update-qwen-implementation (#14)
Browse files- feat: update everything to support tr 4.52.0+ (f8c79f56aca106798a6ecb49d462a99fc6c46349)
- refactor: minor changes (ea42d55cf66de4e9120930b0b2e9deefcc0009e0)
- adapters/adapter_config.json +1 -1
- adapters/adapter_model.safetensors +2 -2
- config.json +1 -1
- modeling_jina_embeddings_v4.py +5 -6
- preprocessor_config.json +1 -0
- qwen2_5_vl.py +588 -363
adapters/adapter_config.json
CHANGED
@@ -5,7 +5,7 @@
|
|
5 |
"bias": "none",
|
6 |
"corda_config": null,
|
7 |
"eva_config": null,
|
8 |
-
"exclude_modules":
|
9 |
"fan_in_fan_out": false,
|
10 |
"inference_mode": true,
|
11 |
"init_lora_weights": "gaussian",
|
|
|
5 |
"bias": "none",
|
6 |
"corda_config": null,
|
7 |
"eva_config": null,
|
8 |
+
"exclude_modules": ".*visual.*",
|
9 |
"fan_in_fan_out": false,
|
10 |
"inference_mode": true,
|
11 |
"init_lora_weights": "gaussian",
|
adapters/adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9799872132988d3689a35300538fb97fc5b0e02c1c42f7afd914fd1d8b59a88
|
3 |
+
size 360118024
|
config.json
CHANGED
@@ -37,7 +37,7 @@
|
|
37 |
"sliding_window": 32768,
|
38 |
"tie_word_embeddings": true,
|
39 |
"torch_dtype": "bfloat16",
|
40 |
-
"transformers_version": "4.
|
41 |
"use_cache": true,
|
42 |
"use_sliding_window": false,
|
43 |
"video_token_id": 151656,
|
|
|
37 |
"sliding_window": 32768,
|
38 |
"tie_word_embeddings": true,
|
39 |
"torch_dtype": "bfloat16",
|
40 |
+
"transformers_version": "4.52.0",
|
41 |
"use_cache": true,
|
42 |
"use_sliding_window": false,
|
43 |
"video_token_id": 151656,
|
modeling_jina_embeddings_v4.py
CHANGED
@@ -11,7 +11,6 @@ import numpy as np
|
|
11 |
import torch
|
12 |
from huggingface_hub import snapshot_download
|
13 |
from peft import PeftModel, LoraConfig
|
14 |
-
from peft.utils.hotswap import hotswap_adapter
|
15 |
from PIL import Image
|
16 |
from torch import nn
|
17 |
from torch.utils.data import DataLoader
|
@@ -19,7 +18,6 @@ from tqdm import tqdm
|
|
19 |
from transformers import BatchFeature
|
20 |
from .qwen2_5_vl import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor
|
21 |
from .configuration_jina_embeddings_v4 import JinaEmbeddingsV4Config
|
22 |
-
import peft
|
23 |
from .custom_lora_module import MultiAdapterLinear
|
24 |
|
25 |
|
@@ -177,8 +175,7 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
177 |
kwargs["pixel_values"] = torch.cat(
|
178 |
[pv[:o] for pv, o in zip(kwargs["pixel_values"], offsets)], dim=0
|
179 |
)
|
180 |
-
|
181 |
-
position_ids, rope_deltas = super().get_rope_index(
|
182 |
input_ids=input_ids,
|
183 |
image_grid_thw=kwargs.get("image_grid_thw", None),
|
184 |
attention_mask=attention_mask,
|
@@ -209,12 +206,12 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
209 |
self.config.multi_vector_projector_dim = config.multi_vector_projector_dim
|
210 |
|
211 |
self.single_vector_projector = nn.Linear(
|
212 |
-
in_features=self.config.hidden_size,
|
213 |
out_features=self.config.single_vector_projector_dim,
|
214 |
)
|
215 |
|
216 |
self.multi_vector_projector = nn.Linear(
|
217 |
-
in_features=self.config.hidden_size,
|
218 |
out_features=self.config.multi_vector_projector_dim,
|
219 |
)
|
220 |
|
@@ -525,6 +522,8 @@ class JinaEmbeddingsV4Model(Qwen2_5_VLForConditionalGeneration):
|
|
525 |
|
526 |
if torch.cuda.is_available() and "attn_implementation" not in kwargs:
|
527 |
kwargs["attn_implementation"] = "flash_attention_2"
|
|
|
|
|
528 |
|
529 |
base_model = super().from_pretrained(
|
530 |
pretrained_model_name_or_path, *args, **kwargs
|
|
|
11 |
import torch
|
12 |
from huggingface_hub import snapshot_download
|
13 |
from peft import PeftModel, LoraConfig
|
|
|
14 |
from PIL import Image
|
15 |
from torch import nn
|
16 |
from torch.utils.data import DataLoader
|
|
|
18 |
from transformers import BatchFeature
|
19 |
from .qwen2_5_vl import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLProcessor
|
20 |
from .configuration_jina_embeddings_v4 import JinaEmbeddingsV4Config
|
|
|
21 |
from .custom_lora_module import MultiAdapterLinear
|
22 |
|
23 |
|
|
|
175 |
kwargs["pixel_values"] = torch.cat(
|
176 |
[pv[:o] for pv, o in zip(kwargs["pixel_values"], offsets)], dim=0
|
177 |
)
|
178 |
+
position_ids, rope_deltas = self.model.get_rope_index(
|
|
|
179 |
input_ids=input_ids,
|
180 |
image_grid_thw=kwargs.get("image_grid_thw", None),
|
181 |
attention_mask=attention_mask,
|
|
|
206 |
self.config.multi_vector_projector_dim = config.multi_vector_projector_dim
|
207 |
|
208 |
self.single_vector_projector = nn.Linear(
|
209 |
+
in_features=self.config.text_config.hidden_size,
|
210 |
out_features=self.config.single_vector_projector_dim,
|
211 |
)
|
212 |
|
213 |
self.multi_vector_projector = nn.Linear(
|
214 |
+
in_features=self.config.text_config.hidden_size,
|
215 |
out_features=self.config.multi_vector_projector_dim,
|
216 |
)
|
217 |
|
|
|
522 |
|
523 |
if torch.cuda.is_available() and "attn_implementation" not in kwargs:
|
524 |
kwargs["attn_implementation"] = "flash_attention_2"
|
525 |
+
|
526 |
+
kwargs["key_mapping"] = super()._checkpoint_conversion_mapping
|
527 |
|
528 |
base_model = super().from_pretrained(
|
529 |
pretrained_model_name_or_path, *args, **kwargs
|
preprocessor_config.json
CHANGED
@@ -21,6 +21,7 @@
|
|
21 |
"processor_class": "JinaEmbeddingsV4Processor",
|
22 |
"resample": 3,
|
23 |
"rescale_factor": 0.00392156862745098,
|
|
|
24 |
"size": {
|
25 |
"longest_edge": 602112,
|
26 |
"shortest_edge": 3136
|
|
|
21 |
"processor_class": "JinaEmbeddingsV4Processor",
|
22 |
"resample": 3,
|
23 |
"rescale_factor": 0.00392156862745098,
|
24 |
+
"video_processor_type": "Qwen2VLVideoProcessor",
|
25 |
"size": {
|
26 |
"longest_edge": 602112,
|
27 |
"shortest_edge": 3136
|
qwen2_5_vl.py
CHANGED
@@ -24,6 +24,7 @@ class Qwen2_5_VLVisionConfig(PretrainedConfig):
|
|
24 |
window_size=112,
|
25 |
out_hidden_size=3584,
|
26 |
fullatt_block_indexes=[7, 15, 23, 31],
|
|
|
27 |
**kwargs,
|
28 |
):
|
29 |
super().__init__(**kwargs)
|
@@ -41,11 +42,12 @@ class Qwen2_5_VLVisionConfig(PretrainedConfig):
|
|
41 |
self.window_size = window_size
|
42 |
self.fullatt_block_indexes = fullatt_block_indexes
|
43 |
self.out_hidden_size = out_hidden_size
|
|
|
44 |
|
45 |
|
46 |
-
class
|
47 |
r"""
|
48 |
-
This is the configuration class to store the configuration of a [`
|
49 |
Qwen2-VL model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
50 |
with the defaults will yield a similar configuration to that of
|
51 |
Qwen2-VL-7B-Instruct [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct).
|
@@ -53,7 +55,6 @@ class Qwen2_5_VLConfig(PretrainedConfig):
|
|
53 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
54 |
documentation from [`PretrainedConfig`] for more information.
|
55 |
|
56 |
-
|
57 |
Args:
|
58 |
vocab_size (`int`, *optional*, defaults to 152064):
|
59 |
Vocabulary size of the Qwen2_5_VL model. Defines the number of different tokens that can be represented by the
|
@@ -96,8 +97,6 @@ class Qwen2_5_VLConfig(PretrainedConfig):
|
|
96 |
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
97 |
attention_dropout (`float`, *optional*, defaults to 0.0):
|
98 |
The dropout ratio for the attention probabilities.
|
99 |
-
vision_config (`Dict`, *optional*):
|
100 |
-
The config for the visual encoder initialization.
|
101 |
rope_scaling (`Dict`, *optional*):
|
102 |
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
103 |
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
@@ -135,22 +134,26 @@ class Qwen2_5_VLConfig(PretrainedConfig):
|
|
135 |
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
136 |
`high_freq_factor` (`float`, *optional*):
|
137 |
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
|
|
|
|
|
|
|
|
138 |
|
139 |
```python
|
140 |
-
>>> from transformers import
|
141 |
|
142 |
>>> # Initializing a Qwen2_5_VL style configuration
|
143 |
>>> configuration = Qwen2_5_VLConfig()
|
144 |
|
145 |
>>> # Initializing a model from the Qwen2-VL-7B style configuration
|
146 |
-
>>> model =
|
147 |
|
148 |
>>> # Accessing the model configuration
|
149 |
>>> configuration = model.config
|
150 |
```"""
|
151 |
|
152 |
-
model_type = "
|
153 |
-
|
154 |
keys_to_ignore_at_inference = ["past_key_values"]
|
155 |
# Default tensor parallel plan for base model `Qwen2_5_VL`
|
156 |
base_model_tp_plan = {
|
@@ -187,15 +190,11 @@ class Qwen2_5_VLConfig(PretrainedConfig):
|
|
187 |
sliding_window=4096,
|
188 |
max_window_layers=80,
|
189 |
attention_dropout=0.0,
|
190 |
-
vision_config=None,
|
191 |
rope_scaling=None,
|
|
|
|
|
192 |
**kwargs,
|
193 |
):
|
194 |
-
if isinstance(vision_config, dict):
|
195 |
-
self.vision_config = self.sub_configs["vision_config"](**vision_config)
|
196 |
-
elif vision_config is None:
|
197 |
-
self.vision_config = self.sub_configs["vision_config"]()
|
198 |
-
|
199 |
self.vocab_size = vocab_size
|
200 |
self.max_position_embeddings = max_position_embeddings
|
201 |
self.hidden_size = hidden_size
|
@@ -221,7 +220,7 @@ class Qwen2_5_VLConfig(PretrainedConfig):
