stateless-adapter-switching (#11)
Browse files- feat: implement stateless adapter switching [wip] (85f64e256eb783288093a9ff8fc63f9ba66ba2f5)
- feat: finalized implementation (8a9e9edbdb6c678e370f8fed2211f688e30a2fca)
- feat: merged checkpoint, modified qwen, readme (b3d45f64324f0d2b9542b691694e97e581136e97)
- README.md +5 -9
- adapters/{retrieval/adapter_config.json → adapter_config.json} +0 -0
- adapters/{text-matching/adapter_model.safetensors → adapter_model.safetensors} +2 -2
- adapters/code/adapter_config.json +0 -26
- adapters/code/adapter_model.safetensors +0 -3
- adapters/retrieval/adapter_model.safetensors +0 -3
- adapters/text-matching/adapter_config.json +0 -26
- config.json +3 -1
- custom_lora_module.py +193 -0
- modeling_jina_embeddings_v4.py +118 -79
- qwen2_5_vl.py +0 -0
README.md
CHANGED
@@ -22,11 +22,9 @@ image_paths = ['/<path_to_image>']
|
|
22 |
images = [Image.open(path) for path in image_paths]
|
23 |
|
24 |
# Example 1: Text matching task with single vector embeddings
|
25 |
-
model.set_task(task='text-matching')
|
26 |
-
|
27 |
# Generate embeddings with dimension truncation (256), decrease max_pixels
|
28 |
-
img_embeddings = model.encode_images(images=images, truncate_dim=256, max_pixels=602112)
|
29 |
-
text_embeddings = model.encode_texts(texts=texts, truncate_dim=256, max_length=512)
|
30 |
|
31 |
# Example 2: Retrieval task with multi-vector embeddings
|
32 |
model.set_task(task='retrieval')
|
@@ -36,10 +34,8 @@ img_embeddings = model.encode_images(images=images, vector_type='multi_vector')
|
|
36 |
text_embeddings = model.encode_texts(texts=texts, vector_type='multi_vector', prompt_name='passage')
|
37 |
|
38 |
# Example 3: Code task with single vector embeddings
|
39 |
-
model.set_task(task='code')
|
40 |
-
|
41 |
code = ["def hello_world():\n print('Hello, World!')"]
|
42 |
-
code_embeddings = model.encode_texts(texts=code)
|
43 |
|
44 |
```
|
45 |
|
@@ -75,8 +71,8 @@ with torch.no_grad():
|
|
75 |
|
76 |
with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu'):
|
77 |
# Get embeddings
|
78 |
-
text_embeddings = model.model(**text_batch).single_vec_emb
|
79 |
-
img_embeddings = model.model(**image_batch).single_vec_emb
|
80 |
|
81 |
|
82 |
```
|
|
|
22 |
images = [Image.open(path) for path in image_paths]
|
23 |
|
24 |
# Example 1: Text matching task with single vector embeddings
|
|
|
|
|
25 |
# Generate embeddings with dimension truncation (256), decrease max_pixels
|
26 |
+
img_embeddings = model.encode_images(images=images, truncate_dim=256, max_pixels=602112, task='text-matching')
|
27 |
+
text_embeddings = model.encode_texts(texts=texts, truncate_dim=256, max_length=512, task='text-matching')
|
28 |
|
29 |
# Example 2: Retrieval task with multi-vector embeddings
|
30 |
model.set_task(task='retrieval')
|
|
|
34 |
text_embeddings = model.encode_texts(texts=texts, vector_type='multi_vector', prompt_name='passage')
|
35 |
|
36 |
# Example 3: Code task with single vector embeddings
|
|
|
|
|
37 |
code = ["def hello_world():\n print('Hello, World!')"]
|
38 |
+
code_embeddings = model.encode_texts(texts=code, task='code')
|
39 |
|
40 |
```
|
41 |
|
|
|
71 |
|
72 |
with torch.autocast(device_type='cuda' if torch.cuda.is_available() else 'cpu'):
|
73 |
# Get embeddings
|
74 |
+
text_embeddings = model.model(**text_batch, task_label='retrieval').single_vec_emb
|
75 |
+
img_embeddings = model.model(**image_batch, task_label='retrieval').single_vec_emb
|
76 |
|
77 |
|
78 |
```
|
adapters/{retrieval/adapter_config.json → adapter_config.json}
RENAMED
File without changes
|
adapters/{text-matching/adapter_model.safetensors → adapter_model.safetensors}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a5cb8cc0f4e10f184ccc10f8864999098b887dbc4107221ec0e400d927f4555
|
3 |
+
size 360095344
|
adapters/code/adapter_config.json
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"alpha_pattern": {},
|
3 |
-
"auto_mapping": null,
|
4 |
-
"base_model_name_or_path": "jinaai/colqwen25-duo-base",
