text
stringlengths 31
243k
| type
stringclasses 1
value | start
int64 36
275k
| end
int64 286
280k
| depth
int64 0
1
| filepath
stringlengths 85
188
| parent_class
stringclasses 3
values | class_index
int64 0
10.8k
|
---|---|---|---|---|---|---|---|
class FlaxLongT5BlockCollection(nn.Module):
config: LongT5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
self.causal = self.config.causal
if self.gradient_checkpointing:
FlaxLongT5CheckpointLayer = remat(FlaxLongT5LayerCollection, static_argnums=(6, 7, 8))
self.blocks = [
FlaxLongT5CheckpointLayer(
self.config,
has_relative_attention_bias=(i == 0),
dtype=self.dtype,
name=str(i),
)
for i in range(self.config.num_layers)
]
else:
self.blocks = [
FlaxLongT5LayerCollection(
self.config,
has_relative_attention_bias=(i == 0),
dtype=self.dtype,
name=str(i),
)
for i in range(self.config.num_layers)
]
def __call__(
self,
hidden_states=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions: bool = False,
output_hidden_states: bool = False,
deterministic: bool = True,
init_cache: bool = False,
):
# Prepare head mask if needed
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.causal) else None
position_bias = None
encoder_decoder_position_bias = None
for i, layer_module in enumerate(self.blocks):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states,
attention_mask,
position_bias,
encoder_hidden_states,
encoder_attention_mask,
encoder_decoder_position_bias,
output_attentions,
deterministic,
init_cache,
)
hidden_states = layer_outputs[0]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[1]
if self.causal and encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[3 if output_attentions else 2]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[2],)
if self.causal:
all_cross_attentions = all_cross_attentions + (layer_outputs[4],)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
|
class_definition
| 60,180 | 63,405 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/longt5/modeling_flax_longt5.py
| null | 4,400 |
class FlaxLongT5Stack(nn.Module):
config: LongT5Config
embed_tokens: nn.Embed
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
self.causal = self.config.causal
self.block = FlaxLongT5BlockCollection(
self.config, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
self.final_layer_norm = FlaxLongT5LayerNorm(
self.config.d_model, eps=self.config.layer_norm_epsilon, dtype=self.dtype
)
self.dropout = nn.Dropout(self.config.dropout_rate)
def __call__(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
init_cache: bool = False,
):
hidden_states = self.embed_tokens(input_ids)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
outputs = self.block(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
deterministic=deterministic,
init_cache=init_cache,
)
hidden_states = outputs[0]
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
# Add last layer
all_hidden_states = None
if output_hidden_states:
all_hidden_states = outputs.hidden_states
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
if output_hidden_states:
return (
hidden_states,
all_hidden_states,
) + outputs[2:]
return (hidden_states,) + outputs[1:]
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
|
class_definition
| 63,490 | 65,907 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/longt5/modeling_flax_longt5.py
| null | 4,401 |
class FlaxLongT5PreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = LongT5Config
base_model_prefix = "transformer"
module_class: nn.Module = None
def __init__(
self,
config: LongT5Config,
input_shape: Tuple[int] = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def enable_gradient_checkpointing(self):
self._module = self.module_class(
config=self.config,
dtype=self.dtype,
gradient_checkpointing=True,
)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
decoder_input_ids = jnp.ones_like(input_ids)
decoder_attention_mask = jnp.ones_like(input_ids)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(
rngs,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
@add_start_docstrings_to_model_forward(LONGT5_INPUTS_DOCSTRING)
def __call__(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
decoder_input_ids: jnp.ndarray = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if decoder_input_ids is None:
raise ValueError(
"Make sure to provide both `input_ids` and `decoder_input_ids`. `decoder_input_ids` is not passed"
" here."
)
# prepare encoder inputs
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
# prepare decoder inputs
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
# Handle any PRNG if needed
rngs = {"dropout": dropout_rng} if dropout_rng is not None else {}
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
)
def init_cache(self, batch_size, max_length, encoder_outputs):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`):
`encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*:
`attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*)
is a sequence of hidden-states at the output of the last layer of the encoder. Used in the
cross-attention of the decoder.
"""
# init input variables to retrieve cache
decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4")
decoder_attention_mask = jnp.ones_like(decoder_input_ids)
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
**kwargs,
)
init_variables = self.module.init(
jax.random.PRNGKey(0),
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
init_cache=True,
method=_decoder_forward, # we only need to call the decoder to init the cache
)
return unfreeze(init_variables["cache"])
@add_start_docstrings(LONGT5_ENCODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=LongT5Config)
def encode(
self,
input_ids: jnp.ndarray,
attention_mask: Optional[jnp.ndarray] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
>>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
def _encoder_forward(module, input_ids, attention_mask, **kwargs):
encode_module = module._get_encoder_module()
return encode_module(input_ids, attention_mask, **kwargs)
return self.module.apply(
{"params": params or self.params},
input_ids=jnp.array(input_ids, dtype="i4"),
attention_mask=jnp.array(attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
method=_encoder_forward,
)
@add_start_docstrings(LONGT5_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=LongT5Config)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration
>>> import jax.numpy as jnp
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
>>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base")
>>> text = "My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxLongT5Attention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs):
decoder_module = module._get_decoder_module()
return decoder_module(
decoder_input_ids,
decoder_attention_mask,
**kwargs,
)
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past = outputs
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past = outputs
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
|
class_definition
| 73,721 | 86,140 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/longt5/modeling_flax_longt5.py
| null | 4,402 |
class FlaxLongT5Module(nn.Module):
config: LongT5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def _get_encoder_module(self):
return self.encoder
def _get_decoder_module(self):
return self.decoder
def setup(self):
self.shared = nn.Embed(
self.config.vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.initializer_factor * 1.0),
dtype=self.dtype,
)
encoder_config = copy.deepcopy(self.config)
encoder_config.causal = False
self.encoder = FlaxLongT5Stack(
encoder_config,
embed_tokens=self.shared,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
decoder_config = copy.deepcopy(self.config)
decoder_config.causal = True
decoder_config.num_layers = self.config.num_decoder_layers
self.decoder = FlaxLongT5Stack(
decoder_config,
embed_tokens=self.shared,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
def __call__(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
encoder_outputs=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
deterministic: bool = True,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Encode if needed (training, first prediction pass)
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return FlaxSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
|
class_definition
| 88,999 | 92,092 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/longt5/modeling_flax_longt5.py
| null | 4,403 |
class FlaxLongT5Model(FlaxLongT5PreTrainedModel):
module_class = FlaxLongT5Module
|
class_definition
| 92,177 | 92,262 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/longt5/modeling_flax_longt5.py
| null | 4,404 |
class FlaxLongT5ForConditionalGenerationModule(nn.Module):
config: LongT5Config
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def _get_encoder_module(self):
return self.encoder
def _get_decoder_module(self):
return self.decoder
def setup(self):
self.model_dim = self.config.d_model
self.shared = nn.Embed(
self.config.vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.initializer_factor),
dtype=self.dtype,
)
encoder_config = copy.deepcopy(self.config)
encoder_config.causal = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = FlaxLongT5Stack(
encoder_config, self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
decoder_config = copy.deepcopy(self.config)
decoder_config.causal = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = self.config.num_decoder_layers
self.decoder = FlaxLongT5Stack(
decoder_config, self.shared, dtype=self.dtype, gradient_checkpointing=self.gradient_checkpointing
)
self.lm_head = nn.Dense(
self.config.vocab_size,
use_bias=False,
kernel_init=jax.nn.initializers.normal(self.config.initializer_factor),
dtype=self.dtype,
)
def __call__(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
encoder_outputs=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
deterministic: bool = True,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Encode
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
hidden_states = encoder_outputs[0]
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
sequence_output = decoder_outputs[0]
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim**-0.5)
if self.config.tie_word_embeddings:
shared_embedding = self.shared.variables["params"]["embedding"]
lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output)
else:
lm_logits = self.lm_head(sequence_output)
if not return_dict:
return (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return FlaxSeq2SeqLMOutput(
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
|
class_definition
| 93,498 | 97,552 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/longt5/modeling_flax_longt5.py
| null | 4,405 |
class FlaxLongT5ForConditionalGeneration(FlaxLongT5PreTrainedModel):
module_class = FlaxLongT5ForConditionalGenerationModule
@add_start_docstrings(LONGT5_DECODE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=LongT5Config)
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FlaxLongT5ForConditionalGeneration
>>> import jax.numpy as jnp
>>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-base")
>>> model = FlaxLongT5ForConditionalGeneration.from_pretrained("google/long-t5-local-base")
>>> text = "summarize: My friends are cool but they eat too many carbs."