|
|
221 |
|
222 |
# Validate the correctness of rotary position embeddings parameters
|
223 |
# BC: if there is a 'type' field, move it to 'rope_type'.
|
224 |
-
# and change type from 'mrope' to 'default' because `mrope` does
|
225 |
# one can set it to "linear"/"dynamic" etc. to have scaled RoPE
|
226 |
# TODO: @raushan update config in the hub
|
227 |
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
@@ -229,10 +228,102 @@ class Qwen2_5_VLConfig(PretrainedConfig):
|
|
229 |
self.rope_scaling["type"] = "default"
|
230 |
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
231 |
rope_config_validation(self, ignore_keys={"mrope_section"})
|
|
|
|
|
232 |
|
233 |
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
234 |
|
235 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
|
237 |
import math
|
238 |
from dataclasses import dataclass
|
@@ -241,42 +332,32 @@ from typing import Any, Dict, List, Optional, Tuple, Union
|
|
241 |
import torch
|
242 |
import torch.nn as nn
|
243 |
import torch.nn.functional as F
|
244 |
-
from torch.nn import CrossEntropyLoss
|
245 |
|
246 |
from transformers.activations import ACT2FN
|
247 |
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
|
248 |
from transformers.generation import GenerationMixin
|
249 |
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
|
|
250 |
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
|
251 |
-
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
252 |
from transformers.modeling_utils import PreTrainedModel
|
253 |
-
from transformers.utils import
|
254 |
-
add_start_docstrings,
|
255 |
-
add_start_docstrings_to_model_forward,
|
256 |
-
is_flash_attn_2_available,
|
257 |
-
is_flash_attn_greater_or_equal_2_10,
|
258 |
-
logging,
|
259 |
-
replace_return_docstrings,
|
260 |
-
)
|
261 |
|
262 |
-
if is_flash_attn_2_available():
|
263 |
-
from flash_attn import flash_attn_varlen_func
|
264 |
-
from flash_attn.layers.rotary import apply_rotary_emb
|
265 |
|
266 |
-
|
267 |
-
|
268 |
-
apply_rotary_emb = None
|
269 |
|
270 |
|
271 |
-
if
|
272 |
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
273 |
-
else:
|
274 |
-
flash_attn_varlen_func = None
|
275 |
|
|
|
|
|
276 |
|
277 |
-
|
278 |
|
279 |
-
|
|
|
280 |
|
281 |
|
282 |
class Qwen2_5_VLMLP(nn.Module):
|
@@ -524,8 +605,10 @@ class Qwen2_5_VLVisionSdpaAttention(nn.Module):
|
|
524 |
q = q.transpose(0, 1)
|
525 |
k = k.transpose(0, 1)
|
526 |
v = v.transpose(0, 1)
|
527 |
-
attn_output = F.scaled_dot_product_attention(
|
528 |
-
|
|
|
|
|
529 |
attn_output = attn_output.reshape(seq_length, -1)
|
530 |
attn_output = self.proj(attn_output)
|
531 |
return attn_output
|
@@ -565,27 +648,7 @@ class Qwen2_5_VLVisionBlock(nn.Module):
|
|
565 |
return hidden_states
|
566 |
|
567 |
|
568 |
-
|
569 |
-
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
570 |
-
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
571 |
-
etc.)
|
572 |
-
|
573 |
-
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
574 |
-
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
575 |
-
and behavior.
|
576 |
-
|
577 |
-
Parameters:
|
578 |
-
config ([`Qwen2_5_VLConfig`]):
|
579 |
-
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
580 |
-
load the weights associated with the model, only the configuration. Check out the
|
581 |
-
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
582 |
-
"""
|
583 |
-
|
584 |
-
|
585 |
-
@add_start_docstrings(
|
586 |
-
"The bare Qwen2_5_VL Model outputting raw hidden-states without any specific head on top.",
|
587 |
-
Qwen2_5_VL_START_DOCSTRING,
|
588 |
-
)
|
589 |
class Qwen2_5_VLPreTrainedModel(PreTrainedModel):
|
590 |
config_class = Qwen2_5_VLConfig
|
591 |
base_model_prefix = "model"
|
@@ -598,7 +661,7 @@ class Qwen2_5_VLPreTrainedModel(PreTrainedModel):
|
|
598 |
_supports_static_cache = False # TODO (joao): fix. torch.compile failing probably due to `cache_positions`
|
599 |
|
600 |
def _init_weights(self, module):
|
601 |
-
std = self.config.initializer_range
|
602 |
if isinstance(module, (nn.Linear, nn.Conv3d)):
|
603 |
module.weight.data.normal_(mean=0.0, std=std)
|
604 |
if module.bias is not None:
|
@@ -607,6 +670,8 @@ class Qwen2_5_VLPreTrainedModel(PreTrainedModel):
|
|
607 |
module.weight.data.normal_(mean=0.0, std=std)
|
608 |
if module.padding_idx is not None:
|
609 |
module.weight.data[module.padding_idx].zero_()
|
|
|
|
|
610 |
|
611 |
|
612 |
class Qwen2_5_VisionTransformerPretrainedModel(Qwen2_5_VLPreTrainedModel):
|
@@ -771,8 +836,44 @@ class Qwen2_5_VisionTransformerPretrainedModel(Qwen2_5_VLPreTrainedModel):
|
|
771 |
return hidden_states
|
772 |
|
773 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
774 |
class Qwen2_5_VLRotaryEmbedding(nn.Module):
|
775 |
-
def __init__(self, config:
|
776 |
super().__init__()
|
777 |
# BC: "rope_type" was originally "type"
|
778 |
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
@@ -789,45 +890,20 @@ class Qwen2_5_VLRotaryEmbedding(nn.Module):
|
|
789 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
790 |
self.original_inv_freq = self.inv_freq
|
791 |
|
792 |
-
def _dynamic_frequency_update(self, position_ids, device):
|
793 |
-
"""
|
794 |
-
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
795 |
-
1 - growing beyond the cached sequence length (allow scaling)
|
796 |
-
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
797 |
-
"""
|
798 |
-
seq_len = torch.max(position_ids) + 1
|
799 |
-
if seq_len > self.max_seq_len_cached: # growth
|
800 |
-
inv_freq, self.attention_scaling = self.rope_init_fn(
|
801 |
-
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
802 |
-
)
|
803 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
|
804 |
-
self.max_seq_len_cached = seq_len
|
805 |
-
|
806 |
-
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
|
807 |
-
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
808 |
-
self.max_seq_len_cached = self.original_max_seq_len
|
809 |
-
|
810 |
@torch.no_grad()
|
|
|
811 |
def forward(self, x, position_ids):
|
812 |
-
|
813 |
-
self._dynamic_frequency_update(position_ids, device=x.device)
|
814 |
-
|
815 |
-
# Core RoPE block. In contrast to other models, Qwen2_5_VL has different position ids for thw grids
|
816 |
# So we expand the inv_freq to shape (3, ...)
|
817 |
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1)
|
818 |
position_ids_expanded = position_ids[:, :, None, :].float() # shape (3, bs, 1, positions)
|
819 |
-
|
820 |
-
device_type = x.device.type
|
821 |
-
device_type
|
822 |
-
with torch.autocast(device_type=device_type, enabled=False):
|
823 |
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
|
824 |
emb = torch.cat((freqs, freqs), dim=-1)
|
825 |
-
cos = emb.cos()
|
826 |
-
sin = emb.sin()
|
827 |
-
|
828 |
-
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
|
829 |
-
cos = cos * self.attention_scaling
|
830 |
-
sin = sin * self.attention_scaling
|
831 |
|
832 |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
833 |
|
@@ -844,7 +920,7 @@ class Qwen2MLP(nn.Module):
|
|
844 |
self.act_fn = ACT2FN[config.hidden_act]
|
845 |
|
846 |
def forward(self, x, task_label: Union[str, List[str]]):
|
847 |
-
down_proj = self.down_proj(self.act_fn(self.gate_proj(x, task_label
|
848 |
return down_proj
|
849 |
|
850 |
|
@@ -854,7 +930,7 @@ def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim
|
|
854 |
Explanation:
|
855 |
Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding
|
856 |
sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For
|
857 |
-
vision embedding part, we apply rotary position embedding on temporal, height and width dimension
|
858 |
Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding.
|
859 |
For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal,
|
860 |
height and width) of text embedding is always the same, so the text embedding rotary position embedding has no
|
@@ -911,7 +987,7 @@ class Qwen2_5_VLAttention(nn.Module):
|
|
911 |
and "Generating Long Sequences with Sparse Transformers".
|
912 |
"""
|
913 |
|
914 |
-
def __init__(self, config:
|
915 |
super().__init__()
|
916 |
self.config = config
|
917 |
self.layer_idx = layer_idx
|
@@ -957,9 +1033,9 @@ class Qwen2_5_VLAttention(nn.Module):
|
|
957 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
958 |
bsz, q_len, _ = hidden_states.size()
|
959 |
|
960 |
-
query_states = self.q_proj(hidden_states, task_label
|
961 |
-
key_states = self.k_proj(hidden_states, task_label
|
962 |
-
value_states = self.v_proj(hidden_states, task_label
|
963 |
|
964 |
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
965 |
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
@@ -1003,7 +1079,7 @@ class Qwen2_5_VLAttention(nn.Module):
|
|
1003 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
1004 |
attn_output = attn_output.reshape(bsz, q_len, -1)
|
1005 |
|
1006 |
-
attn_output = self.o_proj(attn_output, task_label
|
1007 |
|
1008 |
if not output_attentions:
|
1009 |
attn_weights = None
|
@@ -1022,10 +1098,11 @@ class Qwen2_5_VLFlashAttention2(Qwen2_5_VLAttention):
|
|
1022 |
|
1023 |
def __init__(self, *args, **kwargs):
|
1024 |
super().__init__(*args, **kwargs)
|
|
|
1025 |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
1026 |
-
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right
|
1027 |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
1028 |
-
self._flash_attn_uses_top_left_mask =
|
1029 |
|
1030 |
def forward(
|
1031 |
self,
|
@@ -1041,9 +1118,9 @@ class Qwen2_5_VLFlashAttention2(Qwen2_5_VLAttention):
|
|
1041 |
):
|
1042 |
bsz, q_len, _ = hidden_states.size()
|
1043 |
|
1044 |
-
query_states = self.q_proj(hidden_states, task_label
|
1045 |
-
key_states = self.k_proj(hidden_states, task_label
|
1046 |
-
value_states = self.v_proj(hidden_states, task_label
|
1047 |
|
1048 |
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
1049 |
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
@@ -1113,8 +1190,8 @@ class Qwen2_5_VLFlashAttention2(Qwen2_5_VLAttention):
|
|
1113 |
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
1114 |
)
|
1115 |
|
1116 |
-
attn_output = attn_output.reshape(bsz, q_len,
|
1117 |
-
attn_output = self.o_proj(attn_output, task_label
|
1118 |
|
1119 |
if not output_attentions:
|
1120 |
attn_weights = None
|
@@ -1149,6 +1226,7 @@ class Qwen2_5_VLSdpaAttention(Qwen2_5_VLAttention):
|
|
1149 |
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
1150 |
)
|
1151 |
return super().forward(
|
|
|
1152 |
hidden_states=hidden_states,
|
1153 |
attention_mask=attention_mask,
|
1154 |
position_ids=position_ids,
|
@@ -1161,9 +1239,9 @@ class Qwen2_5_VLSdpaAttention(Qwen2_5_VLAttention):
|
|
1161 |
|
1162 |
bsz, q_len, _ = hidden_states.size()
|
1163 |
|
1164 |
-
query_states = self.q_proj(hidden_states, task_label
|
1165 |
-
key_states = self.k_proj(hidden_states, task_label
|
1166 |
-
value_states = self.v_proj(hidden_states, task_label
|
1167 |
|
1168 |
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
1169 |
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
@@ -1207,9 +1285,9 @@ class Qwen2_5_VLSdpaAttention(Qwen2_5_VLAttention):
|
|
1207 |
)
|
1208 |
|
1209 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
1210 |
-
attn_output = attn_output.view(bsz, q_len,
|
1211 |
|
1212 |
-
attn_output = self.o_proj(attn_output, task_label
|
1213 |
|
1214 |
return attn_output, None, past_key_value
|
1215 |
|
@@ -1222,7 +1300,7 @@ QWEN2_5_VL_ATTENTION_CLASSES = {
|
|
1222 |
|
1223 |
|
1224 |
class Qwen2_5_VLDecoderLayer(nn.Module):
|
1225 |
-
def __init__(self, config:
|
1226 |
super().__init__()
|
1227 |
self.hidden_size = config.hidden_size
|
1228 |
|
@@ -1293,7 +1371,7 @@ class Qwen2_5_VLDecoderLayer(nn.Module):
|
|
1293 |
# Fully Connected
|
1294 |
residual = hidden_states
|
1295 |
hidden_states = self.post_attention_layernorm(hidden_states)
|
1296 |
-
hidden_states = self.mlp(hidden_states, task_label
|
1297 |
hidden_states = residual + hidden_states
|
1298 |
|
1299 |
outputs = (hidden_states,)
|
@@ -1307,12 +1385,11 @@ class Qwen2_5_VLDecoderLayer(nn.Module):
|
|
1307 |
return outputs
|
1308 |
|
1309 |
|
1310 |
-
@
|
1311 |
-
|
1312 |
-
|
1313 |
-
|
1314 |
-
|
1315 |
-
