File size: 22,564 Bytes
baee517
 
 
e9be62d
998398d
e9be62d
 
f35e327
998398d
e9be62d
 
f35e327
998398d
e9be62d
f35e327
e9be62d
998398d
 
 
 
f35e327
 
998398d
e7f92e1
f35e327
998398d
 
 
 
 
 
e9be62d
baee517
 
 
998398d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9be62d
 
 
 
 
 
998398d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9be62d
 
 
 
 
 
 
 
 
 
998398d
 
 
 
 
 
 
 
 
 
 
 
 
 
e9be62d
 
 
 
 
998398d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9be62d
998398d
 
 
 
 
455d3b0
998398d
e9be62d
f35e327
e9be62d
998398d
e7f92e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f35e327
 
 
e7f92e1
998398d
 
 
e7f92e1
998398d
 
 
 
 
 
e9be62d
 
 
da7134d
998398d
 
 
 
 
e9be62d
998398d
e7f92e1
 
 
998398d
 
 
 
 
 
 
 
 
 
 
 
455d3b0
998398d
 
 
 
 
 
da7134d
998398d
 
 
455d3b0
998398d
 
 
 
 
 
455d3b0
998398d
 
e7f92e1
 
 
 
 
 
 
7bf3b86
e7f92e1
 
 
 
 
 
 
7bf3b86
e7f92e1
 
 
998398d
 
e9be62d
 
 
7bf3b86
455d3b0
998398d
455d3b0
998398d
e7f92e1
998398d
 
 
 
 
 
e7f92e1
 
 
998398d
 
 
 
 
 
 
 
e7f92e1
998398d
 
 
 
 
 
baee517
998398d
baee517
 
998398d
 
4c2a7cb
 
 
998398d
 
 
e7f92e1
 
 
 
998398d
 
455d3b0
e7f92e1
 
 
e9be62d
455d3b0
e7f92e1
 
 
e9be62d
998398d
 
e9be62d
 
 
998398d
 
 
e9be62d
998398d
 
 
e7f92e1
998398d
 
4c2a7cb
998398d
baee517
 
998398d
 
 
baee517
998398d
 
 
a5838bd
 
998398d
 
 
 
 
f35e327
 
 
e7f92e1
4c2a7cb
998398d
baee517
 
9aa2833
998398d
 
d406962
a5838bd
d406962
 
 
 
a5838bd
 
 
 
 
 
 
998398d
 
 
 
baee517
 
 
91fd99e
baee517
 
91fd99e
 
baee517
91fd99e
baee517
 
 
91fd99e
e7f92e1
baee517
 
 
 
e7f92e1
baee517
e7f92e1
baee517
 
 
 
 
f35e327
e7f92e1
 
 
 
 
 
 
 
 
 
f35e327
 
 
e7f92e1
baee517
1036c04
998398d
1036c04
e7f92e1
998398d
 
4c2a7cb
baee517
 
91fd99e
1036c04
9e83d6f
 
 
 
1036c04
9e83d6f
 
4c2a7cb
9e83d6f
 
91fd99e
9e83d6f
 
1036c04
9e83d6f
91fd99e
4c2a7cb
baee517
e7f92e1
 
e9be62d
baee517
 
 
e9be62d
baee517
4c2a7cb
a5838bd
 
 
 
 
 
4c2a7cb
1036c04
 
 
baee517
 
998398d
baee517
e7f92e1
4c2a7cb
baee517
998398d
baee517
998398d
 
4c2a7cb
baee517
f35e327
 
 
 
 
 
 
 
 
 
 
 
 
 
1036c04
998398d
1036c04
e7f92e1
998398d
4c2a7cb
baee517
 
9e83d6f
1036c04
9e83d6f
1036c04
9e83d6f
 
1036c04
9e83d6f
4c2a7cb
a5838bd
9e83d6f
 
 
 
1036c04
9e83d6f
 
 
e7f92e1
 
 
4c2a7cb
e7f92e1
1036c04
4c2a7cb
 
a5838bd
 
 
 
 
 
