text
stringlengths
31
243k
type
stringclasses
1 value
start
int64
36
275k
end
int64
286
280k
depth
int64
0
1
filepath
stringlengths
85
188
parent_class
stringclasses
3 values
class_index
int64
0
10.8k
class TFAutoModelForSeq2SeqLM(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
class_definition
24,802
24,916
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_tf_auto.py
null
4,600
class TFAutoModelForSequenceClassification(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
class_definition
25,100
25,230
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_tf_auto.py
null
4,601
class TFAutoModelForQuestionAnswering(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING
class_definition
25,372
25,492
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_tf_auto.py
null
4,602
class TFAutoModelForDocumentQuestionAnswering(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
class_definition
25,613
25,750
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_tf_auto.py
null
4,603
class TFAutoModelForTableQuestionAnswering(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING
class_definition
25,985
26,116
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_tf_auto.py
null
4,604
class TFAutoModelForTokenClassification(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
class_definition
26,326
26,450
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_tf_auto.py
null
4,605
class TFAutoModelForMultipleChoice(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING
class_definition
26,583
26,697
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_tf_auto.py
null
4,606
class TFAutoModelForNextSentencePrediction(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
class_definition
26,809
26,940
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_tf_auto.py
null
4,607
class TFAutoModelForSpeechSeq2Seq(_BaseAutoModelClass): _model_mapping = TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
class_definition
27,083
27,197
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_tf_auto.py
null
4,608
class TFAutoModelWithLMHead(_TFAutoModelWithLMHead): @classmethod def from_config(cls, config): warnings.warn( "The class `TFAutoModelWithLMHead` is deprecated and will be removed in a future version. Please use" " `TFAutoModelForCausalLM` for causal language models, `TFAutoModelForMaskedLM` for masked language models" " and `TFAutoModelForSeq2SeqLM` for encoder-decoder models.", FutureWarning, ) return super().from_config(config) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): warnings.warn( "The class `TFAutoModelWithLMHead` is deprecated and will be removed in a future version. Please use" " `TFAutoModelForCausalLM` for causal language models, `TFAutoModelForMaskedLM` for masked language models" " and `TFAutoModelForSeq2SeqLM` for encoder-decoder models.", FutureWarning, ) return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
class_definition
27,342
28,419
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_tf_auto.py
null
4,609
class _LazyConfigMapping(OrderedDict): """ A dictionary that lazily load its values when they are requested. """ def __init__(self, mapping): self._mapping = mapping self._extra_content = {} self._modules = {} def __getitem__(self, key): if key in self._extra_content: return self._extra_content[key] if key not in self._mapping: raise KeyError(key) value = self._mapping[key] module_name = model_type_to_module_name(key) if module_name not in self._modules: self._modules[module_name] = importlib.import_module(f".{module_name}", "transformers.models") if hasattr(self._modules[module_name], value): return getattr(self._modules[module_name], value) # Some of the mappings have entries model_type -> config of another model type. In that case we try to grab the # object at the top level. transformers_module = importlib.import_module("transformers") return getattr(transformers_module, value) def keys(self): return list(self._mapping.keys()) + list(self._extra_content.keys()) def values(self): return [self[k] for k in self._mapping.keys()] + list(self._extra_content.values()) def items(self): return [(k, self[k]) for k in self._mapping.keys()] + list(self._extra_content.items()) def __iter__(self): return iter(list(self._mapping.keys()) + list(self._extra_content.keys())) def __contains__(self, item): return item in self._mapping or item in self._extra_content def register(self, key, value, exist_ok=False): """ Register a new configuration in this mapping. """ if key in self._mapping.keys() and not exist_ok: raise ValueError(f"'{key}' is already used by a Transformers config, pick another name.") self._extra_content[key] = value
class_definition
27,017
28,959
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/configuration_auto.py
null
4,610
class _LazyLoadAllMappings(OrderedDict): """ A mapping that will load all pairs of key values at the first access (either by indexing, requestions keys, values, etc.) Args: mapping: The mapping to load. """ def __init__(self, mapping): self._mapping = mapping self._initialized = False self._data = {} def _initialize(self): if self._initialized: return for model_type, map_name in self._mapping.items(): module_name = model_type_to_module_name(model_type) module = importlib.import_module(f".{module_name}", "transformers.models") mapping = getattr(module, map_name) self._data.update(mapping) self._initialized = True def __getitem__(self, key): self._initialize() return self._data[key] def keys(self): self._initialize() return self._data.keys() def values(self): self._initialize() return self._data.values() def items(self): self._initialize() return self._data.keys() def __iter__(self): self._initialize() return iter(self._data) def __contains__(self, item): self._initialize() return item in self._data
class_definition
29,022
30,309
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/configuration_auto.py
null
4,611
class AutoConfig: r""" This is a generic configuration class that will be instantiated as one of the configuration classes of the library when created with the [`~AutoConfig.from_pretrained`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "AutoConfig is designed to be instantiated " "using the `AutoConfig.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod def for_model(cls, model_type: str, *args, **kwargs): if model_type in CONFIG_MAPPING: config_class = CONFIG_MAPPING[model_type] return config_class(*args, **kwargs) raise ValueError( f"Unrecognized model identifier: {model_type}. Should contain one of {', '.join(CONFIG_MAPPING.keys())}" ) @classmethod @replace_list_option_in_docstrings() def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): r""" Instantiate one of the configuration classes of the library from a pretrained model configuration. The configuration class to instantiate is selected based on the `model_type` property of the config object that is loaded, or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`: List options Args: pretrained_model_name_or_path (`str` or `os.PathLike`): Can be either: - A string, the *model id* of a pretrained model configuration hosted inside a model repo on huggingface.co. - A path to a *directory* containing a configuration file saved using the [`~PretrainedConfig.save_pretrained`] method, or the [`~PreTrainedModel.save_pretrained`] method, e.g., `./my_model_directory/`. - A path or url to a saved configuration JSON *file*, e.g., `./my_model_directory/configuration.json`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download the model weights and configuration files and override the cached versions if they exist. resume_download: Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. return_unused_kwargs (`bool`, *optional*, defaults to `False`): If `False`, then this function returns just the final configuration object. If `True`, then this functions returns a `Tuple(config, unused_kwargs)` where *unused_kwargs* is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the part of `kwargs` which has not been used to update `config` and is otherwise ignored. trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. kwargs(additional keyword arguments, *optional*): The values in kwargs of any keys which are configuration attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled by the `return_unused_kwargs` keyword parameter. Examples: ```python >>> from transformers import AutoConfig >>> # Download configuration from huggingface.co and cache. >>> config = AutoConfig.from_pretrained("google-bert/bert-base-uncased") >>> # Download configuration from huggingface.co (user-uploaded) and cache. >>> config = AutoConfig.from_pretrained("dbmdz/bert-base-german-cased") >>> # If configuration file is in a directory (e.g., was saved using *save_pretrained('./test/saved_model/')*). >>> config = AutoConfig.from_pretrained("./test/bert_saved_model/") >>> # Load a specific configuration file. >>> config = AutoConfig.from_pretrained("./test/bert_saved_model/my_configuration.json") >>> # Change some config attributes when loading a pretrained config. >>> config = AutoConfig.from_pretrained("google-bert/bert-base-uncased", output_attentions=True, foo=False) >>> config.output_attentions True >>> config, unused_kwargs = AutoConfig.from_pretrained( ... "google-bert/bert-base-uncased", output_attentions=True, foo=False, return_unused_kwargs=True ... ) >>> config.output_attentions True >>> unused_kwargs {'foo': False} ```""" use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token kwargs["_from_auto"] = True kwargs["name_or_path"] = pretrained_model_name_or_path trust_remote_code = kwargs.pop("trust_remote_code", None) code_revision = kwargs.pop("code_revision", None) config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs) has_remote_code = "auto_map" in config_dict and "AutoConfig" in config_dict["auto_map"] has_local_code = "model_type" in config_dict and config_dict["model_type"] in CONFIG_MAPPING trust_remote_code = resolve_trust_remote_code( trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code ) if has_remote_code and trust_remote_code: class_ref = config_dict["auto_map"]["AutoConfig"] config_class = get_class_from_dynamic_module( class_ref, pretrained_model_name_or_path, code_revision=code_revision, **kwargs ) if os.path.isdir(pretrained_model_name_or_path): config_class.register_for_auto_class() return config_class.from_pretrained(pretrained_model_name_or_path, **kwargs) elif "model_type" in config_dict: try: config_class = CONFIG_MAPPING[config_dict["model_type"]] except KeyError: raise ValueError( f"The checkpoint you are trying to load has model type `{config_dict['model_type']}` " "but Transformers does not recognize this architecture. This could be because of an " "issue with the checkpoint, or because your version of Transformers is out of date.\n\n" "You can update Transformers with the command `pip install --upgrade transformers`. If this " "does not work, and the checkpoint is very new, then there may not be a release version " "that supports this model yet. In this case, you can get the most up-to-date code by installing " "Transformers from source with the command " "`pip install git+https://github.com/huggingface/transformers.git`" ) return config_class.from_dict(config_dict, **unused_kwargs) else: # Fallback: use pattern matching on the string. # We go from longer names to shorter names to catch roberta before bert (for instance) for pattern in sorted(CONFIG_MAPPING.keys(), key=len, reverse=True): if pattern in str(pretrained_model_name_or_path): return CONFIG_MAPPING[pattern].from_dict(config_dict, **unused_kwargs) raise ValueError( f"Unrecognized model in {pretrained_model_name_or_path}. " f"Should have a `model_type` key in its {CONFIG_NAME}, or contain one of the following strings " f"in its name: {', '.join(CONFIG_MAPPING.keys())}" ) @staticmethod def register(model_type, config, exist_ok=False): """ Register a new configuration for this class. Args: model_type (`str`): The model type like "bert" or "gpt". config ([`PretrainedConfig`]): The config to register. """ if issubclass(config, PretrainedConfig) and config.model_type != model_type: raise ValueError( "The config you are passing has a `model_type` attribute that is not consistent with the model type " f"you passed (config has {config.model_type} and you passed {model_type}. Fix one of those so they " "match!" ) CONFIG_MAPPING.register(model_type, config, exist_ok=exist_ok)
class_definition
33,063
43,229
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/configuration_auto.py
null
4,612
class AutoImageProcessor: r""" This is a generic image processor class that will be instantiated as one of the image processor classes of the library when created with the [`AutoImageProcessor.from_pretrained`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(IMAGE_PROCESSOR_MAPPING_NAMES) def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): r""" Instantiate one of the image processor classes of the library from a pretrained model vocabulary. The image processor class to instantiate is selected based on the `model_type` property of the config object (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`: List options Params: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained image_processor hosted inside a model repo on huggingface.co. - a path to a *directory* containing a image processor file saved using the [`~image_processing_utils.ImageProcessingMixin.save_pretrained`] method, e.g., `./my_model_directory/`. - a path or url to a saved image processor JSON *file*, e.g., `./my_model_directory/preprocessor_config.json`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model image processor should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the image processor files and override the cached versions if they exist. resume_download: Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. use_fast (`bool`, *optional*, defaults to `False`): Use a fast torchvision-base image processor if it is supported for a given model. If a fast image processor is not available for a given model, a normal numpy-based image processor is returned instead. return_unused_kwargs (`bool`, *optional*, defaults to `False`): If `False`, then this function returns just the final image processor object. If `True`, then this functions returns a `Tuple(image_processor, unused_kwargs)` where *unused_kwargs* is a dictionary consisting of the key/value pairs whose keys are not image processor attributes: i.e., the part of `kwargs` which has not been used to update `image_processor` and is otherwise ignored. trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. image_processor_filename (`str`, *optional*, defaults to `"config.json"`): The name of the file in the model directory to use for the image processor config. kwargs (`Dict[str, Any]`, *optional*): The values in kwargs of any keys which are image processor attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are *not* image processor attributes is controlled by the `return_unused_kwargs` keyword parameter. <Tip> Passing `token=True` is required when you want to use a private model. </Tip> Examples: ```python >>> from transformers import AutoImageProcessor >>> # Download image processor from huggingface.co and cache. >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224-in21k") >>> # If image processor files are in a directory (e.g. image processor was saved using *save_pretrained('./test/saved_model/')*) >>> # image_processor = AutoImageProcessor.from_pretrained("./test/saved_model/") ```""" use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token config = kwargs.pop("config", None) # TODO: @yoni, change in v4.48 (use_fast set to True by default) use_fast = kwargs.pop("use_fast", None) trust_remote_code = kwargs.pop("trust_remote_code", None) kwargs["_from_auto"] = True # Resolve the image processor config filename if "image_processor_filename" in kwargs: image_processor_filename = kwargs.pop("image_processor_filename") elif is_timm_local_checkpoint(pretrained_model_name_or_path): image_processor_filename = CONFIG_NAME else: image_processor_filename = IMAGE_PROCESSOR_NAME # Load the image processor config try: # Main path for all transformers models and local TimmWrapper checkpoints config_dict, _ = ImageProcessingMixin.get_image_processor_dict( pretrained_model_name_or_path, image_processor_filename=image_processor_filename, **kwargs ) except Exception as initial_exception: # Fallback path for Hub TimmWrapper checkpoints. Timm models' image processing is saved in `config.json` # instead of `preprocessor_config.json`. Because this is an Auto class and we don't have any information # except the model name, the only way to check if a remote checkpoint is a timm model is to try to # load `config.json` and if it fails with some error, we raise the initial exception. try: config_dict, _ = ImageProcessingMixin.get_image_processor_dict( pretrained_model_name_or_path, image_processor_filename=CONFIG_NAME, **kwargs ) except Exception: raise initial_exception # In case we have a config_dict, but it's not a timm config dict, we raise the initial exception, # because only timm models have image processing in `config.json`. if not is_timm_config_dict(config_dict): raise initial_exception image_processor_type = config_dict.get("image_processor_type", None) image_processor_auto_map = None if "AutoImageProcessor" in config_dict.get("auto_map", {}): image_processor_auto_map = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_type is None and image_processor_auto_map is None: feature_extractor_class = config_dict.pop("feature_extractor_type", None) if feature_extractor_class is not None: image_processor_type = feature_extractor_class.replace("FeatureExtractor", "ImageProcessor") if "AutoFeatureExtractor" in config_dict.get("auto_map", {}): feature_extractor_auto_map = config_dict["auto_map"]["AutoFeatureExtractor"] image_processor_auto_map = feature_extractor_auto_map.replace("FeatureExtractor", "ImageProcessor") # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_type is None and image_processor_auto_map is None: if not isinstance(config, PretrainedConfig): config = AutoConfig.