def __init__(self, config: Qwen2_5_VLConfig):
|
1316 |
super().__init__(config)
|
1317 |
self.padding_idx = config.pad_token_id
|
1318 |
self.vocab_size = config.vocab_size
|
@@ -1335,10 +1412,11 @@ class Qwen2_5_VLModel(Qwen2_5_VLPreTrainedModel):
|
|
1335 |
def set_input_embeddings(self, value):
|
1336 |
self.embed_tokens = value
|
1337 |
|
|
|
1338 |
def forward(
|
1339 |
self,
|
1340 |
task_label: Union[str, List[str]],
|
1341 |
-
input_ids: torch.LongTensor = None,
|
1342 |
attention_mask: Optional[torch.Tensor] = None,
|
1343 |
position_ids: Optional[torch.LongTensor] = None,
|
1344 |
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
@@ -1349,6 +1427,13 @@ class Qwen2_5_VLModel(Qwen2_5_VLPreTrainedModel):
|
|
1349 |
return_dict: Optional[bool] = None,
|
1350 |
cache_position: Optional[torch.LongTensor] = None,
|
1351 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1352 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1353 |
output_hidden_states = (
|
1354 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
@@ -1407,6 +1492,7 @@ class Qwen2_5_VLModel(Qwen2_5_VLPreTrainedModel):
|
|
1407 |
if self.gradient_checkpointing and self.training:
|
1408 |
layer_outputs = self._gradient_checkpointing_func(
|
1409 |
decoder_layer.__call__,
|
|
|
1410 |
hidden_states,
|
1411 |
causal_mask,
|
1412 |
position_ids,
|
@@ -1456,11 +1542,11 @@ class Qwen2_5_VLModel(Qwen2_5_VLPreTrainedModel):
|
|
1456 |
|
1457 |
def _update_causal_mask(
|
1458 |
self,
|
1459 |
-
attention_mask: torch.Tensor,
|
1460 |
input_tensor: torch.Tensor,
|
1461 |
cache_position: torch.Tensor,
|
1462 |
past_key_values: Cache,
|
1463 |
-
output_attentions: bool,
|
1464 |
):
|
1465 |
if self.config._attn_implementation == "flash_attention_2":
|
1466 |
if attention_mask is not None and past_key_values is not None:
|
@@ -1474,6 +1560,10 @@ class Qwen2_5_VLModel(Qwen2_5_VLPreTrainedModel):
|
|
1474 |
if attention_mask is not None and 0.0 in attention_mask:
|
1475 |
return attention_mask
|
1476 |
return None
|
|
|
|
|
|
|
|
|
1477 |
|
1478 |
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
1479 |
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
@@ -1497,7 +1587,7 @@ class Qwen2_5_VLModel(Qwen2_5_VLPreTrainedModel):
|
|
1497 |
):
|
1498 |
return None
|
1499 |
|
1500 |
-
dtype
|
1501 |
min_dtype = torch.finfo(dtype).min
|
1502 |
sequence_length = input_tensor.shape[1]
|
1503 |
# SlidingWindowCache or StaticCache
|
@@ -1517,7 +1607,6 @@ class Qwen2_5_VLModel(Qwen2_5_VLPreTrainedModel):
|
|
1517 |
sequence_length=sequence_length,
|
1518 |
target_length=target_length,
|
1519 |
dtype=dtype,
|
1520 |
-
device=device,
|
1521 |
cache_position=cache_position,
|
1522 |
batch_size=input_tensor.shape[0],
|
1523 |
config=self.config,
|
@@ -1527,7 +1616,7 @@ class Qwen2_5_VLModel(Qwen2_5_VLPreTrainedModel):
|
|
1527 |
if (
|
1528 |
self.config._attn_implementation == "sdpa"
|
1529 |
and attention_mask is not None
|
1530 |
-
and attention_mask.device.type in ["cuda", "xpu"]
|
1531 |
and not output_attentions
|
1532 |
):
|
1533 |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
@@ -1543,7 +1632,6 @@ class Qwen2_5_VLModel(Qwen2_5_VLPreTrainedModel):
|
|
1543 |
sequence_length: int,
|
1544 |
target_length: int,
|
1545 |
dtype: torch.dtype,
|
1546 |
-
device: torch.device,
|
1547 |
cache_position: torch.Tensor,
|
1548 |
batch_size: int,
|
1549 |
config: Qwen2_5_VLConfig,
|
@@ -1562,8 +1650,6 @@ class Qwen2_5_VLModel(Qwen2_5_VLPreTrainedModel):
|
|
1562 |
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
1563 |
dtype (`torch.dtype`):
|
1564 |
The dtype to use for the 4D attention mask.
|
1565 |
-
device (`torch.device`):
|
1566 |
-
The device to plcae the 4D attention mask on.
|
1567 |
cache_position (`torch.Tensor`):
|
1568 |
Indices depicting the position of the input sequence tokens in the sequence.
|
1569 |
batch_size (`torch.Tensor`):
|
@@ -1579,15 +1665,18 @@ class Qwen2_5_VLModel(Qwen2_5_VLPreTrainedModel):
|
|
1579 |
else:
|
1580 |
min_dtype = torch.finfo(dtype).min
|
1581 |
causal_mask = torch.full(
|
1582 |
-
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
1583 |
)
|
1584 |
-
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(
|
1585 |
-
|
|
|
|
|
|
|
1586 |
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
|
1587 |
# the check is needed to verify is current checkpoint was trained with sliding window or not
|
1588 |
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
|
1589 |
-
sliding_attend_mask = torch.arange(target_length, device=device) <= (
|
1590 |
-
cache_position.reshape(-1, 1) -
|
1591 |
)
|
1592 |
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
|
1593 |
causal_mask *= diagonal_attend_mask
|
@@ -1607,154 +1696,27 @@ class Qwen2_5_VLModel(Qwen2_5_VLPreTrainedModel):
|
|
1607 |
return causal_mask
|
1608 |
|
1609 |
|
1610 |
-
@
|
1611 |
-
class
|
1612 |
-
""
|
1613 |
-
|
1614 |
-
|
1615 |
-
Args:
|
1616 |
-
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
1617 |
-
Language modeling loss (for next-token prediction).
|
1618 |
-
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
1619 |
-
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
1620 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1621 |
-
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
1622 |
-
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
1623 |
-
|
1624 |
-
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
1625 |
-
`past_key_values` input) to speed up sequential decoding.
|
1626 |
-
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
1627 |
-
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
1628 |
-
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
1629 |
-
|
1630 |
-
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
1631 |
-
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
1632 |
-
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
1633 |
-
sequence_length)`.
|
1634 |
-
|
1635 |
-
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
1636 |
-
heads.
|
1637 |
-
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
1638 |
-
The rope index difference between sequence length and multimodal rope.
|
1639 |
-
"""
|
1640 |
-
|
1641 |
-
loss: Optional[torch.FloatTensor] = None
|
1642 |
-
logits: torch.FloatTensor = None
|
1643 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None
|
1644 |
-
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
1645 |
-
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
1646 |
-
rope_deltas: Optional[torch.LongTensor] = None
|
1647 |
-
|
1648 |
-
|
1649 |
-
QWEN2_5_VL_INPUTS_DOCSTRING = r"""
|
1650 |
-
Args:
|
1651 |
-
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1652 |
-
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
1653 |
-
it.
|
1654 |
-
|
1655 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1656 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
1657 |
-
|
1658 |
-
[What are input IDs?](../glossary#input-ids)
|
1659 |
-
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1660 |
-
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1661 |
-
|
1662 |
-
- 1 for tokens that are **not masked**,
|
1663 |
-
- 0 for tokens that are **masked**.
|
1664 |
-
|
1665 |
-
[What are attention masks?](../glossary#attention-mask)
|
1666 |
-
|
1667 |
-
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1668 |
-
[`PreTrainedTokenizer.__call__`] for details.
|
1669 |
-
|
1670 |
-
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
1671 |
-
`past_key_values`).
|
1672 |
-
|
1673 |
-
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
1674 |
-
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
1675 |
-
information on the default strategy.
|
1676 |
-
|
1677 |
-
- 1 indicates the head is **not masked**,
|
1678 |
-
- 0 indicates the head is **masked**.
|
1679 |
-
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1680 |
-
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
1681 |
-
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
|
1682 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1683 |
-
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
1684 |
-
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
1685 |
-
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
1686 |
-
|
1687 |
-
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
1688 |
-
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
1689 |
-
|
1690 |
-
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1691 |
-
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1692 |
-
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1693 |
-
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1694 |
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1695 |
-
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1696 |
-
model's internal embedding lookup matrix.
|
1697 |
-
use_cache (`bool`, *optional*):
|
1698 |
-
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1699 |
-
`past_key_values`).
|
1700 |
-
output_attentions (`bool`, *optional*):
|
1701 |
-
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1702 |
-
tensors for more detail.
|
1703 |
-
output_hidden_states (`bool`, *optional*):
|
1704 |
-
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1705 |
-
more detail.
|
1706 |
-
return_dict (`bool`, *optional*):
|
1707 |
-
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1708 |
-
pixel_values (`torch.FloatTensor` of shape `(seq_length, num_channels * image_size * image_size)):
|
1709 |
-
The tensors corresponding to the input images. Pixel values can be obtained using
|
1710 |
-
[`AutoImageProcessor`]. See [`Qwen2_5_VLImageProcessor.__call__`] for details. [`Qwen2_5_VLProcessor`] uses
|
1711 |
-
[`Qwen2_5_VLImageProcessor`] for processing images.
|
1712 |
-
pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)):
|
1713 |
-
The tensors corresponding to the input videos. Pixel values can be obtained using
|
1714 |
-
[`AutoImageProcessor`]. See [`Qwen2_5_VLImageProcessor.__call__`] for details. [`Qwen2_5_VLProcessor`] uses
|
1715 |
-
[`Qwen2_5_VLImageProcessor`] for processing videos.
|
1716 |
-
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
1717 |
-
The temporal, height and width of feature shape of each image in LLM.
|
1718 |
-
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
1719 |
-
The temporal, height and width of feature shape of each video in LLM.
|
1720 |
-
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
1721 |
-
The rope index difference between sequence length and multimodal rope.
|
1722 |
-
"""
|
1723 |
-
|
1724 |
-
|
1725 |
-
class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel, GenerationMixin):
|
1726 |
-
_tied_weights_keys = ["lm_head.weight"]
|
1727 |
config_class = Qwen2_5_VLConfig
|
1728 |
_no_split_modules = ["Qwen2_5_VLDecoderLayer", "Qwen2_5_VLVisionBlock"]
|
1729 |
|
1730 |
def __init__(self, config):
|
1731 |
super().__init__(config)
|
1732 |
self.visual = Qwen2_5_VisionTransformerPretrainedModel._from_config(config.vision_config)
|
1733 |
-
self.
|
1734 |
-
self.vocab_size = config.vocab_size
|
1735 |
-
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1736 |
self.rope_deltas = None # cache rope_deltas here
|
1737 |
|
1738 |
# Initialize weights and apply final processing
|
1739 |
self.post_init()
|
1740 |
|
1741 |
def get_input_embeddings(self):
|
1742 |
-
return self.
|
1743 |
|
1744 |
def set_input_embeddings(self, value):
|
1745 |
-
self.
|
1746 |
-
|
1747 |
-
def get_output_embeddings(self):
|
1748 |
-
return self.lm_head
|
1749 |
-
|
1750 |
-
def set_output_embeddings(self, new_embeddings):
|
1751 |
-
self.lm_head = new_embeddings
|
1752 |
-
|
1753 |
-
def set_decoder(self, decoder):
|
1754 |
-
self.model = decoder
|
1755 |
-
|
1756 |
-
def get_decoder(self):
|
1757 |
-
return self.model
|
1758 |
|
1759 |
def get_rope_index(
|
1760 |
self,
|
@@ -1778,7 +1740,7 @@ class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel, GenerationMi
|
|
1778 |
width position_ids: [0, 1, 2, 3, 4]
|
1779 |
|
1780 |
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
|
1781 |
-
and 1D rotary position
|
1782 |
Examples:
|
1783 |
Temporal (Time): 3 patches, representing different segments of the video in time.
