Spaces:
Running
Running
File size: 10,589 Bytes
40eee5b a648108 40eee5b a648108 40eee5b a648108 40eee5b a648108 40eee5b 8c59952 40eee5b f0ca218 40eee5b f0ca218 40eee5b f0ca218 40eee5b f0ca218 40eee5b a648108 40eee5b a648108 40eee5b f0ca218 40eee5b a648108 40eee5b a648108 40eee5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
import time
from collections.abc import Generator
from smolagents.agent_types import AgentAudio, AgentImage, AgentText
from smolagents.agents import PlanningStep
from smolagents.memory import ActionStep, FinalAnswerStep
from smolagents.models import ChatMessageStreamDelta
from smolagents.utils import _is_package_available
def get_step_footnote_content(
step_log: ActionStep | PlanningStep, step_name: str
) -> str:
"""Get a footnote string for a step log with duration and token information"""
step_footnote = f"**{step_name}**"
if step_log.token_usage is not None:
step_footnote += (
f" | Input tokens: {step_log.token_usage.input_tokens:,} | "
f"Output tokens: {step_log.token_usage.output_tokens:,}"
)
step_footnote += (
f" | Duration: {round(float(step_log.timing.duration), 2)}s"
if step_log.timing.duration
else ""
)
step_footnote_content = (
f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
)
return step_footnote_content
def _clean_model_output(model_output: str) -> str:
"""
Clean up model output by removing trailing tags and extra backticks.
Args:
model_output (`str`): Raw model output.
Returns:
`str`: Cleaned model output.
"""
if not model_output:
return ""
model_output = model_output.strip()
# Remove any trailing <end_code> and extra backticks,
# handling multiple possible formats
model_output = re.sub(
r"```\s*<end_code>", "```", model_output
) # handles ```<end_code>
model_output = re.sub(
r"<end_code>\s*```", "```", model_output
) # handles <end_code>```
model_output = re.sub(
r"```\s*\n\s*<end_code>", "```", model_output
) # handles ```\n<end_code>
return model_output.strip()
def _format_code_content(content: str) -> str:
"""
Format code content as Python code block if it's not already formatted.
Args:
content (`str`): Code content to format.
Returns:
`str`: Code content formatted as a Python code block.
"""
content = content.strip()
# Remove existing code blocks and end_code tags
content = re.sub(r"```.*?\n", "", content)
content = re.sub(r"\s*<end_code>\s*", "", content)
content = content.strip()
# Add Python code block formatting if not already present
if not content.startswith("```python"):
content = f"```python\n{content}\n```"
return content
def _process_action_step(
step_log: ActionStep, skip_model_outputs: bool = False, parent_id: str | None = None
) -> Generator:
"""
Process an [`ActionStep`] and yield appropriate Gradio ChatMessage objects.
Args:
step_log ([`ActionStep`]): ActionStep to process.
skip_model_outputs (`bool`): Whether to skip model outputs.
Yields:
`gradio.ChatMessage`: Gradio ChatMessages representing the action step.