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs, ) # It could be in `config.image_processor_type`` image_processor_type = getattr(config, "image_processor_type", None) if hasattr(config, "auto_map") and "AutoImageProcessor" in config.auto_map: image_processor_auto_map = config.auto_map["AutoImageProcessor"] image_processor_class = None # TODO: @yoni, change logic in v4.48 (when use_fast set to True by default) if image_processor_type is not None: # if use_fast is not set and the processor was saved with a fast processor, we use it, otherwise we use the slow processor. if use_fast is None: use_fast = image_processor_type.endswith("Fast") if not use_fast: logger.warning_once( "Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. " "`use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. " "This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`." ) # Update class name to reflect the use_fast option. If class is not found, we fall back to the slow version. if use_fast and not is_torchvision_available(): logger.warning_once( "Using `use_fast=True` but `torchvision` is not available. Falling back to the slow image processor." ) use_fast = False if use_fast: if not image_processor_type.endswith("Fast"): image_processor_type += "Fast" for _, image_processors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if image_processor_type in image_processors: break else: image_processor_type = image_processor_type[:-4] use_fast = False logger.warning_once( "`use_fast` is set to `True` but the image processor class does not have a fast version. " " Falling back to the slow version." ) image_processor_class = get_image_processor_class_from_name(image_processor_type) else: image_processor_type = ( image_processor_type[:-4] if image_processor_type.endswith("Fast") else image_processor_type ) image_processor_class = get_image_processor_class_from_name(image_processor_type) has_remote_code = image_processor_auto_map is not None has_local_code = image_processor_class is not None or type(config) in IMAGE_PROCESSOR_MAPPING trust_remote_code = resolve_trust_remote_code( trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code ) if image_processor_auto_map is not None and not isinstance(image_processor_auto_map, tuple): # In some configs, only the slow image processor class is stored image_processor_auto_map = (image_processor_auto_map, None) if has_remote_code and trust_remote_code: if not use_fast and image_processor_auto_map[1] is not None: _warning_fast_image_processor_available(image_processor_auto_map[1]) if use_fast and image_processor_auto_map[1] is not None: class_ref = image_processor_auto_map[1] else: class_ref = image_processor_auto_map[0] image_processor_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs) _ = kwargs.pop("code_revision", None) if os.path.isdir(pretrained_model_name_or_path): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(config_dict, **kwargs) elif image_processor_class is not None: return image_processor_class.from_dict(config_dict, **kwargs) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(config) in IMAGE_PROCESSOR_MAPPING: image_processor_tuple = IMAGE_PROCESSOR_MAPPING[type(config)] image_processor_class_py, image_processor_class_fast = image_processor_tuple if not use_fast and image_processor_class_fast is not None: _warning_fast_image_processor_available(image_processor_class_fast) if image_processor_class_fast and (use_fast or image_processor_class_py is None): return image_processor_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) else: if image_processor_class_py is not None: return image_processor_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) else: raise ValueError( "This image processor cannot be instantiated. Please make sure you have `Pillow` installed." ) raise ValueError( f"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " f"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys())}" ) @staticmethod def register( config_class, image_processor_class=None, slow_image_processor_class=None, fast_image_processor_class=None, exist_ok=False, ): """ Register a new image processor for this class. Args: config_class ([`PretrainedConfig`]): The configuration corresponding to the model to register. image_processor_class ([`ImageProcessingMixin`]): The image processor to register. """ if image_processor_class is not None: if slow_image_processor_class is not None: raise ValueError("Cannot specify both image_processor_class and slow_image_processor_class") warnings.warn( "The image_processor_class argument is deprecated and will be removed in v4.42. Please use `slow_image_processor_class`, or `fast_image_processor_class` instead", FutureWarning, ) slow_image_processor_class = image_processor_class if slow_image_processor_class is None and fast_image_processor_class is None: raise ValueError("You need to specify either slow_image_processor_class or fast_image_processor_class") if slow_image_processor_class is not None and issubclass(slow_image_processor_class, BaseImageProcessorFast): raise ValueError("You passed a fast image processor in as the `slow_image_processor_class`.") if fast_image_processor_class is not None and issubclass(fast_image_processor_class, BaseImageProcessor): raise ValueError("You passed a slow image processor in as the `fast_image_processor_class`.") if ( slow_image_processor_class is not None and fast_image_processor_class is not None and issubclass(fast_image_processor_class, BaseImageProcessorFast) and fast_image_processor_class.slow_image_processor_class != slow_image_processor_class ): raise ValueError( "The fast processor class you are passing has a `slow_image_processor_class` attribute that is not " "consistent with the slow processor class you passed (fast tokenizer has " f"{fast_image_processor_class.slow_image_processor_class} and you passed {slow_image_processor_class}. Fix one of those " "so they match!" ) # Avoid resetting a set slow/fast image processor if we are passing just the other ones. if config_class in IMAGE_PROCESSOR_MAPPING._extra_content: existing_slow, existing_fast = IMAGE_PROCESSOR_MAPPING[config_class] if slow_image_processor_class is None: slow_image_processor_class = existing_slow if fast_image_processor_class is None: fast_image_processor_class = existing_fast IMAGE_PROCESSOR_MAPPING.register( config_class, (slow_image_processor_class, fast_image_processor_class), exist_ok=exist_ok )
class_definition
14,360
32,768
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/image_processing_auto.py
null
4,613
class AutoProcessor: r""" This is a generic processor class that will be instantiated as one of the processor classes of the library when created with the [`AutoProcessor.from_pretrained`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "AutoProcessor is designed to be instantiated " "using the `AutoProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(PROCESSOR_MAPPING_NAMES) def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): r""" Instantiate one of the processor classes of the library from a pretrained model vocabulary. The processor class to instantiate is selected based on the `model_type` property of the config object (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible): List options Params: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on huggingface.co. - a path to a *directory* containing a processor files saved using the `save_pretrained()` method, e.g., `./my_model_directory/`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model feature extractor should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the feature extractor files and override the cached versions if they exist. resume_download: Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. return_unused_kwargs (`bool`, *optional*, defaults to `False`): If `False`, then this function returns just the final feature extractor object. If `True`, then this functions returns a `Tuple(feature_extractor, unused_kwargs)` where *unused_kwargs* is a dictionary consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of `kwargs` which has not been used to update `feature_extractor` and is otherwise ignored. trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. kwargs (`Dict[str, Any]`, *optional*): The values in kwargs of any keys which are feature extractor attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is controlled by the `return_unused_kwargs` keyword parameter. <Tip> Passing `token=True` is required when you want to use a private model. </Tip> Examples: ```python >>> from transformers import AutoProcessor >>> # Download processor from huggingface.co and cache. >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") >>> # If processor files are in a directory (e.g. processor was saved using *save_pretrained('./test/saved_model/')*) >>> # processor = AutoProcessor.from_pretrained("./test/saved_model/") ```""" use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token config = kwargs.pop("config", None) trust_remote_code = kwargs.pop("trust_remote_code", None) kwargs["_from_auto"] = True processor_class = None processor_auto_map = None # First, let's see if we have a processor or preprocessor config. # Filter the kwargs for `get_file_from_repo`. get_file_from_repo_kwargs = { key: kwargs[key] for key in inspect.signature(get_file_from_repo).parameters.keys() if key in kwargs } # Let's start by checking whether the processor class is saved in a processor config processor_config_file = get_file_from_repo( pretrained_model_name_or_path, PROCESSOR_NAME, **get_file_from_repo_kwargs ) if processor_config_file is not None: config_dict, _ = ProcessorMixin.get_processor_dict(pretrained_model_name_or_path, **kwargs) processor_class = config_dict.get("processor_class", None) if "AutoProcessor" in config_dict.get("auto_map", {}): processor_auto_map = config_dict["auto_map"]["AutoProcessor"] if processor_class is None: # If not found, let's check whether the processor class is saved in an image processor config preprocessor_config_file = get_file_from_repo( pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME, **get_file_from_repo_kwargs ) if preprocessor_config_file is not None: config_dict, _ = ImageProcessingMixin.get_image_processor_dict(pretrained_model_name_or_path, **kwargs) processor_class = config_dict.get("processor_class", None) if "AutoProcessor" in config_dict.get("auto_map", {}): processor_auto_map = config_dict["auto_map"]["AutoProcessor"] # If not found, let's check whether the processor class is saved in a feature extractor config if preprocessor_config_file is not None and processor_class is None: config_dict, _ = FeatureExtractionMixin.get_feature_extractor_dict( pretrained_model_name_or_path, **kwargs ) processor_class = config_dict.get("processor_class", None) if "AutoProcessor" in config_dict.get("auto_map", {}): processor_auto_map = config_dict["auto_map"]["AutoProcessor"] if processor_class is None: # Next, let's check whether the processor class is saved in a tokenizer tokenizer_config_file = get_file_from_repo( pretrained_model_name_or_path, TOKENIZER_CONFIG_FILE, **get_file_from_repo_kwargs ) if tokenizer_config_file is not None: with open(tokenizer_config_file, encoding="utf-8") as reader: config_dict = json.load(reader) processor_class = config_dict.get("processor_class", None) if "AutoProcessor" in config_dict.get("auto_map", {}): processor_auto_map = config_dict["auto_map"]["AutoProcessor"] if processor_class is None: # Otherwise, load config, if it can be loaded. if not isinstance(config, PretrainedConfig): config = AutoConfig.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) # And check if the config contains the processor class. processor_class = getattr(config, "processor_class", None) if hasattr(config, "auto_map") and "AutoProcessor" in config.auto_map: processor_auto_map = config.auto_map["AutoProcessor"] if processor_class is not None: processor_class = processor_class_from_name(processor_class) has_remote_code = processor_auto_map is not None has_local_code = processor_class is not None or type(config) in PROCESSOR_MAPPING trust_remote_code = resolve_trust_remote_code( trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code ) if has_remote_code and trust_remote_code: processor_class = get_class_from_dynamic_module( processor_auto_map, pretrained_model_name_or_path, **kwargs ) _ = kwargs.pop("code_revision", None) if os.path.isdir(pretrained_model_name_or_path): processor_class.register_for_auto_class() return processor_class.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) elif processor_class is not None: return processor_class.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) # Last try: we use the PROCESSOR_MAPPING. elif type(config) in PROCESSOR_MAPPING: return PROCESSOR_MAPPING[type(config)].from_pretrained(pretrained_model_name_or_path, **kwargs) # At this stage, there doesn't seem to be a `Processor` class available for this model, so let's try a # tokenizer. try: return AutoTokenizer.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) except Exception: try: return AutoImageProcessor.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) except Exception: pass try: return AutoFeatureExtractor.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) except Exception: pass raise ValueError( f"Unrecognized processing class in {pretrained_model_name_or_path}. Can't instantiate a processor, a " "tokenizer, an image processor or a feature extractor for this model. Make sure the repository contains " "the files of at least one of those processing classes." ) @staticmethod def register(config_class, processor_class, exist_ok=False): """ Register a new processor for this class. Args: config_class ([`PretrainedConfig`]): The configuration corresponding to the model to register. processor_class ([`FeatureExtractorMixin`]): The processor to register. """ PROCESSOR_MAPPING.register(config_class, processor_class, exist_ok=exist_ok)
class_definition
5,754
17,793
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/processing_auto.py
null
4,614
class AutoModelForMaskGeneration(_BaseAutoModelClass): _model_mapping = MODEL_FOR_MASK_GENERATION_MAPPING
class_definition
67,388
67,497
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,615
class AutoModelForKeypointDetection(_BaseAutoModelClass): _model_mapping = MODEL_FOR_KEYPOINT_DETECTION_MAPPING
class_definition
67,500
67,615
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,616
class AutoModelForTextEncoding(_BaseAutoModelClass): _model_mapping = MODEL_FOR_TEXT_ENCODING_MAPPING
class_definition
67,618
67,723
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,617
class AutoModelForImageToImage(_BaseAutoModelClass): _model_mapping = MODEL_FOR_IMAGE_TO_IMAGE_MAPPING
class_definition
67,726
67,832
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,618
class AutoModel(_BaseAutoModelClass): _model_mapping = MODEL_MAPPING
class_definition
67,835
67,907
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,619
class AutoModelForPreTraining(_BaseAutoModelClass): _model_mapping = MODEL_FOR_PRETRAINING_MAPPING
class_definition
67,953
68,055
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,620
class _AutoModelWithLMHead(_BaseAutoModelClass): _model_mapping = MODEL_WITH_LM_HEAD_MAPPING
class_definition
68,227
68,323
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,621
class AutoModelForCausalLM(_BaseAutoModelClass): _model_mapping = MODEL_FOR_CAUSAL_LM_MAPPING
class_definition
68,421
68,518
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,622
class AutoModelForMaskedLM(_BaseAutoModelClass): _model_mapping = MODEL_FOR_MASKED_LM_MAPPING
class_definition
68,623
68,720
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,623
class AutoModelForSeq2SeqLM(_BaseAutoModelClass): _model_mapping = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
class_definition
68,825
68,934
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,624
class AutoModelForSequenceClassification(_BaseAutoModelClass): _model_mapping = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
class_definition
69,114
69,239
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,625
class AutoModelForQuestionAnswering(_BaseAutoModelClass): _model_mapping = MODEL_FOR_QUESTION_ANSWERING_MAPPING
class_definition
69,377
69,492
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,626
class AutoModelForTableQuestionAnswering(_BaseAutoModelClass): _model_mapping = MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING
class_definition
69,609
69,735
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,627
class AutoModelForVisualQuestionAnswering(_BaseAutoModelClass): _model_mapping = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING
class_definition
69,941
70,069
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,628
class AutoModelForDocumentQuestionAnswering(_BaseAutoModelClass): _model_mapping = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
class_definition
70,278
70,410
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,629
class AutoModelForTokenClassification(_BaseAutoModelClass): _model_mapping = MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
class_definition
70,641
70,760
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,630
class AutoModelForMultipleChoice(_BaseAutoModelClass): _model_mapping = MODEL_FOR_MULTIPLE_CHOICE_MAPPING
class_definition
70,883
70,992
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,631
class AutoModelForNextSentencePrediction(_BaseAutoModelClass): _model_mapping = MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING
class_definition
71,100
71,226
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,632
class AutoModelForImageClassification(_BaseAutoModelClass): _model_mapping = MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
class_definition
71,365
71,484
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,633
class AutoModelForZeroShotImageClassification(_BaseAutoModelClass): _model_mapping = MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
class_definition
71,607
71,744
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,634
class AutoModelForImageSegmentation(_BaseAutoModelClass): _model_mapping = MODEL_FOR_IMAGE_SEGMENTATION_MAPPING
class_definition
71,899
72,014
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,635
class AutoModelForSemanticSegmentation(_BaseAutoModelClass): _model_mapping = MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING
class_definition
72,131
72,252
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,636
class AutoModelForUniversalSegmentation(_BaseAutoModelClass): _model_mapping = MODEL_FOR_UNIVERSAL_SEGMENTATION_MAPPING
class_definition
72,384
72,507
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,637
class AutoModelForInstanceSegmentation(_BaseAutoModelClass): _model_mapping = MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING
class_definition
72,648
72,769
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,638
class AutoModelForObjectDetection(_BaseAutoModelClass): _model_mapping = MODEL_FOR_OBJECT_DETECTION_MAPPING
class_definition
72,901
73,012
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,639