1036c04
 
 
 
f35e327
baee517
 
998398d
baee517
e7f92e1
998398d
4c2a7cb
baee517
 
998398d
 
9e83d6f
 
 
4c2a7cb
baee517
998398d
 
 
 
 
 
 
9e83d6f
 
 
998398d
 
f35e327
da7134d
f35e327
 
e9be62d
 
 
 
 
 
 
 
998398d
 
e9be62d
998398d
e9be62d
 
e7f92e1
 
 
 
 
 
 
e9be62d
e7f92e1
 
 
 
f35e327
e7f92e1
 
 
f35e327
e7f92e1
 
 
f35e327
e7f92e1
 
 
f35e327
e9be62d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
# Jina Embeddings V4 Model implementation was inspired by the ColPali codebase:
# https://github.com/illuin-tech/colpali

import os
from dataclasses import dataclass
from enum import Enum
from functools import partial
from io import BytesIO
from typing import Any, Callable, ClassVar, Dict, List, Optional, Union, cast

import numpy as np
import requests
import torch
from huggingface_hub import snapshot_download
from peft import LoraConfig, PeftModel
from PIL import Image
from torch import nn
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import BatchFeature
from transformers.utils import is_flash_attn_2_available

from .configuration_jina_embeddings_v4 import JinaEmbeddingsV4Config
from .custom_lora_module import MultiAdapterLinear
from .qwen2_5_vl import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor


class PromptType(str, Enum):
    query = "query"
    passage = "passage"


PREFIX_DICT = {"query": "Query", "passage": "Passage"}


class JinaEmbeddingsV4Processor(Qwen2_5_VLProcessor):
    def __init__(self, *args, **kwargs) -> None:
        Qwen2_5_VLProcessor.__init__(self, *args, **kwargs)
        self.assistant_prefix_len = 58
        self.text_max_length = 8192

    def process_images(
        self,
        images: Union[List[Image.Image], List[List[Image.Image]]],
    ) -> BatchFeature:

        if isinstance(images[0], list):
            images = cast(List[List[Image.Image]], images)
            text_doc = []
            for i in range(len(images)):
                conversation = [
                    {"role": "user", "content": [{"type": "image"}] * len(images[i])}
                ]
                template = self.apply_chat_template(
                    conversation, add_generation_prompt=False
                )
                text_doc.append(template[self.assistant_prefix_len :])

        else:
            images = cast(List[Image.Image], images)
            text_doc = [
                "<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Describe the image.<|im_end|>\n"
            ] * len(images)

        # The following code is a hack to make sure the scatter in DDP is done correctly when training on multiple GPUs
        batch_doc = self(text=text_doc, images=images, padding="longest", return_tensors="pt")  # type: ignore
        # Separate pixel_values for each image
        offsets = batch_doc["image_grid_thw"][:, 1] * batch_doc["image_grid_thw"][:, 2]
        # Pad pixel_values to the same length to be able to make it into a tensor
        pixel_values = torch.split(batch_doc["pixel_values"], offsets.tolist())

        max_length = max([len(pv) for pv in pixel_values])

        pixel_values = [
            torch.cat(
                [
                    pv,
                    torch.zeros(
                        (max_length - len(pv), pv.shape[1]),
                        dtype=pv.dtype,
                        device=pv.device,
                    ),
                ]
            )
            for pv in pixel_values
        ]

        batch_doc["pixel_values"] = torch.stack(pixel_values)
        return batch_doc

    def process_texts(
        self,
        texts: List[str],
        max_length: Optional[int] = None,
        prefix: Optional[str] = None,
        padding: Optional[str] = None,
    ) -> BatchFeature:

        max_length = (
            self.text_max_length
            if max_length is None
            else min(max_length, self.text_max_length)
        )
        padded_texts: List[str] = []

        for text in texts:
            if prefix:
                text = f"{prefix}: {text}"
            padded_texts.append(text)

        text_batch = self(
            text=padded_texts,
            return_tensors="pt",
            padding=padding or "longest",
            max_length=max_length,
            truncation=True,
        )