|
1784 |
Height: 2 patches, dividing each frame vertically.
|
@@ -1892,6 +1854,11 @@ class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel, GenerationMi
|
|
1892 |
range_tensor = torch.arange(llm_grid_t).view(-1, 1)
|
1893 |
expanded_range = range_tensor.expand(-1, llm_grid_h * llm_grid_w)
|
1894 |
|
|
|
|
|
|
|
|
|
|
|
1895 |
time_tensor = expanded_range * second_per_grid_t * self.config.vision_config.tokens_per_second
|
1896 |
|
1897 |
time_tensor_long = time_tensor.long()
|
@@ -1933,8 +1900,37 @@ class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel, GenerationMi
|
|
1933 |
|
1934 |
return position_ids, mrope_position_deltas
|
1935 |
|
1936 |
-
|
1937 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1938 |
def forward(
|
1939 |
self,
|
1940 |
task_label: Union[str, List[str]],
|
@@ -1943,7 +1939,6 @@ class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel, GenerationMi
|
|
1943 |
position_ids: Optional[torch.LongTensor] = None,
|
1944 |
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1945 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1946 |
-
labels: Optional[torch.LongTensor] = None,
|
1947 |
use_cache: Optional[bool] = None,
|
1948 |
output_attentions: Optional[bool] = None,
|
1949 |
output_hidden_states: Optional[bool] = None,
|
@@ -1955,45 +1950,25 @@ class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel, GenerationMi
|
|
1955 |
rope_deltas: Optional[torch.LongTensor] = None,
|
1956 |
cache_position: Optional[torch.LongTensor] = None,
|
1957 |
second_per_grid_ts: Optional[torch.Tensor] = None,
|
1958 |
-
) -> Union[Tuple,
|
1959 |
r"""
|
1960 |
-
|
1961 |
-
|
1962 |
-
|
1963 |
-
|
1964 |
-
|
1965 |
-
|
1966 |
-
|
1967 |
-
|
1968 |
-
|
1969 |
-
|
1970 |
-
|
1971 |
-
|
1972 |
-
|
1973 |
-
|
1974 |
-
|
1975 |
-
|
1976 |
-
|
1977 |
-
>>> messages = [
|
1978 |
-
{
|
1979 |
-
"role": "user",
|
1980 |
-
"content": [
|
1981 |
-
{"type": "image"},
|
1982 |
-
{"type": "text", "text": "What is shown in this image?"},
|
1983 |
-
],
|
1984 |
-
},
|
1985 |
-
]
|
1986 |
-
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
1987 |
-
>>> image = Image.open(requests.get(url, stream=True).raw)
|
1988 |
-
|
1989 |
-
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
1990 |
-
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
|
1991 |
-
|
1992 |
-
>>> # Generate
|
1993 |
-
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1994 |
-
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1995 |
-
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
|
1996 |
-
```"""
|
1997 |
|
1998 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1999 |
output_hidden_states = (
|
@@ -2002,10 +1977,9 @@ class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel, GenerationMi
|
|
2002 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
2003 |
|
2004 |
if inputs_embeds is None:
|
2005 |
-
inputs_embeds = self.
|
2006 |
if pixel_values is not None:
|
2007 |
-
|
2008 |
-
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
|
2009 |
n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
|
2010 |
n_image_features = image_embeds.shape[0]
|
2011 |
if n_image_tokens != n_image_features:
|
@@ -2022,8 +1996,7 @@ class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel, GenerationMi
|
|
2022 |
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
|
2023 |
|
2024 |
if pixel_values_videos is not None:
|
2025 |
-
|
2026 |
-
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
|
2027 |
n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
|
2028 |
n_video_features = video_embeds.shape[0]
|
2029 |
if n_video_tokens != n_video_features:
|
@@ -2073,7 +2046,7 @@ class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel, GenerationMi
|
|
2073 |
position_ids = position_ids.add(delta)
|
2074 |
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
|
2075 |
|
2076 |
-
outputs = self.
|
2077 |
task_label=task_label,
|
2078 |
input_ids=None,
|
2079 |
position_ids=position_ids,
|
@@ -2083,6 +2056,197 @@ class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel, GenerationMi
|
|
2083 |
use_cache=use_cache,
|
2084 |
output_attentions=output_attentions,
|
2085 |
output_hidden_states=output_hidden_states,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2086 |
return_dict=return_dict,
|
2087 |
cache_position=cache_position,
|
2088 |
)
|
@@ -2092,18 +2256,7 @@ class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel, GenerationMi
|
|
2092 |
|
2093 |
loss = None
|
2094 |
if labels is not None:
|
2095 |
-
|
2096 |
-
logits = logits.float()
|
2097 |
-
# Shift so that tokens < n predict n
|
2098 |
-
shift_logits = logits[..., :-1, :].contiguous()
|
2099 |
-
shift_labels = labels[..., 1:].contiguous()
|
2100 |
-
# Flatten the tokens
|
2101 |
-
loss_fct = CrossEntropyLoss()
|
2102 |
-
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
2103 |
-
shift_labels = shift_labels.view(-1)
|
2104 |
-
# Enable model parallelism
|
2105 |
-
shift_labels = shift_labels.to(shift_logits.device)
|
2106 |
-
loss = loss_fct(shift_logits, shift_labels)
|
2107 |
|
2108 |
if not return_dict:
|
2109 |
output = (logits,) + outputs[1:]
|
@@ -2115,7 +2268,7 @@ class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel, GenerationMi
|
|
2115 |
past_key_values=outputs.past_key_values,
|
2116 |
hidden_states=outputs.hidden_states,
|
2117 |
attentions=outputs.attentions,
|
2118 |
-
rope_deltas=
|
2119 |
)
|
2120 |
|
2121 |
def prepare_inputs_for_generation(
|
@@ -2283,20 +2436,86 @@ class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel, GenerationMi
|
|
2283 |
|
2284 |
return input_ids, model_kwargs
|
2285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2286 |
|
2287 |
-
|
|
|
2288 |
|
2289 |
from transformers.feature_extraction_utils import BatchFeature
|
2290 |
-
from transformers.image_utils import ImageInput
|
2291 |
-
from transformers.processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, VideosKwargs
|
2292 |
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
|
|
2293 |
|
2294 |
|
2295 |
class Qwen2_5_VLVideosProcessorKwargs(VideosKwargs, total=False):
|
2296 |
fps: Union[List[float], float]
|
2297 |
|
2298 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2299 |
class Qwen2_5_VLProcessorKwargs(ProcessingKwargs, total=False):
|
|
|
2300 |
videos_kwargs: Qwen2_5_VLVideosProcessorKwargs
|
2301 |
_defaults = {
|
2302 |
"text_kwargs": {
|
@@ -2316,20 +2535,33 @@ class Qwen2_5_VLProcessor(ProcessorMixin):
|
|
2316 |
The image processor is a required input.
|
2317 |
tokenizer ([`Qwen2TokenizerFast`], *optional*):
|
2318 |
The tokenizer is a required input.
|
|
|
|
|
2319 |
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
|
2320 |
in a chat into a tokenizable string.
|
2321 |
"""
|
2322 |
|
2323 |
-
attributes = ["image_processor", "tokenizer"]
|
2324 |
valid_kwargs = ["chat_template"]
|
2325 |
|
2326 |
image_processor_class = "AutoImageProcessor"
|
|
|
2327 |
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
|
2328 |
|
2329 |
-
def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
|
2330 |
self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
|
2331 |
self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
|
2332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2333 |
|
2334 |
def __call__(
|
2335 |
self,
|
@@ -2380,64 +2612,56 @@ class Qwen2_5_VLProcessor(ProcessorMixin):
|
|
2380 |
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
2381 |
**kwargs,
|
2382 |
)
|
|
|
|
|
2383 |
if images is not None:
|
2384 |
-
image_inputs = self.image_processor(images=images,
|
2385 |
image_grid_thw = image_inputs["image_grid_thw"]
|
2386 |
-
else:
|
2387 |
-
image_inputs = {}
|
2388 |
-
image_grid_thw = None
|
2389 |
|
2390 |
if videos is not None:
|
2391 |
-
videos_inputs = self.
|
2392 |
video_grid_thw = videos_inputs["video_grid_thw"]
|
2393 |
|
2394 |
fps = output_kwargs["videos_kwargs"].pop("fps", 2.0)
|
2395 |
if isinstance(fps, (int, float)):
|
2396 |
-
second_per_grid_ts = [self.
|
2397 |
elif hasattr(fps, "__len__") and len(fps) == len(video_grid_thw):
|
2398 |
-
second_per_grid_ts = [self.
|
2399 |
else:
|
2400 |
raise ValueError(
|
2401 |
f"The length of fps ({len(fps) if hasattr(fps, '__len__') else fps}) must be equal to the length of video_grid_thw ({len(video_grid_thw)}) or fps should be a single number."
|
2402 |
)
|
2403 |
videos_inputs.update({"second_per_grid_ts": second_per_grid_ts})
|
2404 |
|
2405 |
-
else:
|
2406 |
-
videos_inputs = {}
|
2407 |
-
video_grid_thw = None
|
2408 |
-
|
2409 |
if not isinstance(text, list):
|
2410 |
text = [text]
|
2411 |
|
2412 |
-
|
|
|
2413 |
merge_length = self.image_processor.merge_size**2
|
2414 |
index = 0
|
2415 |
for i in range(len(text)):
|
2416 |
while self.image_token in text[i]:
|
2417 |
-
|
2418 |
-
|
2419 |
-
"<|placeholder|>" * (image_grid_thw[index].prod() // merge_length),
|
2420 |
-
1,
|
2421 |
-
)
|
2422 |
index += 1
|
2423 |
text[i] = text[i].replace("<|placeholder|>", self.image_token)
|
2424 |
|
2425 |
-
if
|
2426 |
-
merge_length = self.
|
2427 |
index = 0
|
2428 |
for i in range(len(text)):
|
2429 |
while self.video_token in text[i]:
|
2430 |
-
|
2431 |
-
|
2432 |
-
"<|placeholder|>" * (video_grid_thw[index].prod() // merge_length),
|
2433 |
-
1,
|
2434 |
-
)
|
2435 |
index += 1
|
2436 |
text[i] = text[i].replace("<|placeholder|>", self.video_token)
|
2437 |
|
|
|
2438 |
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
|
|
2439 |
|
2440 |
-
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs})
|
2441 |
|
2442 |
def batch_decode(self, *args, **kwargs):
|
2443 |
"""
|
@@ -2465,7 +2689,7 @@ class Qwen2_5_VLProcessor(ProcessorMixin):
|
|
2465 |
or `(sequence_length,)`.
|
2466 |
skip_special_tokens (`bool`, *optional*, defaults to `True`):
|
2467 |
Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method.
|
2468 |
-
|
2469 |
Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method.
|
2470 |
**kwargs:
|
2471 |
Additional arguments to be passed to the tokenizer's `batch_decode method`.
|
@@ -2488,5 +2712,6 @@ class Qwen2_5_VLProcessor(ProcessorMixin):
|
|
2488 |
return names_from_processor + ["second_per_grid_ts"]
|
2489 |
|
2490 |
|
2491 |
-
|
|
|
2492 |
|
|
|
24 |
window_size=112,
|
25 |
out_hidden_size=3584,
|
26 |
fullatt_block_indexes=[7, 15, 23, 31],
|
27 |
+
initializer_range=0.02,
|
28 |
**kwargs,
|
29 |
):
|
30 |
super().__init__(**kwargs)
|
|
|
42 |
self.window_size = window_size
|
43 |
self.fullatt_block_indexes = fullatt_block_indexes
|
44 |
self.out_hidden_size = out_hidden_size
|
45 |
+
self.initializer_range = initializer_range
|
46 |
|
47 |
|
48 |
+
class Qwen2_5_VLTextConfig(PretrainedConfig):
|
49 |
r"""
|
50 |
+
This is the configuration class to store the configuration of a [`Qwen2_5_VLTextModel`]. It is used to instantiate a
|
51 |
Qwen2-VL model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
52 |
with the defaults will yield a similar configuration to that of
|
53 |
Qwen2-VL-7B-Instruct [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct).
