BugZoid commited on
Commit
f3b1ac7
·
verified ·
1 Parent(s): 9f422c2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -5
app.py CHANGED
@@ -1,5 +1,5 @@
1
  import tweepy
2
- from transformers import pipeline, GPT2LMHeadModel, GPT2Tokenizer
3
  import os
4
  import streamlit as st
5
  from datetime import datetime
@@ -141,17 +141,27 @@ def main():
141
  # Análise de sentimentos
142
  with st.spinner('Analisando sentimentos...'):
143
  debug_print("Iniciando análise de sentimentos...")
 
 
144
  sentiment_pipeline = pipeline(
145
- 'sentiment-analysis',
146
- model='cardiffnlp/twitter-xlm-roberta-base-sentiment'
 
147
  )
148
 
149
  sentiments = []
150
  for tweet in tweets.data:
151
  if hasattr(tweet, 'lang') and tweet.lang == 'pt':
152
  result = sentiment_pipeline(tweet.text)
153
- sentiments.append(result[0]['label'])
154
- debug_print(f"Sentimento analisado: {result[0]['label']}")
 
 
 
 
 
 
 
155
 
156
  time.sleep(1)
157
 
 
1
  import tweepy
2
+ from transformers import pipeline, GPT2LMHeadModel, GPT2Tokenizer, AutoModelForSequenceClassification, AutoTokenizer
3
  import os
4
  import streamlit as st
5
  from datetime import datetime
 
141
  # Análise de sentimentos
142
  with st.spinner('Analisando sentimentos...'):
143
  debug_print("Iniciando análise de sentimentos...")
144
+
145
+ # Inicializando o pipeline com modelo em português
146
  sentiment_pipeline = pipeline(
147
+ "sentiment-analysis",
148
+ model="pierreguillou/bert-base-cased-gs-sentiment-pt",
149
+ tokenizer="pierreguillou/bert-base-cased-gs-sentiment-pt"
150
  )
151
 
152
  sentiments = []
153
  for tweet in tweets.data:
154
  if hasattr(tweet, 'lang') and tweet.lang == 'pt':
155
  result = sentiment_pipeline(tweet.text)
156
+ # Mapeando os resultados para positive/negative/neutral
157
+ label = result[0]['label']
158
+ if label == 'POSITIVE':
159
+ sentiments.append('positive')
160
+ elif label == 'NEGATIVE':
161
+ sentiments.append('negative')
162
+ else:
163
+ sentiments.append('neutral')
164
+ debug_print(f"Sentimento analisado: {label}")
165
 
166
  time.sleep(1)
167