiment_ratios['negative']:.1%}")
            
            st.subheader("Tweet Gerado")
            st.write(tweet_text)
            
            # Log simplificado
            with open('posting_log.txt', 'a') as f:
                f.write(f"{datetime.now()}: {tweet_text}\n")

    except Exception as e:
        st.error(f"Erro: {str(e)}")

    finally:
        st.markdown("---")
        st.markdown(
            """
            <div style='text-align: center'>
                <small>Desenvolvido com ❤️ usando Streamlit e Transformers</small>
            </div>
            """,
            unsafe_allow_html=True
        )

if __name__ == "__main__":
    main()