ResearchCopilot / README.md
Ajeya95's picture
uploaded the demo
2ff6882 verified

A newer version of the Gradio SDK is available: 5.37.0

Upgrade
metadata
title: ๐Ÿค– ResearchCopilot
emoji: ๐Ÿ”ฌ
colorFrom: indigo
colorTo: purple
sdk: gradio
sdk_version: 5.33.1
app_file: app.py
pinned: true
license: mit
short_description: Multi-agent AI research system
tags:
  - agent-demo-track
  - multi-agent
  - research
  - perplexity
  - claude
  - openai
video_overview: https://youtu.be/SuBUxtBKUvQ
collection: https://huggingface.co/collections/Agents-MCP-Hackathon

๐Ÿค– ResearchCopilot - Multi-Agent Research System

Track 3: Agentic Demo Showcase - Gradio MCP Hackathon 2025

A sophisticated multi-agent AI system that demonstrates the power of collaborative AI agents working together to conduct comprehensive research. ResearchCopilot breaks down complex research queries into structured tasks and employs specialized agents to gather, analyze, and synthesize information from multiple sources.

๐ŸŽฏ Demo Video

[Link to video demonstration will be added here]

๐Ÿš€ Features

Multi-Agent Architecture

  • ๐ŸŽฏ Planner Agent: Intelligently breaks down research queries into structured, prioritized tasks
  • ๐Ÿ” Retriever Agent: Searches multiple sources (Perplexity API, Google Search, Academic databases)
  • ๐Ÿ“ Summarizer Agent: Analyzes and synthesizes information using Claude/GPT models
  • ๐Ÿ“š Citation Agent: Generates proper academic citations in multiple formats (APA, MLA, Chicago, IEEE, Harvard)

Key Capabilities

  • Real-time collaborative agent orchestration
  • Adaptive research planning based on query complexity
  • Cross-agent learning and decision making
  • Parallel task execution for efficient research
  • Professional citation generation
  • Comprehensive research documentation

Technical Highlights

  • Built with Gradio for intuitive user experience
  • Deployed on Modal for scalable serverless execution
  • Asynchronous agent communication
  • Real API integrations (Perplexity, Google, Anthropic)
  • Comprehensive error handling and fallbacks

๐Ÿ—๏ธ System Architecture

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚   User Query    โ”‚โ”€โ”€โ”€โ–ถโ”‚   Orchestrator  โ”‚โ”€โ”€โ”€โ–ถโ”‚   Results UI    โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                               โ”‚
                โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
                โ”‚              โ”‚              โ”‚
        โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”
        โ”‚ Planner Agent โ”‚ โ”‚ Retriever โ”‚ โ”‚Summarizer โ”‚
        โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚   Agent   โ”‚ โ”‚   Agent   โ”‚
                          โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                                 โ”‚             โ”‚
                          โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
                          โ”‚   APIs      โ”‚ โ”‚ Citation   โ”‚
                          โ”‚ Perplexity  โ”‚ โ”‚   Agent    โ”‚
                          โ”‚   Google    โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                          โ”‚  Academic   โ”‚
                          โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

๐Ÿ› ๏ธ Installation & Setup

Local Development

  1. Clone and Install Dependencies
git clone <repository-url>
cd research-copilot
pip install -r requirements.txt
  1. Environment Configuration
cp .env.example .env
# Edit .env with your API keys
  1. Run Locally
python research_copilot.py

Modal Deployment

  1. Install Modal
pip install modal
modal setup
  1. Configure Secrets
modal secret create research-copilot-secrets \
  PERPLEXITY_API_KEY=your_key \
  GOOGLE_API_KEY=your_key \
  GOOGLE_SEARCH_ENGINE_ID=your_id \
  ANTHROPIC_API_KEY=your_key
  1. Deploy to Modal
modal deploy modal_app.py

๐Ÿ”ง API Keys Required

Required for Full Functionality

  • Perplexity API: Real-time search capabilities
  • Google Custom Search API: Web search functionality
  • Anthropic Claude API: Advanced summarization