class AutoModelForZeroShotObjectDetection(_BaseAutoModelClass): _model_mapping = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
class_definition
73,123
73,252
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,640
class AutoModelForDepthEstimation(_BaseAutoModelClass): _model_mapping = MODEL_FOR_DEPTH_ESTIMATION_MAPPING
class_definition
73,395
73,506
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,641
class AutoModelForVideoClassification(_BaseAutoModelClass): _model_mapping = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
class_definition
73,617
73,736
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,642
class AutoModelForVision2Seq(_BaseAutoModelClass): _model_mapping = MODEL_FOR_VISION_2_SEQ_MAPPING
class_definition
73,859
73,961
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,643
class AutoModelForImageTextToText(_BaseAutoModelClass): _model_mapping = MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING
class_definition
74,069
74,182
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,644
class AutoModelForAudioClassification(_BaseAutoModelClass): _model_mapping = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING
class_definition
74,304
74,423
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,645
class AutoModelForCTC(_BaseAutoModelClass): _model_mapping = MODEL_FOR_CTC_MAPPING
class_definition
74,546
74,632
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,646
class AutoModelForSpeechSeq2Seq(_BaseAutoModelClass): _model_mapping = MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING
class_definition
74,740
74,849
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,647
class AutoModelForAudioFrameClassification(_BaseAutoModelClass): _model_mapping = MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING
class_definition
74,990
75,120
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,648
class AutoModelForAudioXVector(_BaseAutoModelClass): _model_mapping = MODEL_FOR_AUDIO_XVECTOR_MAPPING
class_definition
75,273
75,378
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,649
class AutoModelForTextToSpectrogram(_BaseAutoModelClass): _model_mapping = MODEL_FOR_TEXT_TO_SPECTROGRAM_MAPPING
class_definition
75,381
75,497
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,650
class AutoModelForTextToWaveform(_BaseAutoModelClass): _model_mapping = MODEL_FOR_TEXT_TO_WAVEFORM_MAPPING
class_definition
75,500
75,610
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,651
class AutoBackbone(_BaseAutoBackboneClass): _model_mapping = MODEL_FOR_BACKBONE_MAPPING
class_definition
75,613
75,704
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,652
class AutoModelForMaskedImageModeling(_BaseAutoModelClass): _model_mapping = MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING
class_definition
75,821
75,941
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,653
class AutoModelWithLMHead(_AutoModelWithLMHead): @classmethod def from_config(cls, config): warnings.warn( "The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use " "`AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and " "`AutoModelForSeq2SeqLM` for encoder-decoder models.", FutureWarning, ) return super().from_config(config) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): warnings.warn( "The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use " "`AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and " "`AutoModelForSeq2SeqLM` for encoder-decoder models.", FutureWarning, ) return super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
class_definition
76,065
77,122
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/modeling_auto.py
null
4,654
class AutoFeatureExtractor: r""" This is a generic feature extractor class that will be instantiated as one of the feature extractor classes of the library when created with the [`AutoFeatureExtractor.from_pretrained`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "AutoFeatureExtractor is designed to be instantiated " "using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(FEATURE_EXTRACTOR_MAPPING_NAMES) def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): r""" Instantiate one of the feature extractor classes of the library from a pretrained model vocabulary. The feature extractor class to instantiate is selected based on the `model_type` property of the config object (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`: List options Params: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on huggingface.co. - a path to a *directory* containing a feature extractor file saved using the [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] method, e.g., `./my_model_directory/`. - a path or url to a saved feature extractor JSON *file*, e.g., `./my_model_directory/preprocessor_config.json`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model feature extractor should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the feature extractor files and override the cached versions if they exist. resume_download: Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. return_unused_kwargs (`bool`, *optional*, defaults to `False`): If `False`, then this function returns just the final feature extractor object. If `True`, then this functions returns a `Tuple(feature_extractor, unused_kwargs)` where *unused_kwargs* is a dictionary consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of `kwargs` which has not been used to update `feature_extractor` and is otherwise ignored. trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. kwargs (`Dict[str, Any]`, *optional*): The values in kwargs of any keys which are feature extractor attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is controlled by the `return_unused_kwargs` keyword parameter. <Tip> Passing `token=True` is required when you want to use a private model. </Tip> Examples: ```python >>> from transformers import AutoFeatureExtractor >>> # Download feature extractor from huggingface.co and cache. >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h") >>> # If feature extractor files are in a directory (e.g. feature extractor was saved using *save_pretrained('./test/saved_model/')*) >>> # feature_extractor = AutoFeatureExtractor.from_pretrained("./test/saved_model/") ```""" use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token config = kwargs.pop("config", None) trust_remote_code = kwargs.pop("trust_remote_code", None) kwargs["_from_auto"] = True config_dict, _ = FeatureExtractionMixin.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs) feature_extractor_class = config_dict.get("feature_extractor_type", None) feature_extractor_auto_map = None if "AutoFeatureExtractor" in config_dict.get("auto_map", {}): feature_extractor_auto_map = config_dict["auto_map"]["AutoFeatureExtractor"] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(config, PretrainedConfig): config = AutoConfig.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) # It could be in `config.feature_extractor_type`` feature_extractor_class = getattr(config, "feature_extractor_type", None) if hasattr(config, "auto_map") and "AutoFeatureExtractor" in config.auto_map: feature_extractor_auto_map = config.auto_map["AutoFeatureExtractor"] if feature_extractor_class is not None: feature_extractor_class = feature_extractor_class_from_name(feature_extractor_class) has_remote_code = feature_extractor_auto_map is not None has_local_code = feature_extractor_class is not None or type(config) in FEATURE_EXTRACTOR_MAPPING trust_remote_code = resolve_trust_remote_code( trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code ) if has_remote_code and trust_remote_code: feature_extractor_class = get_class_from_dynamic_module( feature_extractor_auto_map, pretrained_model_name_or_path, **kwargs ) _ = kwargs.pop("code_revision", None) if os.path.isdir(pretrained_model_name_or_path): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(config_dict, **kwargs) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(config_dict, **kwargs) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(config) in FEATURE_EXTRACTOR_MAPPING: feature_extractor_class = FEATURE_EXTRACTOR_MAPPING[type(config)] return feature_extractor_class.from_dict(config_dict, **kwargs) raise ValueError( f"Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a " f"`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following " f"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}" ) @staticmethod def register(config_class, feature_extractor_class, exist_ok=False): """ Register a new feature extractor for this class. Args: config_class ([`PretrainedConfig`]): The configuration corresponding to the model to register. feature_extractor_class ([`FeatureExtractorMixin`]): The feature extractor to register. """ FEATURE_EXTRACTOR_MAPPING.register(config_class, feature_extractor_class, exist_ok=exist_ok)
class_definition
10,403
19,724
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/feature_extraction_auto.py
null
4,655
class AutoTokenizer: r""" This is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when created with the [`AutoTokenizer.from_pretrained`] class method. This class cannot be instantiated directly using `__init__()` (throws an error). """ def __init__(self): raise EnvironmentError( "AutoTokenizer is designed to be instantiated " "using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(TOKENIZER_MAPPING_NAMES) def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): r""" Instantiate one of the tokenizer classes of the library from a pretrained model vocabulary. The tokenizer class to instantiate is selected based on the `model_type` property of the config object (either passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by falling back to using pattern matching on `pretrained_model_name_or_path`: List options Params: pretrained_model_name_or_path (`str` or `os.PathLike`): Can be either: - A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co. - A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. - A path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (like Bert or XLNet), e.g.: `./my_model_directory/vocab.txt`. (Not applicable to all derived classes) inputs (additional positional arguments, *optional*): Will be passed along to the Tokenizer `__init__()` method. config ([`PretrainedConfig`], *optional*) The configuration object used to determine the tokenizer class to instantiate. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force the (re-)download the model weights and configuration files and override the cached versions if they exist. resume_download: Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. subfolder (`str`, *optional*): In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for facebook/rag-token-base), specify it here. use_fast (`bool`, *optional*, defaults to `True`): Use a [fast Rust-based tokenizer](https://huggingface.co/docs/tokenizers/index) if it is supported for a given model. If a fast tokenizer is not available for a given model, a normal Python-based tokenizer is returned instead. tokenizer_type (`str`, *optional*): Tokenizer type to be loaded. trust_remote_code (`bool`, *optional*, defaults to `False`): Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine. kwargs (additional keyword arguments, *optional*): Will be passed to the Tokenizer `__init__()` method. Can be used to set special tokens like `bos_token`, `eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`, `additional_special_tokens`. See parameters in the `__init__()` for more details. Examples: ```python >>> from transformers import AutoTokenizer >>> # Download vocabulary from huggingface.co and cache. >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased") >>> # Download vocabulary from huggingface.co (user-uploaded) and cache. >>> tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-cased") >>> # If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*) >>> # tokenizer = AutoTokenizer.from_pretrained("./test/bert_saved_model/") >>> # Download vocabulary from huggingface.co and define model-specific arguments >>> tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base", add_prefix_space=True) ```""" use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token config = kwargs.pop("config", None) kwargs["_from_auto"] = True use_fast = kwargs.pop("use_fast", True) tokenizer_type = kwargs.pop("tokenizer_type", None) trust_remote_code = kwargs.pop("trust_remote_code", None) gguf_file = kwargs.get("gguf_file", None) # First, let's see whether the tokenizer_type is passed so that we can leverage it if tokenizer_type is not None: tokenizer_class = None tokenizer_class_tuple = TOKENIZER_MAPPING_NAMES.get(tokenizer_type, None) if tokenizer_class_tuple is None: raise ValueError( f"Passed `tokenizer_type` {tokenizer_type} does not exist. `tokenizer_type` should be one of " f"{', '.join(c for c in TOKENIZER_MAPPING_NAMES.keys())}." ) tokenizer_class_name, tokenizer_fast_class_name = tokenizer_class_tuple if use_fast: if tokenizer_fast_class_name is not None: tokenizer_class = tokenizer_class_from_name(tokenizer_fast_class_name) else: logger.warning( "`use_fast` is set to `True` but the tokenizer class does not have a fast version. " " Falling back to the slow version." ) if tokenizer_class is None: tokenizer_class = tokenizer_class_from_name(tokenizer_class_name) if tokenizer_class is None: raise ValueError(f"Tokenizer class {tokenizer_class_name} is not currently imported.") return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) # Next, let's try to use the tokenizer_config file to get the tokenizer class. tokenizer_config = get_tokenizer_config(pretrained_model_name_or_path, **kwargs) if "_commit_hash" in tokenizer_config: kwargs["_commit_hash"] = tokenizer_config["_commit_hash"] config_tokenizer_class = tokenizer_config.get("tokenizer_class") tokenizer_auto_map = None if "auto_map" in tokenizer_config: if isinstance(tokenizer_config["auto_map"], (tuple, list)): # Legacy format for dynamic tokenizers tokenizer_auto_map = tokenizer_config["auto_map"] else: tokenizer_auto_map = tokenizer_config["auto_map"].get("AutoTokenizer", None) # If that did not work, let's try to use the config. if config_tokenizer_class is None: if not isinstance(config, PretrainedConfig): if gguf_file: gguf_path = cached_file(pretrained_model_name_or_path, gguf_file, **kwargs) config_dict = load_gguf_checkpoint(gguf_path, return_tensors=False)["config"] config = AutoConfig.for_model(**config_dict) else: config = AutoConfig.from_pretrained( pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs ) config_tokenizer_class = config.tokenizer_class if hasattr(config, "auto_map") and "AutoTokenizer" in config.auto_map: tokenizer_auto_map = config.auto_map["AutoTokenizer"] has_remote_code = tokenizer_auto_map is not None has_local_code = type(config) in TOKENIZER_MAPPING or ( config_tokenizer_class is not None and ( tokenizer_class_from_name(config_tokenizer_class) is not None or tokenizer_class_from_name(config_tokenizer_class + "Fast") is not None ) ) trust_remote_code = resolve_trust_remote_code( trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code ) if has_remote_code and trust_remote_code: if use_fast and tokenizer_auto_map[1] is not None: class_ref = tokenizer_auto_map[1] else: class_ref = tokenizer_auto_map[0] tokenizer_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs) _ = kwargs.pop("code_revision", None) if os.path.isdir(pretrained_model_name_or_path): tokenizer_class.register_for_auto_class() return tokenizer_class.from_pretrained( pretrained_model_name_or_path, *inputs, trust_remote_code=trust_remote_code, **kwargs ) elif config_tokenizer_class is not None: tokenizer_class = None if use_fast and not config_tokenizer_class.endswith("Fast"): tokenizer_class_candidate = f"{config_tokenizer_class}Fast" tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate) if tokenizer_class is None: tokenizer_class_candidate = config_tokenizer_class tokenizer_class = tokenizer_class_from_name(tokenizer_class_candidate) if tokenizer_class is None: raise ValueError( f"Tokenizer class {tokenizer_class_candidate} does not exist or is not currently imported." ) return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) # Otherwise we have to be creative. # if model is an encoder decoder, the encoder tokenizer class is used by default if isinstance(config, EncoderDecoderConfig): if type(config.decoder) is not type(config.encoder): # noqa: E721 logger.warning( f"The encoder model config class: {config.encoder.__class__} is different from the decoder model " f"config class: {config.decoder.__class__}. It is not recommended to use the " "`AutoTokenizer.from_pretrained()` method in this case. Please use the encoder and decoder " "specific tokenizer classes." ) config = config.encoder model_type = config_class_to_model_type(type(config).__name__) if model_type is not None: tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type(config)] if tokenizer_class_fast and (use_fast or tokenizer_class_py is None): return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) else: if tokenizer_class_py is not None: return tokenizer_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) else: raise ValueError( "This tokenizer cannot be instantiated. Please make sure you have `sentencepiece` installed " "in order to use this tokenizer." ) raise ValueError( f"Unrecognized configuration class {config.__class__} to build an AutoTokenizer.\n" f"Model type should be one of {', '.join(c.__name__ for c in TOKENIZER_MAPPING.keys())}." ) def register(config_class, slow_tokenizer_class=None, fast_tokenizer_class=None, exist_ok=False): """ Register a new tokenizer in this mapping. Args: config_class ([`PretrainedConfig`]): The configuration corresponding to the model to register. slow_tokenizer_class ([`PretrainedTokenizer`], *optional*): The slow tokenizer to register. fast_tokenizer_class ([`PretrainedTokenizerFast`], *optional*): The fast tokenizer to register. """ if slow_tokenizer_class is None and fast_tokenizer_class is None: raise ValueError("You need to pass either a `slow_tokenizer_class` or a `fast_tokenizer_class") if slow_tokenizer_class is not None and issubclass(slow_tokenizer_class, PreTrainedTokenizerFast): raise ValueError("You passed a fast tokenizer in the `slow_tokenizer_class`.") if fast_tokenizer_class is not None and issubclass(fast_tokenizer_class, PreTrainedTokenizer): raise ValueError("You passed a slow tokenizer in the `fast_tokenizer_class`.") if ( slow_tokenizer_class is not None and fast_tokenizer_class is not None and issubclass(fast_tokenizer_class, PreTrainedTokenizerFast) and fast_tokenizer_class.slow_tokenizer_class != slow_tokenizer_class ): raise ValueError( "The fast tokenizer class you are passing has a `slow_tokenizer_class` attribute that is not " "consistent with the slow tokenizer class you passed (fast tokenizer has " f"{fast_tokenizer_class.slow_tokenizer_class} and you passed {slow_tokenizer_class}. Fix one of those " "so they match!" ) # Avoid resetting a set slow/fast tokenizer if we are passing just the other ones. if config_class in TOKENIZER_MAPPING._extra_content: existing_slow, existing_fast = TOKENIZER_MAPPING[config_class] if slow_tokenizer_class is None: slow_tokenizer_class = existing_slow if fast_tokenizer_class is None: fast_tokenizer_class = existing_fast TOKENIZER_MAPPING.register(config_class, (slow_tokenizer_class, fast_tokenizer_class), exist_ok=exist_ok)
