File size: 10,589 Bytes
40eee5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a648108
 
40eee5b
a648108
40eee5b
 
 
 
 
 
 
 
 
 
 
a648108
 
 
 
40eee5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a648108
 
40eee5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c59952
40eee5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0ca218
40eee5b
 
 
f0ca218
 
40eee5b
 
f0ca218
 
 
40eee5b
 
f0ca218
 
 
40eee5b
 
 
 
 
 
 
 
 
 
 
 
a648108
 
40eee5b
 
a648108
 
40eee5b
 
 
 
 
 
 
 
 
 
f0ca218
40eee5b
a648108
40eee5b
 
 
 
a648108
40eee5b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
import time
from collections.abc import Generator

from smolagents.agent_types import AgentAudio, AgentImage, AgentText
from smolagents.agents import PlanningStep
from smolagents.memory import ActionStep, FinalAnswerStep
from smolagents.models import ChatMessageStreamDelta
from smolagents.utils import _is_package_available


def get_step_footnote_content(
    step_log: ActionStep | PlanningStep, step_name: str
) -> str:
    """Get a footnote string for a step log with duration and token information"""
    step_footnote = f"**{step_name}**"
    if step_log.token_usage is not None:
        step_footnote += (
            f" | Input tokens: {step_log.token_usage.input_tokens:,} | "
            f"Output tokens: {step_log.token_usage.output_tokens:,}"
        )
    step_footnote += (
        f" | Duration: {round(float(step_log.timing.duration), 2)}s"
        if step_log.timing.duration
        else ""
    )
    step_footnote_content = (
        f"""<span style="color: #bbbbc2; font-size: 12px;">{step_footnote}</span> """
    )
    return step_footnote_content


def _clean_model_output(model_output: str) -> str:
    """
    Clean up model output by removing trailing tags and extra backticks.

    Args:
        model_output (`str`): Raw model output.

    Returns:
        `str`: Cleaned model output.
    """
    if not model_output:
        return ""
    model_output = model_output.strip()
    # Remove any trailing <end_code> and extra backticks,
    # handling multiple possible formats
    model_output = re.sub(
        r"```\s*<end_code>", "```", model_output
    )  # handles ```<end_code>
    model_output = re.sub(
        r"<end_code>\s*```", "```", model_output
    )  # handles <end_code>```
    model_output = re.sub(
        r"```\s*\n\s*<end_code>", "```", model_output
    )  # handles ```\n<end_code>
    return model_output.strip()


def _format_code_content(content: str) -> str:
    """
    Format code content as Python code block if it's not already formatted.

    Args:
        content (`str`): Code content to format.

    Returns:
        `str`: Code content formatted as a Python code block.
    """
    content = content.strip()
    # Remove existing code blocks and end_code tags
    content = re.sub(r"```.*?\n", "", content)
    content = re.sub(r"\s*<end_code>\s*", "", content)
    content = content.strip()
    # Add Python code block formatting if not already present
    if not content.startswith("```python"):
        content = f"```python\n{content}\n```"
    return content


def _process_action_step(
    step_log: ActionStep, skip_model_outputs: bool = False, parent_id: str | None = None
) -> Generator:
    """
    Process an [`ActionStep`] and yield appropriate Gradio ChatMessage objects.

    Args:
        step_log ([`ActionStep`]): ActionStep to process.
        skip_model_outputs (`bool`): Whether to skip model outputs.

    Yields:
        `gradio.ChatMessage`: Gradio ChatMessages representing the action step.
    """
    import gradio as gr

    # First yield the thought/reasoning from the LLM
    if not skip_model_outputs and getattr(step_log, "model_output", ""):
        model_output = _clean_model_output(step_log.model_output)
        yield gr.ChatMessage(
            role="assistant",
            content=model_output,
            metadata={
                "title": "💭 Thought",
                "status": "done",
                "id": int(time.time() * 1000),
                "parent_id": parent_id,
            },
        )

    # For tool calls, create a parent message
    if getattr(step_log, "tool_calls", []):
        first_tool_call = step_log.tool_calls[0]
        used_code = first_tool_call.name == "python_interpreter"

        # Process arguments based on type
        args = first_tool_call.arguments
        if isinstance(args, dict):
            content = str(args.get("answer", str(args)))
        else:
            content = str(args).strip()

        # Format code content if needed
        if used_code:
            content = _format_code_content(content)

        # Create the tool call message
        parent_message_tool = gr.ChatMessage(
            role="assistant",
            content=content,
            metadata={
                "title": f"🛠️ Used tool {first_tool_call.name}",
                "status": "done",
                "parent_id": parent_id,
                "id": int(time.time() * 1000),
            },
        )
        yield parent_message_tool