>>> inputs = tokenizer(text, return_tensors="np")
>>> encoder_outputs = model.encode(**inputs)
>>> decoder_start_token_id = model.config.decoder_start_token_id
>>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id
>>> outputs = model.decode(decoder_input_ids, encoder_outputs)
>>> logits = outputs.logits
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxLongT5Attention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, **kwargs):
decoder_module = module._get_decoder_module()
decoder_outputs = decoder_module(
decoder_input_ids,
decoder_attention_mask,
**kwargs,
)
sequence_output = decoder_outputs[0]
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.config.d_model**-0.5)
if self.config.tie_word_embeddings:
shared_embedding = module.shared.variables["params"]["embedding"]
lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, sequence_output)
else:
lm_logits = module.lm_head(sequence_output)
return lm_logits, decoder_outputs
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
if past_key_values is None:
lm_logits, decoder_outputs = outputs
else:
(lm_logits, decoder_outputs), past = outputs
if return_dict:
outputs = FlaxCausalLMOutputWithCrossAttentions(
logits=lm_logits,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
)
else:
outputs = (lm_logits,) + decoder_outputs[1:]
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
def prepare_inputs_for_generation(
self,
decoder_input_ids,
max_length,
attention_mask: Optional[jax.Array] = None,
decoder_attention_mask: Optional[jax.Array] = None,
encoder_outputs=None,
**kwargs,
):
# initializing the cache
batch_size, seq_length = decoder_input_ids.shape
past_key_values = self.init_cache(batch_size, max_length, encoder_outputs)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if decoder_attention_mask is not None:
extended_attention_mask = jax.lax.dynamic_update_slice(
extended_attention_mask, decoder_attention_mask, (0, 0)
)
return {
"past_key_values": past_key_values,
"encoder_outputs": encoder_outputs,
"encoder_attention_mask": attention_mask,
"decoder_attention_mask": extended_attention_mask,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
return model_kwargs
|
class_definition
| 97,555 | 104,660 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/longt5/modeling_flax_longt5.py
| null | 4,406 |
class Phi3MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.activation_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
up_states = self.gate_up_proj(hidden_states)
gate, up_states = up_states.chunk(2, dim=-1)
up_states = up_states * self.activation_fn(gate)
return self.down_proj(up_states)
|
class_definition
| 1,486 | 2,133 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi3/modular_phi3.py
| null | 4,407 |
class Phi3Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.num_key_value_heads = config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
op_size = config.num_attention_heads * self.head_dim + 2 * (config.num_key_value_heads * self.head_dim)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
self.qkv_proj = nn.Linear(config.hidden_size, op_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
qkv = self.qkv_proj(hidden_states)
query_pos = self.config.num_attention_heads * self.head_dim
query_states = qkv[..., :query_pos]
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
query_states = query_states.view(hidden_shape).transpose(1, 2)
key_states = key_states.view(hidden_shape).transpose(1, 2)
value_states = value_states.view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=getattr(self.config, "sliding_window", None),
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
|
class_definition
| 2,136 | 5,860 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi3/modular_phi3.py
| null | 4,408 |
class Phi3DecoderLayer(MistralDecoderLayer):
def __init__(self, config: Phi3Config, layer_idx: int):
super().__init__(config, layer_idx)
self.config = config
self.self_attn = Phi3Attention(config=config, layer_idx=layer_idx)
self.mlp = Phi3MLP(config)
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`):
input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
past_key_value (`Cache`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + self.resid_attn_dropout(hidden_states) # main diff with Llama
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + self.resid_mlp_dropout(hidden_states) # main diff with Llama
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
|
class_definition
| 5,863 | 9,466 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi3/modular_phi3.py
| null | 4,409 |
class Phi3RotaryEmbedding(MistralRotaryEmbedding):
def __init__(self, config: Phi3Config, device=None):
super().__init__(config, device)
def _longrope_frequency_update(self, position_ids, device):
"""Longrope uses long factor if sequence is larger than original pretraining length, short otherwise."""
seq_len = torch.max(position_ids) + 1
if hasattr(self.config, "original_max_position_embeddings"):
original_max_position_embeddings = self.config.original_max_position_embeddings
else:
original_max_position_embeddings = self.config.max_position_embeddings
if seq_len > original_max_position_embeddings:
if not hasattr(self, "long_inv_freq"):
self.long_inv_freq, _ = self.rope_init_fn(
self.config, device, seq_len=original_max_position_embeddings + 1
)
self.register_buffer("inv_freq", self.long_inv_freq, persistent=False)
else:
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
elif self.rope_type == "longrope":
self._longrope_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
class_definition
| 9,469 | 12,053 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi3/modular_phi3.py
| null | 4,410 |
class Phi3PreTrainedModel(MistralPreTrainedModel):
_version = "0.0.5"
|
class_definition
| 12,056 | 12,129 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi3/modular_phi3.py
| null | 4,411 |
class Phi3ForCausalLM(MistralForCausalLM, Phi3PreTrainedModel):
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
num_logits_to_keep=None,
**kwargs,
):
# Overwritten -- this model may need to switch between short and long rope, invalidating the cache in the
# process
# When the first time input length reached long and short factor switching point, enforce re-compute cache
# It will cause downside of slower at this single token position, however, better than current failure.
if (
past_key_values
and self.config.rope_scaling
and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1
):
past_length = cache_position[0]
if past_length <= self.config.original_max_position_embeddings:
past_key_values = None
model_inputs = Phi3PreTrainedModel().prepare_inputs_for_generation(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
cache_position=cache_position,
position_ids=position_ids,
use_cache=use_cache,
num_logits_to_keep=num_logits_to_keep,
**kwargs,
)
return model_inputs
|
class_definition
| 12,132 | 13,656 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi3/modular_phi3.py
| null | 4,412 |
class Phi3ForSequenceClassification(MistralForSequenceClassification):
pass
|
class_definition
| 13,659 | 13,738 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi3/modular_phi3.py
| null | 4,413 |
class Phi3ForTokenClassification(MistralForTokenClassification):
pass
|
class_definition
| 13,741 | 13,814 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi3/modular_phi3.py
| null | 4,414 |
class Phi3MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.activation_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
up_states = self.gate_up_proj(hidden_states)
gate, up_states = up_states.chunk(2, dim=-1)
up_states = up_states * self.activation_fn(gate)
return self.down_proj(up_states)
|
class_definition
| 2,516 | 3,163 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi3/modeling_phi3.py
| null | 4,415 |
class Phi3Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Phi3Config, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.num_key_value_heads = config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
op_size = config.num_attention_heads * self.head_dim + 2 * (config.num_key_value_heads * self.head_dim)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
self.qkv_proj = nn.Linear(config.hidden_size, op_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
qkv = self.qkv_proj(hidden_states)
query_pos = self.config.num_attention_heads * self.head_dim
query_states = qkv[..., :query_pos]
key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
query_states = query_states.view(hidden_shape).transpose(1, 2)
key_states = key_states.view(hidden_shape).transpose(1, 2)
value_states = value_states.view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=getattr(self.config, "sliding_window", None),
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
|
class_definition
| 6,442 | 10,166 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi3/modeling_phi3.py
| null | 4,416 |
class Phi3RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Phi3RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
class_definition
| 10,169 | 10,887 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi3/modeling_phi3.py
| null | 4,417 |
class Phi3DecoderLayer(nn.Module):
def __init__(self, config: Phi3Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Phi3Attention(config=config, layer_idx=layer_idx)
self.mlp = Phi3MLP(config)
self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.config = config
self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`):
input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
`[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
past_key_value (`Cache`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + self.resid_attn_dropout(hidden_states) # main diff with Llama
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + self.resid_mlp_dropout(hidden_states) # main diff with Llama
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
|
class_definition
| 10,890 | 14,697 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi3/modeling_phi3.py
| null | 4,418 |
class Phi3RotaryEmbedding(nn.Module):
def __init__(self, config: Phi3Config, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
elif self.rope_type == "longrope":
self._longrope_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def _longrope_frequency_update(self, position_ids, device):
"""Longrope uses long factor if sequence is larger than original pretraining length, short otherwise."""