class_definition
35,545
51,297
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/auto/tokenization_auto.py
null
4,656
class BertGenerationConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BertGenerationPreTrainedModel`]. It is used to instantiate a BertGeneration model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the BertGeneration [google/bert_for_seq_generation_L-24_bbc_encoder](https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 50358): Vocabulary size of the BERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`BertGeneration`]. hidden_size (`int`, *optional*, defaults to 1024): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 24): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 4096): Dimensionality of the "intermediate" (often called feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. pad_token_id (`int`, *optional*, defaults to 0): Padding token id. bos_token_id (`int`, *optional*, defaults to 2): Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 1): End of stream token id. position_embedding_type (`str`, *optional*, defaults to `"absolute"`): Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155). For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658). use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. Examples: ```python >>> from transformers import BertGenerationConfig, BertGenerationEncoder >>> # Initializing a BertGeneration config >>> configuration = BertGenerationConfig() >>> # Initializing a model (with random weights) from the config >>> model = BertGenerationEncoder(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "bert-generation" def __init__( self, vocab_size=50358, hidden_size=1024, num_hidden_layers=24, num_attention_heads=16, intermediate_size=4096, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, bos_token_id=2, eos_token_id=1, position_embedding_type="absolute", use_cache=True, **kwargs, ): super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.use_cache = use_cache
class_definition
741
6,339
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bert_generation/configuration_bert_generation.py
null
4,657
class BertGenerationTokenizer(PreTrainedTokenizer): """ Construct a BertGeneration tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): [SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that contains the vocabulary necessary to instantiate a tokenizer. bos_token (`str`, *optional*, defaults to `"<s>"`): The begin of sequence token. eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. sep_token (`str`, *optional*, defaults to `"<::::>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. sp_model_kwargs (`dict`, *optional*): Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, to set: - `enable_sampling`: Enable subword regularization. - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. - `nbest_size = {0,1}`: No sampling is performed. - `nbest_size > 1`: samples from the nbest_size results. - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm. - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout. """ vocab_files_names = VOCAB_FILES_NAMES prefix_tokens: List[int] = [] model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, bos_token="<s>", eos_token="</s>", unk_token="<unk>", pad_token="<pad>", sep_token="<::::>", sp_model_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ) -> None: self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs self.vocab_file = vocab_file self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(vocab_file) # Add extra_ids to the special token list super().__init__( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, sep_token=sep_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs, ) @property def vocab_size(self): return self.sp_model.get_piece_size() def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self): state = self.__dict__.copy() state["sp_model"] = None return state def __setstate__(self, d): self.__dict__ = d # for backward compatibility if not hasattr(self, "sp_model_kwargs"): self.sp_model_kwargs = {} self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _tokenize(self, text: str) -> List[str]: """Take as input a string and return a list of strings (tokens) for words/sub-words""" return self.sp_model.encode(text, out_type=str) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.sp_model.piece_to_id(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" token = self.sp_model.IdToPiece(index) return token def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(current_sub_tokens) + token current_sub_tokens = [] else: current_sub_tokens.append(token) out_string += self.sp_model.decode(current_sub_tokens) return out_string.strip() def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) return (out_vocab_file,)
class_definition
974
7,075
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bert_generation/tokenization_bert_generation.py
null
4,658
class BertGenerationSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
1,678
2,294
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bert_generation/modeling_bert_generation.py
null
4,659
class BertGenerationSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) self.is_decoder = config.is_decoder def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: mixed_query_layer = self.query(hidden_states) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention and past_key_value is not None: # reuse k,v, cross_attentions key_layer = past_key_value[0] value_layer = past_key_value[1] attention_mask = encoder_attention_mask elif is_cross_attention: key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) attention_mask = encoder_attention_mask elif past_key_value is not None: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) key_layer = torch.cat([past_key_value[0], key_layer], dim=2) value_layer = torch.cat([past_key_value[1], value_layer], dim=2) else: key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) use_cache = past_key_value is not None if self.is_decoder: # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. # Further calls to cross_attention layer can then reuse all cross-attention # key/value_states (first "if" case) # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of # all previous decoder key/value_states. Further calls to uni-directional self-attention # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) # if encoder bi-directional self-attention `past_key_value` is always `None` past_key_value = (key_layer, value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": query_length, key_length = query_layer.shape[2], key_layer.shape[2] if use_cache: position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view( -1, 1 ) else: position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in BertGenerationModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (past_key_value,) return outputs
class_definition
2,394
9,756
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bert_generation/modeling_bert_generation.py
null
4,660
class BertGenerationAttention(nn.Module): def __init__(self, config, position_embedding_type=None): super().__init__() self.self = BERT_GENERATION_SELF_ATTENTION_CLASSES[config._attn_implementation]( config, position_embedding_type=position_embedding_type ) self.output = BertGenerationSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: self_outputs = self.self( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs
class_definition
9,963
12,116
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bert_generation/modeling_bert_generation.py
null
4,661
class BertGenerationIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
12,215
12,790
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bert_generation/modeling_bert_generation.py
null
4,662
class BertGenerationOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
12,883
13,501
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bert_generation/modeling_bert_generation.py
null
4,663
class BertGenerationLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = BertGenerationAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise ValueError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = BertGenerationAttention(config, position_embedding_type="absolute") self.intermediate = BertGenerationIntermediate(config) self.output = BertGenerationOutput(config) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> Tuple[torch.Tensor]: # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None self_attention_outputs = self.attention( hidden_states, attention_mask, head_mask, output_attentions=output_attentions, past_key_value=self_attn_past_key_value, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] present_key_value = self_attention_outputs[-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights cross_attn_present_key_value = None if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise ValueError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" " by setting `config.add_cross_attention=True`" ) # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None cross_attention_outputs = self.crossattention( attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, cross_attn_past_key_value, output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights # add cross-attn cache to positions 3,4 of present_key_value tuple cross_attn_present_key_value = cross_attention_outputs[-1] present_key_value = present_key_value + cross_attn_present_key_value layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output ) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (present_key_value,) return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output
class_definition
13,593
17,550
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bert_generation/modeling_bert_generation.py
null
4,664
class BertEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([BertGenerationLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = False, output_hidden_states: Optional[bool] = False, return_dict: Optional[bool] = True, ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False next_decoder_cache = () if use_cache else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None past_key_value = past_key_values[i] if past_key_values is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) else: layer_outputs = layer_module( hidden_states, attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, past_key_value, output_attentions, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache += (layer_outputs[-1],) if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, next_decoder_cache, all_hidden_states, all_self_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=next_decoder_cache, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, )
class_definition
17,644
21,444
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bert_generation/modeling_bert_generation.py
null
4,665
class BertGenerationEmbeddings(nn.Module): """Construct the embeddings from word and position embeddings.""" def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward(self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length] if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) embeddings = inputs_embeds + position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings
class_definition
25,191
26,893
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bert_generation/modeling_bert_generation.py
null
4,666
class BertGenerationPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = BertGenerationConfig base_model_prefix = "bert" supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
26,896
28,020
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bert_generation/modeling_bert_generation.py
null
4,667
class BertGenerationEncoder(BertGenerationPreTrainedModel): """ The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of cross-attention is added between the self-attention layers, following the architecture described in [Attention is all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. This model should be used when leveraging Bert or Roberta checkpoints for the [`EncoderDecoderModel`] class as described in [Leveraging Pre-trained Checkpoints for Sequence Generation Tasks](https://arxiv.org/abs/1907.12461) by Sascha Rothe, Shashi Narayan, and Aliaksei Severyn. To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass. """ def __init__(self, config): super().__init__(config) self.config = config self.embeddings = BertGenerationEmbeddings(config) self.encoder = BertEncoder(config) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(BERT_GENERATION_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: `1` for tokens that are NOT MASKED, `0` for MASKED tokens. past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=sequence_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, )
class_definition
31,356
39,972
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bert_generation/modeling_bert_generation.py
null
4,668
class BertGenerationOnlyLMHead(nn.Module): def __init__(self, config): super().__init__() self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, hidden_states): logits = self.decoder(hidden_states) return logits def _tie_weights(self): # For accelerate compatibility and to not break backward compatibility if self.decoder.bias.device.type == "meta": self.decoder.bias = self.bias else: # To tie those two weights if they get disconnected (on TPU or when the bias is resized) self.bias = self.decoder.bias
class_definition
39,975
40,716
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bert_generation/modeling_bert_generation.py
null
4,669
class BertGenerationDecoder(BertGenerationPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"] def __init__(self, config): super().__init__(config) if not config.is_decoder: logger.warning("If you want to use `BertGenerationDecoder` as a standalone, add `is_decoder=True.`") self.bert = BertGenerationEncoder(config) self.lm_head = BertGenerationOnlyLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings self.lm_head.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(BERT_GENERATION_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: r""" encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model is configured as a decoder. encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). Returns: Example: ```python >>> from transformers import AutoTokenizer, BertGenerationDecoder, BertGenerationConfig >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") >>> config = BertGenerationConfig.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder") >>> config.is_decoder = True >>> model = BertGenerationDecoder.from_pretrained( ... "google/bert_for_seq_generation_L-24_bbc_encoder", config=config ... ) >>> inputs = tokenizer("Hello, my dog is cute", return_token_type_ids=False, return_tensors="pt") >>> outputs = model(**inputs) >>> prediction_logits = outputs.logits ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False outputs = self.bert( input_ids, attention_mask=attention_mask, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] prediction_scores = self.lm_head(sequence_output) lm_loss = None if labels is not None: # we are doing next-token prediction; shift prediction scores and input ids by one shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous() labels = labels[:, 1:].contiguous() loss_fct = CrossEntropyLoss() lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[1:] return ((lm_loss,) + output) if lm_loss is not None else output return CausalLMOutputWithCrossAttentions( loss=lm_loss, logits=prediction_scores, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, cross_attentions=outputs.cross_attentions, ) def _reorder_cache(self, past_key_values, beam_idx): reordered_past = () for layer_past in past_key_values: reordered_past += ( tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), ) return reordered_past
class_definition
40,873
47,481
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/bert_generation/modeling_bert_generation.py
null
4,670
class Wav2Vec2DecoderWithLMOutput(ModelOutput): """ Output type of [`Wav2Vec2DecoderWithLM`], with transcription. Args: text (list of `str` or `str`): Decoded logits in text from. Usually the speech transcription. logit_score (list of `float` or `float`): Total logit score of the beams associated with produced text. lm_score (list of `float`): Fused lm_score of the beams associated with produced text. word_offsets (list of `List[Dict[str, Union[int, str]]]` or `List[Dict[str, Union[int, str]]]`): Offsets of the decoded words. In combination with sampling rate and model downsampling rate word offsets can be used to compute time stamps for each word. """ text: Union[List[List[str]], List[str], str] logit_score: Union[List[List[float]], List[float], float] = None lm_score: Union[List[List[float]], List[float], float] = None word_offsets: Union[List[List[ListOfDict]], List[ListOfDict], ListOfDict] = None
class_definition
1,326
2,365
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py
null
4,671
