File size: 4,523 Bytes
98dfc81 ab48ce6 202b559 98dfc81 202b559 98dfc81 176c4c1 98dfc81 311a519 98dfc81 202b559 e61fe86 202b559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
title: Convert To Json
emoji: π¬π
π
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 5.33.1
app_file: app.py
pinned: true
license: mit
short_description: Convert Free Text Into Json Using AI
tags :
- mcp-server-track
---
youtube : https://youtu.be/PtWkJHNmo9k
for a faster & functional experience using ZeroGPU please visit : https://huggingface.co/spaces/Tonic/Convert-to-Json
# π Osmosis Structure - Text to JSON Converter
A powerful web application that converts unstructured text into well-formatted JSON using the Osmosis Structure 0.6B model. This tool is specifically designed for structured data extraction and format conversion tasks.
## π Features
- **Intelligent Text Processing**: Automatically identifies and extracts key information from unstructured text
- **Schema Support**: Optionally provide a JSON schema to structure the output according to your needs
- **Customizable Generation**: Fine-tune the output with adjustable parameters:
- Temperature
- Max tokens
- Top-p sampling
- Top-k sampling
- **User-Friendly Interface**: Clean and intuitive Gradio interface
- **Example Templates**: Pre-configured examples to help you get started
- **GPU Acceleration**: Optimized for GPU when available
## π Quick Start
1. Clone the repository:
```bash
git clone https://github.com/yourusername/Convert-to-Json.git
cd Convert-to-Json
```
2. Install dependencies:
```bash
pip install -r requirements.txt
```
3. Run the application:
```bash
python app.py
```
## π» Usage
### Basic Usage
1. Enter your unstructured text in the input field
2. (Optional) Provide a JSON schema to structure the output
3. Adjust generation parameters if needed
4. Click "Convert" or press Enter
5. View the structured JSON output
### Example Input
```text
The conference will be held on June 10-12, 2024 at the Grand Hotel in San Francisco.
Registration fee is $500 for early bird (before May 1) and $650 for regular registration.
Contact info@conference.com for questions.
```
### Example Schema
```json
{
"type": "object",
"properties": {
"event_start_date": {
"type": "string",
"format": "date"
},
"event_end_date": {
"type": "string",
"format": "date"
},
"location": {
"type": "string"
},
"registration_fees": {
"type": "object",
"properties": {
"early_bird_price": {
"type": "number"
},
"regular_price": {
"type": "number"
},
"early_bird_deadline": {
"type": "string",
"format": "date"
}
}
},
"contact_email": {
"type": "string"
}
}
}
```
### Example Output
```json
{
"event_start_date": "2024-06-10",
"event_end_date": "2024-06-12",
"location": "Grand Hotel, San Francisco",
"registration_fees": {
"early_bird_price": 500.0,
"regular_price": 650.0,
"early_bird_deadline": "2024-05-01"
},
"contact_email": "info@conference.com"
}
```
## βοΈ Generation Parameters
- **Max Tokens**: Controls the maximum length of the generated output (default: 512)
- **Temperature**: Controls randomness in generation (default: 0.6)
- Lower values (e.g., 0.3) make output more focused and deterministic
- Higher values (e.g., 0.9) make output more diverse and creative
- **Top-p**: Nucleus sampling parameter (default: 0.95)
- **Top-k**: Number of highest probability tokens to consider (default: 20)
## π οΈ Technical Details
- **Model**: Osmosis Structure 0.6B parameters
- **Architecture**: Qwen3 (specialized for structured data)
- **Purpose**: Converting unstructured text to structured JSON format
- **Optimizations**: Fine-tuned for data extraction and format conversion tasks
## π€ Contributing
Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.
## π License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
## π Acknowledgments
- Thanks to the Hugging Face team for their excellent tools and resources
- Special thanks to Yuvi Sharma and all the folks at Hugging Face for the community grant
## π Join Our Community
- Join our active builder's community on [Discord](https://discord.gg/qdfnvSPcqP)
- Follow us on [Hugging Face](https://huggingface.co/MultiTransformer)
- Check out our [GitHub](https://github.com/tonic-ai)
- Contribute to [MultiTonic](https://github.com/MultiTonic) |