|
|
|
55 |
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
56 |
documentation from [`PretrainedConfig`] for more information.
|
57 |
|
|
|
58 |
Args:
|
59 |
vocab_size (`int`, *optional*, defaults to 152064):
|
60 |
Vocabulary size of the Qwen2_5_VL model. Defines the number of different tokens that can be represented by the
|
|
|
97 |
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
98 |
attention_dropout (`float`, *optional*, defaults to 0.0):
|
99 |
The dropout ratio for the attention probabilities.
|
|
|
|
|
100 |
rope_scaling (`Dict`, *optional*):
|
101 |
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
102 |
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
|
|
134 |
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
135 |
`high_freq_factor` (`float`, *optional*):
|
136 |
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
137 |
+
image_token_id (`int`, *optional*):
|
138 |
+
Token index used as placeholder for image embeddings.
|
139 |
+
video_token_id (`int`, *optional*):
|
140 |
+
Token index used as placeholder for video embeddings.
|
141 |
|
142 |
```python
|
143 |
+
>>> from transformers import Qwen2_5_VLTextModel, Qwen2_5_VLConfig
|
144 |
|
145 |
>>> # Initializing a Qwen2_5_VL style configuration
|
146 |
>>> configuration = Qwen2_5_VLConfig()
|
147 |
|
148 |
>>> # Initializing a model from the Qwen2-VL-7B style configuration
|
149 |
+
>>> model = Qwen2_5_VLTextModel(configuration)
|
150 |
|
151 |
>>> # Accessing the model configuration
|
152 |
>>> configuration = model.config
|
153 |
```"""
|
154 |
|
155 |
+
model_type = "qwen2_5_vl_text"
|
156 |
+
base_config_key = "text_config"
|
157 |
keys_to_ignore_at_inference = ["past_key_values"]
|
158 |
# Default tensor parallel plan for base model `Qwen2_5_VL`
|
159 |
base_model_tp_plan = {
|
|
|
190 |
sliding_window=4096,
|
191 |
max_window_layers=80,
|
192 |
attention_dropout=0.0,
|
|
|
193 |
rope_scaling=None,
|
194 |
+
image_token_id=None,
|
195 |
+
video_token_id=None,
|
196 |
**kwargs,
|
197 |
):
|
|
|
|
|
|
|
|
|
|
|
198 |
self.vocab_size = vocab_size
|
199 |
self.max_position_embeddings = max_position_embeddings
|
200 |
self.hidden_size = hidden_size
|
|
|
220 |
|
221 |
# Validate the correctness of rotary position embeddings parameters
|
222 |
# BC: if there is a 'type' field, move it to 'rope_type'.
|
223 |
+
# and change type from 'mrope' to 'default' because `mrope` does default RoPE calculations
|
224 |
# one can set it to "linear"/"dynamic" etc. to have scaled RoPE
|
225 |
# TODO: @raushan update config in the hub
|
226 |
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
|
|
228 |
self.rope_scaling["type"] = "default"
|
229 |
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
230 |
rope_config_validation(self, ignore_keys={"mrope_section"})
|
231 |
+
self.image_token_id = image_token_id
|
232 |
+
self.video_token_id = video_token_id
|
233 |
|
234 |
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
235 |
|
236 |
|
237 |
+
class Qwen2_5_VLConfig(PretrainedConfig):
|
238 |
+
r"""
|
239 |
+
This is the configuration class to store the configuration of a [`Qwen2_5_VLModel`]. It is used to instantiate a
|
240 |
+
Qwen2-VL model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
241 |
+
with the defaults will yield a similar configuration to that of
|
242 |
+
Qwen2-VL-7B-Instruct [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct).
|
243 |
+
|
244 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
245 |
+
documentation from [`PretrainedConfig`] for more information.
|
246 |
+
|
247 |
+
|
248 |
+
Args:
|
249 |
+
text_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `Qwen2_5_VLTextConfig`):
|
250 |
+
The config object or dictionary of the text backbone.
|
251 |
+
vision_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `Qwen2_5_VLVisionConfig`):
|
252 |
+
The config object or dictionary of the vision backbone.
|
253 |
+
image_token_id (`int`, *optional*, defaults to 151655):
|
254 |
+
The image token index to encode the image prompt.
|
255 |
+
video_token_id (`int`, *optional*, defaults to 151656):
|
256 |
+
The video token index to encode the image prompt.
|
257 |
+
|
258 |
+
```python
|
259 |
+
>>> from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLConfig
|
260 |
+
|
261 |
+
>>> # Initializing a Qwen2_5_VL style configuration
|
262 |
+
>>> configuration = Qwen2_5_VLConfig()
|
263 |
+
|
264 |
+
>>> # Initializing a model from the Qwen2-VL-7B style configuration
|
265 |
+
>>> model = Qwen2_5_VLForConditionalGeneration(configuration)
|
266 |
+
|
267 |
+
>>> # Accessing the model configuration
|
268 |
+
>>> configuration = model.config
|
269 |
+
```"""
|
270 |
+
|
271 |
+
model_type = "qwen2_5_vl"
|
272 |
+
sub_configs = {"vision_config": Qwen2_5_VLVisionConfig, "text_config": Qwen2_5_VLTextConfig}
|
273 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
274 |
+
|
275 |
+
def __init__(
|
276 |
+
self,
|
277 |
+
text_config=None,
|
278 |
+
vision_config=None,
|
279 |
+
image_token_id=151655,
|
280 |
+
video_token_id=151656,
|
281 |
+
**kwargs,
|
282 |
+
):
|
283 |
+
if isinstance(vision_config, dict):
|
284 |
+
self.vision_config = self.sub_configs["vision_config"](**vision_config)
|
285 |
+
elif vision_config is None:
|
286 |
+
self.vision_config = self.sub_configs["vision_config"]()
|
287 |
+
|
288 |
+
if isinstance(text_config, dict):
|
289 |
+
self.text_config = self.sub_configs["text_config"](**text_config)
|
290 |
+
elif text_config is None:
|
291 |
+
# For BC use all kwargs to init `TextConfig`
|
292 |
+
self.text_config = self.sub_configs["text_config"](**kwargs)
|
293 |
+
|
294 |
+
self.image_token_id = image_token_id
|
295 |
+
self.video_token_id = video_token_id
|
296 |
+
|
297 |
+
super().__init__(**kwargs)
|
298 |
+
|
299 |
+
|
300 |
+
|
301 |
+
|
302 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
303 |
+
# This file was automatically generated from src/transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py.
|
304 |
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
305 |
+
# the file from the modular. If any change should be done, please apply the change to the
|
306 |
+
# modular_qwen2_5_vl.py file directly. One of our CI enforces this.
|
307 |
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
308 |
+
# coding=utf-8
|
309 |
+
# Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
|
310 |
+
#
|
311 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
312 |
+
# and OPT implementations in this library. It has been modified from its
|
313 |
+
# original forms to accommodate minor architectural differences compared
|
314 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
315 |
+
#
|
316 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
317 |
+
# you may not use this file except in compliance with the License.
|
318 |
+
# You may obtain a copy of the License at
|
319 |
+
#
|
320 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
321 |
+
#
|
322 |
+
# Unless required by applicable law or agreed to in writing, software
|
323 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
324 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
325 |
+
# See the License for the specific language governing permissions and
|
326 |
+
# limitations under the License.
|
327 |
|
328 |
import math
|
329 |
from dataclasses import dataclass
|
|
|
332 |
import torch
|
333 |
import torch.nn as nn
|
334 |
import torch.nn.functional as F
|
|
|
335 |
|
336 |
from transformers.activations import ACT2FN
|
337 |
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
|
338 |
from transformers.generation import GenerationMixin
|
339 |
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
340 |
+
from transformers.modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available
|
341 |
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
|
342 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
343 |
from transformers.modeling_utils import PreTrainedModel
|
344 |
+
from transformers.utils import auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
|
|
|
|
|
|
|
346 |
|
347 |
+
if is_flash_attn_available():
|
348 |
+
from transformers.modeling_flash_attention_utils import apply_rotary_emb, flash_attn_varlen_func
|
|
|
349 |
|
350 |
|
351 |
+
if is_flash_attn_available():
|
352 |
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
|
|
|
|
353 |
|
354 |
+
if is_torch_flex_attn_available():
|
355 |
+
from torch.nn.attention.flex_attention import BlockMask
|
356 |
|
357 |
+
from transformers.integrations.flex_attention import make_flex_block_causal_mask
|
358 |
|
359 |
+
|
360 |
+
logger = logging.get_logger(__name__)
|
361 |
|
362 |
|
363 |
class Qwen2_5_VLMLP(nn.Module):
|
|
|
605 |
q = q.transpose(0, 1)
|
606 |
k = k.transpose(0, 1)
|
607 |
v = v.transpose(0, 1)
|
608 |
+
attn_output = F.scaled_dot_product_attention(
|
609 |
+
q.unsqueeze(0), k.unsqueeze(0), v.unsqueeze(0), attention_mask, dropout_p=0.0
|
610 |
+
)
|
611 |
+
attn_output = attn_output.squeeze(0).transpose(0, 1)
|
612 |
attn_output = attn_output.reshape(seq_length, -1)
|
613 |
attn_output = self.proj(attn_output)
|
614 |
return attn_output
|
|
|
648 |
return hidden_states
|
649 |
|
650 |
|
651 |
+
@auto_docstring
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
652 |
class Qwen2_5_VLPreTrainedModel(PreTrainedModel):
|
653 |
config_class = Qwen2_5_VLConfig
|
654 |
base_model_prefix = "model"
|
|
|
661 |
_supports_static_cache = False # TODO (joao): fix. torch.compile failing probably due to `cache_positions`
|
662 |
|
663 |
def _init_weights(self, module):
|
664 |
+
std = self.config.get_text_config().initializer_range
|
665 |
if isinstance(module, (nn.Linear, nn.Conv3d)):
|
666 |
module.weight.data.normal_(mean=0.0, std=std)
|
667 |
if module.bias is not None:
|
|
|
670 |
module.weight.data.normal_(mean=0.0, std=std)
|
671 |
if module.padding_idx is not None:
|
672 |
module.weight.data[module.padding_idx].zero_()
|
673 |
+
elif isinstance(module, Qwen2RMSNorm):
|
674 |
+
module.weight.data.fill_(1.0)
|
675 |
|
676 |
|
677 |
class Qwen2_5_VisionTransformerPretrainedModel(Qwen2_5_VLPreTrainedModel):
|
|
|
836 |
return hidden_states
|
837 |
|
838 |
|
839 |
+
@dataclass
|
840 |
+
class Qwen2_5_VLModelOutputWithPast(ModelOutput):
|
841 |
+
"""
|
842 |
+
Base class for Llava outputs, with hidden states and attentions.
|
843 |
+
|
844 |
+
Args:
|
845 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
846 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
847 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
848 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
849 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
850 |
+
|
851 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
852 |
+
`past_key_values` input) to speed up sequential decoding.
|
853 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
854 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
855 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
856 |
+
|
857 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
858 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
859 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
860 |
+
sequence_length)`.
|
861 |
+
|
862 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
863 |
+
heads.
|
864 |
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
865 |
+
The rope index difference between sequence length and multimodal rope.
|
866 |
+
"""
|
867 |
+
|
868 |
+
last_hidden_state: torch.FloatTensor = None
|
869 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
870 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
871 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
872 |
+
rope_deltas: Optional[torch.LongTensor] = None
|
873 |
+
|
874 |
+
|
875 |
class Qwen2_5_VLRotaryEmbedding(nn.Module):
|
876 |
+
def __init__(self, config: Qwen2_5_VLTextConfig, device=None):
|
877 |
super().__init__()
|
878 |
# BC: "rope_type" was originally "type"
|
879 |
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
|
|
|
890 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
891 |
self.original_inv_freq = self.inv_freq
|
892 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
893 |
@torch.no_grad()
|
894 |
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
895 |
def forward(self, x, position_ids):
|
896 |
+
# In contrast to other models, Qwen2_5_VL has different position ids for the grids
|
|
|
|
|
|
|
897 |
# So we expand the inv_freq to shape (3, ...)
|
898 |
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1)
|
899 |
position_ids_expanded = position_ids[:, :, None, :].float() # shape (3, bs, 1, positions)
|
900 |
+
|
901 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
902 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
|
|
903 |
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
|
904 |
emb = torch.cat((freqs, freqs), dim=-1)
|
905 |
+
cos = emb.cos() * self.attention_scaling
|
906 |
+
sin = emb.sin() * self.attention_scaling
|
|
|
|
|
|
|
|
|
907 |
|
908 |
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
909 |
|
|
|
920 |
self.act_fn = ACT2FN[config.hidden_act]
|
921 |
|
922 |
def forward(self, x, task_label: Union[str, List[str]]):
|
923 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x, task_label)) * self.up_proj(x, task_label), task_label)
|
924 |
return down_proj
|
925 |
|
926 |
|
|
|
930 |
Explanation:
|
931 |
Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding
|
932 |
sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For
|
933 |
+
vision embedding part, we apply rotary position embedding on temporal, height and width dimension separately.