seq_len = torch.max(position_ids) + 1
if hasattr(self.config, "original_max_position_embeddings"):
original_max_position_embeddings = self.config.original_max_position_embeddings
else:
original_max_position_embeddings = self.config.max_position_embeddings
if seq_len > original_max_position_embeddings:
if not hasattr(self, "long_inv_freq"):
self.long_inv_freq, _ = self.rope_init_fn(
self.config, device, seq_len=original_max_position_embeddings + 1
)
self.register_buffer("inv_freq", self.long_inv_freq, persistent=False)
else:
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
class_definition
| 14,700 | 19,201 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi3/modeling_phi3.py
| null | 4,419 |
class Phi3PreTrainedModel(PreTrainedModel):
config_class = Phi3Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Phi3DecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_version = "0.0.5"
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
|
class_definition
| 20,219 | 21,162 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi3/modeling_phi3.py
| null | 4,420 |
class Phi3Model(Phi3PreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
Args:
config: Phi3Config
"""
def __init__(self, config: Phi3Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Phi3RotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
return output if return_dict else output.to_tuple()
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and past_key_values is not None:
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if (
self.config._attn_implementation == "sdpa"
and not (using_static_cache or using_sliding_window_cache)
and not output_attentions
):
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
sliding_window=self.config.sliding_window,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
# SlidingWindowCache or StaticCache
if using_sliding_window_cache or using_static_cache:
target_length = past_key_values.get_max_cache_shape()
# DynamicCache or no cache
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
config=self.config,
past_key_values=past_key_values,
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
config: Phi3Config,
past_key_values: Cache,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
config (`Phi3Config`):
The model's configuration class
past_key_values (`Cache`):
The cache class that is being used currently to generate
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
if config.sliding_window is not None:
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
# the check is needed to verify is current checkpoint was trained with sliding window or not
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
sliding_attend_mask = torch.arange(target_length, device=device) <= (
cache_position.reshape(-1, 1) - config.sliding_window
)
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
causal_mask *= diagonal_attend_mask
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
if attention_mask.shape[-1] > target_length:
attention_mask = attention_mask[:, :target_length]
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
|
class_definition
| 25,963 | 39,109 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi3/modeling_phi3.py
| null | 4,421 |
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
class_definition
| 39,112 | 39,174 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi3/modeling_phi3.py
| null | 4,422 |
class Phi3ForCausalLM(Phi3PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
def __init__(self, config):
super().__init__(config)
self.model = Phi3Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
num_logits_to_keep (`int`, *optional*):
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, Phi3ForCausalLM
>>> model = Phi3ForCausalLM.from_pretrained("meta-phi3/Phi3-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-phi3/Phi3-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
num_logits_to_keep=None,
**kwargs,
):
# Overwritten -- this model may need to switch between short and long rope, invalidating the cache in the
# process
# When the first time input length reached long and short factor switching point, enforce re-compute cache
# It will cause downside of slower at this single token position, however, better than current failure.
if (
past_key_values
and self.config.rope_scaling
and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1
):
past_length = cache_position[0]
if past_length <= self.config.original_max_position_embeddings:
past_key_values = None
model_inputs = super().prepare_inputs_for_generation(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
cache_position=cache_position,
position_ids=position_ids,
use_cache=use_cache,
num_logits_to_keep=num_logits_to_keep,
**kwargs,
)
return model_inputs
|
class_definition
| 39,177 | 45,742 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi3/modeling_phi3.py
| null | 4,423 |
class Phi3ForSequenceClassification(Phi3PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = Phi3Model(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
|
class_definition
| 46,532 | 50,340 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi3/modeling_phi3.py
| null | 4,424 |
class Phi3ForTokenClassification(Phi3PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = Phi3Model(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(PHI3_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 50,585 | 53,793 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi3/modeling_phi3.py
| null | 4,425 |
class Phi3Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the
[microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32064):
Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Phi3Model`].
hidden_size (`int`, *optional*, defaults to 3072):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
resid_pdrop (`float`, *optional*, defaults to 0.0):
Dropout probability for mlp outputs.
embd_pdrop (`int`, *optional*, defaults to 0.0):
The dropout ratio for the embeddings.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio after computing the attention scores.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model might ever be used with.
original_max_position_embeddings (`int`, *optional*, defaults to 4096):
The maximum sequence length that this model was trained with. This is used to determine the size of the
original RoPE embeddings when using long scaling.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon value used for the RMSNorm.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`dict`, *optional*):
The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
divided by the number of attention heads divided by 2.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 32000):
The id of the "end-of-sequence" token.
pad_token_id (`int`, *optional*, defaults to 32000):
The id of the padding token.
sliding_window (`int`, *optional*):
Sliding window attention window size. If `None`, no sliding window is applied.
Example:
```python
>>> from transformers import Phi3Model, Phi3Config
>>> # Initializing a Phi-3 style configuration
>>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
>>> # Initializing a model from the configuration
>>> model = Phi3Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "phi3"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=32064,
hidden_size=3072,
intermediate_size=8192,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
resid_pdrop=0.0,
embd_pdrop=0.0,
attention_dropout=0.0,
hidden_act="silu",
max_position_embeddings=4096,
original_max_position_embeddings=4096,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
bos_token_id=1,
eos_token_id=32000,
pad_token_id=32000,
sliding_window=None,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attention_dropout = attention_dropout
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.original_max_position_embeddings = original_max_position_embeddings
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self._rope_scaling_adjustment()
self._rope_scaling_validation()
self.sliding_window = sliding_window
super().__init__(
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
pad_token_id=pad_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
def _rope_scaling_adjustment(self):
"""
Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
"""
if self.rope_scaling is None:
return
rope_scaling_type = self.rope_scaling.get("type", None)
# For backward compatibility if previous version used "su" or "yarn"
if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
self.rope_scaling["type"] = "longrope"
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
raise ValueError(
"`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
f"got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
if not (
isinstance(rope_scaling_short_factor, list)
and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
):
raise ValueError(
f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
)
if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
raise ValueError(
f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
)
if not (
isinstance(rope_scaling_long_factor, list)
and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
):
raise ValueError(
f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
)
if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
raise ValueError(
f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
)
|
class_definition
| 797 | 10,608 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/phi3/configuration_phi3.py
| null | 4,426 |
class TFRotaryEmbedding(keras.layers.Layer):
"""
Rotary position embeddings based on those in
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
matrices which depend on their relative positions.