Optional

  • OpenAI API: Alternative summarization
  • Additional APIs: ArXiv, CrossRef for academic sources

Note: The system includes comprehensive mock data for demonstration without API keys

๐Ÿ’ก Usage Examples

Basic Research Query

"Latest developments in quantum computing for drug discovery"

Comparative Analysis

"Compare renewable energy adoption in Europe vs Asia 2024"

Academic Research

"Recent peer-reviewed studies on AI bias in healthcare diagnostics"

Technical Analysis

"How does blockchain technology improve supply chain transparency"

๐ŸŽจ User Interface

The Gradio interface provides:

  • Interactive Research Input: Natural language query processing with example prompts
  • Real-time Agent Activity: Live visualization of agent collaboration and decision-making
  • Tabbed Results Display:
    • ๐Ÿ“Š Summary: Comprehensive research synthesis with key findings
    • ๐Ÿ“š Sources: Detailed source analysis with relevance scoring
    • ๐Ÿ“– Citations: Multi-format academic citations (APA, MLA, Chicago, IEEE, Harvard)
    • ๐Ÿ” Process Log: Complete agent activity timeline and reasoning
  • Progress Tracking: Real-time progress indicators for each research phase
  • Responsive Design: Works seamlessly across desktop and mobile devices

๐Ÿ† Hackathon Submission - Track 3

Innovation Highlights

  • Multi-Agent Orchestration: Demonstrates sophisticated AI agent collaboration
  • Adaptive Intelligence: Agents learn from each other and adjust strategies dynamically
  • Real-world Integration: Production-ready with actual API integrations
  • Scalable Architecture: Built for real-world deployment and usage

Demo Scenarios

  1. Academic Research: "Climate change impact on Arctic biodiversity"
  2. Technology Analysis: "Comparison of LLM architectures for code generation"
  3. Market Research: "Sustainable packaging trends in food industry 2025"
  4. Policy Analysis: "AI regulation frameworks across major economies"

๐Ÿ“ Project Structure

research-copilot/
โ”œโ”€โ”€ research_copilot.py      # Main app with full UI and agent system
โ”œโ”€โ”€ modal_app.py             # Modal deployment configuration  
โ”œโ”€โ”€ enhanced_agents.py       # Production agents with API integrations
โ”œโ”€โ”€ requirements.txt         # All dependencies
โ”œโ”€โ”€ .env.example            # API key template
โ”œโ”€โ”€ deploy.sh               # One-command deployment
โ”œโ”€โ”€ README.md               # Comprehensive documentation
โ””โ”€โ”€ Project_Structure.md    # This summary

๐Ÿงช Testing

# Run agent tests
python -m pytest tests/test_agents.py -v

# Run integration tests
python -m pytest tests/test_integration.py -v

# Run UI tests
python -m pytest tests/test_ui.py -v

๐Ÿ”ฎ Future Enhancements

Planned Features

  • Voice Interface: Natural language voice queries and responses
  • Research Templates: Pre-configured workflows for different research types
  • Collaborative Research: Multi-user research sessions with shared workspaces
  • Export Options: PDF reports, Word documents, presentation slides
  • Advanced Analytics: Research quality metrics and bias detection
  • Custom Agent Training: User-specific agent customization and learning

API Integrations Roadmap

  • ArXiv: Academic paper search and analysis
  • PubMed: Medical and life sciences research
  • CrossRef: DOI resolution and metadata
  • Semantic Scholar: AI-powered academic search
  • News APIs: Real-time news aggregation
  • Social Media: Trend analysis and public sentiment

๐Ÿค Contributing

We welcome contributions! Please see our contributing guidelines:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿ™ Acknowledgments

  • Gradio Team: For the amazing interface framework
  • Modal: For serverless deployment platform
  • Anthropic: For Claude API integration
  • Perplexity: For real-time search capabilities
  • Hackathon Organizers: For the opportunity to showcase multi-agent AI

๐Ÿ“ž Contact


Built for the Gradio Agents & MCP Hackathon 2025 - Track 3: Agentic Demo Showcase

Demonstrating the future of AI-powered research through intelligent agent collaboration