|
5 |
-
"bias": "none",
|
6 |
-
"fan_in_fan_out": false,
|
7 |
-
"inference_mode": false,
|
8 |
-
"init_lora_weights": "gaussian",
|
9 |
-
"layer_replication": null,
|
10 |
-
"layers_pattern": null,
|
11 |
-
"layers_to_transform": null,
|
12 |
-
"loftq_config": {},
|
13 |
-
"lora_alpha": 32,
|
14 |
-
"lora_dropout": 0.1,
|
15 |
-
"megatron_config": null,
|
16 |
-
"megatron_core": "megatron.core",
|
17 |
-
"modules_to_save": null,
|
18 |
-
"peft_type": "LORA",
|
19 |
-
"r": 32,
|
20 |
-
"rank_pattern": {},
|
21 |
-
"revision": null,
|
22 |
-
"target_modules": "(.*(model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(single_vector_projector|multi_vector_projector).*$)",
|
23 |
-
"task_type": "FEATURE_EXTRACTION",
|
24 |
-
"use_dora": false,
|
25 |
-
"use_rslora": false
|
26 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
adapters/code/adapter_model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:510d017efc64c97e2db985ed1a96b17477ac97e1a5470996209041ad35beeee7
|
3 |
-
size 119802032
|
|
|
|
|
|
|
|
adapters/retrieval/adapter_model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:0c2b1d85506d01bd29a942975cb0abbd8c4af3487fb80b5ad408ae0e55f8bb3a
|
3 |
-
size 120138416
|
|
|
|
|
|
|
|
adapters/text-matching/adapter_config.json
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"alpha_pattern": {},
|
3 |
-
"auto_mapping": null,
|
4 |
-
"base_model_name_or_path": "jinaai/colqwen25-duo-base",
|
5 |
-
"bias": "none",
|
6 |
-
"fan_in_fan_out": false,
|
7 |
-
"inference_mode": true,
|
8 |
-
"init_lora_weights": "gaussian",
|
9 |
-
"layer_replication": null,
|
10 |
-
"layers_pattern": null,
|
11 |
-
"layers_to_transform": null,
|
12 |
-
"loftq_config": {},
|
13 |
-
"lora_alpha": 32,
|
14 |
-
"lora_dropout": 0.1,
|
15 |
-
"megatron_config": null,
|
16 |
-
"megatron_core": "megatron.core",
|
17 |
-
"modules_to_save": null,
|
18 |
-
"peft_type": "LORA",
|
19 |
-
"r": 32,
|
20 |
-
"rank_pattern": {},
|
21 |
-
"revision": null,
|
22 |
-
"target_modules": "(.*(model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(single_vector_projector|multi_vector_projector).*$)",
|
23 |
-
"task_type": "FEATURE_EXTRACTION",
|
24 |
-
"use_dora": false,
|
25 |
-
"use_rslora": false
|
26 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
CHANGED
@@ -54,5 +54,7 @@
|
|
54 |
"vision_start_token_id": 151652,
|
55 |
"vision_token_id": 151654,
|
56 |
"vocab_size": 151936,
|
57 |
-
"truncate_dim": null
|
|
|
|
|
58 |
}
|
|
|
54 |
"vision_start_token_id": 151652,
|
55 |
"vision_token_id": 151654,
|
56 |
"vocab_size": 151936,
|
57 |
+
"truncate_dim": null,
|
58 |
+
"task_names": ["retrieval", "text-matching", "code"],
|
59 |
+
"matryoshka_dims": [128, 256, 512, 1024]
|
60 |
}
|
custom_lora_module.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import math
|
4 |
+
import warnings
|
5 |
+
from typing import Any, Optional, Union, List
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
from peft.tuners.lora import LoraLayer
|
11 |
+
|
12 |
+
class MultiAdapterLinear(nn.Module, LoraLayer):
|
13 |
+
"""
|
14 |
+
Custom LoRA module supporting multiple adapters for a linear layer.
|
15 |
+
|
16 |
+
This module extends the standard LoRA implementation to support multiple task-specific
|
17 |
+
adapters that can be dynamically selected during the forward pass. The task_label
|
18 |
+
parameter passed to the forward function determines which LoRA adapter(s) to use:
|
19 |
+
- If task_label is a string, all examples in the batch use the same adapter
|
20 |
+
- If task_label is a list of strings, each example can use a different adapter
|
21 |
+
|
22 |
+
This enables efficient multi-task inference where all task-specific LoRA adapters
|
23 |
+
are loaded in memory simultaneously and dynamically selected per example, eliminating
|
24 |
+
the need to switch adapter states between tasks and allowing optimal throughput
|
25 |
+
for mixed-task batches.
|
26 |
+
|
27 |
+
Derived from peft.tuners.lora.Linear.