|
934 |
Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding.
|
935 |
For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal,
|
936 |
height and width) of text embedding is always the same, so the text embedding rotary position embedding has no
|
|
|
987 |
and "Generating Long Sequences with Sparse Transformers".
|
988 |
"""
|
989 |
|
990 |
+
def __init__(self, config: Qwen2_5_VLTextConfig, layer_idx: Optional[int] = None):
|
991 |
super().__init__()
|
992 |
self.config = config
|
993 |
self.layer_idx = layer_idx
|
|
|
1033 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
1034 |
bsz, q_len, _ = hidden_states.size()
|
1035 |
|
1036 |
+
query_states = self.q_proj(hidden_states, task_label)
|
1037 |
+
key_states = self.k_proj(hidden_states, task_label)
|
1038 |
+
value_states = self.v_proj(hidden_states, task_label)
|
1039 |
|
1040 |
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
1041 |
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
|
|
1079 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
1080 |
attn_output = attn_output.reshape(bsz, q_len, -1)
|
1081 |
|
1082 |
+
attn_output = self.o_proj(attn_output, task_label)
|
1083 |
|
1084 |
if not output_attentions:
|
1085 |
attn_weights = None
|
|
|
1098 |
|
1099 |
def __init__(self, *args, **kwargs):
|
1100 |
super().__init__(*args, **kwargs)
|
1101 |
+
|
1102 |
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
1103 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignment, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
1104 |
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
1105 |
+
self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask()
|
1106 |
|
1107 |
def forward(
|
1108 |
self,
|
|
|
1118 |
):
|
1119 |
bsz, q_len, _ = hidden_states.size()
|
1120 |
|
1121 |
+
query_states = self.q_proj(hidden_states, task_label)
|
1122 |
+
key_states = self.k_proj(hidden_states, task_label)
|
1123 |
+
value_states = self.v_proj(hidden_states, task_label)
|
1124 |
|
1125 |
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
1126 |
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
|
|
1190 |
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
1191 |
)
|
1192 |
|
1193 |
+
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
1194 |
+
attn_output = self.o_proj(attn_output, task_label)
|
1195 |
|
1196 |
if not output_attentions:
|
1197 |
attn_weights = None
|
|
|
1226 |
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
1227 |
)
|
1228 |
return super().forward(
|
1229 |
+
task_label=task_label,
|
1230 |
hidden_states=hidden_states,
|
1231 |
attention_mask=attention_mask,
|
1232 |
position_ids=position_ids,
|
|
|
1239 |
|
1240 |
bsz, q_len, _ = hidden_states.size()
|
1241 |
|
1242 |
+
query_states = self.q_proj(hidden_states, task_label)
|
1243 |
+
key_states = self.k_proj(hidden_states, task_label)
|
1244 |
+
value_states = self.v_proj(hidden_states, task_label)
|
1245 |
|
1246 |
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
1247 |
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2)
|
|
|
1285 |
)
|
1286 |
|
1287 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
1288 |
+
attn_output = attn_output.view(bsz, q_len, -1)
|
1289 |
|
1290 |
+
attn_output = self.o_proj(attn_output, task_label)
|
1291 |
|
1292 |
return attn_output, None, past_key_value
|
1293 |
|
|
|
1300 |
|
1301 |
|
1302 |
class Qwen2_5_VLDecoderLayer(nn.Module):
|
1303 |
+
def __init__(self, config: Qwen2_5_VLTextConfig, layer_idx: int):
|
1304 |
super().__init__()
|
1305 |
self.hidden_size = config.hidden_size
|
1306 |
|
|
|
1371 |
# Fully Connected
|
1372 |
residual = hidden_states
|
1373 |
hidden_states = self.post_attention_layernorm(hidden_states)
|
1374 |
+
hidden_states = self.mlp(hidden_states, task_label)
|
1375 |
hidden_states = residual + hidden_states
|
1376 |
|
1377 |
outputs = (hidden_states,)
|
|
|
1385 |
return outputs
|
1386 |
|
1387 |
|
1388 |
+
@auto_docstring
|
1389 |
+
class Qwen2_5_VLTextModel(Qwen2_5_VLPreTrainedModel):
|
1390 |
+
config_class = Qwen2_5_VLTextConfig
|
1391 |
+
|
1392 |
+
def __init__(self, config: Qwen2_5_VLTextConfig):
|
|
|
1393 |
super().__init__(config)
|
1394 |
self.padding_idx = config.pad_token_id
|
1395 |
self.vocab_size = config.vocab_size
|
|
|
1412 |
def set_input_embeddings(self, value):
|
1413 |
self.embed_tokens = value
|
1414 |
|
1415 |
+
@auto_docstring
|
1416 |
def forward(
|
1417 |
self,
|
1418 |
task_label: Union[str, List[str]],
|
1419 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1420 |
attention_mask: Optional[torch.Tensor] = None,
|
1421 |
position_ids: Optional[torch.LongTensor] = None,
|
1422 |
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
|
1427 |
return_dict: Optional[bool] = None,
|
1428 |
cache_position: Optional[torch.LongTensor] = None,
|
1429 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1430 |
+
"""
|
1431 |
+
Args:
|
1432 |
+
task_label (`Union[str, List[str]]`):
|
1433 |
+
Task adapter to use for computing embeddings. If string, all batch examples use the same adapter.
|
1434 |
+
If list of strings, each example uses its corresponding adapter. Must be one of the supported
|
1435 |
+
task names (e.g., 'retrieval', 'text-matching', 'code').
|
1436 |
+
"""
|
1437 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1438 |
output_hidden_states = (
|
1439 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
|
1492 |
if self.gradient_checkpointing and self.training:
|
1493 |
layer_outputs = self._gradient_checkpointing_func(
|
1494 |
decoder_layer.__call__,
|
1495 |
+
task_label,
|
1496 |
hidden_states,
|
1497 |
causal_mask,
|
1498 |
position_ids,
|
|
|
1542 |
|
1543 |
def _update_causal_mask(
|
1544 |
self,
|
1545 |
+
attention_mask: Union[torch.Tensor, "BlockMask"],
|
1546 |
input_tensor: torch.Tensor,
|
1547 |
cache_position: torch.Tensor,
|
1548 |
past_key_values: Cache,
|
1549 |
+
output_attentions: bool = False,
|
1550 |
):
|
1551 |
if self.config._attn_implementation == "flash_attention_2":
|
1552 |
if attention_mask is not None and past_key_values is not None:
|
|
|
1560 |
if attention_mask is not None and 0.0 in attention_mask:
|
1561 |
return attention_mask
|
1562 |
return None
|
1563 |
+
if self.config._attn_implementation == "flex_attention":
|
1564 |
+
if isinstance(attention_mask, torch.Tensor):
|
1565 |
+
attention_mask = make_flex_block_causal_mask(attention_mask)
|
1566 |
+
return attention_mask
|
1567 |
|
1568 |
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
1569 |
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
|
|
1587 |
):
|
1588 |
return None
|
1589 |
|
1590 |
+
dtype = input_tensor.dtype
|
1591 |
min_dtype = torch.finfo(dtype).min
|
1592 |
sequence_length = input_tensor.shape[1]
|
1593 |
# SlidingWindowCache or StaticCache
|
|
|
1607 |
sequence_length=sequence_length,
|
1608 |
target_length=target_length,
|
1609 |
dtype=dtype,
|
|
|
1610 |
cache_position=cache_position,
|
1611 |
batch_size=input_tensor.shape[0],
|
1612 |
config=self.config,
|
|
|
1616 |
if (
|
1617 |
self.config._attn_implementation == "sdpa"
|
1618 |
and attention_mask is not None
|
1619 |
+
and attention_mask.device.type in ["cuda", "xpu", "npu"]
|
1620 |
and not output_attentions
|
1621 |
):
|
1622 |
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
|
|
1632 |
sequence_length: int,
|
1633 |
target_length: int,
|
1634 |
dtype: torch.dtype,
|
|
|
1635 |
cache_position: torch.Tensor,
|
1636 |
batch_size: int,
|
1637 |
config: Qwen2_5_VLConfig,
|
|
|
1650 |
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
1651 |
dtype (`torch.dtype`):
|
1652 |
The dtype to use for the 4D attention mask.
|
|
|
|
|
1653 |
cache_position (`torch.Tensor`):
|
1654 |
Indices depicting the position of the input sequence tokens in the sequence.
|
1655 |
batch_size (`torch.Tensor`):
|
|
|
1665 |
else:
|
1666 |
min_dtype = torch.finfo(dtype).min
|
1667 |
causal_mask = torch.full(
|
1668 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
1669 |
)
|
1670 |
+
diagonal_attend_mask = torch.arange(target_length, device=cache_position.device) > cache_position.reshape(
|
1671 |
+
-1, 1
|
1672 |
+
)
|
1673 |
+
text_config = config.get_text_config()
|
1674 |
+
if getattr(text_config, "use_sliding_window", True) and text_config.sliding_window is not None:
|
1675 |
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
|
1676 |
# the check is needed to verify is current checkpoint was trained with sliding window or not
|
1677 |
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
|
1678 |
+
sliding_attend_mask = torch.arange(target_length, device=cache_position.device) <= (
|
1679 |
+
cache_position.reshape(-1, 1) - text_config.sliding_window
|
1680 |
)
|
1681 |
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
|
1682 |
causal_mask *= diagonal_attend_mask
|
|
|
1696 |
return causal_mask
|
1697 |
|
1698 |
|
1699 |
+
@auto_docstring
|
1700 |
+
class Qwen2_5_VLModel(Qwen2_5_VLPreTrainedModel):
|
1701 |
+
base_model_prefix = ""
|
1702 |
+
_checkpoint_conversion_mapping = {"^model": "language_model"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1703 |
config_class = Qwen2_5_VLConfig
|
1704 |
_no_split_modules = ["Qwen2_5_VLDecoderLayer", "Qwen2_5_VLVisionBlock"]
|
1705 |
|
1706 |
def __init__(self, config):
|
1707 |
super().__init__(config)
|
1708 |
self.visual = Qwen2_5_VisionTransformerPretrainedModel._from_config(config.vision_config)
|
1709 |
+
self.language_model = Qwen2_5_VLTextModel._from_config(config.text_config)
|
|
|
|
|
1710 |
self.rope_deltas = None # cache rope_deltas here
|
1711 |
|
1712 |
# Initialize weights and apply final processing
|
1713 |
self.post_init()
|
1714 |
|
1715 |
def get_input_embeddings(self):
|
1716 |
+
return self.language_model.get_input_embeddings()
|
1717 |
|
1718 |
def set_input_embeddings(self, value):
|
1719 |
+
self.language_model.set_input_embeddings(value)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1720 |
|
1721 |
def get_rope_index(
|
1722 |
self,
|
|
|
1740 |
width position_ids: [0, 1, 2, 3, 4]
|
1741 |
|
1742 |
For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
|
1743 |
+
and 1D rotary position embedding for text part.
|
1744 |
Examples:
|
1745 |
Temporal (Time): 3 patches, representing different segments of the video in time.
|
1746 |
Height: 2 patches, dividing each frame vertically.