"""
import gradio as gr
# First yield the thought/reasoning from the LLM
if not skip_model_outputs and getattr(step_log, "model_output", ""):
model_output = _clean_model_output(step_log.model_output)
yield gr.ChatMessage(
role="assistant",
content=model_output,
metadata={
"title": "💭 Thought",
"status": "done",
"id": int(time.time() * 1000),
"parent_id": parent_id,
},
)
# For tool calls, create a parent message
if getattr(step_log, "tool_calls", []):
first_tool_call = step_log.tool_calls[0]
used_code = first_tool_call.name == "python_interpreter"
# Process arguments based on type
args = first_tool_call.arguments
if isinstance(args, dict):
content = str(args.get("answer", str(args)))
else:
content = str(args).strip()
# Format code content if needed
if used_code:
content = _format_code_content(content)
# Create the tool call message
parent_message_tool = gr.ChatMessage(
role="assistant",
content=content,
metadata={
"title": f"🛠️ Used tool {first_tool_call.name}",
"status": "done",
"parent_id": parent_id,
"id": int(time.time() * 1000),
},
)
yield parent_message_tool
# Display execution logs if they exist
if getattr(step_log, "observations", "") and step_log.observations.strip():
log_content = step_log.observations.strip()
if log_content:
log_content = re.sub(r"^Execution logs:\s*", "", log_content)
yield gr.ChatMessage(
role="assistant",
content=f"```bash\n{log_content}\n",
metadata={
"title": "📝 Execution Logs",
"status": "done",
"parent_id": parent_id,
"id": int(time.time() * 1000),
},
)
# Display any images in observations
if getattr(step_log, "observations_images", []):
for image in step_log.observations_images:
path_image = AgentImage(image).to_string()
yield gr.ChatMessage(
role="assistant",
content={
"path": path_image,
"mime_type": f"image/{path_image.split('.')[-1]}",
},
metadata={
"title": "🖼️ Output Image",
"status": "done",
"parent_id": parent_id,
"id": int(time.time() * 1000),
},
)
# Handle errors
if getattr(step_log, "error", None):
yield gr.ChatMessage(
role="assistant",
content=str(step_log.error),
metadata={
"title": "💥 Error",
"status": "done",
"parent_id": parent_id,
"id": int(time.time() * 1000),
},
)
# Add step footnote and separator
# yield gr.ChatMessage(
# role="assistant",
# content=get_step_footnote_content(step_log, step_number),
# metadata={
# "status": "done",
# "parent_id": parent_id,
# "id": int(time.time() * 1000),
# },
# )
# yield gr.ChatMessage(
# role="assistant",
# content="-----",
# metadata={
# "status": "done",
# "parent_id": parent_id,
# "id": int(time.time() * 1000),
# },
# )
def _process_final_answer_step(step_log: FinalAnswerStep) -> Generator:
"""
Process a [`FinalAnswerStep`] and yield appropriate gradio.ChatMessage objects.
Args:
step_log ([`FinalAnswerStep`]): FinalAnswerStep to process.
Yields:
`gradio.ChatMessage`: Gradio ChatMessages representing the final answer.
"""
import gradio as gr
final_answer = step_log.output
if isinstance(final_answer, AgentText):
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:**\n{final_answer.to_string()}\n",
metadata={"status": "done"},
)
elif isinstance(final_answer, AgentImage):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "image/png"},
metadata={"status": "done"},
)
elif isinstance(final_answer, AgentAudio):
yield gr.ChatMessage(
role="assistant",
content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
metadata={"status": "done"},
)
else:
yield gr.ChatMessage(
role="assistant",
content=f"**Final answer:** {str(final_answer)}",
metadata={"status": "done"},
)
def pull_messages_from_step(
step_log: ActionStep | FinalAnswerStep,
skip_model_outputs: bool = False,
parent_id: str | None = None,
):
"""
Pulls and yields messages from a given step log.
Args:
step_log (`ActionStep` | `PlanningStep` | `FinalAnswerStep`):
The step log to process.
skip_model_outputs (`bool`): Whether to skip model outputs.
"""
if isinstance(step_log, ActionStep):
yield from _process_action_step(
step_log, skip_model_outputs=skip_model_outputs, parent_id=parent_id
)
elif isinstance(step_log, FinalAnswerStep):
yield from _process_final_answer_step(step_log)
def stream_to_gradio(
agent,
task: str,
task_images: list | None = None,
reset_agent_memory: bool = False,
additional_args: dict | None = None,
parent_id: int | None = None,
) -> Generator:
"""Runs an agent with the given task and streams the messages from the agent
as gradio ChatMessages."""
if not _is_package_available("gradio"):
raise ModuleNotFoundError(
"Please install 'gradio' extra to use the GradioUI: "
"`pip install 'smolagents[gradio]'`"
)
intermediate_text = ""
for event in agent.run(
task,
images=task_images,
stream=True,
reset=reset_agent_memory,
additional_args=additional_args,
):
if isinstance(event, ActionStep | FinalAnswerStep):
intermediate_text = ""
yield from pull_messages_from_step(
event,
# If we're streaming model outputs, no need to display them twice
skip_model_outputs=getattr(agent, "stream_outputs", False),
parent_id=parent_id,
)
elif isinstance(event, ChatMessageStreamDelta):
intermediate_text += event.content or ""
yield intermediate_text
|