        return text_batch


@dataclass
class JinaEmbeddingsV4ModelOutput:
    """
    Base class for the Hybrid Model outputs.
    Args:
        vlm_last_hidden_states (torch.Tensor, optional): Last hidden states of the VLM.
        single_vec_emb (torch.Tensor, optional): Single-vector embeddings.
        multi_vec_emb (torch.Tensor, optional): Multi-vector embeddings.
    """

    vlm_last_hidden_states: Optional[torch.Tensor] = None
    single_vec_emb: Optional[torch.Tensor] = None
    multi_vec_emb: Optional[torch.Tensor] = None


class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
    config_class = JinaEmbeddingsV4Config
    main_input_name: ClassVar[str] = "doc_input_ids"

    def __init__(self, config: JinaEmbeddingsV4Config):
        Qwen2_5_VLForConditionalGeneration.__init__(self, config)
        self._init_projection_layer(config)
        self.post_init()
        self.processor = JinaEmbeddingsV4Processor.from_pretrained(
            self.name_or_path, trust_remote_code=True, use_fast=True
        )
        self.multi_vector_projector_dim = config.multi_vector_projector_dim
        self._task = None

    @property
    def task(self) -> Optional[str]:
        """Get the current task set for the model."""
        return self._task

    @task.setter
    def task(self, task: str):
        """
        Set the task for the model.

        Args:
            task (str): The task name. Must be one of ['retrieval', 'text-matching', 'code']
        """
        if task not in self.config.task_names:
            raise ValueError(
                f"Invalid task: {task}. Must be one of {self.config.task_names}."
            )
        self._task = task

    def get_last_hidden_states(
        self,
        task_label: Union[str, List[str]],
        input_ids: torch.LongTensor,
        attention_mask: torch.Tensor,
        **kwargs,
    ) -> torch.Tensor:
        if "pixel_values" in kwargs:
            offsets = kwargs["image_grid_thw"][:, 1] * kwargs["image_grid_thw"][:, 2]
            kwargs["pixel_values"] = torch.cat(
                [pv[:o] for pv, o in zip(kwargs["pixel_values"], offsets)], dim=0
            )
        position_ids, rope_deltas = self.model.get_rope_index(
            input_ids=input_ids,
            image_grid_thw=kwargs.get("image_grid_thw", None),
            attention_mask=attention_mask,
        )

        kwargs["output_hidden_states"] = True
        outputs = super().forward(
            task_label=task_label,
            input_ids=input_ids,
            attention_mask=attention_mask,
            **kwargs,
            position_ids=position_ids,
            rope_deltas=rope_deltas,
            use_cache=False,
        )

        hidden_states = outputs.hidden_states
        if not hidden_states:
            raise ValueError("Hidden states not found in model output")

        return hidden_states[-1]

    def _init_projection_layer(self, config) -> None:
        """
        Initializes projection layers.
        """
        self.config.multi_vector_projector_dim = config.multi_vector_projector_dim

        self.multi_vector_projector = nn.Linear(
            in_features=self.config.text_config.hidden_size,
            out_features=self.config.multi_vector_projector_dim,
        )

    def get_single_vector_embeddings(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        input_ids: Optional[torch.LongTensor] = None,
    ) -> torch.Tensor:
        """
        Get the single-vector embeddings from the hidden states.
        """
        if self._input_has_image(input_ids[0]):  # got document image
            img_start_positions = torch.where(
                input_ids == self.config.vision_start_token_id
            )[1]
            img_end_positions = torch.where(
                input_ids == self.config.vision_end_token_id
            )[1]

            batch_size, seq_len = input_ids.shape
            position_indices = torch.arange(seq_len, device=input_ids.device).expand(
                batch_size, -1
            )
            image_mask = (position_indices >= img_start_positions.unsqueeze(1)) & (
                position_indices <= img_end_positions.unsqueeze(1)
            )

            masked_hidden_states = hidden_states * image_mask.unsqueeze(-1)
            pooled_output = masked_hidden_states.sum(dim=1) / image_mask.sum(
                dim=1, keepdim=True
            )