|
28 |
+
"""
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
base_layer,
|
32 |
+
adapter_name: str,
|
33 |
+
task_names: List[str],
|
34 |
+
r: int = 0,
|
35 |
+
lora_alpha: int = 1,
|
36 |
+
lora_dropout: float = 0.0,
|
37 |
+
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
|
38 |
+
is_target_conv_1d_layer: bool = False,
|
39 |
+
init_lora_weights: Union[bool, str] = True,
|
40 |
+
use_rslora: bool = False,
|
41 |
+
use_dora: bool = False,
|
42 |
+
lora_bias: bool = False,
|
43 |
+
**kwargs,
|
44 |
+
) -> None:
|
45 |
+
super().__init__()
|
46 |
+
LoraLayer.__init__(self, base_layer, **kwargs)
|
47 |
+
|
48 |
+
self.fan_in_fan_out = fan_in_fan_out
|
49 |
+
self.task_names = task_names
|
50 |
+
self._active_adapter = adapter_name
|
51 |
+
self.update_layer(
|
52 |
+
adapter_name,
|
53 |
+
r,
|
54 |
+
lora_alpha=lora_alpha,
|
55 |
+
lora_dropout=lora_dropout,
|
56 |
+
init_lora_weights=init_lora_weights,
|
57 |
+
use_rslora=use_rslora,
|
58 |
+
use_dora=use_dora,
|
59 |
+
lora_bias=lora_bias,
|
60 |
+
)
|
61 |
+
self.is_target_conv_1d_layer = is_target_conv_1d_layer
|
62 |
+
|
63 |
+
|
64 |
+
def forward(self, x: torch.Tensor, task_label: Union[str, List[str]], *args: Any, **kwargs: Any) -> torch.Tensor:
|
65 |
+
self._check_forward_args(x, *args, **kwargs)
|
66 |
+
|
67 |
+
if self.disable_adapters:
|
68 |
+
if self.merged:
|
69 |
+
self.unmerge()
|
70 |
+
result = self.base_layer(x, *args, **kwargs)
|
71 |
+
elif self.merged:
|
72 |
+
result = self.base_layer(x, *args, **kwargs)
|
73 |
+
else:
|
74 |
+
result = self.base_layer(x, *args, **kwargs)
|
75 |
+
torch_result_dtype = result.dtype
|
76 |
+
|
77 |
+
lora_A_keys = self.lora_A.keys()
|
78 |
+
for active_adapter in self.active_adapters:
|
79 |
+
if active_adapter not in lora_A_keys:
|
80 |
+
continue
|
81 |
+
|
82 |
+
if isinstance(task_label, str):
|
83 |
+
lora_A = self.lora_A[active_adapter][task_label]
|
84 |
+
lora_B = self.lora_B[active_adapter][task_label]
|
85 |
+
dropout = self.lora_dropout[active_adapter]
|
86 |
+
scaling = self.scaling[active_adapter]
|
87 |
+
x = self._cast_input_dtype(x, lora_A.weight.dtype)
|
88 |
+
result = result + lora_B(lora_A(dropout(x))) * scaling
|
89 |
+
else:
|
90 |
+
unique_tasks = list(set(task_label))
|
91 |
+
lora_output = torch.zeros_like(result)
|
92 |
+
|
93 |
+
for task in unique_tasks:
|
94 |
+
task_indices = [i for i, t in enumerate(task_label) if t == task]
|
95 |
+
task_x = x[task_indices]
|
96 |
+
|
97 |
+
lora_A = self.lora_A[active_adapter][task]
|
98 |
+
lora_B = self.lora_B[active_adapter][task]
|
99 |
+
dropout = self.lora_dropout[active_adapter]
|
100 |
+
scaling = self.scaling[active_adapter]
|
101 |
+
|
102 |
+
task_x = self._cast_input_dtype(task_x, lora_A.weight.dtype)
|
103 |
+
task_lora_value = lora_B(lora_A(dropout(task_x))) * scaling
|
104 |
+
|
105 |
+
for i, idx in enumerate(task_indices):
|
106 |
+
lora_output[idx] = task_lora_value[i]
|
107 |
+
|
108 |
+
result = result + lora_output
|
109 |
+
|
110 |
+
result = result.to(torch_result_dtype)
|
111 |
+
|
112 |
+
return result
|
113 |
+
|
114 |
+
def __repr__(self) -> str:
|
115 |
+
rep = super().__repr__()
|
116 |
+
return "lora." + rep
|
117 |
+
|
118 |
+
|
119 |
+
def update_layer(
|
120 |
+
self,
|
121 |
+
adapter_name,
|
122 |
+
r,
|
123 |
+
lora_alpha,
|
124 |
+
lora_dropout,
|
125 |
+
init_lora_weights,
|
126 |
+
use_rslora,
|
127 |
+
use_dora: bool = False,
|
128 |
+
lora_bias: bool = False,
|
129 |
+
):
|
130 |
+
# This code works for linear layers, override for other layer types
|
131 |
+
if r <= 0:
|
132 |
+
raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")
|
133 |
+
|
134 |
+
self.r[adapter_name] = r
|
135 |
+
self.lora_alpha[adapter_name] = lora_alpha
|
136 |
+
if lora_dropout > 0.0:
|
137 |
+
lora_dropout_layer = nn.Dropout(p=lora_dropout)
|
138 |
+
else:
|
139 |
+
lora_dropout_layer = nn.Identity()
|
140 |
+
|
141 |
+
self.lora_dropout.update(nn.ModuleDict({adapter_name: lora_dropout_layer}))
|
142 |
+
# Actual trainable parameters
|
143 |
+
self.lora_A[adapter_name] = nn.ModuleDict({
|
144 |
+
task_name: nn.Linear(self.in_features, r, bias=False)
|
145 |
+
for task_name in self.task_names
|
146 |
+
})
|
147 |
+
self.lora_B[adapter_name] = nn.ModuleDict({
|
148 |
+
task_name: nn.Linear(r, self.out_features, bias=lora_bias)
|
149 |