"""
def __init__(self, dim: int, name=None):
super().__init__(name=name)
# Matt: The PyTorch version of this layer does a lot of work to cache values, but we just rely on TF compilation
# and/or XLA to sort out constants like that. It actually may not seem like this layer needs to be stateful at
# all when we benefit from TF compilation, but it does. The reason is that self.inv_freq is a buffer in the
# original implementation, but all the shared ESM checkpoints were trained with fp16 params. This means that
# the inv_freq tensor was stored as a float16, and we need to replicate those lower-precision values or our
# models give different outputs from the original.
self.dim = dim
def build(self, input_shape):
super().build(input_shape)
self.inv_freq = self.add_weight(
"inv_freq", shape=(self.dim // 2,), dtype=tf.float32, initializer=get_initializer(1.0), trainable=False
)
self.inv_freq.assign(
1.0 / (10000 ** (tf.range(start=0, limit=self.dim, delta=2, dtype=tf.float32) / self.dim))
)
def _compute_cos_sin(self, x, seq_dimension=2):
seq_len = tf.shape(x)[seq_dimension]
t = tf.range(seq_len, dtype=self.inv_freq.dtype)
freqs = tf.einsum("i, j -> ij", t, self.inv_freq) # Outer multiplication
emb = tf.concat((freqs, freqs), axis=-1)[None, None, :, :]
return tf.cos(emb), tf.sin(emb)
def call(self, q: tf.Tensor, k: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]:
cos_emb, sin_emb = self._compute_cos_sin(k, seq_dimension=-2)
return (
apply_rotary_pos_emb(q, cos_emb, sin_emb),
apply_rotary_pos_emb(k, cos_emb, sin_emb),
)
|
class_definition
| 2,431 | 4,482 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_tf_esm.py
| null | 4,427 |
class TFEsmContactPredictionHead(keras.layers.Layer):
"""Performs symmetrization, apc, and computes a logistic regression on the output features"""
def __init__(
self,
in_features: int,
bias=True,
eos_idx: int = 2,
name=None,
):
super().__init__(name=name)
self.eos_idx = eos_idx
self.in_features = in_features
self.regression = keras.layers.Dense(1, use_bias=bias, activation="sigmoid", name="regression")
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "regression", None) is not None:
with tf.name_scope(self.regression.name):
self.regression.build((None, self.in_features))
def call(self, tokens, attentions):
# remove eos token attentions
eos_mask = tf.cast(tokens != self.eos_idx, attentions.dtype)
eos_mask = tf.expand_dims(eos_mask, 1) * tf.expand_dims(eos_mask, 2)
attentions = attentions * eos_mask[:, None, None, :, :]
attentions = attentions[..., :-1, :-1]
# remove cls token attentions
attentions = attentions[..., 1:, 1:]
batch_size, layers, heads, seqlen, _ = shape_list(attentions)
attentions = tf.reshape(attentions, (batch_size, layers * heads, seqlen, seqlen))
# features: batch x channels x tokens x tokens (symmetric)
attentions = average_product_correct(symmetrize(attentions))
attentions = tf.transpose(attentions, perm=(0, 2, 3, 1))
return tf.squeeze(self.regression(attentions), 3)
|
class_definition
| 4,485 | 6,099 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_tf_esm.py
| null | 4,428 |
class TFEsmEmbeddings(keras.layers.Layer):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
"""
def __init__(self, config, name=None):
super().__init__(name=name)
self.word_embeddings = keras.layers.Embedding(
config.vocab_size,
config.hidden_size,
embeddings_initializer=get_initializer(config.initializer_range),
name="word_embeddings",
)
self.position_embeddings = keras.layers.Embedding(
config.max_position_embeddings,
config.hidden_size,
embeddings_initializer=get_initializer(config.initializer_range),
name="position_embeddings",
)
if config.emb_layer_norm_before:
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
else:
self.layer_norm = None
# Matt: I think this line was copied incorrectly from BERT, disabling for now
# self.dropout = Dropout(config.hidden_dropout_prob)
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.position_ids = tf.range(config.max_position_embeddings)[None, :]
self.padding_idx = config.pad_token_id
self.token_dropout = config.token_dropout
self.mask_token_id = config.mask_token_id
self.config = config
def call(
self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = self.word_embeddings(input_ids)
# Note that if we want to support ESM-1 (not 1b!) in future then we need to support an
# embedding_scale factor here.
embeddings = inputs_embeds
# Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout
# flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however,
# masked tokens are treated as if they were selected for input dropout and zeroed out.
# This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by
# a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample).
# This is analogous to the way that dropout layers scale down outputs during evaluation when not
# actually dropping out values (or, equivalently, scale up their un-dropped outputs in training).
if self.token_dropout:
embeddings = tf.where((input_ids == self.mask_token_id)[:, :, None], 0.0, embeddings)
mask_ratio_train = 0.15 * 0.8 # Hardcoded as the ratio used in all ESM model training runs
src_lengths = tf.cast(tf.reduce_sum(attention_mask, axis=-1), tf.float32)
masked_tokens = input_ids == self.mask_token_id
mask_ratio_observed = tf.math.count_nonzero(masked_tokens, dtype=tf.float32, axis=-1) / src_lengths
embeddings = embeddings * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None]
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
if self.layer_norm is not None:
embeddings = self.layer_norm(embeddings)
if attention_mask is not None:
embeddings = embeddings * tf.cast(tf.expand_dims(attention_mask, -1), embeddings.dtype)
# Matt: I think this line was copied incorrectly from BERT, disabling it for now.
# embeddings = self.dropout(embeddings)
return embeddings
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: tf.Tensor
Returns: tf.Tensor
"""
input_shape = shape_list(inputs_embeds)[:-1]
sequence_length = input_shape[1]
position_ids = tf.range(
start=self.padding_idx + 1, limit=sequence_length + self.padding_idx + 1, dtype=tf.int64
)
return tf.broadcast_to(tf.expand_dims(position_ids, 0), input_shape)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "word_embeddings", None) is not None:
with tf.name_scope(self.word_embeddings.name):
self.word_embeddings.build(None)
if getattr(self, "position_embeddings", None) is not None:
with tf.name_scope(self.position_embeddings.name):
self.position_embeddings.build(None)
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.hidden_size])
|
class_definition
| 6,102 | 11,576 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_tf_esm.py
| null | 4,429 |
class TFEsmSelfAttention(keras.layers.Layer):
def __init__(self, config, position_embedding_type=None, name=None):
super().__init__(name=name)
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = keras.layers.Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
)
self.key = keras.layers.Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
)
self.value = keras.layers.Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
)
self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
self.rotary_embeddings = None
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = keras.layers.Embedding(
2 * config.max_position_embeddings - 1,
self.attention_head_size,
embeddings_initializer=get_initializer(config.initializer_range),
)
elif self.position_embedding_type == "rotary":
self.rotary_embeddings = TFRotaryEmbedding(dim=self.attention_head_size, name="rotary_embeddings")
self.is_decoder = config.is_decoder
self.config = config
def transpose_for_scores(self, x: tf.Tensor) -> tf.Tensor:
new_x_shape = shape_list(x)[:-1] + [self.num_attention_heads, self.attention_head_size]
x = tf.reshape(x, new_x_shape)
return tf.transpose(x, perm=(0, 2, 1, 3))
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
encoder_hidden_states: tf.Tensor | None = None,
encoder_attention_mask: tf.Tensor | None = None,
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
output_attentions: Optional[bool] = False,
training: bool = False,
) -> Tuple[tf.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = tf.concat([past_key_value[0], key_layer], axis=2)
value_layer = tf.concat([past_key_value[1], value_layer], axis=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
# ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
# but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
# ESM code and fix rotary embeddings.
query_layer = query_layer * self.attention_head_size**-0.5
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
if self.position_embedding_type == "rotary":
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = shape_list(hidden_states)[1]
position_ids_l = tf.expand_dims(tf.range(seq_length, dtype=tf.int64), -1)
position_ids_r = tf.expand_dims(tf.range(seq_length, dtype=tf.int64), 0)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = tf.cast(positional_embedding, query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = tf.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = tf.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in EsmModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = stable_softmax(attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = attention_probs @ value_layer
context_layer = tf.transpose(context_layer, perm=(0, 2, 1, 3))
new_context_layer_shape = shape_list(context_layer)[:-2] + [self.all_head_size]
context_layer = tf.reshape(context_layer, new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "query", None) is not None:
with tf.name_scope(self.query.name):
self.query.build([None, None, self.config.hidden_size])
if getattr(self, "key", None) is not None:
with tf.name_scope(self.key.name):
self.key.build([None, None, self.config.hidden_size])
if getattr(self, "value", None) is not None:
with tf.name_scope(self.value.name):
self.value.build([None, None, self.config.hidden_size])
if getattr(self, "rotary_embeddings", None) is not None:
with tf.name_scope(self.rotary_embeddings.name):
self.rotary_embeddings.build(None)
|
class_definition
| 11,579 | 20,539 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_tf_esm.py
| null | 4,430 |
class TFEsmSelfOutput(keras.layers.Layer):
def __init__(self, config, name=None):
super().__init__(name=name)
self.dense = keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states, input_tensor, training=False):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states += input_tensor
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
|
class_definition
| 20,542 | 21,458 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_tf_esm.py
| null | 4,431 |
class TFEsmAttention(keras.layers.Layer):
def __init__(self, config, name=None):
super().__init__(name=name)
self.self = TFEsmSelfAttention(config, name="self")
self.output_layer = TFEsmSelfOutput(config, name="output")
self.pruned_heads = set()
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.config = config
def prune_heads(self, heads):
raise NotImplementedError
def call(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
training=False,
):
hidden_states_ln = self.LayerNorm(hidden_states)
self_outputs = self.self(
hidden_states_ln,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
training,
)
attention_output = self.output_layer(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self", None) is not None:
with tf.name_scope(self.self.name):
self.self.build(None)
if getattr(self, "output_layer", None) is not None:
with tf.name_scope(self.output_layer.name):
self.output_layer.build(None)
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
|
class_definition
| 21,461 | 23,338 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_tf_esm.py
| null | 4,432 |
class TFEsmIntermediate(keras.layers.Layer):
def __init__(self, config: EsmConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.intermediate_size,
kernel_initializer=get_initializer(config.initializer_range),
name="dense",
)
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = tf.nn.gelu(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
|
class_definition
| 23,341 | 24,176 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_tf_esm.py
| null | 4,433 |
class TFEsmOutput(keras.layers.Layer):
def __init__(self, config, name=None):
super().__init__(name=name)
self.dense = keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states, input_tensor, training=False):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states += input_tensor
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.intermediate_size])
|
class_definition
| 24,179 | 25,097 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_tf_esm.py
| null | 4,434 |
class TFEsmLayer(keras.layers.Layer):
def __init__(self, config, name=None):
super().__init__(name=name)
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = TFEsmAttention(config, name="attention")
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise RuntimeError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = TFEsmAttention(config)
self.intermediate = TFEsmIntermediate(config, name="intermediate")
self.output_layer = TFEsmOutput(config, name="output")
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.config = config
def call(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
training=False,
):
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
training=training,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise AttributeError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated"
" with cross-attention layers by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
training=training,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layernorm_output = self.LayerNorm(attention_output)
intermediate_output = self.intermediate(hidden_states=layernorm_output)
layer_output = self.output_layer(
hidden_states=intermediate_output, input_tensor=attention_output, training=training
)
outputs = (layer_output,) + outputs # add attentions if we output them
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "output_layer", None) is not None:
with tf.name_scope(self.output_layer.name):
self.output_layer.build(None)
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
|
class_definition
| 25,100 | 29,781 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_tf_esm.py
| null | 4,435 |
class TFEsmEncoder(keras.layers.Layer):
def __init__(self, config, name=None):
super().__init__(name=name)
self.config = config
self.layer = [TFEsmLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
self.emb_layer_norm_after = keras.layers.LayerNormalization(
epsilon=config.layer_norm_eps, name="emb_layer_norm_after"
)
def call(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
training=False,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
training,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if self.emb_layer_norm_after:
hidden_states = self.emb_layer_norm_after(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return TFBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "emb_layer_norm_after", None) is not None:
with tf.name_scope(self.emb_layer_norm_after.name):
self.emb_layer_norm_after.build([None, None, self.config.hidden_size])
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
|
class_definition
| 29,784 | 33,248 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_tf_esm.py
| null | 4,436 |
class TFEsmPooler(keras.layers.Layer):
def __init__(self, config: EsmConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(inputs=first_token_tensor)
return pooled_output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
|
class_definition
| 33,335 | 34,302 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_tf_esm.py
| null | 4,437 |
class TFEsmPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = EsmConfig
base_model_prefix = "esm"
|
class_definition
| 34,305 | 34,556 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_tf_esm.py
| null | 4,438 |
class TFEsmMainLayer(keras.layers.Layer):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
"""
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config, add_pooling_layer=True, name=None, **kwargs):
super().__init__(name=name, **kwargs)
self.config = config
self.is_decoder = config.is_decoder
self.embeddings = TFEsmEmbeddings(config, name="embeddings")
self.encoder = TFEsmEncoder(config, name="encoder")
self.pooler = TFEsmPooler(config, name="pooler") if add_pooling_layer else None
self.contact_head = TFEsmContactPredictionHead(
in_features=self.config.num_hidden_layers * self.config.num_attention_heads, bias=True, name="contact_head"
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build(None)
if getattr(self, "contact_head", None) is not None:
with tf.name_scope(self.contact_head.name):
self.contact_head.build(None)
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value: tf.Variable):
self.embeddings.word_embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
raise NotImplementedError
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
if not self.config.is_decoder:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
if past_key_values is None:
past_key_values_length = 0
past_key_values = [None] * len(self.encoder.layer)
else:
past_key_values_length = shape_list(past_key_values[0][0])[-2]
if attention_mask is None:
attention_mask = tf.fill(dims=(batch_size, seq_length + past_key_values_length), value=1)
embedding_output = self.embeddings(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
training=training,
)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask_shape = shape_list(attention_mask)
mask_seq_length = seq_length + past_key_values_length
# Copied from `modeling_tf_t5.py`
# Provided a padding mask of dimensions [batch_size, mask_seq_length]
# - if the model is a decoder, apply a causal mask in addition to the padding mask
# - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
if self.is_decoder:
seq_ids = tf.range(mask_seq_length)
causal_mask = tf.less_equal(
tf.tile(seq_ids[None, None, :], (batch_size, mask_seq_length, 1)),
seq_ids[None, :, None],
)
causal_mask = tf.cast(causal_mask, dtype=attention_mask.dtype)
extended_attention_mask = causal_mask * attention_mask[:, None, :]
attention_mask_shape = shape_list(extended_attention_mask)
extended_attention_mask = tf.reshape(
extended_attention_mask, (attention_mask_shape[0], 1, attention_mask_shape[1], attention_mask_shape[2])
)
if past_key_values[0] is not None:
# attention_mask needs to be sliced to the shape `[batch_size, 1, from_seq_length - cached_seq_length, to_seq_length]
extended_attention_mask = extended_attention_mask[:, :, -seq_length:, :]
else:
extended_attention_mask = tf.reshape(
attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1])
)
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and -10000.0 for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype)
one_cst = tf.constant(1.0, dtype=embedding_output.dtype)
ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype)
extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst)
# Copied from `modeling_tf_t5.py` with -1e9 -> -10000
if self.is_decoder and encoder_attention_mask is not None:
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, mask_seq_length, mask_seq_length]
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
encoder_attention_mask = tf.cast(encoder_attention_mask, dtype=extended_attention_mask.dtype)
num_dims_encoder_attention_mask = len(shape_list(encoder_attention_mask))
if num_dims_encoder_attention_mask == 3:
encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
if num_dims_encoder_attention_mask == 2:
encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow/transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = tf.math.equal(encoder_extended_attention_mask,
# tf.transpose(encoder_extended_attention_mask, perm=(-1, -2)))
encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.config.num_hidden_layers
encoder_outputs = self.encoder(
hidden_states=embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None
if not return_dict:
return (
sequence_output,
pooled_output,
) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
def predict_contacts(self, tokens, attention_mask):
attns = self(tokens, attention_mask=attention_mask, return_dict=True, output_attentions=True).attentions