        else:  # got query text
            pooled_output = torch.sum(
                hidden_states * attention_mask.unsqueeze(-1), dim=1
            ) / torch.sum(attention_mask, dim=1, keepdim=True)

        return torch.nn.functional.normalize(pooled_output, dim=-1)

    def get_multi_vector_embeddings(
        self,
        task_label: Union[str, List[str]],
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
    ) -> torch.Tensor:
        """
        Project the hidden states to multi-vector embeddings.
        """
        multi_vec_emb = self.multi_vector_projector(
            hidden_states, task_label=task_label
        )
        multi_vec_emb = torch.nn.functional.normalize(multi_vec_emb, dim=-1)
        return multi_vec_emb * attention_mask.unsqueeze(-1)

    def _input_has_image(self, input_ids):
        return self.config.vision_start_token_id in input_ids

    def forward(
        self,
        task_label: Union[str, List[str]],
        input_ids: torch.LongTensor,
        attention_mask: torch.Tensor,
        output_vlm_last_hidden_states: bool = False,
        **kwargs,
    ) -> JinaEmbeddingsV4ModelOutput:
        """
        Forward pass through the model. Returns both single-vector and multi-vector embeddings.
        Args:
            input_ids (torch.Tensor): The input tokens tensor.
            attention_mask (torch.Tensor): The attention mask tensor.
        Returns:
            JinaEmbeddingsV4ModelOutput:
                vlm_last_hidden_states (torch.Tensor, optional): Last hidden states of the VLM.
                single_vec_emb (torch.Tensor, optional): Single-vector embeddings.
                multi_vec_emb (torch.Tensor, optional): Multi-vector embeddings.
        """
        # Forward pass through the VLM
        hidden_states = self.get_last_hidden_states(
            input_ids=input_ids,
            attention_mask=attention_mask,
            task_label=task_label,
            **kwargs,
        )  # (batch_size, seq_length, hidden_size)
        # Compute the embeddings
        single_vec_emb = self.get_single_vector_embeddings(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            input_ids=input_ids,
        )
        multi_vec_emb = self.get_multi_vector_embeddings(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            task_label=task_label,
        )

        return JinaEmbeddingsV4ModelOutput(
            vlm_last_hidden_states=(
                hidden_states if output_vlm_last_hidden_states else None
            ),
            single_vec_emb=single_vec_emb,
            multi_vec_emb=multi_vec_emb,
        )

    def _process_batches(
        self,
        data: List[Union[str, Image.Image]],
        task_label: Union[str, List[str]],
        processor_fn: Callable,
        desc: str,
        return_multivector: bool = False,
        return_numpy: bool = False,
        batch_size: int = 32,
        truncate_dim: Optional[int] = None,
    ) -> Union[np.ndarray, List[torch.Tensor]]:
        dataloader = DataLoader(
            dataset=data,
            batch_size=batch_size,
            shuffle=False,
            collate_fn=processor_fn,
        )
        if return_multivector and len(data) > 1:
            assert not return_numpy, "`return_numpy` is not supported when `return_multivector=True` and more than one data is encoded"
        results = []
        self.eval()
        for batch in tqdm(dataloader, desc=desc):
            with torch.no_grad():
                batch = {k: v.to(self.device) for k, v in batch.items()}
                with torch.autocast(
                    device_type=torch.device(self.device).type, dtype=torch.bfloat16
                ):
                    embeddings = self(**batch, task_label=task_label)
                    if not return_multivector:
                        embeddings = embeddings.single_vec_emb
                        if truncate_dim is not None:
                            embeddings = embeddings[:, :truncate_dim]
                            embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=-1)
                    else:
                        embeddings = embeddings.multi_vec_emb
                    
                    if return_multivector and not return_numpy:
                        valid_tokens = batch["attention_mask"].bool()
                        embeddings = [
                            emb[mask] for emb, mask in zip(embeddings, valid_tokens)
                        ]
                        results.append(embeddings)
                    else:
                        results.append(
                            embeddings.cpu()
                            if return_numpy
                            else list(torch.unbind(embeddings))
                        )
        if return_numpy:
            return np.concatenate([result.numpy() for result in results], axis=0)
        return [item for sublist in results for item in sublist]