class Wav2Vec2ProcessorWithLM(ProcessorMixin): r""" Constructs a Wav2Vec2 processor which wraps a Wav2Vec2 feature extractor, a Wav2Vec2 CTC tokenizer and a decoder with language model support into a single processor for language model boosted speech recognition decoding. Args: feature_extractor ([`Wav2Vec2FeatureExtractor`] or [`SeamlessM4TFeatureExtractor`]): An instance of [`Wav2Vec2FeatureExtractor`] or [`SeamlessM4TFeatureExtractor`]. The feature extractor is a required input. tokenizer ([`Wav2Vec2CTCTokenizer`]): An instance of [`Wav2Vec2CTCTokenizer`]. The tokenizer is a required input. decoder (`pyctcdecode.BeamSearchDecoderCTC`): An instance of [`pyctcdecode.BeamSearchDecoderCTC`]. The decoder is a required input. """ feature_extractor_class = "AutoFeatureExtractor" tokenizer_class = "Wav2Vec2CTCTokenizer" def __init__( self, feature_extractor: "FeatureExtractionMixin", tokenizer: "PreTrainedTokenizerBase", decoder: "BeamSearchDecoderCTC", ): from pyctcdecode import BeamSearchDecoderCTC super().__init__(feature_extractor, tokenizer) if not isinstance(decoder, BeamSearchDecoderCTC): raise TypeError(f"`decoder` has to be of type {BeamSearchDecoderCTC.__class__}, but is {type(decoder)}") if feature_extractor.__class__.__name__ not in ["Wav2Vec2FeatureExtractor", "SeamlessM4TFeatureExtractor"]: raise ValueError( f"`feature_extractor` has to be of type `Wav2Vec2FeatureExtractor` or `SeamlessM4TFeatureExtractor`, but is {type(feature_extractor)}" ) # make sure that decoder's alphabet and tokenizer's vocab match in content missing_decoder_tokens = self.get_missing_alphabet_tokens(decoder, tokenizer) if len(missing_decoder_tokens) > 0: raise ValueError( f"The tokens {missing_decoder_tokens} are defined in the tokenizer's " "vocabulary, but not in the decoder's alphabet. " f"Make sure to include {missing_decoder_tokens} in the decoder's alphabet." ) self.decoder = decoder self.current_processor = self.feature_extractor self._in_target_context_manager = False def save_pretrained(self, save_directory): super().save_pretrained(save_directory) self.decoder.save_to_dir(save_directory) @classmethod def from_pretrained(cls, pretrained_model_name_or_path, **kwargs): r""" Instantiate a [`Wav2Vec2ProcessorWithLM`] from a pretrained Wav2Vec2 processor. <Tip> This class method is simply calling the feature extractor's [`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`], Wav2Vec2CTCTokenizer's [`~tokenization_utils_base.PreTrainedTokenizerBase.from_pretrained`], and [`pyctcdecode.BeamSearchDecoderCTC.load_from_hf_hub`]. Please refer to the docstrings of the methods above for more information. </Tip> Args: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on huggingface.co. - a path to a *directory* containing a feature extractor file saved using the [`~SequenceFeatureExtractor.save_pretrained`] method, e.g., `./my_model_directory/`. - a path or url to a saved feature extractor JSON *file*, e.g., `./my_model_directory/preprocessor_config.json`. **kwargs Additional keyword arguments passed along to both [`SequenceFeatureExtractor`] and [`PreTrainedTokenizer`] """ requires_backends(cls, "pyctcdecode") from pyctcdecode import BeamSearchDecoderCTC feature_extractor, tokenizer = super()._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs) if os.path.isdir(pretrained_model_name_or_path) or os.path.isfile(pretrained_model_name_or_path): unigram_encoding = kwargs.get("unigram_encoding", "utf-8") decoder = BeamSearchDecoderCTC.load_from_dir(pretrained_model_name_or_path, unigram_encoding) else: # BeamSearchDecoderCTC has no auto class kwargs.pop("_from_auto", None) # snapshot_download has no `trust_remote_code` flag kwargs.pop("trust_remote_code", None) # make sure that only relevant filenames are downloaded language_model_filenames = os.path.join(BeamSearchDecoderCTC._LANGUAGE_MODEL_SERIALIZED_DIRECTORY, "*") alphabet_filename = BeamSearchDecoderCTC._ALPHABET_SERIALIZED_FILENAME allow_patterns = [language_model_filenames, alphabet_filename] decoder = BeamSearchDecoderCTC.load_from_hf_hub( pretrained_model_name_or_path, allow_patterns=allow_patterns, **kwargs ) # set language model attributes for attribute in ["alpha", "beta", "unk_score_offset", "score_boundary"]: value = kwargs.pop(attribute, None) if value is not None: cls._set_language_model_attribute(decoder, attribute, value) # make sure that decoder's alphabet and tokenizer's vocab match in content missing_decoder_tokens = cls.get_missing_alphabet_tokens(decoder, tokenizer) if len(missing_decoder_tokens) > 0: raise ValueError( f"The tokens {missing_decoder_tokens} are defined in the tokenizer's " "vocabulary, but not in the decoder's alphabet. " f"Make sure to include {missing_decoder_tokens} in the decoder's alphabet." ) return cls(feature_extractor=feature_extractor, tokenizer=tokenizer, decoder=decoder) @staticmethod def _set_language_model_attribute(decoder: "BeamSearchDecoderCTC", attribute: str, value: float): setattr(decoder.model_container[decoder._model_key], attribute, value) @property def language_model(self): return self.decoder.model_container[self.decoder._model_key] @staticmethod def get_missing_alphabet_tokens(decoder, tokenizer): from pyctcdecode.alphabet import BLANK_TOKEN_PTN, UNK_TOKEN, UNK_TOKEN_PTN # we need to make sure that all of the tokenizer's except the special tokens # are present in the decoder's alphabet. Retrieve missing alphabet token # from decoder tokenizer_vocab_list = list(tokenizer.get_vocab().keys()) # replace special tokens for i, token in enumerate(tokenizer_vocab_list): if BLANK_TOKEN_PTN.match(token): tokenizer_vocab_list[i] = "" if token == tokenizer.word_delimiter_token: tokenizer_vocab_list[i] = " " if UNK_TOKEN_PTN.match(token): tokenizer_vocab_list[i] = UNK_TOKEN # are any of the extra tokens no special tokenizer tokens? missing_tokens = set(tokenizer_vocab_list) - set(decoder._alphabet.labels) return missing_tokens def __call__(self, *args, **kwargs): """ When used in normal mode, this method forwards all its arguments to the feature extractor's [`~FeatureExtractionMixin.__call__`] and returns its output. If used in the context [`~Wav2Vec2ProcessorWithLM.as_target_processor`] this method forwards all its arguments to Wav2Vec2CTCTokenizer's [`~Wav2Vec2CTCTokenizer.__call__`]. Please refer to the docstring of the above two methods for more information. """ # For backward compatibility if self._in_target_context_manager: return self.current_processor(*args, **kwargs) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.") audio = kwargs.pop("raw_speech") else: audio = kwargs.pop("audio", None) sampling_rate = kwargs.pop("sampling_rate", None) text = kwargs.pop("text", None) if len(args) > 0: audio = args[0] args = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if audio is not None: inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs) if text is not None: encodings = self.tokenizer(text, **kwargs) if text is None: return inputs elif audio is None: return encodings else: inputs["labels"] = encodings["input_ids"] return inputs def pad(self, *args, **kwargs): """ When used in normal mode, this method forwards all its arguments to the feature extractor's [`~FeatureExtractionMixin.pad`] and returns its output. If used in the context [`~Wav2Vec2ProcessorWithLM.as_target_processor`] this method forwards all its arguments to Wav2Vec2CTCTokenizer's [`~Wav2Vec2CTCTokenizer.pad`]. Please refer to the docstring of the above two methods for more information. """ # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*args, **kwargs) input_features = kwargs.pop("input_features", None) labels = kwargs.pop("labels", None) if len(args) > 0: input_features = args[0] args = args[1:] if input_features is not None: input_features = self.feature_extractor.pad(input_features, *args, **kwargs) if labels is not None: labels = self.tokenizer.pad(labels, **kwargs) if labels is None: return input_features elif input_features is None: return labels else: input_features["labels"] = labels["input_ids"] return input_features def batch_decode( self, logits: np.ndarray, pool: Optional[Pool] = None, num_processes: Optional[int] = None, beam_width: Optional[int] = None, beam_prune_logp: Optional[float] = None, token_min_logp: Optional[float] = None, hotwords: Optional[Iterable[str]] = None, hotword_weight: Optional[float] = None, alpha: Optional[float] = None, beta: Optional[float] = None, unk_score_offset: Optional[float] = None, lm_score_boundary: Optional[bool] = None, output_word_offsets: bool = False, n_best: int = 1, ): """ Batch decode output logits to audio transcription with language model support. <Tip> This function makes use of Python's multiprocessing. Currently, multiprocessing is available only on Unix systems (see this [issue](https://github.com/kensho-technologies/pyctcdecode/issues/65)). If you are decoding multiple batches, consider creating a `Pool` and passing it to `batch_decode`. Otherwise, `batch_decode` will be very slow since it will create a fresh `Pool` for each call. See usage example below. </Tip> Args: logits (`np.ndarray`): The logits output vector of the model representing the log probabilities for each token. pool (`multiprocessing.Pool`, *optional*): An optional user-managed pool. If not set, one will be automatically created and closed. The pool should be instantiated *after* `Wav2Vec2ProcessorWithLM`. Otherwise, the LM won't be available to the pool's sub-processes. <Tip> Currently, only pools created with a 'fork' context can be used. If a 'spawn' pool is passed, it will be ignored and sequential decoding will be used instead. </Tip> num_processes (`int`, *optional*): If `pool` is not set, number of processes on which the function should be parallelized over. Defaults to the number of available CPUs. beam_width (`int`, *optional*): Maximum number of beams at each step in decoding. Defaults to pyctcdecode's DEFAULT_BEAM_WIDTH. beam_prune_logp (`int`, *optional*): Beams that are much worse than best beam will be pruned Defaults to pyctcdecode's DEFAULT_PRUNE_LOGP. token_min_logp (`int`, *optional*): Tokens below this logp are skipped unless they are argmax of frame Defaults to pyctcdecode's DEFAULT_MIN_TOKEN_LOGP. hotwords (`List[str]`, *optional*): List of words with extra importance, can be OOV for LM hotword_weight (`int`, *optional*): Weight factor for hotword importance Defaults to pyctcdecode's DEFAULT_HOTWORD_WEIGHT. alpha (`float`, *optional*): Weight for language model during shallow fusion beta (`float`, *optional*): Weight for length score adjustment of during scoring unk_score_offset (`float`, *optional*): Amount of log score offset for unknown tokens lm_score_boundary (`bool`, *optional*): Whether to have kenlm respect boundaries when scoring output_word_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate and model downsampling rate to compute the time-stamps of transcribed words. n_best (`int`, *optional*, defaults to `1`): Number of best hypotheses to return. If `n_best` is greater than 1, the returned `text` will be a list of lists of strings, `logit_score` will be a list of lists of floats, and `lm_score` will be a list of lists of floats, where the length of the outer list will correspond to the batch size and the length of the inner list will correspond to the number of returned hypotheses . The value should be >= 1. <Tip> Please take a look at the Example of [`~Wav2Vec2ProcessorWithLM.decode`] to better understand how to make use of `output_word_offsets`. [`~Wav2Vec2ProcessorWithLM.batch_decode`] works the same way with batched output. </Tip> Returns: [`~models.wav2vec2.Wav2Vec2DecoderWithLMOutput`]. Example: See [Decoding multiple audios](#decoding-multiple-audios). """ from pyctcdecode.constants import ( DEFAULT_BEAM_WIDTH, DEFAULT_HOTWORD_WEIGHT, DEFAULT_MIN_TOKEN_LOGP, DEFAULT_PRUNE_LOGP, ) # set defaults beam_width = beam_width if beam_width is not None else DEFAULT_BEAM_WIDTH beam_prune_logp = beam_prune_logp if beam_prune_logp is not None else DEFAULT_PRUNE_LOGP token_min_logp = token_min_logp if token_min_logp is not None else DEFAULT_MIN_TOKEN_LOGP hotword_weight = hotword_weight if hotword_weight is not None else DEFAULT_HOTWORD_WEIGHT # reset params at every forward call. It's just a `set` method in pyctcdecode self.decoder.reset_params( alpha=alpha, beta=beta, unk_score_offset=unk_score_offset, lm_score_boundary=lm_score_boundary ) # create multiprocessing pool and list numpy arrays # filter out logits padding logits_list = [array[(array != -100.0).all(axis=-1)] for array in logits] # create a pool if necessary while also using it as a context manager to close itself if pool is None: # fork is safe to use only on Unix, see "Contexts and start methods" section on # multiprocessing's docs (https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods) default_context = get_start_method() if default_context == "fork": cm = pool = get_context().Pool(num_processes) else: logger.warning( "Parallel batch decoding is not currently supported in this platform. " "Falling back to sequential decoding." ) cm = nullcontext() else: # pool is managed by the user, so we don't need to close it cm = nullcontext() if num_processes is not None: logger.warning( "Parameter `num_process` was passed, but it will be ignored since `pool` was also specified." ) # pyctcdecode with cm: decoded_beams = self.decoder.decode_beams_batch( pool=pool, logits_list=logits_list, beam_width=beam_width, beam_prune_logp=beam_prune_logp, token_min_logp=token_min_logp, hotwords=hotwords, hotword_weight=hotword_weight, ) # extract text and scores batch_texts, logit_scores, lm_scores, word_offsets = [], [], [], [] for d in decoded_beams: batch_texts.append([beam[0] for beam in d]) logit_scores.append([beam[-2] for beam in d]) lm_scores.append([beam[-1] for beam in d]) # word_offsets.append([{"word": t[0], "start_offset": t[1][0], "end_offset": t[1][1]} for t in d[0][1]]) word_offsets.append( [ [ {"word": word, "start_offset": start_offset, "end_offset": end_offset} for word, (start_offset, end_offset) in beam[1] ] for beam in d ] ) word_offsets = word_offsets if output_word_offsets else None if n_best == 1: return Wav2Vec2DecoderWithLMOutput( text=[hyps[0] for hyps in batch_texts], logit_score=[hyps[0] for hyps in logit_scores], lm_score=[hyps[0] for hyps in lm_scores], word_offsets=[hyps[0] for hyps in word_offsets] if word_offsets is not None else None, ) else: return Wav2Vec2DecoderWithLMOutput( text=[hyps[:n_best] for hyps in batch_texts], logit_score=[hyps[:n_best] for hyps in logit_scores], lm_score=[hyps[:n_best] for hyps in lm_scores], word_offsets=[hyps[:n_best] for hyps in word_offsets] if word_offsets is not None else None, ) def decode( self, logits: np.ndarray, beam_width: Optional[int] = None, beam_prune_logp: Optional[float] = None, token_min_logp: Optional[float] = None, hotwords: Optional[Iterable[str]] = None, hotword_weight: Optional[float] = None, alpha: Optional[float] = None, beta: Optional[float] = None, unk_score_offset: Optional[float] = None, lm_score_boundary: Optional[bool] = None, output_word_offsets: bool = False, n_best: int = 1, ): """ Decode output logits to audio transcription with language model support. Args: logits (`np.ndarray`): The logits output vector of the model representing the log probabilities for each token. beam_width (`int`, *optional*): Maximum number of beams at each step in decoding. Defaults to pyctcdecode's DEFAULT_BEAM_WIDTH. beam_prune_logp (`int`, *optional*): A threshold to prune beams with log-probs less than best_beam_logp + beam_prune_logp. The value should be <= 0. Defaults to pyctcdecode's DEFAULT_PRUNE_LOGP. token_min_logp (`int`, *optional*): Tokens with log-probs below token_min_logp are skipped unless they are have the maximum log-prob for an utterance. Defaults to pyctcdecode's DEFAULT_MIN_TOKEN_LOGP. hotwords (`List[str]`, *optional*): List of words with extra importance which can be missing from the LM's vocabulary, e.g. ["huggingface"] hotword_weight (`int`, *optional*): Weight multiplier that boosts hotword scores. Defaults to pyctcdecode's DEFAULT_HOTWORD_WEIGHT. alpha (`float`, *optional*): Weight for language model during shallow fusion beta (`float`, *optional*): Weight for length score adjustment of during scoring unk_score_offset (`float`, *optional*): Amount of log score offset for unknown tokens lm_score_boundary (`bool`, *optional*): Whether to have kenlm respect boundaries when scoring output_word_offsets (`bool`, *optional*, defaults to `False`): Whether or not to output word offsets. Word offsets can be used in combination with the sampling rate and model downsampling rate to compute the time-stamps of transcribed words. n_best (`int`, *optional*, defaults to `1`): Number of best hypotheses to return. If `n_best` is greater than 1, the returned `text` will be a list of strings, `logit_score` will be a list of floats, and `lm_score` will be a list of floats, where the length of these lists will correspond to the number of returned hypotheses. The value should be >= 1. <Tip> Please take a look at the example below to better understand how to make use of `output_word_offsets`. </Tip> Returns: [`~models.wav2vec2.Wav2Vec2DecoderWithLMOutput`]. Example: ```python >>> # Let's see how to retrieve time steps for a model >>> from transformers import AutoTokenizer, AutoProcessor, AutoModelForCTC >>> from datasets import load_dataset >>> import datasets >>> import torch >>> # import model, feature extractor, tokenizer >>> model = AutoModelForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm") >>> processor = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm") >>> # load first sample of English common_voice >>> dataset = load_dataset("mozilla-foundation/common_voice_11_0", "en", split="train", streaming=True, trust_remote_code=True) >>> dataset = dataset.cast_column("audio", datasets.Audio(sampling_rate=16_000)) >>> dataset_iter = iter(dataset) >>> sample = next(dataset_iter) >>> # forward sample through model to get greedily predicted transcription ids >>> input_values = processor(sample["audio"]["array"], return_tensors="pt").input_values >>> with torch.no_grad(): ... logits = model(input_values).logits[0].cpu().numpy() >>> # retrieve word stamps (analogous commands for `output_char_offsets`) >>> outputs = processor.decode(logits, output_word_offsets=True) >>> # compute `time_offset` in seconds as product of downsampling ratio and sampling_rate >>> time_offset = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate >>> word_offsets = [ ... { ... "word": d["word"], ... "start_time": round(d["start_offset"] * time_offset, 2), ... "end_time": round(d["end_offset"] * time_offset, 2), ... } ... for d in outputs.word_offsets ... ] >>> # compare word offsets with audio `en_train_0/common_voice_en_19121553.mp3` online on the dataset viewer: >>> # https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0/viewer/en >>> word_offsets[:4] [{'word': 'THE', 'start_time': 0.68, 'end_time': 0.78}, {'word': 'TRACK', 'start_time': 0.88, 'end_time': 1.1}, {'word': 'APPEARS', 'start_time': 1.18, 'end_time': 1.66}, {'word': 'ON', 'start_time': 1.86, 'end_time': 1.92}] ```""" from pyctcdecode.constants import ( DEFAULT_BEAM_WIDTH, DEFAULT_HOTWORD_WEIGHT, DEFAULT_MIN_TOKEN_LOGP, DEFAULT_PRUNE_LOGP, ) # set defaults beam_width = beam_width if beam_width is not None else DEFAULT_BEAM_WIDTH beam_prune_logp = beam_prune_logp if beam_prune_logp is not None else DEFAULT_PRUNE_LOGP token_min_logp = token_min_logp if token_min_logp is not None else DEFAULT_MIN_TOKEN_LOGP hotword_weight = hotword_weight if hotword_weight is not None else DEFAULT_HOTWORD_WEIGHT # reset params at every forward call. It's just a `set` method in pyctcdecode self.decoder.reset_params( alpha=alpha, beta=beta, unk_score_offset=unk_score_offset, lm_score_boundary=lm_score_boundary ) # pyctcdecode decoded_beams = self.decoder.decode_beams( logits, beam_width=beam_width, beam_prune_logp=beam_prune_logp, token_min_logp=token_min_logp, hotwords=hotwords, hotword_weight=hotword_weight, ) word_offsets = None if output_word_offsets: word_offsets = [ [ {"word": word, "start_offset": start_offset, "end_offset": end_offset} for word, (start_offset, end_offset) in beam[2] ] for beam in decoded_beams ] logit_scores = [beam[-2] for beam in decoded_beams] lm_scores = [beam[-1] for beam in decoded_beams] hypotheses = [beam[0] for beam in decoded_beams] if n_best > len(decoded_beams): logger.info( "N-best size is larger than the number of generated hypotheses, all hypotheses will be returned." ) if n_best == 1: return Wav2Vec2DecoderWithLMOutput( text=hypotheses[0], logit_score=logit_scores[0], lm_score=lm_scores[0], word_offsets=word_offsets[0] if word_offsets is not None else None, ) else: return Wav2Vec2DecoderWithLMOutput( text=hypotheses[:n_best], logit_score=logit_scores[:n_best], lm_score=lm_scores[:n_best], word_offsets=word_offsets[:n_best] if word_offsets is not None else None, ) @contextmanager def as_target_processor(self): """ Temporarily sets the processor for processing the target. Useful for encoding the labels when fine-tuning Wav2Vec2. """ warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) self._in_target_context_manager = True self.current_processor = self.tokenizer yield self.current_processor = self.feature_extractor self._in_target_context_manager = False
