likable / src /ui_helpers.py
jens-l's picture
refactor: cleanup and update README.md with new features and usage instructions
f0ca218
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
import time
from collections.abc import Generator
from smolagents.agent_types import AgentAudio, AgentImage, AgentText
from smolagents.agents import PlanningStep
from smolagents.memory import ActionStep, FinalAnswerStep
from smolagents.models import ChatMessageStreamDelta
from smolagents.utils import _is_package_available
def get_step_footnote_content(
step_log: ActionStep | PlanningStep, step_name: str
) -> str:
"""Get a footnote string for a step log with duration and token information"""
step_footnote = f"**{step_name}**"
if step_log.token_usage is not None:
step_footnote += (
f" | Input tokens: {step_log.token_usage.input_tokens:,} | "
f"Output tokens: {step_log.token_usage.output_tokens:,}"
)
step_footnote += (
f" | Duration: {round(float(step_log.timing.duration), 2)}s"
if step_log.timing.duration
else ""
)
step_footnote_content = (
f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
)
return step_footnote_content
def _clean_model_output(model_output: str) -> str:
"""
Clean up model output by removing trailing tags and extra backticks.
Args:
model_output (`str`): Raw model output.
Returns:
`str`: Cleaned model output.
"""
if not model_output:
return ""
model_output = model_output.strip()
# Remove any trailing <end_code> and extra backticks,
# handling multiple possible formats
model_output = re.sub(
r"```\s*<end_code>", "```", model_output
) # handles ```<end_code>
model_output = re.sub(
r"<end_code>\s*```", "```", model_output
) # handles <end_code>```
model_output = re.sub(
r"```\s*\n\s*<end_code>", "```", model_output
) # handles ```\n<end_code>
return model_output.strip()
def _format_code_content(content: str) -> str:
"""
Format code content as Python code block if it's not already formatted.
Args:
content (`str`): Code content to format.
Returns:
`str`: Code content formatted as a Python code block.
"""
content = content.strip()
# Remove existing code blocks and end_code tags
content = re.sub(r"```.*?\n", "", content)
content = re.sub(r"\s*<end_code>\s*", "", content)
content = content.strip()
# Add Python code block formatting if not already present
if not content.startswith("```python"):
content = f"```python\n{content}\n```"
return content
def _process_action_step(
step_log: ActionStep, skip_model_outputs: bool = False, parent_id: str | None = None
) -> Generator:
"""
Process an [`ActionStep`] and yield appropriate Gradio ChatMessage objects.
Args:
step_log ([`ActionStep`]): ActionStep to process.
skip_model_outputs (`bool`): Whether to skip model outputs.
Yields:
`gradio.ChatMessage`: Gradio ChatMessages representing the action step.
"""
import gradio as gr
# First yield the thought/reasoning from the LLM
if not skip_model_outputs and getattr(step_log, "model_output", ""):
model_output = _clean_model_output(step_log.model_output)
yield gr.ChatMessage(
role="assistant",
content=model_output,
metadata={
"title": "💭 Thought",
"status": "done",
"id": int(time.time() * 1000),
"parent_id": parent_id,
},
)
# For tool calls, create a parent message
if getattr(step_log, "tool_calls", []):
first_tool_call = step_log.tool_calls[0]
used_code = first_tool_call.name == "python_interpreter"
# Process arguments based on type
args = first_tool_call.arguments
if isinstance(args, dict):
content = str(args.get("answer", str(args)))
else:
content = str(args).strip()
# Format code content if needed
if used_code:
content = _format_code_content(content)
# Create the tool call message
parent_message_tool = gr.ChatMessage(
role="assistant",
content=content,
metadata={
"title": f"🛠️ Used tool {first_tool_call.name}",
"status": "done",
"parent_id": parent_id,
"id": int(time.time() * 1000),
},
)