    def _validate_encoding_params(
        self,
        truncate_dim: Optional[int] = None,
        prompt_name: Optional[str] = None,
    ) -> Dict[str, Any]:
        encode_kwargs = {}
        if prompt_name is not None:
            if prompt_name not in PREFIX_DICT:
                raise ValueError(
                    f"Invalid prompt_name: {prompt_name}. Must be one of {list(PREFIX_DICT.keys())}."
                )
            else:
                encode_kwargs["prefix"] = (
                    PREFIX_DICT[prompt_name]
                    if self.task != "text-matching"
                    else PREFIX_DICT["query"]
                )

        truncate_dim = truncate_dim or self.config.truncate_dim
        if truncate_dim is not None and truncate_dim not in self.config.matryoshka_dims:
            raise ValueError(
                f"Invalid truncate_dim: {truncate_dim}. Must be one of {self.config.matryoshka_dims}."
            )
        else:
            encode_kwargs["truncate_dim"] = truncate_dim

        return encode_kwargs

    def _validate_task(self, task: Optional[str] = None) -> str:
        if task is None:
            if self.task is None:
                raise ValueError(
                    "Task must be specified before encoding data. You can set it either as a model property "
                    "(e.g., model.task = 'retrieval') or pass it as an argument to the encode method."
                )
            task = self.task
        else:
            if task not in self.config.task_names:
                raise ValueError(
                    f"Invalid task: {task}. Must be one of {self.config.task_names}."
                )
        return task

    def encode_text(
        self,
        texts: Union[str, List[str]],
        task: Optional[str] = None,
        max_length: int = 8192,
        batch_size: int = 8,
        return_multivector: bool = False,
        return_numpy: bool = False,
        truncate_dim: Optional[int] = None,
        prompt_name: Optional[str] = None,
    ) -> Union[List[torch.Tensor], torch.Tensor]:
        """
        Encodes a list of texts into embeddings.

        Args:
            texts: text or list of text strings to encode
            max_length: Maximum token length for text processing
            batch_size: Number of texts to process at once
            return_multivector: Whether to return multi-vector embeddings instead of single-vector embeddings
            return_numpy: Whether to return numpy arrays instead of torch tensors
            truncate_dim: Dimension to truncate embeddings to (128, 256, 512, or 1024)
            prompt_name: Type of text being encoded ('query' or 'passage')

        Returns:
            List of text embeddings as tensors or numpy arrays when encoding multiple texts, or single text embedding as tensor when encoding a single text
        """
        prompt_name = prompt_name or "query"
        encode_kwargs = self._validate_encoding_params(truncate_dim=truncate_dim, prompt_name=prompt_name)

        task = self._validate_task(task)

        processor_fn = partial(
            self.processor.process_texts,
            max_length=max_length,
            prefix=encode_kwargs.pop("prefix"),
        )

        return_list = isinstance(texts, list)

        # If return_multivector is True and encoding multiple texts, ignore return_numpy
        if return_multivector and return_list and len(texts) > 1:
            if return_numpy:
                print("Warning: `return_numpy` is ignored when `return_multivector=True` and `len(texts) > 1`")
            return_numpy = False
        
        if isinstance(texts, str):
            texts = [texts]

        embeddings = self._process_batches(
            data=texts,
            processor_fn=processor_fn,
            desc="Encoding texts...",
            task_label=task,
            return_multivector=return_multivector,
            return_numpy=return_numpy,
            batch_size=batch_size,
            **encode_kwargs,
        )

        return embeddings if return_list else embeddings[0] 

    def _load_images_if_needed(
        self, images: List[Union[str, Image.Image]]
    ) -> List[Image.Image]:
        loaded_images = []
        for image in images:
            if isinstance(image, str):
                if image.startswith("http"):
                    response = requests.get(image)
                    image = Image.open(BytesIO(response.content)).convert("RGB")
                else:
                    image = Image.open(image).convert("RGB")
            loaded_images.append(image)
        return loaded_images

