File size: 9,214 Bytes
6b7860b
4b88321
 
6b7860b
4b88321
6b7860b
1605aeb
 
4b88321
6b7860b
1605aeb
4b88321
573320c
1605aeb
 
 
 
 
2ff6882
1605aeb
6b7860b
 
4b88321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1605aeb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
---
title: ๐Ÿค– ResearchCopilot
emoji: ๐Ÿ”ฌ
colorFrom: indigo
colorTo: purple
sdk: gradio
sdk_version: 5.33.1
app_file: app.py
pinned: true
license: mit
short_description: Multi-agent AI research system
tags:
- agent-demo-track
- multi-agent
- research
- perplexity
- claude
- openai
video_overview: https://youtu.be/SuBUxtBKUvQ
collection: https://huggingface.co/collections/Agents-MCP-Hackathon
---

# ๐Ÿค– ResearchCopilot - Multi-Agent Research System

**Track 3: Agentic Demo Showcase - Gradio MCP Hackathon 2025**

A sophisticated multi-agent AI system that demonstrates the power of collaborative AI agents working together to conduct comprehensive research. ResearchCopilot breaks down complex research queries into structured tasks and employs specialized agents to gather, analyze, and synthesize information from multiple sources.

## ๐ŸŽฏ Demo Video
[Link to video demonstration will be added here]

## ๐Ÿš€ Features

### Multi-Agent Architecture
- **๐ŸŽฏ Planner Agent**: Intelligently breaks down research queries into structured, prioritized tasks
- **๐Ÿ” Retriever Agent**: Searches multiple sources (Perplexity API, Google Search, Academic databases)
- **๐Ÿ“ Summarizer Agent**: Analyzes and synthesizes information using Claude/GPT models
- **๐Ÿ“š Citation Agent**: Generates proper academic citations in multiple formats (APA, MLA, Chicago, IEEE, Harvard)

### Key Capabilities
- Real-time collaborative agent orchestration
- Adaptive research planning based on query complexity
- Cross-agent learning and decision making
- Parallel task execution for efficient research
- Professional citation generation
- Comprehensive research documentation

### Technical Highlights
- Built with Gradio for intuitive user experience
- Deployed on Modal for scalable serverless execution
- Asynchronous agent communication
- Real API integrations (Perplexity, Google, Anthropic)
- Comprehensive error handling and fallbacks

## ๐Ÿ—๏ธ System Architecture

```
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚   User Query    โ”‚โ”€โ”€โ”€โ–ถโ”‚   Orchestrator  โ”‚โ”€โ”€โ”€โ–ถโ”‚   Results UI    โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                               โ”‚
                โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
                โ”‚              โ”‚              โ”‚
        โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”
        โ”‚ Planner Agent โ”‚ โ”‚ Retriever โ”‚ โ”‚Summarizer โ”‚
        โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚   Agent   โ”‚ โ”‚   Agent   โ”‚
                          โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                                 โ”‚             โ”‚
                          โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ–ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
                          โ”‚   APIs      โ”‚ โ”‚ Citation   โ”‚
                          โ”‚ Perplexity  โ”‚ โ”‚   Agent    โ”‚
                          โ”‚   Google    โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
                          โ”‚  Academic   โ”‚
                          โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
```

## ๐Ÿ› ๏ธ Installation & Setup

### Local Development

1. **Clone and Install Dependencies**
```bash
git clone <repository-url>
cd research-copilot
pip install -r requirements.txt
```

2. **Environment Configuration**
```bash
cp .env.example .env
# Edit .env with your API keys
```

3. **Run Locally**
```bash
python research_copilot.py
```

### Modal Deployment

1. **Install Modal**
```bash
pip install modal
modal setup
```

2. **Configure Secrets**
```bash
modal secret create research-copilot-secrets \
  PERPLEXITY_API_KEY=your_key \
  GOOGLE_API_KEY=your_key \
  GOOGLE_SEARCH_ENGINE_ID=your_id \
  ANTHROPIC_API_KEY=your_key
```

3. **Deploy to Modal**
```bash
modal deploy modal_app.py
```

## ๐Ÿ”ง API Keys Required

### Required for Full Functionality
- **Perplexity API**: Real-time search capabilities
- **Google Custom Search API**: Web search functionality  
- **Anthropic Claude API**: Advanced summarization

### Optional
- **OpenAI API**: Alternative summarization
- **Additional APIs**: ArXiv, CrossRef for academic sources

*Note: The system includes comprehensive mock data for demonstration without API keys*