+
for task_name in self.task_names
|
150 |
+
})
|
151 |
+
self.lora_bias[adapter_name] = lora_bias
|
152 |
+
|
153 |
+
if use_rslora:
|
154 |
+
self.scaling[adapter_name] = lora_alpha / math.sqrt(r)
|
155 |
+
else:
|
156 |
+
self.scaling[adapter_name] = lora_alpha / r
|
157 |
+
|
158 |
+
self.reset_lora_parameters(adapter_name, init_lora_weights)
|
159 |
+
self._move_adapter_to_device_of_base_layer(adapter_name)
|
160 |
+
self.use_dora[adapter_name] = False
|
161 |
+
self.set_adapter(self.active_adapters)
|
162 |
+
|
163 |
+
def reset_lora_parameters(self, adapter_name, init_lora_weights):
|
164 |
+
if init_lora_weights is False:
|
165 |
+
return
|
166 |
+
if init_lora_weights is True:
|
167 |
+
# initialize A the same way as the default for nn.Linear and B to zero
|
168 |
+
# https://github.com/microsoft/LoRA/blob/a0a92e0f26c067cf94747bdbf1ce73793fa44d19/loralib/layers.py#L124
|
169 |
+
for task_name in self.task_names:
|
170 |
+
nn.init.kaiming_uniform_(self.lora_A[adapter_name][task_name].weight, a=math.sqrt(5))
|
171 |
+
elif init_lora_weights.lower() == "gaussian":
|
172 |
+
for task_name in self.task_names:
|
173 |
+
nn.init.normal_(self.lora_A[adapter_name][task_name].weight, std=1 / self.r[adapter_name])
|
174 |
+
else:
|
175 |
+
raise ValueError(f"Unknown initialization {init_lora_weights=}")
|
176 |
+
for task_name in self.task_names:
|
177 |
+
nn.init.zeros_(self.lora_B[adapter_name][task_name].weight)
|
178 |
+
if self.lora_bias[adapter_name]:
|
179 |
+
for task_name in self.task_names:
|
180 |
+
nn.init.zeros_(self.lora_B[adapter_name][task_name].bias)
|
181 |
+
|
182 |
+
|
183 |
+
def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
|
184 |
+
"""
|
185 |
+
Merge the active adapter weights into the base weights
|
186 |
+
"""
|
187 |
+
raise NotImplementedError("Merge operation is not supported")
|
188 |
+
|
189 |
+
def unmerge(self) -> None:
|
190 |
+
"""
|
191 |
+
This method unmerges all merged adapter layers from the base weights.
|
192 |
+
"""
|
193 |
+
raise NotImplementedError("Unmerge operation is not supported")
|
modeling_jina_embeddings_v4.py
CHANGED
@@ -10,17 +10,17 @@ from typing import Any, Callable, ClassVar, Dict, List, Optional, Union, cast
|
|
10 |
import numpy as np
|
11 |
import torch
|
12 |
from huggingface_hub import snapshot_download
|
13 |
-
from peft import PeftModel
|
14 |
from peft.utils.hotswap import hotswap_adapter
|
15 |
from PIL import Image
|
16 |
from torch import nn
|
17 |
from torch.utils.data import DataLoader
|
18 |
from tqdm import tqdm
|
19 |
from transformers import BatchFeature
|
20 |
-
from
|
21 |
-
Qwen2_5_VLProcessor)
|
22 |
-
|
23 |
from .configuration_jina_embeddings_v4 import JinaEmbeddingsV4Config
|
|
|
|
|
24 |
|
25 |
|
26 |
class PromptType(str, Enum):
|
@@ -28,14 +28,7 @@ class PromptType(str, Enum):
|
|
28 |
passage = "passage"
|
29 |
|
30 |
|
31 |
-
class TaskType(str, Enum):
|
32 |
-
retrieval = "retrieval"
|
33 |
-
code = "code"
|
34 |
-
text_matching = "text-matching"
|
35 |
-
|
36 |
-
|
37 |
PREFIX_DICT = {"query": "Query", "passage": "Passage"}
|
38 |
-
TRUNCATE_DIMS = [128, 256, 512, 1024]
|
39 |
VECTOR_TYPES = ["single_vector", "multi_vector"]
|
40 |
|
41 |
|
@@ -153,9 +146,28 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
153 |
)
|
154 |
self.single_vector_projector_dim = config.single_vector_projector_dim
|
155 |
self.multi_vector_projector_dim = config.multi_vector_projector_dim
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
def get_last_hidden_states(
|
158 |
self,
|
|
|
159 |
input_ids: torch.LongTensor,
|
160 |
attention_mask: torch.Tensor,
|
161 |
**kwargs,
|
@@ -173,10 +185,10 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
173 |
)
|
174 |
|
175 |
kwargs["output_hidden_states"] = True
|
176 |
-
|
177 |
outputs = super().forward(
|
178 |
-
|
179 |
-
|
|
|
180 |
**kwargs,
|
181 |
position_ids=position_ids,
|
182 |
rope_deltas=rope_deltas,
|
@@ -208,6 +220,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
208 |
|
209 |
def project_to_single_vector_embeddings(
|
210 |
self,
|
|
|
211 |
hidden_states: torch.Tensor,
|
212 |
attention_mask: torch.Tensor,
|
213 |
input_ids: Optional[torch.LongTensor] = None,
|
@@ -216,33 +229,48 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
216 |
Project the hidden states to single-vector embeddings.