attns = tf.stack(attns, axis=1) # Matches the original model layout
# In the original model, attentions for padding tokens are completely zeroed out.
# This makes no difference most of the time because the other tokens won't attend to them,
# but it does for the contact prediction task, which takes attentions as input,
# so we have to mimic that here.
attention_mask = tf.cast(attention_mask, attns.dtype)
attns *= attention_mask[:, None, None, None]
attns *= attention_mask[:, None, None, :, None]
return self.contact_head(tokens, attns)
|
class_definition
| 37,790 | 49,123 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_tf_esm.py
| null | 4,439 |
class TFEsmModel(TFEsmPreTrainedModel):
def __init__(self, config: EsmConfig, add_pooling_layer=True, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.esm = TFEsmMainLayer(config, add_pooling_layer=add_pooling_layer, name="esm")
@unpack_inputs
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithPoolingAndCrossAttentions, Tuple[tf.Tensor]]:
r"""
encoder_hidden_states (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`). Set to `False` during training, `True` during generation
"""
outputs = self.esm(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def predict_contacts(self, tokens, attention_mask):
return self.esm.predict_contacts(tokens, attention_mask)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "esm", None) is not None:
with tf.name_scope(self.esm.name):
self.esm.build(None)
|
class_definition
| 49,277 | 53,199 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_tf_esm.py
| null | 4,440 |
class TFEsmForMaskedLM(TFEsmPreTrainedModel, TFMaskedLanguageModelingLoss):
_keys_to_ignore_on_load_missing = [r"position_ids"]
_keys_to_ignore_on_load_unexpected = [r"pooler"]
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm")
self.lm_head = TFEsmLMHead(config, name="lm_head")
if config.tie_word_embeddings:
# Ensure word embeddings are built so that we actually have something to tie
with tf.name_scope(os.path.join(self._name_scope(), "esm", "embeddings", "word_embeddings")):
self.esm.embeddings.word_embeddings.build((None, None))
self.lm_head.decoder = self.esm.embeddings.word_embeddings.weights[0]
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
def get_lm_head(self):
return self.lm_head
@unpack_inputs
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="<mask>",
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
encoder_hidden_states: np.ndarray | tf.Tensor | None = None,
encoder_attention_mask: np.ndarray | tf.Tensor | None = None,
labels: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
kwargs (`Dict[str, any]`, *optional*, defaults to `{}`):
Used to hide legacy arguments that have been deprecated.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
masked_lm_loss = self.hf_compute_loss(labels=labels, logits=prediction_scores)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return TFMaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def predict_contacts(self, tokens, attention_mask):
return self.esm.predict_contacts(tokens, attention_mask)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "esm", None) is not None:
with tf.name_scope(self.esm.name):
self.esm.build(None)
if getattr(self, "lm_head", None) is not None:
with tf.name_scope(self.lm_head.name):
self.lm_head.build(None)
|
class_definition
| 53,302 | 57,873 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_tf_esm.py
| null | 4,441 |
class TFEsmLMHead(keras.layers.Layer):
"""ESM Head for masked language modeling."""
def __init__(self, config, name=None):
super().__init__(name=name)
self.dense = keras.layers.Dense(
config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
if config.tie_word_embeddings:
self.decoder = None
else:
self.decoder = keras.layers.Dense(
config.vocab_size,
kernel_initializer=get_initializer(config.initializer_range),
name="decoder",
use_bias=False,
)
self.config = config
def build(self, input_shape=None):
# Separate bias to match the PT model and allow weight cross-loading to work
# Put it in the build so it gets the right name when adding it as a weight
if self.built:
return
self.built = True
self.bias = self.add_weight("bias", shape=(self.config.vocab_size,), initializer="zeros", trainable=True)
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.hidden_size])
if getattr(self, "decoder", None) is not None and not self.config.tie_word_embeddings:
with tf.name_scope(self.decoder.name):
self.decoder.build([None, None, self.config.hidden_size])
def get_bias(self):
return {"bias": self.bias}
def call(self, features):
x = self.dense(features)
x = tf.nn.gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
if self.config.tie_word_embeddings:
x = tf.matmul(x, self.decoder, transpose_b=True) + self.bias
else:
x = self.decoder(x) + self.bias
return x
|
class_definition
| 57,876 | 60,064 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_tf_esm.py
| null | 4,442 |
class TFEsmForSequenceClassification(TFEsmPreTrainedModel, TFSequenceClassificationLoss):
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm")
self.classifier = TFEsmClassificationHead(config, name="classifier")
@unpack_inputs
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
labels: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "esm", None) is not None:
with tf.name_scope(self.esm.name):
self.esm.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build(None)
|
class_definition
| 60,284 | 63,424 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_tf_esm.py
| null | 4,443 |
class TFEsmForTokenClassification(TFEsmPreTrainedModel, TFTokenClassificationLoss):
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.esm = TFEsmMainLayer(config, add_pooling_layer=False, name="esm")
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.classifier = keras.layers.Dense(config.num_labels, name="classifier")
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
labels: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output, training=training)
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "esm", None) is not None:
with tf.name_scope(self.esm.name):
self.esm.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
|
class_definition
| 63,651 | 66,839 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_tf_esm.py
| null | 4,444 |
class TFEsmClassificationHead(keras.layers.Layer):
"""Head for sentence-level classification tasks."""
def __init__(self, config, name=None):
super().__init__(name=name)
self.dense = keras.layers.Dense(
config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob)
self.out_proj = keras.layers.Dense(
config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
activation="linear",
name="out_proj",
)
self.config = config
def call(self, features, training=False):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x, training=training)
x = self.dense(x)
x = self.dropout(x, training=training)
x = self.out_proj(x)
return x
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.config.hidden_size])
|
class_definition
| 66,842 | 68,308 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_tf_esm.py
| null | 4,445 |
class EsmConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ESMModel`]. It is used to instantiate a ESM model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the ESM
[facebook/esm-1b](https://huggingface.co/facebook/esm-1b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*):
Vocabulary size of the ESM model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`ESMModel`].
mask_token_id (`int`, *optional*):
The index of the mask token in the vocabulary. This must be included in the config because of the
"mask-dropout" scaling trick, which will scale the inputs depending on the number of masked tokens.
pad_token_id (`int`, *optional*):
The index of the padding token in the vocabulary. This must be included in the config because certain parts
of the ESM code use this instead of the attention mask.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 1026):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query", "rotary"`.
For positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
is_decoder (`bool`, *optional*, defaults to `False`):
Whether the model is used as a decoder or not. If `False`, the model is used as an encoder.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
emb_layer_norm_before (`bool`, *optional*):
Whether to apply layer normalization after embeddings but before the main stem of the network.
token_dropout (`bool`, defaults to `False`):
When this is enabled, masked tokens are treated as if they had been dropped out by input dropout.
Examples:
```python
>>> from transformers import EsmModel, EsmConfig
>>> # Initializing a ESM facebook/esm-1b style configuration
>>> configuration = EsmConfig(vocab_size=33)
>>> # Initializing a model from the configuration
>>> model = EsmModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "esm"
def __init__(
self,
vocab_size=None,
mask_token_id=None,
pad_token_id=None,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=1026,
initializer_range=0.02,
layer_norm_eps=1e-12,
position_embedding_type="absolute",
use_cache=True,
emb_layer_norm_before=None,
token_dropout=False,
is_folding_model=False,
esmfold_config=None,
vocab_list=None,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, mask_token_id=mask_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.emb_layer_norm_before = emb_layer_norm_before
self.token_dropout = token_dropout
self.is_folding_model = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info("No esmfold_config supplied for folding model, using default values.")
esmfold_config = EsmFoldConfig()
elif isinstance(esmfold_config, dict):
esmfold_config = EsmFoldConfig(**esmfold_config)
self.esmfold_config = esmfold_config
if vocab_list is None:
logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!")
self.vocab_list = get_default_vocab_list()
else:
self.vocab_list = vocab_list
else:
self.esmfold_config = None
self.vocab_list = None
if self.esmfold_config is not None and getattr(self.esmfold_config, "use_esm_attn_map", False):
raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!")
