Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,36 @@
|
|
1 |
import tweepy
|
2 |
from transformers import pipeline, GPT2LMHeadModel, GPT2Tokenizer
|
3 |
import os
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Autenticação com Twitter para leitura
|
8 |
-
|
9 |
client = tweepy.Client(
|
10 |
bearer_token=os.getenv('TWITTER_BEARER_TOKEN')
|
11 |
)
|
12 |
|
13 |
-
|
14 |
# Autenticação com Twitter para postagem
|
15 |
-
|
16 |
auth = tweepy.OAuth1UserHandler(
|
17 |
os.getenv('TWITTER_API_KEY'),
|
18 |
os.getenv('TWITTER_API_SECRET_KEY'),
|
@@ -22,58 +40,116 @@ auth = tweepy.OAuth1UserHandler(
|
|
22 |
|
23 |
api = tweepy.API(auth)
|
24 |
|
25 |
-
#
|
26 |
-
query = 'BBB25 -filter:retweets'
|
27 |
-
|
28 |
-
|
29 |
-
# Análise de sentimentos
|
30 |
-
sentiment_pipeline = pipeline('sentiment-analysis', model='cardiffnlp/twitter-xlm-roberta-base-sentiment')
|
31 |
-
|
32 |
-
sentiments = []
|
33 |
-
for tweet in tweets.data:
|
34 |
-
result = sentiment_pipeline(tweet.text)
|
35 |
-
sentiments.append(result[0]['label'])
|
36 |
-
|
37 |
-
# Calcular taxas
|
38 |
-
positive = sentiments.count('positive')
|
39 |
-
negative = sentiments.count('negative')
|
40 |
-
total = len(sentiments)
|
41 |
-
|
42 |
-
positive_ratio = positive / total
|
43 |
-
negative_ratio = negative / total
|
44 |
-
|
45 |
-
# Gerar mensagem com IA
|
46 |
-
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
47 |
-
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
48 |
-
|
49 |
-
if positive_ratio > 0.6:
|
50 |
-
prompt = "Write an exciting tweet about BBB25 with a positive tone in Portuguese."
|
51 |
-
elif negative_ratio > 0.6:
|
52 |
-
prompt = "Write an informative tweet about BBB25 with a neutral tone in Portuguese."
|
53 |
-
else:
|
54 |
-
prompt = "Write a buzzing tweet about BBB25 with an engaging tone in Portuguese."
|
55 |
|
56 |
-
input_ids = tokenizer.encode(prompt, return_tensors='pt')
|
57 |
-
|
58 |
-
# Gerar texto com limite de tokens correspondente a 280 caracteres
|
59 |
-
outputs = model.generate(input_ids, max_length=25, do_sample=True)
|
60 |
-
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
61 |
-
|
62 |
-
# Limitar o tweet a 280 caracteres
|
63 |
-
generated_text = generated_text[:280]
|
64 |
-
|
65 |
-
# Postar no Twitter
|
66 |
try:
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
with open('posting_log.txt', 'a') as f:
|
74 |
-
f.write(f"Positive Ratio: {positive_ratio}, Negative Ratio: {negative_ratio}, Posted: {generated_text}\n")
|
75 |
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
# Footer
|
79 |
st.markdown("---")
|
@@ -84,4 +160,4 @@ st.markdown(
|
|
84 |
</div>
|
85 |
""",
|
86 |
unsafe_allow_html=True
|
87 |
-
)
|
|
|
1 |
import tweepy
|
2 |
from transformers import pipeline, GPT2LMHeadModel, GPT2Tokenizer
|
3 |
import os
|
4 |
+
import streamlit as st
|
5 |
+
from datetime import datetime
|
6 |
+
|
7 |
+
# Verificar variáveis de ambiente
|
8 |
+
required_vars = [
|
9 |
+
'TWITTER_API_KEY',
|
10 |
+
'TWITTER_API_SECRET_KEY',
|
11 |
+
'TWITTER_ACCESS_TOKEN',
|
12 |
+
'TWITTER_ACCESS_TOKEN_SECRET',
|
13 |
+
'TWITTER_BEARER_TOKEN'
|
14 |
+
]
|
15 |
+
|
16 |
+
# Verificação inicial das variáveis de ambiente
|
17 |
+
missing_vars = []
|
18 |
+
for var in required_vars:
|
19 |
+
if os.getenv(var) is None:
|
20 |
+
missing_vars.append(var)
|
21 |
+
print(f"Erro: A variável de ambiente '{var}' não está definida.")
|
22 |
+
else:
|
23 |
+
print(f"{var} carregada com sucesso.")
