Convert-to-Json / README.md
Tonic's picture
Update README.md
311a519 verified
---
title: Convert To Json
emoji: πŸ”¬πŸ“…πŸ“Š
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 5.33.1
app_file: app.py
pinned: true
license: mit
short_description: Convert Free Text Into Json Using AI
tags :
- mcp-server-track
---
youtube : https://youtu.be/PtWkJHNmo9k
for a faster & functional experience using ZeroGPU please visit : https://huggingface.co/spaces/Tonic/Convert-to-Json
# 🌊 Osmosis Structure - Text to JSON Converter
A powerful web application that converts unstructured text into well-formatted JSON using the Osmosis Structure 0.6B model. This tool is specifically designed for structured data extraction and format conversion tasks.
## 🌟 Features
- **Intelligent Text Processing**: Automatically identifies and extracts key information from unstructured text
- **Schema Support**: Optionally provide a JSON schema to structure the output according to your needs
- **Customizable Generation**: Fine-tune the output with adjustable parameters:
- Temperature
- Max tokens
- Top-p sampling
- Top-k sampling
- **User-Friendly Interface**: Clean and intuitive Gradio interface
- **Example Templates**: Pre-configured examples to help you get started
- **GPU Acceleration**: Optimized for GPU when available
## πŸš€ Quick Start
1. Clone the repository:
```bash
git clone https://github.com/yourusername/Convert-to-Json.git
cd Convert-to-Json
```
2. Install dependencies:
```bash
pip install -r requirements.txt
```
3. Run the application:
```bash
python app.py
```
## πŸ’» Usage
### Basic Usage
1. Enter your unstructured text in the input field
2. (Optional) Provide a JSON schema to structure the output
3. Adjust generation parameters if needed
4. Click "Convert" or press Enter
5. View the structured JSON output
### Example Input
```text
The conference will be held on June 10-12, 2024 at the Grand Hotel in San Francisco.
Registration fee is $500 for early bird (before May 1) and $650 for regular registration.
Contact info@conference.com for questions.
```
### Example Schema
```json
{
"type": "object",
"properties": {
"event_start_date": {
"type": "string",
"format": "date"
},
"event_end_date": {
"type": "string",
"format": "date"
},
"location": {
"type": "string"
},
"registration_fees": {
"type": "object",
"properties": {
"early_bird_price": {
"type": "number"
},
"regular_price": {
"type": "number"
},
"early_bird_deadline": {
"type": "string",
"format": "date"
}
}
},
"contact_email": {
"type": "string"
}
}
}
```
### Example Output
```json
{
"event_start_date": "2024-06-10",
"event_end_date": "2024-06-12",
"location": "Grand Hotel, San Francisco",
"registration_fees": {
"early_bird_price": 500.0,
"regular_price": 650.0,
"early_bird_deadline": "2024-05-01"
},
"contact_email": "info@conference.com"
}
```
## βš™οΈ Generation Parameters
- **Max Tokens**: Controls the maximum length of the generated output (default: 512)
- **Temperature**: Controls randomness in generation (default: 0.6)
- Lower values (e.g., 0.3) make output more focused and deterministic
- Higher values (e.g., 0.9) make output more diverse and creative
- **Top-p**: Nucleus sampling parameter (default: 0.95)
- **Top-k**: Number of highest probability tokens to consider (default: 20)
## πŸ› οΈ Technical Details
- **Model**: Osmosis Structure 0.6B parameters
- **Architecture**: Qwen3 (specialized for structured data)
- **Purpose**: Converting unstructured text to structured JSON format
- **Optimizations**: Fine-tuned for data extraction and format conversion tasks
## 🀝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.
## πŸ“ License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## πŸ™ Acknowledgments
- Thanks to the Hugging Face team for their excellent tools and resources
- Special thanks to Yuvi Sharma and all the folks at Hugging Face for the community grant
## 🌟 Join Our Community
- Join our active builder's community on [Discord](https://discord.gg/qdfnvSPcqP)
- Follow us on [Hugging Face](https://huggingface.co/MultiTransformer)
- Check out our [GitHub](https://github.com/tonic-ai)
- Contribute to [MultiTonic](https://github.com/MultiTonic)