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = super().to_dict()
if isinstance(self.esmfold_config, EsmFoldConfig):
output["esmfold_config"] = self.esmfold_config.to_dict()
return output
|
class_definition
| 880 | 8,354 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/configuration_esm.py
| null | 4,446 |
class EsmFoldConfig:
esm_type: str = None
fp16_esm: bool = True
use_esm_attn_map: bool = False
esm_ablate_pairwise: bool = False
esm_ablate_sequence: bool = False
esm_input_dropout: float = 0
embed_aa: bool = True
bypass_lm: bool = False
lddt_head_hid_dim: int = 128
trunk: "TrunkConfig" = None
def __post_init__(self):
if self.trunk is None:
self.trunk = TrunkConfig()
elif isinstance(self.trunk, dict):
self.trunk = TrunkConfig(**self.trunk)
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = asdict(self)
output["trunk"] = self.trunk.to_dict()
return output
|
class_definition
| 8,368 | 9,277 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/configuration_esm.py
| null | 4,447 |
class TrunkConfig:
num_blocks: int = 48
sequence_state_dim: int = 1024
pairwise_state_dim: int = 128
sequence_head_width: int = 32
pairwise_head_width: int = 32
position_bins: int = 32
dropout: float = 0
layer_drop: float = 0
cpu_grad_checkpoint: bool = False
max_recycles: int = 4
chunk_size: Optional[int] = 128
structure_module: "StructureModuleConfig" = None
def __post_init__(self):
if self.structure_module is None:
self.structure_module = StructureModuleConfig()
elif isinstance(self.structure_module, dict):
self.structure_module = StructureModuleConfig(**self.structure_module)
if self.max_recycles <= 0:
raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}.")
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
"`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got"
f" {self.sequence_state_dim} and {self.sequence_state_dim}."
)
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
"`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got"
f" {self.pairwise_state_dim} and {self.pairwise_state_dim}."
)
sequence_num_heads = self.sequence_state_dim // self.sequence_head_width
pairwise_num_heads = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
"`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got"
f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}."
)
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
"`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got"
f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}."
)
if self.pairwise_state_dim % 2 != 0:
raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.")
if self.dropout >= 0.4:
raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}.")
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = asdict(self)
output["structure_module"] = self.structure_module.to_dict()
return output
|
class_definition
| 9,291 | 12,172 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/configuration_esm.py
| null | 4,448 |
class StructureModuleConfig:
"""
Args:
sequence_dim:
Single representation channel dimension
pairwise_dim:
Pair representation channel dimension
ipa_dim:
IPA hidden channel dimension
resnet_dim:
Angle resnet (Alg. 23 lines 11-14) hidden channel dimension
num_heads_ipa:
Number of IPA heads
num_qk_points:
Number of query/key points to generate during IPA
num_v_points:
Number of value points to generate during IPA
dropout_rate:
Dropout rate used throughout the layer
num_blocks:
Number of structure module blocks
num_transition_layers:
Number of layers in the single representation transition (Alg. 23 lines 8-9)
num_resnet_blocks:
Number of blocks in the angle resnet
num_angles:
Number of angles to generate in the angle resnet
trans_scale_factor:
Scale of single representation transition hidden dimension
epsilon:
Small number used in angle resnet normalization
inf:
Large number used for attention masking
"""
sequence_dim: int = 384
pairwise_dim: int = 128
ipa_dim: int = 16
resnet_dim: int = 128
num_heads_ipa: int = 12
num_qk_points: int = 4
num_v_points: int = 8
dropout_rate: float = 0.1
num_blocks: int = 8
num_transition_layers: int = 1
num_resnet_blocks: int = 2
num_angles: int = 7
trans_scale_factor: int = 10
epsilon: float = 1e-8
inf: float = 1e5
def to_dict(self):
return asdict(self)
|
class_definition
| 12,186 | 13,875 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/configuration_esm.py
| null | 4,449 |
class EsmTokenizer(PreTrainedTokenizer):
"""
Constructs an ESM tokenizer.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
unk_token="<unk>",
cls_token="<cls>",
pad_token="<pad>",
mask_token="<mask>",
eos_token="<eos>",
**kwargs,
):
self.all_tokens = load_vocab_file(vocab_file)
self._id_to_token = dict(enumerate(self.all_tokens))
self._token_to_id = {tok: ind for ind, tok in enumerate(self.all_tokens)}
super().__init__(
unk_token=unk_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
eos_token=eos_token,
**kwargs,
)
# TODO, all the tokens are added? But they are also part of the vocab... bit strange.
# none of them are special, but they all need special splitting.
self.unique_no_split_tokens = self.all_tokens
self._update_trie(self.unique_no_split_tokens)
def _convert_id_to_token(self, index: int) -> str:
return self._id_to_token.get(index, self.unk_token)
def _convert_token_to_id(self, token: str) -> int:
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
def _tokenize(self, text, **kwargs):
return text.split()
def get_vocab(self):
base_vocab = self._token_to_id.copy()
base_vocab.update(self.added_tokens_encoder)
return base_vocab
def token_to_id(self, token: str) -> int:
return self._token_to_id.get(token, self._token_to_id.get(self.unk_token))
def id_to_token(self, index: int) -> str:
return self._id_to_token.get(index, self.unk_token)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
cls = [self.cls_token_id]
sep = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_1 is None:
if self.eos_token_id is None:
return cls + token_ids_0
else:
return cls + token_ids_0 + sep
elif self.eos_token_id is None:
raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!")
return cls + token_ids_0 + sep + token_ids_1 + sep # Multiple inputs always have an EOS token
def get_special_tokens_mask(
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of ids of the first sequence.
token_ids_1 (`List[int]`, *optional*):
List of ids of the second sequence.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
if token_ids_1 is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model."
)
return [1 if token in self.all_special_ids else 0 for token in token_ids_0]
mask = [1] + ([0] * len(token_ids_0)) + [1]
if token_ids_1 is not None:
mask += [0] * len(token_ids_1) + [1]
return mask
def save_vocabulary(self, save_directory, filename_prefix):
vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + "vocab.txt")
with open(vocab_file, "w") as f:
f.write("\n".join(self.all_tokens))
return (vocab_file,)
@property
def vocab_size(self) -> int:
return len(self.all_tokens)
|
class_definition
| 1,043 | 5,355 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/tokenization_esm.py
| null | 4,450 |
class RotaryEmbedding(torch.nn.Module):
"""
Rotary position embeddings based on those in
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
matrices which depend on their relative positions.