## ๐Ÿ’ก Usage Examples

### Basic Research Query
```
"Latest developments in quantum computing for drug discovery"
```

### Comparative Analysis
```
"Compare renewable energy adoption in Europe vs Asia 2024"
```

### Academic Research
```
"Recent peer-reviewed studies on AI bias in healthcare diagnostics"
```

### Technical Analysis
```
"How does blockchain technology improve supply chain transparency"
```

## ๐ŸŽจ User Interface

The Gradio interface provides:
- **Interactive Research Input**: Natural language query processing with example prompts
- **Real-time Agent Activity**: Live visualization of agent collaboration and decision-making
- **Tabbed Results Display**: 
  - ๐Ÿ“Š Summary: Comprehensive research synthesis with key findings
  - ๐Ÿ“š Sources: Detailed source analysis with relevance scoring
  - ๐Ÿ“– Citations: Multi-format academic citations (APA, MLA, Chicago, IEEE, Harvard)
  - ๐Ÿ” Process Log: Complete agent activity timeline and reasoning
- **Progress Tracking**: Real-time progress indicators for each research phase
- **Responsive Design**: Works seamlessly across desktop and mobile devices

## ๐Ÿ† Hackathon Submission - Track 3

### Innovation Highlights
- **Multi-Agent Orchestration**: Demonstrates sophisticated AI agent collaboration
- **Adaptive Intelligence**: Agents learn from each other and adjust strategies dynamically
- **Real-world Integration**: Production-ready with actual API integrations
- **Scalable Architecture**: Built for real-world deployment and usage

### Demo Scenarios
1. **Academic Research**: "Climate change impact on Arctic biodiversity"
2. **Technology Analysis**: "Comparison of LLM architectures for code generation"
3. **Market Research**: "Sustainable packaging trends in food industry 2025"
4. **Policy Analysis**: "AI regulation frameworks across major economies"

## ๐Ÿ“ Project Structure

```
research-copilot/
โ”œโ”€โ”€ research_copilot.py      # Main app with full UI and agent system
โ”œโ”€โ”€ modal_app.py             # Modal deployment configuration  
โ”œโ”€โ”€ enhanced_agents.py       # Production agents with API integrations
โ”œโ”€โ”€ requirements.txt         # All dependencies
โ”œโ”€โ”€ .env.example            # API key template
โ”œโ”€โ”€ deploy.sh               # One-command deployment
โ”œโ”€โ”€ README.md               # Comprehensive documentation
โ””โ”€โ”€ Project_Structure.md    # This summary
```

## ๐Ÿงช Testing

```bash
# Run agent tests
python -m pytest tests/test_agents.py -v

# Run integration tests
python -m pytest tests/test_integration.py -v

# Run UI tests
python -m pytest tests/test_ui.py -v
```

## ๐Ÿ”ฎ Future Enhancements

### Planned Features
- **Voice Interface**: Natural language voice queries and responses
- **Research Templates**: Pre-configured workflows for different research types
- **Collaborative Research**: Multi-user research sessions with shared workspaces
- **Export Options**: PDF reports, Word documents, presentation slides
- **Advanced Analytics**: Research quality metrics and bias detection
- **Custom Agent Training**: User-specific agent customization and learning

### API Integrations Roadmap
- **ArXiv**: Academic paper search and analysis
- **PubMed**: Medical and life sciences research
- **CrossRef**: DOI resolution and metadata
- **Semantic Scholar**: AI-powered academic search
- **News APIs**: Real-time news aggregation
- **Social Media**: Trend analysis and public sentiment

## ๐Ÿค Contributing

We welcome contributions! Please see our contributing guidelines:

1. Fork the repository
2. Create a feature branch (`git checkout -b feature/amazing-feature`)
3. Commit your changes (`git commit -m 'Add amazing feature'`)
4. Push to the branch (`git push origin feature/amazing-feature`)
5. Open a Pull Request

## ๐Ÿ“„ License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## ๐Ÿ™ Acknowledgments

- **Gradio Team**: For the amazing interface framework
- **Modal**: For serverless deployment platform
- **Anthropic**: For Claude API integration
- **Perplexity**: For real-time search capabilities
- **Hackathon Organizers**: For the opportunity to showcase multi-agent AI

## ๐Ÿ“ž Contact

- **Team**: ResearchCopilot Development Team
- **Email**: 24f1001493@ds.study.iitm.ac.in
- **Demo**: [Link to live demo]
- **Video**: [Link to demonstration video]

---

**Built for the Gradio Agents & MCP Hackathon 2025 - Track 3: Agentic Demo Showcase**

*Demonstrating the future of AI-powered research through intelligent agent collaboration*