|
217 |
"""
|
218 |
if self._input_has_image(input_ids[0]): # got document image
|
219 |
-
img_start_positions = torch.where(
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
222 |
batch_size, seq_len = input_ids.shape
|
223 |
-
position_indices = torch.arange(seq_len, device=input_ids.device).expand(
|
224 |
-
|
225 |
-
|
|
|
|
|
|
|
|
|
226 |
masked_hidden_states = hidden_states * image_mask.unsqueeze(-1)
|
227 |
-
pooled_output = masked_hidden_states.sum(dim=1) / image_mask.sum(
|
|
|
|
|
228 |
|
229 |
else: # got query text
|
230 |
pooled_output = torch.sum(
|
231 |
hidden_states * attention_mask.unsqueeze(-1), dim=1
|
232 |
) / torch.sum(attention_mask, dim=1, keepdim=True)
|
233 |
|
234 |
-
single_vec_emb = self.single_vector_projector(
|
|
|
|
|
235 |
return torch.nn.functional.normalize(single_vec_emb, dim=-1)
|
236 |
|
237 |
def project_to_multi_vector_embeddings(
|
238 |
self,
|
|
|
239 |
hidden_states: torch.Tensor,
|
240 |
attention_mask: torch.Tensor,
|
241 |
) -> torch.Tensor:
|
242 |
"""
|
243 |
Project the hidden states to multi-vector embeddings.
|
244 |
"""
|
245 |
-
multi_vec_emb = self.multi_vector_projector(
|
|
|
|
|
246 |
multi_vec_emb = torch.nn.functional.normalize(multi_vec_emb, dim=-1)
|
247 |
return multi_vec_emb * attention_mask.unsqueeze(-1)
|
248 |
|
@@ -251,6 +279,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
251 |
|
252 |
def forward(
|
253 |
self,
|
|
|
254 |
input_ids: torch.LongTensor,
|
255 |
attention_mask: torch.Tensor,
|
256 |
output_vlm_last_hidden_states: bool = False,
|
@@ -268,15 +297,22 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
268 |
"""
|
269 |
# Forward pass through the VLM
|
270 |
hidden_states = self.get_last_hidden_states(
|
271 |
-
input_ids=input_ids,
|
|
|
|
|
|
|
272 |
) # (batch_size, seq_length, hidden_size)
|
273 |
-
|
274 |
# Compute the embeddings
|
275 |
single_vec_emb = self.project_to_single_vector_embeddings(
|
276 |
-
hidden_states,
|
|
|
|
|
|
|
277 |
)
|
278 |
multi_vec_emb = self.project_to_multi_vector_embeddings(
|
279 |
-
hidden_states,
|
|
|
|
|
280 |
)
|
281 |
|
282 |
return JinaEmbeddingsV4ModelOutput(
|
@@ -290,6 +326,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
290 |
def _process_batches(
|
291 |
self,
|
292 |
data: List[Union[str, Image.Image]],
|
|
|
293 |
processor_fn: Callable,
|
294 |
desc: str,
|
295 |
vector_type: str = "single_vector",
|
@@ -309,7 +346,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
309 |
with torch.no_grad():
|
310 |
batch = {k: v.to(self.device) for k, v in batch.items()}
|
311 |
with torch.autocast(device_type=torch.device(self.device).type):
|
312 |
-
embeddings = self(**batch)
|
313 |
if vector_type == "single_vector":
|
314 |
embeddings = embeddings.single_vec_emb
|
315 |
if truncate_dim is not None:
|
@@ -340,7 +377,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
340 |
else:
|
341 |
encode_kwargs["prefix"] = (
|
342 |
PREFIX_DICT[prompt_name]
|
343 |
-
if self.task !=
|
344 |
else PREFIX_DICT["query"]
|
345 |
)
|
346 |
|
@@ -353,18 +390,32 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
353 |
encode_kwargs["vector_type"] = vector_type
|
354 |
|
355 |
truncate_dim = truncate_dim or self.config.truncate_dim
|
356 |
-
if truncate_dim is not None and truncate_dim not in
|
357 |
raise ValueError(
|
358 |
-
f"Invalid truncate_dim: {truncate_dim}. Must be one of {
|
359 |
)
|
360 |
else:
|
361 |
encode_kwargs["truncate_dim"] = truncate_dim
|
362 |
|
363 |
return encode_kwargs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
364 |
|
365 |
def encode_texts(
|
366 |
self,
|
367 |
texts: List[str],
|
|
|
368 |
max_length: int = 8192,
|
369 |
batch_size: int = 8,
|
370 |
vector_type: Optional[str] = None,
|
@@ -392,6 +443,8 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
392 |
vector_type, truncate_dim, prompt_name
|
393 |
)
|
394 |
|
|
|
|
|
395 |
processor_fn = partial(
|
396 |
self.processor.process_texts,
|
397 |
max_length=max_length,
|
@@ -402,6 +455,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
402 |
data=texts,
|
403 |
processor_fn=processor_fn,
|
404 |
desc="Encoding texts...",
|
|
|
405 |
return_numpy=return_numpy,
|
406 |
batch_size=batch_size,
|
407 |
**encode_kwargs,
|
@@ -412,6 +466,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
412 |
def encode_images(
|
413 |
self,
|
414 |
images: List[Image.Image],
|
|
|
415 |
batch_size: int = 8,
|
416 |
vector_type: Optional[str] = None,
|
417 |
return_numpy: bool = False,
|
@@ -434,14 +489,17 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
434 |
"""
|
435 |
if max_pixels:
|
436 |
default_max_pixels = self.processor.image_processor.max_pixels
|
437 |
-
self.processor.image_processor.max_pixels =
|
|
|
|
|
438 |
|
439 |
encode_kwargs = self._validate_encoding_params(vector_type, truncate_dim)
|
440 |
-
|
441 |
embeddings = self._process_batches(
|
442 |
data=images,
|
443 |
processor_fn=self.processor.process_images,
|
444 |
desc="Encoding images...",
|
|
|
445 |
batch_size=batch_size,
|
446 |
return_numpy=return_numpy,
|
447 |
**encode_kwargs,
|
@@ -464,15 +522,9 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
464 |
"""
|
465 |
if "torch_dtype" not in kwargs:
|
466 |
kwargs["torch_dtype"] = "auto"
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
task = TaskType(task_value)
|
471 |
-
except ValueError:
|
472 |
-
valid_tasks = [t.value for t in TaskType]
|
473 |
-
raise ValueError(
|
474 |
-
f"Invalid task: {task_value}. Must be one of {valid_tasks}."