    def encode_image(
        self,
        images: Union[str, Image.Image, List[Union[str, Image.Image]]],
        task: Optional[str] = None,
        batch_size: int = 8,
        return_multivector: bool = False,
        return_numpy: bool = False,
        truncate_dim: Optional[int] = None,
        max_pixels: Optional[int] = None,
    ) -> Union[List[torch.Tensor], torch.Tensor]:
        """
        Encodes a list of images or a single image into embedding(s).

        Args:
            images: image(s) to encode, can be PIL Image(s), URL(s), or local file path(s)
            batch_size: Number of images to process at once
            return_multivector: Whether to return multi-vector embeddings instead of single-vector embeddings
            return_numpy: Whether to return numpy arrays instead of torch tensors. If `return_multivector` is `True` and more than one image is encoded, this parameter is ignored.
            truncate_dim: Dimension to truncate embeddings to (128, 256, 512, or 1024)
            max_pixels: Maximum number of pixels to process per image

        Returns:
            List of image embeddings as tensors or numpy arrays when encoding multiple images, or single image embedding as tensor when encoding a single image
        """
        if max_pixels:
            default_max_pixels = self.processor.image_processor.max_pixels
            self.processor.image_processor.max_pixels = (
                max_pixels  # change during encoding
            )
        encode_kwargs = self._validate_encoding_params(truncate_dim=truncate_dim)
        task = self._validate_task(task)
        
        return_list = isinstance(images, list)

        # If return_multivector is True and encoding multiple images, ignore return_numpy
        if return_multivector and return_list and len(images) > 1:
            if return_numpy:
                print("Warning: `return_numpy` is ignored when `return_multivector=True` and `len(images) > 1`")
            return_numpy = False

        # Convert single image to list
        if isinstance(images, (str, Image.Image)):
            images = [images]
            
        images = self._load_images_if_needed(images)
        embeddings = self._process_batches(
            data=images,
            processor_fn=self.processor.process_images,
            desc="Encoding images...",
            task_label=task,
            batch_size=batch_size,
            return_multivector=return_multivector,
            return_numpy=return_numpy,
            **encode_kwargs,
        )

        if max_pixels:
            self.processor.image_processor.max_pixels = default_max_pixels

        return embeddings if return_list else embeddings[0]

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path,
        *args,
        **kwargs,
    ):
        """
        Loads a pretrained model and configures it with the appropriate task adapter (`retrieval` by default).
        """
        if "torch_dtype" not in kwargs:
            kwargs["torch_dtype"] = "auto"

        kwargs["key_mapping"] = super()._checkpoint_conversion_mapping
        if not is_flash_attn_2_available():
            kwargs["attn_implementation"] = "sdpa"

        base_model = super().from_pretrained(
            pretrained_model_name_or_path, *args, **kwargs
        )

        # Configure adapter directory
        if os.path.isdir(base_model.name_or_path):
            adapter_dir = os.path.join(base_model.name_or_path, "adapters")
        else:
            adapter_cache_path = snapshot_download(
                repo_id=base_model.name_or_path, allow_patterns=["adapters/*"]
            )
            adapter_dir = os.path.join(adapter_cache_path, "adapters")

        lora_config = LoraConfig.from_pretrained(adapter_dir)
        lora_config._custom_modules = {
            torch.nn.modules.linear.Linear: partial(
                MultiAdapterLinear,
                task_names=base_model.config.task_names,
            )
        }
        peft_model = PeftModel.from_pretrained(
            model=base_model,
            model_id=adapter_dir,
            config=lora_config,
        )

        @property
        def task(self):
            return self.model.task

        @task.setter
        def task(self, value):
            self.model.task = value

        peft_model.task = property(task.fget, task.fset)
        peft_model.__class__.task = property(
            lambda self: self.model.task,
            lambda self, value: setattr(self.model, "task", value),
        )

        return peft_model