    # Display execution logs if they exist
    if getattr(step_log, "observations", "") and step_log.observations.strip():
        log_content = step_log.observations.strip()
        if log_content:
            log_content = re.sub(r"^Execution logs:\s*", "", log_content)
            yield gr.ChatMessage(
                role="assistant",
                content=f"```bash\n{log_content}\n",
                metadata={
                    "title": "📝 Execution Logs",
                    "status": "done",
                    "parent_id": parent_id,
                    "id": int(time.time() * 1000),
                },
            )

    # Display any images in observations
    if getattr(step_log, "observations_images", []):
        for image in step_log.observations_images:
            path_image = AgentImage(image).to_string()
            yield gr.ChatMessage(
                role="assistant",
                content={
                    "path": path_image,
                    "mime_type": f"image/{path_image.split('.')[-1]}",
                },
                metadata={
                    "title": "🖼️ Output Image",
                    "status": "done",
                    "parent_id": parent_id,
                    "id": int(time.time() * 1000),
                },
            )

    # Handle errors
    if getattr(step_log, "error", None):
        yield gr.ChatMessage(
            role="assistant",
            content=str(step_log.error),
            metadata={
                "title": "💥 Error",
                "status": "done",
                "parent_id": parent_id,
                "id": int(time.time() * 1000),
            },
        )

    # Add step footnote and separator
    # yield gr.ChatMessage(
    #     role="assistant",
    #     content=get_step_footnote_content(step_log, step_number),
    #     metadata={
    #         "status": "done",
    #         "parent_id": parent_id,
    #         "id": int(time.time() * 1000),
    #     },
    # )
    # yield gr.ChatMessage(
    #     role="assistant",
    #     content="-----",
    #     metadata={
    #         "status": "done",
    #         "parent_id": parent_id,
    #         "id": int(time.time() * 1000),
    #     },
    # )


def _process_final_answer_step(step_log: FinalAnswerStep) -> Generator:
    """
    Process a [`FinalAnswerStep`] and yield appropriate gradio.ChatMessage objects.

    Args:
        step_log ([`FinalAnswerStep`]): FinalAnswerStep to process.

    Yields:
        `gradio.ChatMessage`: Gradio ChatMessages representing the final answer.
    """
    import gradio as gr

    final_answer = step_log.output
    if isinstance(final_answer, AgentText):
        yield gr.ChatMessage(
            role="assistant",
            content=f"**Final answer:**\n{final_answer.to_string()}\n",
            metadata={"status": "done"},
        )
    elif isinstance(final_answer, AgentImage):
        yield gr.ChatMessage(
            role="assistant",
            content={"path": final_answer.to_string(), "mime_type": "image/png"},
            metadata={"status": "done"},
        )
    elif isinstance(final_answer, AgentAudio):
        yield gr.ChatMessage(
            role="assistant",
            content={"path": final_answer.to_string(), "mime_type": "audio/wav"},
            metadata={"status": "done"},
        )
    else:
        yield gr.ChatMessage(
            role="assistant",
            content=f"**Final answer:** {str(final_answer)}",
            metadata={"status": "done"},
        )


def pull_messages_from_step(
    step_log: ActionStep | FinalAnswerStep,
    skip_model_outputs: bool = False,
    parent_id: str | None = None,
):
    """
    Pulls and yields messages from a given step log.

    Args:
        step_log (`ActionStep` | `PlanningStep` | `FinalAnswerStep`):
        The step log to process.
        skip_model_outputs (`bool`): Whether to skip model outputs.
    """
    if isinstance(step_log, ActionStep):
        yield from _process_action_step(
            step_log, skip_model_outputs=skip_model_outputs, parent_id=parent_id
        )
    elif isinstance(step_log, FinalAnswerStep):
        yield from _process_final_answer_step(step_log)


def stream_to_gradio(
    agent,
    task: str,
    task_images: list | None = None,
    reset_agent_memory: bool = False,
    additional_args: dict | None = None,
    parent_id: int | None = None,
) -> Generator:
    """Runs an agent with the given task and streams the messages from the agent
    as gradio ChatMessages."""
    if not _is_package_available("gradio"):
        raise ModuleNotFoundError(
            "Please install 'gradio' extra to use the GradioUI: "
            "`pip install 'smolagents[gradio]'`"
        )
    intermediate_text = ""

    for event in agent.run(
        task,
        images=task_images,
        stream=True,
        reset=reset_agent_memory,
        additional_args=additional_args,
    ):
        if isinstance(event, ActionStep | FinalAnswerStep):
            intermediate_text = ""
            yield from pull_messages_from_step(
                event,
                # If we're streaming model outputs, no need to display them twice
                skip_model_outputs=getattr(agent, "stream_outputs", False),
                parent_id=parent_id,
            )
        elif isinstance(event, ChatMessageStreamDelta):
            intermediate_text += event.content or ""
            yield intermediate_text