|
|
|
1854 |
range_tensor = torch.arange(llm_grid_t).view(-1, 1)
|
1855 |
expanded_range = range_tensor.expand(-1, llm_grid_h * llm_grid_w)
|
1856 |
|
1857 |
+
## normalize type, send to device.
|
1858 |
+
second_per_grid_t = torch.as_tensor(
|
1859 |
+
second_per_grid_t, dtype=range_tensor.dtype, device=range_tensor.device
|
1860 |
+
)
|
1861 |
+
|
1862 |
time_tensor = expanded_range * second_per_grid_t * self.config.vision_config.tokens_per_second
|
1863 |
|
1864 |
time_tensor_long = time_tensor.long()
|
|
|
1900 |
|
1901 |
return position_ids, mrope_position_deltas
|
1902 |
|
1903 |
+
def get_video_features(
|
1904 |
+
self, pixel_values_videos: torch.FloatTensor, video_grid_thw: Optional[torch.LongTensor] = None
|
1905 |
+
):
|
1906 |
+
"""
|
1907 |
+
Encodes videos into continuous embeddings that can be forwarded to the language model.
|
1908 |
+
|
1909 |
+
Args:
|
1910 |
+
pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
1911 |
+
The tensors corresponding to the input videos.
|
1912 |
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
1913 |
+
The temporal, height and width of feature shape of each video in LLM.
|
1914 |
+
"""
|
1915 |
+
pixel_values_videos = pixel_values_videos.type(self.visual.dtype)
|
1916 |
+
video_embeds = self.visual(pixel_values_videos, grid_thw=video_grid_thw)
|
1917 |
+
return video_embeds
|
1918 |
+
|
1919 |
+
def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: Optional[torch.LongTensor] = None):
|
1920 |
+
"""
|
1921 |
+
Encodes images into continuous embeddings that can be forwarded to the language model.
|
1922 |
+
|
1923 |
+
Args:
|
1924 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
1925 |
+
The tensors corresponding to the input images.
|
1926 |
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
1927 |
+
The temporal, height and width of feature shape of each image in LLM.
|
1928 |
+
"""
|
1929 |
+
pixel_values = pixel_values.type(self.visual.dtype)
|
1930 |
+
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
|
1931 |
+
return image_embeds
|
1932 |
+
|
1933 |
+
@auto_docstring
|
1934 |
def forward(
|
1935 |
self,
|
1936 |
task_label: Union[str, List[str]],
|
|
|
1939 |
position_ids: Optional[torch.LongTensor] = None,
|
1940 |
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1941 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
|
1942 |
use_cache: Optional[bool] = None,
|
1943 |
output_attentions: Optional[bool] = None,
|
1944 |
output_hidden_states: Optional[bool] = None,
|
|
|
1950 |
rope_deltas: Optional[torch.LongTensor] = None,
|
1951 |
cache_position: Optional[torch.LongTensor] = None,
|
1952 |
second_per_grid_ts: Optional[torch.Tensor] = None,
|
1953 |
+
) -> Union[Tuple, Qwen2_5_VLModelOutputWithPast]:
|
1954 |
r"""
|
1955 |
+
task_label (`Union[str, List[str]]`):
|
1956 |
+
Task adapter to use for computing embeddings. If string, all batch examples use the same adapter.
|
1957 |
+
If list of strings, each example uses its corresponding adapter. Must be one of the supported
|
1958 |
+
task names (e.g., 'retrieval', 'text-matching', 'code').
|
1959 |
+
pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)):
|
1960 |
+
The tensors corresponding to the input videos. Pixel values can be obtained using
|
1961 |
+
[`AutoImageProcessor`]. See [`Qwen2_5_VLImageProcessor.__call__`] for details. [`Qwen2_5_VLProcessor`] uses
|
1962 |
+
[`Qwen2_5_VLImageProcessor`] for processing videos.
|
1963 |
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
1964 |
+
The temporal, height and width of feature shape of each image in LLM.
|
1965 |
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
1966 |
+
The temporal, height and width of feature shape of each video in LLM.
|
1967 |
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
1968 |
+
The rope index difference between sequence length and multimodal rope.
|
1969 |
+
second_per_grid_ts (`torch.Tensor` of shape `(num_videos)`, *optional*):
|
1970 |
+
The time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs.
|
1971 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1972 |
|
1973 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1974 |
output_hidden_states = (
|
|
|
1977 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1978 |
|
1979 |
if inputs_embeds is None:
|
1980 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
1981 |
if pixel_values is not None:
|
1982 |
+
image_embeds = self.get_image_features(pixel_values, image_grid_thw)
|
|
|
1983 |
n_image_tokens = (input_ids == self.config.image_token_id).sum().item()
|
1984 |
n_image_features = image_embeds.shape[0]
|
1985 |
if n_image_tokens != n_image_features:
|
|
|
1996 |
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
|
1997 |
|
1998 |
if pixel_values_videos is not None:
|
1999 |
+
video_embeds = self.get_video_features(pixel_values_videos, video_grid_thw)
|
|
|
2000 |
n_video_tokens = (input_ids == self.config.video_token_id).sum().item()
|
2001 |
n_video_features = video_embeds.shape[0]
|
2002 |
if n_video_tokens != n_video_features:
|
|
|
2046 |
position_ids = position_ids.add(delta)
|
2047 |
position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
|
2048 |
|
2049 |
+
outputs = self.language_model(
|
2050 |
task_label=task_label,
|
2051 |
input_ids=None,
|
2052 |
position_ids=position_ids,
|
|
|
2056 |
use_cache=use_cache,
|
2057 |
output_attentions=output_attentions,
|
2058 |
output_hidden_states=output_hidden_states,
|
2059 |
+
return_dict=True,
|
2060 |
+
cache_position=cache_position,
|
2061 |
+
)
|
2062 |
+
|
2063 |
+
output = Qwen2_5_VLModelOutputWithPast(
|
2064 |
+
last_hidden_state=outputs.last_hidden_state,
|
2065 |
+
past_key_values=outputs.past_key_values,
|
2066 |
+
hidden_states=outputs.hidden_states,
|
2067 |
+
attentions=outputs.attentions,
|
2068 |
+
rope_deltas=self.rope_deltas,
|
2069 |
+
)
|
2070 |
+
return output if return_dict else output.to_tuple()
|
2071 |
+
|
2072 |
+
|
2073 |
+
@dataclass
|
2074 |
+
class Qwen2_5_VLCausalLMOutputWithPast(ModelOutput):
|
2075 |
+
"""
|
2076 |
+
Base class for Qwen2_5_VL causal language model (or autoregressive) outputs.
|
2077 |
+
|
2078 |
+
Args:
|
2079 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
2080 |
+
Language modeling loss (for next-token prediction).
|
2081 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
2082 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
2083 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
2084 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
2085 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
2086 |
+
|
2087 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
2088 |
+
`past_key_values` input) to speed up sequential decoding.
|
2089 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
2090 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
2091 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
2092 |
+
|
2093 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
2094 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
2095 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
2096 |
+
sequence_length)`.
|
2097 |
+
|
2098 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
2099 |
+
heads.
|
2100 |
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
2101 |
+
The rope index difference between sequence length and multimodal rope.
|
2102 |
+
"""
|
2103 |
+
|
2104 |
+
loss: Optional[torch.FloatTensor] = None
|
2105 |
+
logits: Optional[torch.FloatTensor] = None
|
2106 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
2107 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
2108 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
2109 |
+
rope_deltas: Optional[torch.LongTensor] = None
|
2110 |
+
|
2111 |
+
|
2112 |
+
class Qwen2_5_VLForConditionalGeneration(Qwen2_5_VLPreTrainedModel, GenerationMixin):
|
2113 |
+
_checkpoint_conversion_mapping = {
|
2114 |
+
"^visual": "model.visual",
|
2115 |
+
r"^model(?!\.(language_model|visual))": "model.language_model",
|
2116 |
+
}
|
2117 |
+
_tied_weights_keys = ["lm_head.weight"]
|
2118 |
+
|
2119 |
+
def __init__(self, config):
|
2120 |
+
super().__init__(config)
|
2121 |
+
self.model = Qwen2_5_VLModel(config)
|
2122 |
+
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)
|
2123 |
+
|
2124 |
+
self.post_init()
|
2125 |
+
|
2126 |
+
def get_input_embeddings(self):
|
2127 |
+
return self.model.get_input_embeddings()
|
2128 |
+
|
2129 |
+
def set_input_embeddings(self, value):
|
2130 |
+
self.model.set_input_embeddings(value)
|
2131 |
+
|
2132 |
+
def get_output_embeddings(self):
|
2133 |
+
return self.lm_head
|
2134 |
+
|
2135 |
+
def set_output_embeddings(self, new_embeddings):
|
2136 |
+
self.lm_head = new_embeddings
|
2137 |
+
|
2138 |
+
def set_decoder(self, decoder):
|
2139 |
+
self.model = decoder
|
2140 |
+
|
2141 |
+
def get_decoder(self):
|
2142 |
+
return self.model
|
2143 |
+
|
2144 |
+
# Make modules available throught conditional class for BC
|
2145 |
+
@property
|
2146 |
+
def language_model(self):
|
2147 |
+
return self.model.language_model
|
2148 |
+
|
2149 |
+
@property
|
2150 |
+
def visual(self):
|
2151 |
+
return self.model.visual
|
2152 |
+
|
2153 |
+
@can_return_tuple
|
2154 |
+
@auto_docstring
|
2155 |
+
def forward(
|
2156 |
+
self,
|
2157 |
+
task_label: Union[str, List[str]],
|
2158 |
+
input_ids: torch.LongTensor = None,
|
2159 |
+
attention_mask: Optional[torch.Tensor] = None,
|
2160 |
+
position_ids: Optional[torch.LongTensor] = None,
|
2161 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
2162 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
2163 |
+
labels: Optional[torch.LongTensor] = None,
|
2164 |
+
use_cache: Optional[bool] = None,
|
2165 |
+
output_attentions: Optional[bool] = None,
|
2166 |
+
output_hidden_states: Optional[bool] = None,
|
2167 |
+
return_dict: Optional[bool] = None,
|
2168 |
+
pixel_values: Optional[torch.Tensor] = None,
|
2169 |
+
pixel_values_videos: Optional[torch.FloatTensor] = None,
|
2170 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
2171 |
+
video_grid_thw: Optional[torch.LongTensor] = None,
|
2172 |
+
rope_deltas: Optional[torch.LongTensor] = None,
|
2173 |
+
cache_position: Optional[torch.LongTensor] = None,
|
2174 |
+
second_per_grid_ts: Optional[torch.Tensor] = None,
|
2175 |
+
) -> Union[Tuple, Qwen2_5_VLCausalLMOutputWithPast]:
|
2176 |
+
r"""
|
2177 |
+
task_label (`Union[str, List[str]]`):
|
2178 |
+
Task adapter to use for computing embeddings. If string, all batch examples use the same adapter.
|
2179 |
+
If list of strings, each example uses its corresponding adapter. Must be one of the supported
|
2180 |
+
task names (e.g., 'retrieval', 'text-matching', 'code').
|
2181 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
2182 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
2183 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
2184 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
2185 |
+
pixel_values_videos (`torch.FloatTensor` of shape `(seq_length, num_channels * temporal_size * image_size * image_size)):
|
2186 |
+
The tensors corresponding to the input videos. Pixel values can be obtained using
|
2187 |
+
[`AutoImageProcessor`]. See [`Qwen2_5_VLImageProcessor.__call__`] for details. [`Qwen2_5_VLProcessor`] uses
|
2188 |
+
[`Qwen2_5_VLImageProcessor`] for processing videos.
|
2189 |
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
2190 |
+
The temporal, height and width of feature shape of each image in LLM.
|
2191 |
+
video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
|
2192 |
+
The temporal, height and width of feature shape of each video in LLM.
|
2193 |
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
2194 |
+
The rope index difference between sequence length and multimodal rope.
|
2195 |
+
second_per_grid_ts (`torch.Tensor` of shape `(num_videos)`, *optional*):
|
2196 |
+
The time interval (in seconds) for each grid along the temporal dimension in the 3D position IDs.