|
475 |
-
)
|
476 |
|
477 |
base_model = super().from_pretrained(
|
478 |
pretrained_model_name_or_path, *args, **kwargs
|
@@ -487,44 +539,31 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
487 |
)
|
488 |
adapter_dir = os.path.join(adapter_cache_path, "adapters")
|
489 |
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
|
|
|
|
|
|
494 |
peft_model = PeftModel.from_pretrained(
|
495 |
-
base_model,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
496 |
)
|
497 |
-
|
498 |
-
# Add set_task method to the PEFT model instance
|
499 |
-
def set_task_method(self, task: Union[str, TaskType]):
|
500 |
-
"""
|
501 |
-
Set the task adapter for the model.
|
502 |
-
|
503 |
-
Args:
|
504 |
-
task (Union[str, TaskType]): The task name. Must be one of TaskType values or
|
505 |
-
one of ['retrieval', 'text-matching', 'code']
|
506 |
-
"""
|
507 |
-
if isinstance(task, str):
|
508 |
-
try:
|
509 |
-
task = TaskType(task)
|
510 |
-
except ValueError:
|
511 |
-
valid_tasks = [t.value for t in TaskType]
|
512 |
-
raise ValueError(
|
513 |
-
f"Invalid task: {task}. Must be one of {valid_tasks}"
|
514 |
-
)
|
515 |
-
if self.model.task != task:
|
516 |
-
adapter_path = os.path.join(self.adapter_dir, task.value)
|
517 |
-
hotswap_adapter(self, adapter_path, adapter_name="default")
|
518 |
-
self.model.task = task
|
519 |
-
|
520 |
-
def get_task_method(self):
|
521 |
-
"""
|
522 |
-
Get the task adapter for the model.
|
523 |
-
"""
|
524 |
-
return self.model.task.value
|
525 |
-
|
526 |
-
# Bind the methods to the instance
|
527 |
-
peft_model.set_task = set_task_method.__get__(peft_model, type(peft_model))
|
528 |
-
peft_model.get_task = get_task_method.__get__(peft_model, type(peft_model))
|
529 |
|
530 |
return peft_model
|
|
|
10 |
import numpy as np
|
11 |
import torch
|
12 |
from huggingface_hub import snapshot_download
|
13 |
+
from peft import PeftModel, LoraConfig
|
14 |
from peft.utils.hotswap import hotswap_adapter
|
15 |
from PIL import Image
|
16 |
from torch import nn
|
17 |
from torch.utils.data import DataLoader
|
18 |
from tqdm import tqdm
|
19 |
from transformers import BatchFeature
|
20 |
+
from .qwen2_5_vl import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor
|
|
|
|
|
21 |
from .configuration_jina_embeddings_v4 import JinaEmbeddingsV4Config
|
22 |
+
import peft
|
23 |
+
from .custom_lora_module import MultiAdapterLinear
|
24 |
|
25 |
|
26 |
class PromptType(str, Enum):
|
|
|
28 |
passage = "passage"
|
29 |
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
PREFIX_DICT = {"query": "Query", "passage": "Passage"}
|
|
|
32 |
VECTOR_TYPES = ["single_vector", "multi_vector"]
|
33 |
|
34 |
|
|
|
146 |
)
|
147 |
self.single_vector_projector_dim = config.single_vector_projector_dim
|
148 |
self.multi_vector_projector_dim = config.multi_vector_projector_dim
|
149 |
+
self._task = None
|
150 |
+
|
151 |
+
@property
|
152 |
+
def task(self) -> Optional[str]:
|
153 |
+
"""Get the current task set for the model."""
|
154 |
+
return self._task
|
155 |
+
|
156 |
+
@task.setter
|
157 |
+
def task(self, task: str):
|
158 |
+
"""
|
159 |
+
Set the task for the model.
|
160 |
+
|
161 |
+
Args:
|
162 |
+
task (str): The task name. Must be one of ['retrieval', 'text-matching', 'code']
|
163 |
+
"""
|
164 |
+
if task not in self.config.task_names:
|
165 |
+
raise ValueError(f"Invalid task: {task}. Must be one of {self.config.task_names}.")