|
24 |
+
|
25 |
+
if missing_vars:
|
26 |
+
raise ValueError(f"As seguintes variáveis de ambiente são necessárias: {', '.join(missing_vars)}")
|
27 |
|
28 |
# Autenticação com Twitter para leitura
|
|
|
29 |
client = tweepy.Client(
|
30 |
bearer_token=os.getenv('TWITTER_BEARER_TOKEN')
|
31 |
)
|
32 |
|
|
|
33 |
# Autenticação com Twitter para postagem
|
|
|
34 |
auth = tweepy.OAuth1UserHandler(
|
35 |
os.getenv('TWITTER_API_KEY'),
|
36 |
os.getenv('TWITTER_API_SECRET_KEY'),
|
|
|
40 |
|
41 |
api = tweepy.API(auth)
|
42 |
|
43 |
+
# Configuração da query e campos do tweet
|
44 |
+
query = 'BBB25 -filter:retweets lang:pt -is:reply'
|
45 |
+
tweet_fields = ['text', 'created_at', 'lang', 'public_metrics']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
try:
|
48 |
+
# Busca tweets com os campos especificados
|
49 |
+
tweets = client.search_recent_tweets(
|
50 |
+
query=query,
|
51 |
+
max_results=100,
|
52 |
+
tweet_fields=tweet_fields
|
53 |
+
)
|
|
|
|
|
54 |
|
55 |
+
if not tweets.data:
|
56 |
+
print("Nenhum tweet encontrado")
|
57 |
+
st.error("Nenhum tweet encontrado para análise")
|
58 |
+
st.stop()
|
59 |
+
|
60 |
+
# Análise de sentimentos
|
61 |
+
sentiment_pipeline = pipeline(
|
62 |
+
'sentiment-analysis',
|
63 |
+
model='cardiffnlp/twitter-xlm-roberta-base-sentiment'
|
64 |
+
)
|
65 |
+
|
66 |
+
sentiments = []
|
67 |
+
for tweet in tweets.data:
|
68 |
+
# Verificação adicional para garantir que temos tweets em português
|
69 |
+
if hasattr(tweet, 'lang') and tweet.lang == 'pt':
|
70 |
+
result = sentiment_pipeline(tweet.text)
|
71 |
+
sentiments.append(result[0]['label'])
|
72 |
+
|
73 |
+
# Calcular taxas
|
74 |
+
if sentiments:
|
75 |
+
positive = sentiments.count('positive')
|
76 |
+
negative = sentiments.count('negative')
|
77 |
+
neutral = sentiments.count('neutral')
|
78 |
+
total = len(sentiments)
|
79 |
+
|
80 |
+
positive_ratio = positive / total
|
81 |
+
negative_ratio = negative / total
|
82 |
+
neutral_ratio = neutral / total
|
83 |
+
|
84 |
+
# Gerar mensagem com IA
|
85 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
86 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2')
|
87 |
+
|
88 |
+
if positive_ratio > 0.6:
|
89 |
+
prompt = "Write an exciting tweet about BBB25 with a positive tone in Portuguese."
|
90 |
+
elif negative_ratio > 0.6:
|
91 |
+
prompt = "Write an informative tweet about BBB25 with a neutral tone in Portuguese."
|
92 |
+
else:
|
93 |
+
prompt = "Write a buzzing tweet about BBB25 with an engaging tone in Portuguese."
|
94 |
+
|
95 |
+
# Gerar texto
|
96 |
+
input_ids = tokenizer.encode(prompt, return_tensors='pt')
|
97 |
+
outputs = model.generate(
|
98 |
+
input_ids,
|
99 |
+
max_length=25,
|
100 |
+
do_sample=True,
|
101 |
+
pad_token_id=tokenizer.eos_token_id
|
102 |
+
)
|
103 |
+
|
104 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
105 |
+
generated_text = generated_text[:280] # Limitar a 280 caracteres
|
106 |
+
|
107 |
+
try:
|
108 |
+
# Postar no Twitter
|
109 |
+
api.update_status(status=generated_text)
|
110 |
+
print(f"Tweet postado com sucesso: {generated_text}")
|
111 |
+
|
112 |
+
# Interface Streamlit
|
113 |
+
st.title("Análise de Sentimentos - BBB25")
|
114 |
+
|
115 |
+
# Mostrar estatísticas
|
116 |
+
col1, col2, col3 = st.columns(3)
|
117 |
+
with col1:
|
118 |
+
st.metric("Sentimento Positivo", f"{positive_ratio:.1%}")
|
119 |
+
with col2:
|
120 |
+
st.metric("Sentimento Neutro", f"{neutral_ratio:.1%}")
|
121 |
+
with col3:
|
122 |
+
st.metric("Sentimento Negativo", f"{negative_ratio:.1%}")
|
123 |
+
|
124 |
+
# Mostrar tweet gerado
|
125 |
+
st.subheader("Tweet Gerado e Postado")
|
126 |
+
st.write(generated_text)
|
127 |
+
|
128 |
+
# Logging
|
129 |
+
log_entry = {
|
130 |
+
'timestamp': datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
|
131 |
+
'positive_ratio': positive_ratio,
|
132 |
+
'negative_ratio': negative_ratio,
|
133 |
+
'neutral_ratio': neutral_ratio,
|
134 |
+
'tweet': generated_text
|
135 |
+
}
|
136 |
+
|
137 |
+
with open('posting_log.txt', 'a') as f:
|
138 |
+
f.write(f"{str(log_entry)}\n")
|
139 |
+
|
140 |
+
except Exception as e:
|
141 |
+
st.error(f"Erro ao postar tweet: {str(e)}")
|
142 |
+
print(f"Erro ao postar: {e}")
|
143 |
+
|
144 |
+
except tweepy.errors.BadRequest as e:
|
145 |
+
st.error(f"Erro na requisição ao Twitter: {str(e)}")
|
146 |
+
print(f"Erro na requisição: {str(e)}")
|
147 |
+
except tweepy.errors.TweepyException as e:
|
148 |
+
st.error(f"Erro do Tweepy: {str(e)}")
|
149 |
+
print(f"Erro do Tweepy: {str(e)}")
|
150 |
+
except Exception as e:
|
151 |
+
st.error(f"Erro inesperado: {str(e)}")
|
152 |
+
print(f"Erro inesperado: {str(e)}")
|
153 |
|
154 |
# Footer
|
155 |
st.markdown("---")
|
|
|
160 |
</div>
|
161 |
""",
|
162 |
unsafe_allow_html=True
|
163 |
+
)
|