yield parent_message_tool
# Display execution logs if they exist
if getattr(step_log, "observations", "") and step_log.observations.strip():
log_content = step_log.observations.strip()
if log_content:
log_content = re.sub(r"^Execution logs:\s*", "", log_content)
yield gr.ChatMessage(
role="assistant",
content=f"```bash\n{log_content}\n",
metadata={
"title": "📝 Execution Logs",
"status": "done",
"parent_id": parent_id,
"id": int(time.time() * 1000),
},
)
# Display any images in observations
if getattr(step_log, "observations_images", []):
for image in step_log.observations_images:
path_image = AgentImage(image).to_string()
yield gr.ChatMessage(
role="assistant",
content={
"path": path_image,
"mime_type": f"image/{path_image.split('.')[-1]}",
},
metadata={
"title": "🖼️ Output Image",
"status": "done",
"parent_id": parent_id,
"id": int(time.time() * 1000),
},
)
# Handle errors
if getattr(step_log, "error", None):
yield gr.ChatMessage(
role="assistant",
content=str(step_log.error),
metadata={
"title": "💥 Error",
"status": "done",
"parent_id": parent_id,
"id": int(time.time() * 1000),
},
)
# Add step footnote and separator
# yield gr.ChatMessage(
# role="assistant",
# content=get_step_footnote_content(step_log, step_number),
# metadata={
# "status": "done",
# "parent_id": parent_id,
# "id": int(time.time() * 1000),
# },
# )
# yield gr.ChatMessage(
# role="assistant",
# content="-----",
# metadata={
# "status": "done",
# "parent_id": parent_id,
# "id": int(time.time() * 1000),
# },
# )
def _process_final_answer_step(step_log: FinalAnswerStep) -> Generator:
"""
Process a [`FinalAnswerStep`] and yield appropriate gradio.ChatMessage objects.
Args:
step_log ([`FinalAnswerStep`]): FinalAnswerStep to process.
Yields:
`gradio.ChatMessage`: Gradio ChatMessages representing the final answer.
"""
import gradio as gr
final_answer = step_log.output
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:**\n{final_answer.to_string()}\n",
metadata={"status": "done"},
)
elif isinstance(final_answer, AgentImage):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "image/png"},
metadata={"status": "done"},
)
elif isinstance(final_answer, AgentAudio):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
metadata={"status": "done"},
)
else:
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:** {str(final_answer)}",
metadata={"status": "done"},
)
def pull_messages_from_step(
step_log: ActionStep | FinalAnswerStep,
skip_model_outputs: bool = False,
parent_id: str | None = None,
):
"""
Pulls and yields messages from a given step log.
Args:
step_log (`ActionStep` | `PlanningStep` | `FinalAnswerStep`):
The step log to process.
skip_model_outputs (`bool`): Whether to skip model outputs.
"""
if isinstance(step_log, ActionStep):
yield from _process_action_step(
step_log, skip_model_outputs=skip_model_outputs, parent_id=parent_id
)
elif isinstance(step_log, FinalAnswerStep):
yield from _process_final_answer_step(step_log)
def stream_to_gradio(
agent,
task: str,
task_images: list | None = None,
reset_agent_memory: bool = False,
additional_args: dict | None = None,
parent_id: int | None = None,
) -> Generator:
"""Runs an agent with the given task and streams the messages from the agent
as gradio ChatMessages."""
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: "
"`pip install 'smolagents[gradio]'`"
)
intermediate_text = ""
for event in agent.run(
task,
images=task_images,
stream=True,
reset=reset_agent_memory,
additional_args=additional_args,
):
if isinstance(event, ActionStep | FinalAnswerStep):
intermediate_text = ""
yield from pull_messages_from_step(
event,
# If we're streaming model outputs, no need to display them twice
skip_model_outputs=getattr(agent, "stream_outputs", False),
parent_id=parent_id,
)
elif isinstance(event, ChatMessageStreamDelta):
intermediate_text += event.content or ""
yield intermediate_text