|
166 |
+
self._task = task
|
167 |
|
168 |
def get_last_hidden_states(
|
169 |
self,
|
170 |
+
task_label: Union[str, List[str]],
|
171 |
input_ids: torch.LongTensor,
|
172 |
attention_mask: torch.Tensor,
|
173 |
**kwargs,
|
|
|
185 |
)
|
186 |
|
187 |
kwargs["output_hidden_states"] = True
|
|
|
188 |
outputs = super().forward(
|
189 |
+
task_label=task_label,
|
190 |
+
input_ids=input_ids,
|
191 |
+
attention_mask=attention_mask,
|
192 |
**kwargs,
|
193 |
position_ids=position_ids,
|
194 |
rope_deltas=rope_deltas,
|
|
|
220 |
|
221 |
def project_to_single_vector_embeddings(
|
222 |
self,
|
223 |
+
task_label: Union[str, List[str]],
|
224 |
hidden_states: torch.Tensor,
|
225 |
attention_mask: torch.Tensor,
|
226 |
input_ids: Optional[torch.LongTensor] = None,
|
|
|
229 |
Project the hidden states to single-vector embeddings.
|
230 |
"""
|
231 |
if self._input_has_image(input_ids[0]): # got document image
|
232 |
+
img_start_positions = torch.where(
|
233 |
+
input_ids == self.config.vision_start_token_id
|
234 |
+
)[1]
|
235 |
+
img_end_positions = torch.where(
|
236 |
+
input_ids == self.config.vision_end_token_id
|
237 |
+
)[1]
|
238 |
+
|
239 |
batch_size, seq_len = input_ids.shape
|
240 |
+
position_indices = torch.arange(seq_len, device=input_ids.device).expand(
|
241 |
+
batch_size, -1
|
242 |
+
)
|
243 |
+
image_mask = (position_indices >= img_start_positions.unsqueeze(1)) & (
|
244 |
+
position_indices <= img_end_positions.unsqueeze(1)
|
245 |
+
)
|
246 |
+
|
247 |
masked_hidden_states = hidden_states * image_mask.unsqueeze(-1)
|
248 |
+
pooled_output = masked_hidden_states.sum(dim=1) / image_mask.sum(
|
249 |
+
dim=1, keepdim=True
|
250 |
+
)
|
251 |
|
252 |
else: # got query text
|
253 |
pooled_output = torch.sum(
|
254 |
hidden_states * attention_mask.unsqueeze(-1), dim=1
|
255 |
) / torch.sum(attention_mask, dim=1, keepdim=True)
|
256 |
|
257 |
+
single_vec_emb = self.single_vector_projector(
|
258 |
+
pooled_output, task_label=task_label
|
259 |
+
)
|
260 |
return torch.nn.functional.normalize(single_vec_emb, dim=-1)
|
261 |
|
262 |
def project_to_multi_vector_embeddings(
|
263 |
self,
|
264 |
+
task_label: Union[str, List[str]],
|
265 |
hidden_states: torch.Tensor,
|
266 |
attention_mask: torch.Tensor,
|
267 |
) -> torch.Tensor:
|
268 |
"""
|
269 |
Project the hidden states to multi-vector embeddings.
|
270 |
"""
|
271 |
+
multi_vec_emb = self.multi_vector_projector(
|
272 |
+
hidden_states, task_label=task_label
|
273 |
+
)
|
274 |
multi_vec_emb = torch.nn.functional.normalize(multi_vec_emb, dim=-1)
|
275 |
return multi_vec_emb * attention_mask.unsqueeze(-1)
|
276 |
|
|
|
279 |
|
280 |
def forward(
|
281 |
self,
|
282 |
+
task_label: Union[str, List[str]],
|
283 |
input_ids: torch.LongTensor,
|
284 |
attention_mask: torch.Tensor,
|
285 |
output_vlm_last_hidden_states: bool = False,
|
|
|
297 |
"""
|
298 |
# Forward pass through the VLM
|
299 |
hidden_states = self.get_last_hidden_states(
|
300 |
+
input_ids=input_ids,
|
301 |
+
attention_mask=attention_mask,
|
302 |
+
task_label=task_label,
|
303 |
+
**kwargs,
|
304 |
) # (batch_size, seq_length, hidden_size)
|
|
|
305 |
# Compute the embeddings
|
306 |
single_vec_emb = self.project_to_single_vector_embeddings(
|
307 |
+
hidden_states=hidden_states,
|
308 |
+
attention_mask=attention_mask,
|
309 |
+
input_ids=input_ids,
|
310 |
+
task_label=task_label,
|
311 |
)
|
312 |
multi_vec_emb = self.project_to_multi_vector_embeddings(
|
313 |
+
hidden_states=hidden_states,
|
314 |
+
attention_mask=attention_mask,
|
315 |
+
task_label=task_label,
|
316 |
)
|
317 |
|
318 |
return JinaEmbeddingsV4ModelOutput(
|
|
|
326 |
def _process_batches(
|
327 |
self,
|
328 |
data: List[Union[str, Image.Image]],
|
329 |
+
task_label: Union[str, List[str]],
|
330 |
processor_fn: Callable,
|
331 |
desc: str,
|
332 |
vector_type: str = "single_vector",
|
|
|
346 |
with torch.no_grad():
|
347 |
batch = {k: v.to(self.device) for k, v in batch.items()}
|
348 |
with torch.autocast(device_type=torch.device(self.device).type):
|
349 |
+
embeddings = self(**batch, task_label=task_label)
|
350 |
if vector_type == "single_vector":
|
351 |
embeddings = embeddings.single_vec_emb
|
352 |
if truncate_dim is not None:
|
|
|
377 |
else:
|
378 |
encode_kwargs["prefix"] = (
|
379 |
PREFIX_DICT[prompt_name]
|
380 |
+
if self.task != "text-matching"
|
381 |
else PREFIX_DICT["query"]
|
382 |
)
|
383 |
|
|
|
390 |
encode_kwargs["vector_type"] = vector_type
|
391 |
|
392 |
truncate_dim = truncate_dim or self.config.truncate_dim
|
393 |
+
if truncate_dim is not None and truncate_dim not in self.config.matryoshka_dims:
|
394 |
raise ValueError(
|
395 |
+
f"Invalid truncate_dim: {truncate_dim}. Must be one of {self.config.matryoshka_dims}."