|
2197 |
+
|
2198 |
+
Example:
|
2199 |
+
|
2200 |
+
```python
|
2201 |
+
>>> from PIL import Image
|
2202 |
+
>>> import requests
|
2203 |
+
>>> from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
|
2204 |
+
|
2205 |
+
>>> model = Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
|
2206 |
+
>>> processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
|
2207 |
+
|
2208 |
+
>>> messages = [
|
2209 |
+
{
|
2210 |
+
"role": "user",
|
2211 |
+
"content": [
|
2212 |
+
{"type": "image"},
|
2213 |
+
{"type": "text", "text": "What is shown in this image?"},
|
2214 |
+
],
|
2215 |
+
},
|
2216 |
+
]
|
2217 |
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
2218 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
2219 |
+
|
2220 |
+
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
2221 |
+
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
|
2222 |
+
|
2223 |
+
>>> # Generate
|
2224 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
2225 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
2226 |
+
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
|
2227 |
+
```"""
|
2228 |
+
|
2229 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
2230 |
+
output_hidden_states = (
|
2231 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
2232 |
+
)
|
2233 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
2234 |
+
|
2235 |
+
outputs = self.model(
|
2236 |
+
task_label=task_label,
|
2237 |
+
input_ids=input_ids,
|
2238 |
+
pixel_values=pixel_values,
|
2239 |
+
pixel_values_videos=pixel_values_videos,
|
2240 |
+
image_grid_thw=image_grid_thw,
|
2241 |
+
video_grid_thw=video_grid_thw,
|
2242 |
+
second_per_grid_ts=second_per_grid_ts,
|
2243 |
+
position_ids=position_ids,
|
2244 |
+
attention_mask=attention_mask,
|
2245 |
+
past_key_values=past_key_values,
|
2246 |
+
inputs_embeds=inputs_embeds,
|
2247 |
+
use_cache=use_cache,
|
2248 |
+
output_attentions=output_attentions,
|
2249 |
+
output_hidden_states=output_hidden_states,
|
2250 |
return_dict=return_dict,
|
2251 |
cache_position=cache_position,
|
2252 |
)
|
|
|
2256 |
|
2257 |
loss = None
|
2258 |
if labels is not None:
|
2259 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2260 |
|
2261 |
if not return_dict:
|
2262 |
output = (logits,) + outputs[1:]
|
|
|
2268 |
past_key_values=outputs.past_key_values,
|
2269 |
hidden_states=outputs.hidden_states,
|
2270 |
attentions=outputs.attentions,
|
2271 |
+
rope_deltas=outputs.rope_deltas,
|
2272 |
)
|
2273 |
|
2274 |
def prepare_inputs_for_generation(
|
|
|
2436 |
|
2437 |
return input_ids, model_kwargs
|
2438 |
|
2439 |
+
@staticmethod
|
2440 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
2441 |
+
attention_mask: torch.Tensor,
|
2442 |
+
sequence_length: int,
|
2443 |
+
target_length: int,
|
2444 |
+
dtype: torch.dtype,
|
2445 |
+
cache_position: torch.Tensor,
|
2446 |
+
batch_size: int,
|
2447 |
+
**kwargs,
|
2448 |
+
):
|
2449 |
+
"""
|
2450 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
2451 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
2452 |
+
|
2453 |
+
Args:
|
2454 |
+
attention_mask (`torch.Tensor`):
|
2455 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
|
2456 |
+
`(batch_size, 1, query_length, key_value_length)`.
|
2457 |
+
sequence_length (`int`):
|
2458 |
+
The sequence length being processed.
|
2459 |
+
target_length (`int`):
|
2460 |
+
The target length: when generating with static cache, the mask should be as long as the static cache,
|
2461 |
+
to account for the 0 padding, the part of the cache that is not filled yet.
|
2462 |
+
dtype (`torch.dtype`):
|
2463 |
+
The dtype to use for the 4D attention mask.
|
2464 |
+
cache_position (`torch.Tensor`):
|
2465 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
2466 |
+
batch_size (`torch.Tensor`):
|
2467 |
+
Batch size.
|
2468 |
+
"""
|
2469 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
2470 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
2471 |
+
causal_mask = attention_mask
|
2472 |
+
else:
|
2473 |
+
min_dtype = torch.finfo(dtype).min
|
2474 |
+
causal_mask = torch.full(
|
2475 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
|
2476 |
+
)
|
2477 |
+
if sequence_length != 1:
|
2478 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
2479 |
+
causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1)
|
2480 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
2481 |
+
if attention_mask is not None:
|
2482 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
2483 |
+
mask_length = attention_mask.shape[-1]
|
2484 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
|
2485 |
+
causal_mask.device
|
2486 |
+
)
|
2487 |
+
padding_mask = padding_mask == 0
|
2488 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
2489 |
+
padding_mask, min_dtype
|
2490 |
+
)
|
2491 |
+
|
2492 |
+
return causal_mask
|
2493 |
+
|
2494 |
|
2495 |
+
|
2496 |
+
from typing import List, Optional, Union
|
2497 |
|
2498 |
from transformers.feature_extraction_utils import BatchFeature
|
2499 |
+
from transformers.image_utils import ImageInput
|
2500 |
+
from transformers.processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, Unpack, VideosKwargs
|
2501 |
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
2502 |
+
from transformers.video_utils import VideoInput
|
2503 |
|
2504 |
|
2505 |
class Qwen2_5_VLVideosProcessorKwargs(VideosKwargs, total=False):
|
2506 |
fps: Union[List[float], float]
|
2507 |
|
2508 |
|
2509 |
+
class Qwen2_5_VLImagesKwargs(ImagesKwargs):
|
2510 |
+
min_pixels: Optional[int]
|
2511 |
+
max_pixels: Optional[int]
|
2512 |
+
patch_size: Optional[int]
|
2513 |
+
temporal_patch_size: Optional[int]
|
2514 |
+
merge_size: Optional[int]
|
2515 |
+
|
2516 |
+
|
2517 |
class Qwen2_5_VLProcessorKwargs(ProcessingKwargs, total=False):
|
2518 |
+
images_kwargs: Qwen2_5_VLImagesKwargs
|
2519 |
videos_kwargs: Qwen2_5_VLVideosProcessorKwargs
|
2520 |
_defaults = {
|
2521 |
"text_kwargs": {
|
|
|
2535 |
The image processor is a required input.
|
2536 |
tokenizer ([`Qwen2TokenizerFast`], *optional*):
|
2537 |
The tokenizer is a required input.
|
2538 |
+
video_processor ([`Qwen2_5_VLVideoProcessor`], *optional*):
|
2539 |
+
The video processor is a required input.
|
2540 |
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
|
2541 |
in a chat into a tokenizable string.
|
2542 |
"""
|
2543 |
|
2544 |
+
attributes = ["image_processor", "tokenizer", "video_processor"]
|
2545 |
valid_kwargs = ["chat_template"]
|
2546 |
|
2547 |
image_processor_class = "AutoImageProcessor"
|
2548 |
+
video_processor_class = "AutoVideoProcessor"
|
2549 |
tokenizer_class = ("Qwen2Tokenizer", "Qwen2TokenizerFast")
|
2550 |
|
2551 |
+
def __init__(self, image_processor=None, tokenizer=None, video_processor=None, chat_template=None, **kwargs):
|
2552 |
self.image_token = "<|image_pad|>" if not hasattr(tokenizer, "image_token") else tokenizer.image_token
|
2553 |
self.video_token = "<|video_pad|>" if not hasattr(tokenizer, "video_token") else tokenizer.video_token
|
2554 |
+
self.image_token_id = (
|
2555 |
+
tokenizer.image_token_id
|
2556 |
+
if getattr(tokenizer, "image_token_id", None)
|
2557 |
+
else tokenizer.convert_tokens_to_ids(self.image_token)
|
2558 |
+
)
|
2559 |
+
self.video_token_id = (
|
2560 |
+
tokenizer.video_token_id
|
2561 |
+
if getattr(tokenizer, "video_token_id", None)
|
2562 |
+
else tokenizer.convert_tokens_to_ids(self.video_token)
|
2563 |
+
)
|
2564 |
+
super().__init__(image_processor, tokenizer, video_processor, chat_template=chat_template)
|
2565 |
|
2566 |
def __call__(
|
2567 |
self,
|
|
|
2612 |
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
2613 |
**kwargs,
|
2614 |
)
|
2615 |
+
|
2616 |
+
image_inputs = videos_inputs = {}
|
2617 |
if images is not None:
|
2618 |
+
image_inputs = self.image_processor(images=images, **output_kwargs["images_kwargs"])
|
2619 |
image_grid_thw = image_inputs["image_grid_thw"]
|
|
|
|
|
|
|
2620 |
|
2621 |
if videos is not None:
|
2622 |
+
videos_inputs = self.video_processor(videos=videos, **output_kwargs["videos_kwargs"])
|
2623 |
video_grid_thw = videos_inputs["video_grid_thw"]
|
2624 |
|
2625 |
fps = output_kwargs["videos_kwargs"].pop("fps", 2.0)
|
2626 |
if isinstance(fps, (int, float)):
|
2627 |
+
second_per_grid_ts = [self.video_processor.temporal_patch_size / fps] * len(video_grid_thw)
|
2628 |
elif hasattr(fps, "__len__") and len(fps) == len(video_grid_thw):
|
2629 |
+
second_per_grid_ts = [self.video_processor.temporal_patch_size / tmp for tmp in fps]
|
2630 |
else:
|
2631 |
raise ValueError(
|
2632 |
f"The length of fps ({len(fps) if hasattr(fps, '__len__') else fps}) must be equal to the length of video_grid_thw ({len(video_grid_thw)}) or fps should be a single number."
|
2633 |
)
|
2634 |
videos_inputs.update({"second_per_grid_ts": second_per_grid_ts})
|
2635 |
|
|
|
|
|
|
|
|
|
2636 |
if not isinstance(text, list):
|
2637 |
text = [text]
|
2638 |
|
2639 |
+
text = text.copy() # below lines change text in-place
|
2640 |
+
if images is not None:
|
2641 |
merge_length = self.image_processor.merge_size**2
|
2642 |
index = 0
|
2643 |
for i in range(len(text)):
|
2644 |
while self.image_token in text[i]:
|
2645 |
+
num_image_tokens = image_grid_thw[index].prod() // merge_length
|
2646 |
+
text[i] = text[i].replace(self.image_token, "<|placeholder|>" * num_image_tokens, 1)
|
|
|
|
|
|
|
2647 |
index += 1
|
2648 |
text[i] = text[i].replace("<|placeholder|>", self.image_token)
|
2649 |
|
2650 |
+
if videos is not None:
|
2651 |
+
merge_length = self.video_processor.merge_size**2
|
2652 |
index = 0
|
2653 |
for i in range(len(text)):
|
2654 |
while self.video_token in text[i]:
|
2655 |
+
num_video_tokens = video_grid_thw[index].prod() // merge_length
|
2656 |
+
text[i] = text[i].replace(self.video_token, "<|placeholder|>" * num_video_tokens, 1)
|
|
|
|
|
|
|
2657 |
index += 1
|
2658 |
text[i] = text[i].replace("<|placeholder|>", self.video_token)
|
2659 |
|
2660 |
+
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
|
2661 |
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
2662 |
+
self._check_special_mm_tokens(text, text_inputs, modalities=["image", "video"])
|
2663 |
|
2664 |
+
return BatchFeature(data={**text_inputs, **image_inputs, **videos_inputs}, tensor_type=return_tensors)
|
2665 |
|
2666 |
def batch_decode(self, *args, **kwargs):
|
2667 |
"""
|
|
|
2689 |
or `(sequence_length,)`.
|
2690 |
skip_special_tokens (`bool`, *optional*, defaults to `True`):
|
2691 |
Whether or not to remove special tokens in the output. Argument passed to the tokenizer's `batch_decode` method.
|
2692 |
+
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
|
2693 |
Whether or not to clean up the tokenization spaces. Argument passed to the tokenizer's `batch_decode` method.
|
2694 |
**kwargs:
|
2695 |
Additional arguments to be passed to the tokenizer's `batch_decode method`.
|
|
|
2712 |
return names_from_processor + ["second_per_grid_ts"]
|
2713 |
|
2714 |
|
2715 |
+
|
2716 |
+
__all__ = ["Qwen2_5_VLForConditionalGeneration", "Qwen2_5_VLModel", "Qwen2_5_VLTextModel", "Qwen2_5_VLVisionConfig", "Qwen2_5_VLTextConfig", "Qwen2_5_VLPreTrainedModel", "Qwen2_5_VLProcessor", "Qwen2_5_VLConfig"]
|
2717 |
|