class_definition
2,368
29,999
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py
null
4,672
class ViTMSNConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`ViTMSNModel`]. It is used to instantiate an ViT MSN model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ViT [facebook/vit_msn_base](https://huggingface.co/facebook/vit_msn_base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 16): The size (resolution) of each patch. num_channels (`int`, *optional*, defaults to 3): The number of input channels. qkv_bias (`bool`, *optional*, defaults to `True`): Whether to add a bias to the queries, keys and values. Example: ```python >>> from transformers import ViTMSNModel, ViTMSNConfig >>> # Initializing a ViT MSN vit-msn-base style configuration >>> configuration = ViTConfig() >>> # Initializing a model from the vit-msn-base style configuration >>> model = ViTMSNModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "vit_msn" def __init__( self, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.0, attention_probs_dropout_prob=0.0, initializer_range=0.02, layer_norm_eps=1e-06, image_size=224, patch_size=16, num_channels=3, qkv_bias=True, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.qkv_bias = qkv_bias
class_definition
800
4,834
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_msn/configuration_vit_msn.py
null
4,673
class ViTMSNEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. Optionally, also the mask token. """ def __init__(self, config: ViTMSNConfig, use_mask_token: bool = False) -> None: super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None self.patch_embeddings = ViTMSNPatchEmbeddings(config) num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.patch_size = config.patch_size self.config = config # Copied from transformers.models.vit.modeling_vit.ViTEmbeddings.interpolate_pos_encoding def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. This method is also adapted to support torch.jit tracing. Adapted from: - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 """ num_patches = embeddings.shape[1] - 1 num_positions = self.position_embeddings.shape[1] - 1 # always interpolate when tracing to ensure the exported model works for dynamic input shapes if not torch.jit.is_tracing() and num_patches == num_positions and height == width: return self.position_embeddings class_pos_embed = self.position_embeddings[:, :1] patch_pos_embed = self.position_embeddings[:, 1:] dim = embeddings.shape[-1] new_height = height // self.patch_size new_width = width // self.patch_size sqrt_num_positions = torch_int(num_positions**0.5) patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(new_height, new_width), mode="bicubic", align_corners=False, ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return torch.cat((class_pos_embed, patch_pos_embed), dim=1) def forward( self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None, interpolate_pos_encoding: bool = False, ) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) if bool_masked_pos is not None: seq_length = embeddings.shape[1] mask_tokens = self.mask_token.expand(batch_size, seq_length, -1) # replace the masked visual tokens by mask_tokens mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1.0 - mask) + mask_tokens * mask # add the [CLS] token to the embedded patch tokens cls_tokens = self.cls_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, embeddings), dim=1) # add positional encoding to each token if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings
class_definition
1,481
5,424
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_msn/modeling_vit_msn.py
null
4,674
class ViTMSNPatchEmbeddings(nn.Module): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: batch_size, num_channels, height, width = pixel_values.shape if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." f" Expected {self.num_channels} but got {num_channels}." ) if not interpolate_pos_encoding: if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model" f" ({self.image_size[0]}*{self.image_size[1]})." ) embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) return embeddings
class_definition
5,514
7,467
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_msn/modeling_vit_msn.py
null
4,675
class ViTMSNSelfAttention(nn.Module): def __init__(self, config: ViTMSNConfig) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs
class_definition
7,555
10,401
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_msn/modeling_vit_msn.py
null
4,676
class ViTMSNSdpaSelfAttention(ViTMSNSelfAttention): def __init__(self, config: ViTMSNConfig) -> None: super().__init__(config) self.attention_probs_dropout_prob = config.attention_probs_dropout_prob def forward( self, hidden_states: torch.FloatTensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: if output_attentions or head_mask is not None: logger.warning_once( "`ViTMSNSdpaAttention` is used but `torch.nn.functional.scaled_dot_product_attention` does not support " "`output_attentions=True` or `head_mask`. Falling back to the manual attention implementation, but " "specifying the manual implementation will be required from Transformers version v5.0.0 onwards. " 'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, head_mask=head_mask, output_attentions=output_attentions, ) mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) context_layer = torch.nn.functional.scaled_dot_product_attention( query_layer, key_layer, value_layer, head_mask, self.attention_probs_dropout_prob if self.training else 0.0, is_causal=False, scale=None, ) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) return context_layer, None
class_definition
10,493
12,543
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_msn/modeling_vit_msn.py
null
4,677
class ViTMSNSelfOutput(nn.Module): """ The residual connection is defined in ViTMSNLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: ViTMSNConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states
class_definition
12,628
13,280
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_msn/modeling_vit_msn.py
null
4,678
class ViTMSNAttention(nn.Module): def __init__(self, config: ViTMSNConfig) -> None: super().__init__() self.attention = ViTMSNSelfAttention(config) self.output = ViTMSNSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs
class_definition
13,364
15,053
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_msn/modeling_vit_msn.py
null
4,679
class ViTMSNSdpaAttention(ViTMSNAttention): def __init__(self, config: ViTMSNConfig) -> None: super().__init__(config) self.attention = ViTMSNSdpaSelfAttention(config)
class_definition
15,141
15,328
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_msn/modeling_vit_msn.py
null
4,680
class ViTMSNIntermediate(nn.Module): def __init__(self, config: ViTMSNConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
15,415
16,005
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_msn/modeling_vit_msn.py
null
4,681
class ViTMSNOutput(nn.Module): def __init__(self, config: ViTMSNConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states
class_definition
16,086
16,619
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_msn/modeling_vit_msn.py
null
4,682
class ViTMSNLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: ViTMSNConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = VITMSN_ATTENTION_CLASSES[config._attn_implementation](config) self.intermediate = ViTMSNIntermediate(config) self.output = ViTMSNOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in ViTMSN, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states # in ViTMSN, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs
class_definition
16,797
18,532
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_msn/modeling_vit_msn.py
null
4,683
class ViTMSNEncoder(nn.Module): def __init__(self, config: ViTMSNConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([ViTMSNLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, )
class_definition
18,614
20,544
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_msn/modeling_vit_msn.py
null
4,684
class ViTMSNPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ViTMSNConfig base_model_prefix = "vit" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = ["ViTMSNAttention", "ViTMSNSdpaAttention"] _supports_sdpa = True # todo: Resort to https://github.com/facebookresearch/msn/blob/main/src/deit.py#L200-#L211 # when creating pre-training scripts. def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
20,547
21,744
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_msn/modeling_vit_msn.py
null
4,685
class ViTMSNModel(ViTMSNPreTrainedModel): def __init__(self, config: ViTMSNConfig, use_mask_token: bool = False): super().__init__(config) self.config = config self.embeddings = ViTMSNEmbeddings(config, use_mask_token=use_mask_token) self.encoder = ViTMSNEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> ViTMSNPatchEmbeddings: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(VIT_MSN_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, BaseModelOutput]: r""" bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). Returns: Examples: ```python >>> from transformers import AutoImageProcessor, ViTMSNModel >>> import torch >>> from PIL import Image >>> import requests >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-msn-small") >>> model = ViTMSNModel.from_pretrained("facebook/vit-msn-small") >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding ) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) if not return_dict: head_outputs = (sequence_output,) return head_outputs + encoder_outputs[1:] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, )
class_definition
23,774
28,005
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_msn/modeling_vit_msn.py
null
4,686
class ViTMSNForImageClassification(ViTMSNPreTrainedModel): def __init__(self, config: ViTMSNConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.vit = ViTMSNModel(config) # Classifier head self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(VIT_MSN_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC) def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutput]: r""" Returns: Examples: ```python >>> from transformers import AutoImageProcessor, ViTMSNForImageClassification >>> import torch >>> from PIL import Image >>> import requests >>> torch.manual_seed(2) # doctest: +IGNORE_RESULT >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> image_processor = AutoImageProcessor.from_pretrained("facebook/vit-msn-small") >>> model = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small") >>> inputs = image_processor(images=image, return_tensors="pt") >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> # model predicts one of the 1000 ImageNet classes >>> predicted_label = logits.argmax(-1).item() >>> print(model.config.id2label[predicted_label]) tusker ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vit( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output[:, 0, :]) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
28,324
32,333
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vit_msn/modeling_vit_msn.py
null
4,687
class RTDetrImageProcessor(BaseImageProcessor): r""" Constructs a RT-DETR image processor. Args: format (`str`, *optional*, defaults to `AnnotationFormat.COCO_DETECTION`): Data format of the annotations. One of "coco_detection" or "coco_panoptic". do_resize (`bool`, *optional*, defaults to `True`): Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`Dict[str, int]` *optional*, defaults to `{"height": 640, "width": 640}`): Size of the image's `(height, width)` dimensions after resizing. Can be overridden by the `size` parameter in the `preprocess` method. Available options are: - `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`. Do NOT keep the aspect ratio. - `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge less or equal to `longest_edge`. - `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to `max_width`. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. do_rescale (`bool`, *optional*, defaults to `True`): Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `False`): Whether to normalize the image. image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`): Mean values to use when normalizing the image. Can be a single value or a list of values, one for each channel. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`): Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_annotations (`bool`, *optional*, defaults to `True`): Controls whether to convert the annotations to the format expected by the DETR model. Converts the bounding boxes to the format `(center_x, center_y, width, height)` and in the range `[0, 1]`. Can be overridden by the `do_convert_annotations` parameter in the `preprocess` method. do_pad (`bool`, *optional*, defaults to `False`): Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess` method. If `True`, padding will be applied to the bottom and right of the image with zeros. If `pad_size` is provided, the image will be padded to the specified dimensions. Otherwise, the image will be padded to the maximum height and width of the batch. pad_size (`Dict[str, int]`, *optional*): The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest height and width in the batch. """ model_input_names = ["pixel_values", "pixel_mask"] def __init__( self, format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION, do_resize: bool = True, size: Dict[str, int] = None, resample: PILImageResampling = PILImageResampling.BILINEAR, do_rescale: bool = True, rescale_factor: Union[int, float] = 1 / 255, do_normalize: bool = False, image_mean: Union[float, List[float]] = None, image_std: Union[float, List[float]] = None, do_convert_annotations: bool = True, do_pad: bool = False, pad_size: Optional[Dict[str, int]] = None, **kwargs, ) -> None: size = size if size is not None else {"height": 640, "width": 640} size = get_size_dict(size, default_to_square=False) if do_convert_annotations is None: do_convert_annotations = do_normalize super().__init__(**kwargs) self.format = format self.do_resize = do_resize self.size = size self.resample = resample self.do_rescale = do_rescale self.rescale_factor = rescale_factor self.do_normalize = do_normalize self.do_convert_annotations = do_convert_annotations self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD self.do_pad = do_pad self.pad_size = pad_size def prepare_annotation( self, image: np.ndarray, target: Dict, format: Optional[AnnotationFormat] = None, return_segmentation_masks: bool = None, masks_path: Optional[Union[str, pathlib.Path]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> Dict: """ Prepare an annotation for feeding into RTDETR model. """ format = format if format is not None else self.format if format == AnnotationFormat.COCO_DETECTION: return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks target = prepare_coco_detection_annotation( image, target, return_segmentation_masks, input_data_format=input_data_format ) else: raise ValueError(f"Format {format} is not supported.") return target # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize def resize( self, image: np.ndarray, size: Dict[str, int], resample: PILImageResampling = PILImageResampling.BILINEAR, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, **kwargs, ) -> np.ndarray: """ Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an int, smaller edge of the image will be matched to this number. Args: image (`np.ndarray`): Image to resize. size (`Dict[str, int]`): Size of the image's `(height, width)` dimensions after resizing. Available options are: - `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`. Do NOT keep the aspect ratio. - `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge less or equal to `longest_edge`. - `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to `max_width`. resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`): Resampling filter to use if resizing the image. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. """ if "max_size" in kwargs: logger.warning_once( "The `max_size` parameter is deprecated and will be removed in v4.26. " "Please specify in `size['longest_edge'] instead`.", ) max_size = kwargs.pop("max_size") else: max_size = None size = get_size_dict(size, max_size=max_size, default_to_square=False) if "shortest_edge" in size and "longest_edge" in size: new_size = get_resize_output_image_size( image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format ) elif "max_height" in size and "max_width" in size: new_size = get_image_size_for_max_height_width( image, size["max_height"], size["max_width"], input_data_format=input_data_format ) elif "height" in size and "width" in size: new_size = (size["height"], size["width"]) else: raise ValueError( "Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got" f" {size.keys()}." ) image = resize( image, size=new_size, resample=resample, data_format=data_format, input_data_format=input_data_format, **kwargs, ) return image # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize_annotation def resize_annotation( self, annotation, orig_size, size, resample: PILImageResampling = PILImageResampling.NEAREST, ) -> Dict: """ Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched to this number. """ return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale def rescale( self, image: np.ndarray, rescale_factor: float, data_format: Optional[Union[str, ChannelDimension]] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> np.ndarray: """ Rescale the image by the given factor. image = image * rescale_factor. Args: image (`np.ndarray`): Image to rescale. rescale_factor (`float`): The value to use for rescaling. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. input_data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format for the input image. If unset, is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. """ return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict: """ Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to `[center_x, center_y, width, height]` format and from absolute to relative pixel values. """ return normalize_annotation(annotation, image_size=image_size) # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._update_annotation_for_padded_image def _update_annotation_for_padded_image( self, annotation: Dict, input_image_size: Tuple[int, int], output_image_size: Tuple[int, int], padding, update_bboxes, ) -> Dict: """ Update the annotation for a padded image. """ new_annotation = {} new_annotation["size"] = output_image_size for key, value in annotation.items(): if key == "masks": masks = value masks = pad( masks, padding, mode=PaddingMode.CONSTANT, constant_values=0, input_data_format=ChannelDimension.FIRST, ) masks = safe_squeeze(masks, 1) new_annotation["masks"] = masks elif key == "boxes" and update_bboxes: boxes = value boxes *= np.asarray( [ input_image_size[1] / output_image_size[1], input_image_size[0] / output_image_size[0], input_image_size[1] / output_image_size[1], input_image_size[0] / output_image_size[0], ] ) new_annotation["boxes"] = boxes elif key == "size": new_annotation["size"] = output_image_size else: new_annotation[key] = value return new_annotation # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image def _pad_image( self, image: np.ndarray, output_size: Tuple[int, int], annotation: Optional[Dict[str, Any]] = None, constant_values: Union[float, Iterable[float]] = 0, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, update_bboxes: bool = True, ) -> np.ndarray: """ Pad an image with zeros to the given size. """ input_height, input_width = get_image_size(image, channel_dim=input_data_format) output_height, output_width = output_size pad_bottom = output_height - input_height pad_right = output_width - input_width padding = ((0, pad_bottom), (0, pad_right)) padded_image = pad( image, padding, mode=PaddingMode.CONSTANT, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, ) if annotation is not None: annotation = self._update_annotation_for_padded_image( annotation, (input_height, input_width), (output_height, output_width), padding, update_bboxes ) return padded_image, annotation # Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.pad def pad( self, images: List[np.ndarray], annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None, constant_values: Union[float, Iterable[float]] = 0, return_pixel_mask: bool = True, return_tensors: Optional[Union[str, TensorType]] = None, data_format: Optional[ChannelDimension] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, update_bboxes: bool = True, pad_size: Optional[Dict[str, int]] = None, ) -> BatchFeature: """ Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width in the batch and optionally returns their corresponding pixel mask. Args: images (List[`np.ndarray`]): Images to pad. annotations (`AnnotationType` or `List[AnnotationType]`, *optional*): Annotations to transform according to the padding that is applied to the images. constant_values (`float` or `Iterable[float]`, *optional*): The value to use for the padding if `mode` is `"constant"`. return_pixel_mask (`bool`, *optional*, defaults to `True`): Whether to return a pixel mask. return_tensors (`str` or `TensorType`, *optional*): The type of tensors to return. Can be one of: - Unset: Return a list of `np.ndarray`. - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. data_format (`str` or `ChannelDimension`, *optional*): The channel dimension format of the image. If not provided, it will be the same as the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format of the input image. If not provided, it will be inferred. update_bboxes (`bool`, *optional*, defaults to `True`): Whether to update the bounding boxes in the annotations to match the padded images. If the bounding boxes have not been converted to relative coordinates and `(centre_x, centre_y, width, height)` format, the bounding boxes will not be updated. pad_size (`Dict[str, int]`, *optional*): The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest height and width in the batch. """ pad_size = pad_size if pad_size is not None else self.pad_size if pad_size is not None: padded_size = (pad_size["height"], pad_size["width"]) else: padded_size = get_max_height_width(images, input_data_format=input_data_format) annotation_list = annotations if annotations is not None else [None] * len(images) padded_images = [] padded_annotations = [] for image, annotation in zip(images, annotation_list): padded_image, padded_annotation = self._pad_image( image, padded_size, annotation, constant_values=constant_values, data_format=data_format, input_data_format=input_data_format, update_bboxes=update_bboxes, ) padded_images.append(padded_image) padded_annotations.append(padded_annotation) data = {"pixel_values": padded_images} if return_pixel_mask: masks = [ make_pixel_mask(image=image, output_size=padded_size, input_data_format=input_data_format) for image in images ] data["pixel_mask"] = masks encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors) if annotations is not None: encoded_inputs["labels"] = [ BatchFeature(annotation, tensor_type=return_tensors) for annotation in padded_annotations ] return encoded_inputs @filter_out_non_signature_kwargs() def preprocess( self, images: ImageInput, annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None, return_segmentation_masks: bool = None, masks_path: Optional[Union[str, pathlib.Path]] = None, do_resize: Optional[bool] = None, size: Optional[Dict[str, int]] = None, resample=None, # PILImageResampling do_rescale: Optional[bool] = None, rescale_factor: Optional[Union[int, float]] = None, do_normalize: Optional[bool] = None, do_convert_annotations: Optional[bool] = None, image_mean: Optional[Union[float, List[float]]] = None, image_std: Optional[Union[float, List[float]]] = None, do_pad: Optional[bool] = None, format: Optional[Union[str, AnnotationFormat]] = None, return_tensors: Optional[Union[TensorType, str]] = None, data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST, input_data_format: Optional[Union[str, ChannelDimension]] = None, pad_size: Optional[Dict[str, int]] = None, ) -> BatchFeature: """ Preprocess an image or a batch of images so that it can be used by the model. Args: images (`ImageInput`): Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`. annotations (`AnnotationType` or `List[AnnotationType]`, *optional*): List of annotations associated with the image or batch of images. If annotation is for object detection, the annotations should be a dictionary with the following keys: - "image_id" (`int`): The image id. - "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a dictionary. An image can have no annotations, in which case the list should be empty. If annotation is for segmentation, the annotations should be a dictionary with the following keys: - "image_id" (`int`): The image id. - "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary. An image can have no segments, in which case the list should be empty. - "file_name" (`str`): The file name of the image. return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks): Whether to return segmentation masks. masks_path (`str` or `pathlib.Path`, *optional*): Path to the directory containing the segmentation masks. do_resize (`bool`, *optional*, defaults to self.do_resize): Whether to resize the image. size (`Dict[str, int]`, *optional*, defaults to self.size): Size of the image's `(height, width)` dimensions after resizing. Available options are: - `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`. Do NOT keep the aspect ratio. - `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge less or equal to `longest_edge`. - `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to `max_width`. resample (`PILImageResampling`, *optional*, defaults to self.resample): Resampling filter to use when resizing the image. do_rescale (`bool`, *optional*, defaults to self.do_rescale): Whether to rescale the image. rescale_factor (`float`, *optional*, defaults to self.rescale_factor): Rescale factor to use when rescaling the image. do_normalize (`bool`, *optional*, defaults to self.do_normalize): Whether to normalize the image. do_convert_annotations (`bool`, *optional*, defaults to self.do_convert_annotations): Whether to convert the annotations to the format expected by the model. Converts the bounding boxes from the format `(top_left_x, top_left_y, width, height)` to `(center_x, center_y, width, height)` and in relative coordinates. image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean): Mean to use when normalizing the image. image_std (`float` or `List[float]`, *optional*, defaults to self.image_std): Standard deviation to use when normalizing the image. do_pad (`bool`, *optional*, defaults to self.do_pad): Whether to pad the image. If `True`, padding will be applied to the bottom and right of the image with zeros. If `pad_size` is provided, the image will be padded to the specified dimensions. Otherwise, the image will be padded to the maximum height and width of the batch. format (`str` or `AnnotationFormat`, *optional*, defaults to self.format): Format of the annotations. return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors): Type of tensors to return. If `None`, will return the list of images. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input image. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. pad_size (`Dict[str, int]`, *optional*): The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest height and width in the batch. """ do_resize = self.do_resize if do_resize is None else do_resize size = self.size if size is None else size size = get_size_dict(size=size, default_to_square=True) resample = self.resample if resample is None else resample do_rescale = self.do_rescale if do_rescale is None else do_rescale rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor do_normalize = self.do_normalize if do_normalize is None else do_normalize image_mean = self.image_mean if image_mean is None else image_mean image_std = self.image_std if image_std is None else image_std do_convert_annotations = ( self.do_convert_annotations if do_convert_annotations is None else do_convert_annotations ) do_pad = self.do_pad if do_pad is None else do_pad pad_size = self.pad_size if pad_size is None else pad_size format = self.format if format is None else format images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # Here, the pad() method pads to the maximum of (width, height). It does not need to be validated. validate_preprocess_arguments( do_rescale=do_rescale, rescale_factor=rescale_factor, do_normalize=do_normalize, image_mean=image_mean, image_std=image_std, do_resize=do_resize, size=size, resample=resample, ) if annotations is not None and isinstance(annotations, dict): annotations = [annotations] if annotations is not None and len(images) != len(annotations): raise ValueError( f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match." ) format = AnnotationFormat(format) if annotations is not None: validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations) images = make_list_of_images(images) if not valid_images(images): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # All transformations expect numpy arrays images = [to_numpy_array(image) for image in images] if do_rescale and is_scaled_image(images[0]): logger.warning_once( "It looks like you are trying to rescale already rescaled images. If the input" " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." ) if input_data_format is None: # We assume that all images have the same channel dimension format. input_data_format = infer_channel_dimension_format(images[0]) # prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image) if annotations is not None: prepared_images = [] prepared_annotations = [] for image, target in zip(images, annotations): target = self.prepare_annotation( image, target, format, return_segmentation_masks=return_segmentation_masks, masks_path=masks_path, input_data_format=input_data_format, ) prepared_images.append(image) prepared_annotations.append(target) images = prepared_images annotations = prepared_annotations del prepared_images, prepared_annotations # transformations if do_resize: if annotations is not None: resized_images, resized_annotations = [], [] for image, target in zip(images, annotations): orig_size = get_image_size(image, input_data_format) resized_image = self.resize( image, size=size, resample=resample, input_data_format=input_data_format ) resized_annotation = self.resize_annotation( target, orig_size, get_image_size(resized_image, input_data_format) ) resized_images.append(resized_image) resized_annotations.append(resized_annotation) images = resized_images annotations = resized_annotations del resized_images, resized_annotations else: images = [ self.resize(image, size=size, resample=resample, input_data_format=input_data_format) for image in images ] if do_rescale: images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images] if do_normalize: images = [ self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images ] if do_convert_annotations and annotations is not None: annotations = [ self.normalize_annotation(annotation, get_image_size(image, input_data_format)) for annotation, image in zip(annotations, images) ] if do_pad: # Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...} encoded_inputs = self.pad( images, annotations=annotations, return_pixel_mask=True, data_format=data_format, input_data_format=input_data_format, update_bboxes=do_convert_annotations, return_tensors=return_tensors, pad_size=pad_size, ) else: images = [ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images ] encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors) if annotations is not None: encoded_inputs["labels"] = [ BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations ] return encoded_inputs def post_process_object_detection( self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None, use_focal_loss: bool = True, ): """ Converts the raw output of [`DetrForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch. Args: outputs ([`DetrObjectDetectionOutput`]): Raw outputs of the model. threshold (`float`, *optional*, defaults to 0.5): Score threshold to keep object detection predictions. target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*): Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size `(height, width)` of each image in the batch. If unset, predictions will not be resized. use_focal_loss (`bool` defaults to `True`): Variable informing if the focal loss was used to predict the outputs. If `True`, a sigmoid is applied to compute the scores of each detection, otherwise, a softmax function is used. Returns: `List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image in the batch as predicted by the model. """ requires_backends(self, ["torch"]) out_logits, out_bbox = outputs.logits, outputs.pred_boxes # convert from relative cxcywh to absolute xyxy boxes = center_to_corners_format(out_bbox) if target_sizes is not None: if len(out_logits) != len(target_sizes): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if isinstance(target_sizes, List): img_h, img_w = torch.as_tensor(target_sizes).unbind(1) else: img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device) boxes = boxes * scale_fct[:, None, :] num_top_queries = out_logits.shape[1] num_classes = out_logits.shape[2] if use_focal_loss: scores = torch.nn.functional.sigmoid(out_logits) scores, index = torch.topk(scores.flatten(1), num_top_queries, axis=-1) labels = index % num_classes index = index // num_classes boxes = boxes.gather(dim=1, index=index.unsqueeze(-1).repeat(1, 1, boxes.shape[-1])) else: scores = torch.nn.functional.softmax(out_logits)[:, :, :-1] scores, labels = scores.max(dim=-1) if scores.shape[1] > num_top_queries: scores, index = torch.topk(scores, num_top_queries, dim=-1) labels = torch.gather(labels, dim=1, index=index) boxes = torch.gather(boxes, dim=1, index=index.unsqueeze(-1).tile(1, 1, boxes.shape[-1])) results = [] for score, label, box in zip(scores, labels, boxes): results.append( { "scores": score[score > threshold], "labels": label[score > threshold], "boxes": box[score > threshold], } ) return results
class_definition
13,953
51,610
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rt_detr/image_processing_rt_detr.py
null
4,688