|
396 |
)
|
397 |
else:
|
398 |
encode_kwargs["truncate_dim"] = truncate_dim
|
399 |
|
400 |
return encode_kwargs
|
401 |
+
|
402 |
+
def _validate_task(self, task: Optional[str] = None) -> str:
|
403 |
+
if task is None:
|
404 |
+
if self.task is None:
|
405 |
+
raise ValueError(
|
406 |
+
"Task must be specified before encoding data. You can set it either as a model property "
|
407 |
+
"(e.g., model.task = 'retrieval') or pass it as an argument to the encode method."
|
408 |
+
)
|
409 |
+
task = self.task
|
410 |
+
else:
|
411 |
+
if task not in self.config.task_names:
|
412 |
+
raise ValueError(f"Invalid task: {task}. Must be one of {self.config.task_names}.")
|
413 |
+
return task
|
414 |
|
415 |
def encode_texts(
|
416 |
self,
|
417 |
texts: List[str],
|
418 |
+
task: Optional[str] = None,
|
419 |
max_length: int = 8192,
|
420 |
batch_size: int = 8,
|
421 |
vector_type: Optional[str] = None,
|
|
|
443 |
vector_type, truncate_dim, prompt_name
|
444 |
)
|
445 |
|
446 |
+
task = self._validate_task(task)
|
447 |
+
|
448 |
processor_fn = partial(
|
449 |
self.processor.process_texts,
|
450 |
max_length=max_length,
|
|
|
455 |
data=texts,
|
456 |
processor_fn=processor_fn,
|
457 |
desc="Encoding texts...",
|
458 |
+
task_label=task,
|
459 |
return_numpy=return_numpy,
|
460 |
batch_size=batch_size,
|
461 |
**encode_kwargs,
|
|
|
466 |
def encode_images(
|
467 |
self,
|
468 |
images: List[Image.Image],
|
469 |
+
task: Optional[str] = None,
|
470 |
batch_size: int = 8,
|
471 |
vector_type: Optional[str] = None,
|
472 |
return_numpy: bool = False,
|
|
|
489 |
"""
|
490 |
if max_pixels:
|
491 |
default_max_pixels = self.processor.image_processor.max_pixels
|
492 |
+
self.processor.image_processor.max_pixels = (
|
493 |
+
max_pixels # change during encoding
|
494 |
+
)
|
495 |
|
496 |
encode_kwargs = self._validate_encoding_params(vector_type, truncate_dim)
|
497 |
+
task = self._validate_task(task)
|
498 |
embeddings = self._process_batches(
|
499 |
data=images,
|
500 |
processor_fn=self.processor.process_images,
|
501 |
desc="Encoding images...",
|
502 |
+
task_label=task,
|
503 |
batch_size=batch_size,
|
504 |
return_numpy=return_numpy,
|
505 |
**encode_kwargs,
|
|
|
522 |
"""
|
523 |
if "torch_dtype" not in kwargs:
|
524 |
kwargs["torch_dtype"] = "auto"
|
525 |
+
|
526 |
+
if torch.cuda.is_available() and "attn_implementation" not in kwargs:
|
527 |
+
kwargs["attn_implementation"] = "flash_attention_2"
|
|
|
|
|
|
|
|
|
|
|
|
|
528 |
|
529 |
base_model = super().from_pretrained(
|
530 |
pretrained_model_name_or_path, *args, **kwargs
|
|
|
539 |
)
|
540 |
adapter_dir = os.path.join(adapter_cache_path, "adapters")
|
541 |
|
542 |
+
lora_config = LoraConfig.from_pretrained(adapter_dir)
|
543 |
+
lora_config._custom_modules = {
|
544 |
+
torch.nn.modules.linear.Linear: partial(
|
545 |
+
MultiAdapterLinear,
|
546 |
+
task_names=base_model.config.task_names,
|
547 |
+
)
|
548 |
+
}
|
549 |
peft_model = PeftModel.from_pretrained(
|
550 |
+
model=base_model,
|
551 |
+
model_id=adapter_dir,
|
552 |
+
config=lora_config,
|
553 |
+
)
|
554 |
+
|
555 |
+
@property
|
556 |
+
def task(self):
|
557 |
+
return self.model.task
|
558 |
+
|
559 |
+
@task.setter
|
560 |
+
def task(self, value):
|
561 |
+
self.model.task = value
|
562 |
+
|
563 |
+
peft_model.task = property(task.fget, task.fset)
|
564 |
+
peft_model.__class__.task = property(
|
565 |
+
lambda self: self.model.task,
|
566 |
+
lambda self, value: setattr(self.model, 'task', value)
|
567 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
568 |
|
569 |
return peft_model
|
qwen2_5_vl.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|