Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import tweepy
|
2 |
-
from transformers import pipeline, GPT2LMHeadModel, GPT2Tokenizer
|
3 |
import os
|
4 |
import streamlit as st
|
5 |
from datetime import datetime
|
@@ -141,17 +141,27 @@ def main():
|
|
141 |
# Análise de sentimentos
|
142 |
with st.spinner('Analisando sentimentos...'):
|
143 |
debug_print("Iniciando análise de sentimentos...")
|
|
|
|
|
144 |
sentiment_pipeline = pipeline(
|
145 |
-
|
146 |
-
model=
|
|
|
147 |
)
|
148 |
|
149 |
sentiments = []
|
150 |
for tweet in tweets.data:
|
151 |
if hasattr(tweet, 'lang') and tweet.lang == 'pt':
|
152 |
result = sentiment_pipeline(tweet.text)
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
time.sleep(1)
|
157 |
|
|
|
1 |
import tweepy
|
2 |
+
from transformers import pipeline, GPT2LMHeadModel, GPT2Tokenizer, AutoModelForSequenceClassification, AutoTokenizer
|
3 |
import os
|
4 |
import streamlit as st
|
5 |
from datetime import datetime
|
|
|
141 |
# Análise de sentimentos
|
142 |
with st.spinner('Analisando sentimentos...'):
|
143 |
debug_print("Iniciando análise de sentimentos...")
|
144 |
+
|
145 |
+
# Inicializando o pipeline com modelo em português
|
146 |
sentiment_pipeline = pipeline(
|
147 |
+
"sentiment-analysis",
|
148 |
+
model="pierreguillou/bert-base-cased-gs-sentiment-pt",
|
149 |
+
tokenizer="pierreguillou/bert-base-cased-gs-sentiment-pt"
|
150 |
)
|
151 |
|
152 |
sentiments = []
|
153 |
for tweet in tweets.data:
|
154 |
if hasattr(tweet, 'lang') and tweet.lang == 'pt':
|
155 |
result = sentiment_pipeline(tweet.text)
|
156 |
+
# Mapeando os resultados para positive/negative/neutral
|
157 |
+
label = result[0]['label']
|
158 |
+
if label == 'POSITIVE':
|
159 |
+
sentiments.append('positive')
|
160 |
+
elif label == 'NEGATIVE':
|
161 |
+
sentiments.append('negative')
|
162 |
+
else:
|
163 |
+
sentiments.append('neutral')
|
164 |
+
debug_print(f"Sentimento analisado: {label}")
|
165 |
|
166 |
time.sleep(1)
|
167 |
|