class RTDetrResNetConfig(BackboneConfigMixin, PretrainedConfig): r""" This is the configuration class to store the configuration of a [`RTDetrResnetBackbone`]. It is used to instantiate an ResNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the ResNet [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: num_channels (`int`, *optional*, defaults to 3): The number of input channels. embedding_size (`int`, *optional*, defaults to 64): Dimensionality (hidden size) for the embedding layer. hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`): Dimensionality (hidden size) at each stage. depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`): Depth (number of layers) for each stage. layer_type (`str`, *optional*, defaults to `"bottleneck"`): The layer to use, it can be either `"basic"` (used for smaller models, like resnet-18 or resnet-34) or `"bottleneck"` (used for larger models like resnet-50 and above). hidden_act (`str`, *optional*, defaults to `"relu"`): The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported. downsample_in_first_stage (`bool`, *optional*, defaults to `False`): If `True`, the first stage will downsample the inputs using a `stride` of 2. downsample_in_bottleneck (`bool`, *optional*, defaults to `False`): If `True`, the first conv 1x1 in ResNetBottleNeckLayer will downsample the inputs using a `stride` of 2. out_features (`List[str]`, *optional*): If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc. (depending on how many stages the model has). If unset and `out_indices` is set, will default to the corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. out_indices (`List[int]`, *optional*): If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and `out_features` is set, will default to the corresponding stages. If unset and `out_features` is unset, will default to the last stage. Must be in the same order as defined in the `stage_names` attribute. Example: ```python >>> from transformers import RTDetrResNetConfig, RTDetrResnetBackbone >>> # Initializing a ResNet resnet-50 style configuration >>> configuration = RTDetrResNetConfig() >>> # Initializing a model (with random weights) from the resnet-50 style configuration >>> model = RTDetrResnetBackbone(configuration) >>> # Accessing the model configuration >>> configuration = model.config ``` """ model_type = "rt_detr_resnet" layer_types = ["basic", "bottleneck"] def __init__( self, num_channels=3, embedding_size=64, hidden_sizes=[256, 512, 1024, 2048], depths=[3, 4, 6, 3], layer_type="bottleneck", hidden_act="relu", downsample_in_first_stage=False, downsample_in_bottleneck=False, out_features=None, out_indices=None, **kwargs, ): super().__init__(**kwargs) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types)}") self.num_channels = num_channels self.embedding_size = embedding_size self.hidden_sizes = hidden_sizes self.depths = depths self.layer_type = layer_type self.hidden_act = hidden_act self.downsample_in_first_stage = downsample_in_first_stage self.downsample_in_bottleneck = downsample_in_bottleneck self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)] self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names )
class_definition
891
5,521
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rt_detr/configuration_rt_detr_resnet.py
null
4,689
class MultiScaleDeformableAttentionFunction(Function): @staticmethod def forward( context, value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, im2col_step, ): context.im2col_step = im2col_step output = MultiScaleDeformableAttention.ms_deform_attn_forward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, context.im2col_step, ) context.save_for_backward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights ) return output @staticmethod @once_differentiable def backward(context, grad_output): ( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, ) = context.saved_tensors grad_value, grad_sampling_loc, grad_attn_weight = MultiScaleDeformableAttention.ms_deform_attn_backward( value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, grad_output, context.im2col_step, ) return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None
class_definition
2,684
4,128
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rt_detr/modeling_rt_detr.py
null
4,690
class RTDetrDecoderOutput(ModelOutput): """ Base class for outputs of the RTDetrDecoder. This class adds two attributes to BaseModelOutputWithCrossAttentions, namely: - a stacked tensor of intermediate decoder hidden states (i.e. the output of each decoder layer) - a stacked tensor of intermediate reference points. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`): Stacked intermediate hidden states (output of each layer of the decoder). intermediate_logits (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, config.num_labels)`): Stacked intermediate logits (logits of each layer of the decoder). intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, hidden_size)`): Stacked intermediate reference points (reference points of each layer of the decoder). hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. """ last_hidden_state: torch.FloatTensor = None intermediate_hidden_states: torch.FloatTensor = None intermediate_logits: torch.FloatTensor = None intermediate_reference_points: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
class_definition
4,330
7,310
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rt_detr/modeling_rt_detr.py
null
4,691
class RTDetrModelOutput(ModelOutput): """ Base class for outputs of the RT-DETR encoder-decoder model. Args: last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`): Sequence of hidden-states at the output of the last layer of the decoder of the model. intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`): Stacked intermediate hidden states (output of each layer of the decoder). intermediate_logits (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, sequence_length, config.num_labels)`): Stacked intermediate logits (logits of each layer of the decoder). intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`): Stacked intermediate reference points (reference points of each layer of the decoder). decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries, num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): Initial reference points sent through the Transformer decoder. enc_topk_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`): Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are picked as region proposals in the encoder stage. Output of bounding box binary classification (i.e. foreground and background). enc_topk_bboxes (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`): Logits of predicted bounding boxes coordinates in the encoder stage. enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`): Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are picked as region proposals in the first stage. Output of bounding box binary classification (i.e. foreground and background). enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`): Logits of predicted bounding boxes coordinates in the first stage. denoising_meta_values (`dict`): Extra dictionary for the denoising related values """ last_hidden_state: torch.FloatTensor = None intermediate_hidden_states: torch.FloatTensor = None intermediate_logits: torch.FloatTensor = None intermediate_reference_points: torch.FloatTensor = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None init_reference_points: torch.FloatTensor = None enc_topk_logits: Optional[torch.FloatTensor] = None enc_topk_bboxes: Optional[torch.FloatTensor] = None enc_outputs_class: Optional[torch.FloatTensor] = None enc_outputs_coord_logits: Optional[torch.FloatTensor] = None denoising_meta_values: Optional[Dict] = None
class_definition
7,324
13,250
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rt_detr/modeling_rt_detr.py
null
4,692
class RTDetrObjectDetectionOutput(ModelOutput): """ Output type of [`RTDetrForObjectDetection`]. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)): Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized scale-invariant IoU loss. loss_dict (`Dict`, *optional*): A dictionary containing the individual losses. Useful for logging. logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`): Classification logits (including no-object) for all queries. pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding possible padding). You can use [`~RTDetrImageProcessor.post_process_object_detection`] to retrieve the unnormalized (absolute) bounding boxes. auxiliary_outputs (`list[Dict]`, *optional*): Optional, only returned when auxiliary losses are activated (i.e. `config.auxiliary_loss` is set to `True`) and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and `pred_boxes`) for each decoder layer. last_hidden_state (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`): Sequence of hidden-states at the output of the last layer of the decoder of the model. intermediate_hidden_states (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, hidden_size)`): Stacked intermediate hidden states (output of each layer of the decoder). intermediate_logits (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, config.num_labels)`): Stacked intermediate logits (logits of each layer of the decoder). intermediate_reference_points (`torch.FloatTensor` of shape `(batch_size, config.decoder_layers, num_queries, 4)`): Stacked intermediate reference points (reference points of each layer of the decoder). decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, num_queries, hidden_size)`. Hidden-states of the decoder at the output of each layer plus the initial embedding outputs. decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, num_queries, num_queries)`. Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the self-attention heads. cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads. encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence of hidden-states at the output of the last layer of the encoder of the model. encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each layer plus the initial embedding outputs. encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_queries, num_heads, 4, 4)`. Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the self-attention heads. init_reference_points (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): Initial reference points sent through the Transformer decoder. enc_topk_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`): Logits of predicted bounding boxes coordinates in the encoder. enc_topk_bboxes (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`): Logits of predicted bounding boxes coordinates in the encoder. enc_outputs_class (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`): Predicted bounding boxes scores where the top `config.two_stage_num_proposals` scoring bounding boxes are picked as region proposals in the first stage. Output of bounding box binary classification (i.e. foreground and background). enc_outputs_coord_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, 4)`, *optional*, returned when `config.with_box_refine=True` and `config.two_stage=True`): Logits of predicted bounding boxes coordinates in the first stage. denoising_meta_values (`dict`): Extra dictionary for the denoising related values """ loss: Optional[torch.FloatTensor] = None loss_dict: Optional[Dict] = None logits: torch.FloatTensor = None pred_boxes: torch.FloatTensor = None auxiliary_outputs: Optional[List[Dict]] = None last_hidden_state: torch.FloatTensor = None intermediate_hidden_states: torch.FloatTensor = None intermediate_logits: torch.FloatTensor = None intermediate_reference_points: torch.FloatTensor = None decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None cross_attentions: Optional[Tuple[torch.FloatTensor]] = None encoder_last_hidden_state: Optional[torch.FloatTensor] = None encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None init_reference_points: Optional[Tuple[torch.FloatTensor]] = None enc_topk_logits: Optional[torch.FloatTensor] = None enc_topk_bboxes: Optional[torch.FloatTensor] = None enc_outputs_class: Optional[torch.FloatTensor] = None enc_outputs_coord_logits: Optional[torch.FloatTensor] = None denoising_meta_values: Optional[Dict] = None
class_definition
13,264
20,847
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rt_detr/modeling_rt_detr.py
null
4,693
class RTDetrFrozenBatchNorm2d(nn.Module): """ BatchNorm2d where the batch statistics and the affine parameters are fixed. Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than torchvision.models.resnet[18,34,50,101] produce nans. """ def __init__(self, n): super().__init__() self.register_buffer("weight", torch.ones(n)) self.register_buffer("bias", torch.zeros(n)) self.register_buffer("running_mean", torch.zeros(n)) self.register_buffer("running_var", torch.ones(n)) def _load_from_state_dict( self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ): num_batches_tracked_key = prefix + "num_batches_tracked" if num_batches_tracked_key in state_dict: del state_dict[num_batches_tracked_key] super()._load_from_state_dict( state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs ) def forward(self, x): # move reshapes to the beginning # to make it user-friendly weight = self.weight.reshape(1, -1, 1, 1) bias = self.bias.reshape(1, -1, 1, 1) running_var = self.running_var.reshape(1, -1, 1, 1) running_mean = self.running_mean.reshape(1, -1, 1, 1) epsilon = 1e-5 scale = weight * (running_var + epsilon).rsqrt() bias = bias - running_mean * scale return x * scale + bias
class_definition
21,291
22,805
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rt_detr/modeling_rt_detr.py
null
4,694
class RTDetrConvEncoder(nn.Module): """ Convolutional backbone using the modeling_rt_detr_resnet.py. nn.BatchNorm2d layers are replaced by RTDetrFrozenBatchNorm2d as defined above. https://github.com/lyuwenyu/RT-DETR/blob/main/rtdetr_pytorch/src/nn/backbone/presnet.py#L142 """ def __init__(self, config): super().__init__() backbone = load_backbone(config) if config.freeze_backbone_batch_norms: # replace batch norm by frozen batch norm with torch.no_grad(): replace_batch_norm(backbone) self.model = backbone self.intermediate_channel_sizes = self.model.channels def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor): # send pixel_values through the model to get list of feature maps features = self.model(pixel_values).feature_maps out = [] for feature_map in features: # downsample pixel_mask to match shape of corresponding feature_map mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0] out.append((feature_map, mask)) return out
class_definition
29,392
30,590
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rt_detr/modeling_rt_detr.py
null
4,695
class RTDetrConvNormLayer(nn.Module): def __init__(self, config, in_channels, out_channels, kernel_size, stride, padding=None, activation=None): super().__init__() self.conv = nn.Conv2d( in_channels, out_channels, kernel_size, stride, padding=(kernel_size - 1) // 2 if padding is None else padding, bias=False, ) self.norm = nn.BatchNorm2d(out_channels, config.batch_norm_eps) self.activation = nn.Identity() if activation is None else ACT2CLS[activation]() def forward(self, hidden_state): hidden_state = self.conv(hidden_state) hidden_state = self.norm(hidden_state) hidden_state = self.activation(hidden_state) return hidden_state
class_definition
30,593
31,379
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rt_detr/modeling_rt_detr.py
null
4,696
class RTDetrEncoderLayer(nn.Module): def __init__(self, config: RTDetrConfig): super().__init__() self.normalize_before = config.normalize_before # self-attention self.self_attn = RTDetrMultiheadAttention( embed_dim=config.encoder_hidden_dim, num_heads=config.num_attention_heads, dropout=config.dropout, ) self.self_attn_layer_norm = nn.LayerNorm(config.encoder_hidden_dim, eps=config.layer_norm_eps) self.dropout = config.dropout self.activation_fn = ACT2FN[config.encoder_activation_function] self.activation_dropout = config.activation_dropout self.fc1 = nn.Linear(config.encoder_hidden_dim, config.encoder_ffn_dim) self.fc2 = nn.Linear(config.encoder_ffn_dim, config.encoder_hidden_dim) self.final_layer_norm = nn.LayerNorm(config.encoder_hidden_dim, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_embeddings: torch.Tensor = None, output_attentions: bool = False, **kwargs, ): """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`): attention mask of size `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative values. position_embeddings (`torch.FloatTensor`, *optional*): Object queries (also called content embeddings), to be added to the hidden states. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states if self.normalize_before: hidden_states = self.self_attn_layer_norm(hidden_states) hidden_states, attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_embeddings=position_embeddings, output_attentions=output_attentions, ) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states if not self.normalize_before: hidden_states = self.self_attn_layer_norm(hidden_states) if self.normalize_before: hidden_states = self.final_layer_norm(hidden_states) residual = hidden_states hidden_states = self.activation_fn(self.fc1(hidden_states)) hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) hidden_states = self.fc2(hidden_states) hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) hidden_states = residual + hidden_states if not self.normalize_before: hidden_states = self.final_layer_norm(hidden_states) if self.training: if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any(): clamp_value = torch.finfo(hidden_states.dtype).max - 1000 hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs
class_definition
31,382
34,932
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rt_detr/modeling_rt_detr.py
null
4,697
class RTDetrRepVggBlock(nn.Module): """ RepVGG architecture block introduced by the work "RepVGG: Making VGG-style ConvNets Great Again". """ def __init__(self, config: RTDetrConfig): super().__init__() activation = config.activation_function hidden_channels = int(config.encoder_hidden_dim * config.hidden_expansion) self.conv1 = RTDetrConvNormLayer(config, hidden_channels, hidden_channels, 3, 1, padding=1) self.conv2 = RTDetrConvNormLayer(config, hidden_channels, hidden_channels, 1, 1, padding=0) self.activation = nn.Identity() if activation is None else ACT2CLS[activation]() def forward(self, x): y = self.conv1(x) + self.conv2(x) return self.activation(y)
class_definition
34,935
35,686
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rt_detr/modeling_rt_detr.py
null
4,698
class RTDetrCSPRepLayer(nn.Module): """ Cross Stage Partial (CSP) network layer with RepVGG blocks. """ def __init__(self, config: RTDetrConfig): super().__init__() in_channels = config.encoder_hidden_dim * 2 out_channels = config.encoder_hidden_dim num_blocks = 3 activation = config.activation_function hidden_channels = int(out_channels * config.hidden_expansion) self.conv1 = RTDetrConvNormLayer(config, in_channels, hidden_channels, 1, 1, activation=activation) self.conv2 = RTDetrConvNormLayer(config, in_channels, hidden_channels, 1, 1, activation=activation) self.bottlenecks = nn.Sequential(*[RTDetrRepVggBlock(config) for _ in range(num_blocks)]) if hidden_channels != out_channels: self.conv3 = RTDetrConvNormLayer(config, hidden_channels, out_channels, 1, 1, activation=activation) else: self.conv3 = nn.Identity() def forward(self, hidden_state): device = hidden_state.device hidden_state_1 = self.conv1(hidden_state) hidden_state_1 = self.bottlenecks(hidden_state_1).to(device) hidden_state_2 = self.conv2(hidden_state).to(device) return self.conv3(hidden_state_1 + hidden_state_2)
class_definition
35,689
36,960
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/rt_detr/modeling_rt_detr.py
null
4,699