"""
def __init__(self, dim: int):
super().__init__()
# Generate and save the inverse frequency buffer (non trainable)
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))
inv_freq = inv_freq
self.register_buffer("inv_freq", inv_freq)
self._seq_len_cached = None
self._cos_cached = None
self._sin_cached = None
def _update_cos_sin_tables(self, x, seq_dimension=2):
seq_len = x.shape[seq_dimension]
# Reset the tables if the sequence length has changed,
# or if we're on a new device (possibly due to tracing for instance)
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device:
self._seq_len_cached = seq_len
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self._cos_cached = emb.cos()[None, None, :, :]
self._sin_cached = emb.sin()[None, None, :, :]
return self._cos_cached, self._sin_cached
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2)
return (
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
)
|
class_definition
| 2,385 | 4,182 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esm.py
| null | 4,451 |
class EsmContactPredictionHead(nn.Module):
"""Performs symmetrization, apc, and computes a logistic regression on the output features"""
def __init__(
self,
in_features: int,
bias=True,
eos_idx: int = 2,
):
super().__init__()
self.in_features = in_features
self.eos_idx = eos_idx
self.regression = nn.Linear(in_features, 1, bias)
self.activation = nn.Sigmoid()
def forward(self, tokens, attentions):
# remove eos token attentions
eos_mask = tokens.ne(self.eos_idx).to(attentions)
eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2)
attentions = attentions * eos_mask[:, None, None, :, :]
attentions = attentions[..., :-1, :-1]
# remove cls token attentions
attentions = attentions[..., 1:, 1:]
batch_size, layers, heads, seqlen, _ = attentions.size()
attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen)
# features: batch x channels x tokens x tokens (symmetric)
attentions = attentions.to(
self.regression.weight.device
) # attentions always float32, may need to convert to float16
attentions = average_product_correct(symmetrize(attentions))
attentions = attentions.permute(0, 2, 3, 1)
return self.activation(self.regression(attentions).squeeze(3))
|
class_definition
| 4,185 | 5,584 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esm.py
| null | 4,452 |
class EsmEmbeddings(nn.Module):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
"""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
if config.emb_layer_norm_before:
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
else:
self.layer_norm = None
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.padding_idx = config.pad_token_id
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
)
self.token_dropout = config.token_dropout
self.mask_token_id = config.mask_token_id
def forward(
self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
# Note that if we want to support ESM-1 (not 1b!) in future then we need to support an
# embedding_scale factor here.
embeddings = inputs_embeds
# Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout
# flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however,
# masked tokens are treated as if they were selected for input dropout and zeroed out.
# This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by
# a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample).
# This is analogous to the way that dropout layers scale down outputs during evaluation when not
# actually dropping out values (or, equivalently, scale up their un-dropped outputs in training).
if self.token_dropout:
embeddings = embeddings.masked_fill((input_ids == self.mask_token_id).unsqueeze(-1), 0.0)
mask_ratio_train = 0.15 * 0.8 # Hardcoded as the ratio used in all ESM model training runs
src_lengths = attention_mask.sum(-1)
mask_ratio_observed = (input_ids == self.mask_token_id).sum(-1).float() / src_lengths
embeddings = (embeddings * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None]).to(
embeddings.dtype
)
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings = embeddings + position_embeddings
if self.layer_norm is not None:
embeddings = self.layer_norm(embeddings)
if attention_mask is not None:
embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(embeddings.dtype)
# Matt: I think this line was copied incorrectly from BERT, disabling it for now.
# embeddings = self.dropout(embeddings)
return embeddings
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape)
|
class_definition
| 5,587 | 10,053 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esm.py
| null | 4,453 |
class EsmSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
self.rotary_embeddings = None
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
elif self.position_embedding_type == "rotary":
self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
# ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
# but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
# ESM code and fix rotary embeddings.
query_layer = query_layer * self.attention_head_size**-0.5
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
if self.position_embedding_type == "rotary":
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in EsmModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs.to(value_layer.dtype), value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
|
class_definition
| 10,056 | 17,815 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esm.py
| null | 4,454 |
class EsmSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
|
class_definition
| 17,818 | 18,278 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esm.py
| null | 4,455 |
class EsmAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = EsmSelfAttention(config)
self.output = EsmSelfOutput(config)
self.pruned_heads = set()
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
hidden_states_ln = self.LayerNorm(hidden_states)
self_outputs = self.self(
hidden_states_ln,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
|
class_definition
| 18,281 | 20,181 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esm.py
| null | 4,456 |
class EsmIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = gelu(hidden_states)
return hidden_states
|
class_definition
| 20,184 | 20,545 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esm.py
| null | 4,457 |
class EsmOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
|
class_definition
| 20,548 | 21,010 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esm.py
| null | 4,458 |
class EsmLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = EsmAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise RuntimeError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = EsmAttention(config)
self.intermediate = EsmIntermediate(config)
self.output = EsmOutput(config)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise AttributeError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated"
" with cross-attention layers by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = self.feed_forward_chunk(attention_output)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
attention_output_ln = self.LayerNorm(attention_output)
intermediate_output = self.intermediate(attention_output_ln)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
|
class_definition
| 21,013 | 24,715 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esm.py
| null | 4,459 |
class EsmEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([EsmLayer(config) for _ in range(config.num_hidden_layers)])
self.emb_layer_norm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
"`use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = next_decoder_cache + (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if self.emb_layer_norm_after:
hidden_states = self.emb_layer_norm_after(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
|
class_definition
| 24,718 | 28,438 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esm.py
| null | 4,460 |
class EsmPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
|
class_definition
| 28,505 | 29,063 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esm.py
| null | 4,461 |
class EsmPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = EsmConfig
base_model_prefix = "esm"
supports_gradient_checkpointing = True
_no_split_modules = ["EsmLayer", "EsmFoldTriangularSelfAttentionBlock", "EsmEmbeddings"]
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
|
class_definition
| 29,066 | 30,351 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esm.py
| null | 4,462 |
class EsmModel(EsmPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
"""
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = EsmEmbeddings(config)
self.encoder = EsmEncoder(config)
self.pooler = EsmPooler(config) if add_pooling_layer else None
self.contact_head = EsmContactPredictionHead(
in_features=config.num_hidden_layers * config.num_attention_heads, bias=True
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
def predict_contacts(self, tokens, attention_mask):
attns = self(tokens, attention_mask=attention_mask, return_dict=True, output_attentions=True).attentions
attns = torch.stack(attns, dim=1) # Matches the original model layout
# In the original model, attentions for padding tokens are completely zeroed out.
# This makes no difference most of the time because the other tokens won't attend to them,
# but it does for the contact prediction task, which takes attentions as input,
# so we have to mimic that here.
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3)
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4)
return self.contact_head(tokens, attns)
|
class_definition
| 33,634 | 43,150 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esm.py
| null | 4,463 |
class EsmForMaskedLM(EsmPreTrainedModel):
_tied_weights_keys = ["lm_head.decoder.weight"]
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.esm = EsmModel(config, add_pooling_layer=False)
self.lm_head = EsmLMHead(config)
self.init_weights()
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="<mask>",
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
kwargs (`Dict[str, any]`, *optional*, defaults to `{}`):
Used to hide legacy arguments that have been deprecated.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(prediction_scores.device)
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def predict_contacts(self, tokens, attention_mask):
return self.esm.predict_contacts(tokens, attention_mask=attention_mask)
|
class_definition
| 43,253 | 46,906 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esm.py
| null | 4,464 |
class EsmLMHead(nn.Module):
"""ESM Head for masked language modeling."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
def forward(self, features, **kwargs):
x = self.dense(features)
x = gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = self.decoder(x) + self.bias
return x
|
class_definition
| 46,909 | 47,593 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esm.py
| null | 4,465 |
class EsmForSequenceClassification(EsmPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.esm = EsmModel(config, add_pooling_layer=False)
self.classifier = EsmClassificationHead(config)
self.init_weights()
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 47,813 | 51,449 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esm.py
| null | 4,466 |
class EsmForTokenClassification(EsmPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.esm = EsmModel(config, add_pooling_layer=False)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(logits.device)
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 51,676 | 54,267 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esm.py
| null | 4,467 |
class EsmClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
|
class_definition
| 54,270 | 54,895 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esm.py
| null | 4,468 |
class EsmForProteinFoldingOutput(ModelOutput):
"""
Output type of [`EsmForProteinFoldingOutput`].
Args:
frames (`torch.FloatTensor`):
Output frames.
sidechain_frames (`torch.FloatTensor`):
Output sidechain frames.
unnormalized_angles (`torch.FloatTensor`):
Predicted unnormalized backbone and side chain torsion angles.
angles (`torch.FloatTensor`):
Predicted backbone and side chain torsion angles.
positions (`torch.FloatTensor`):
Predicted positions of the backbone and side chain atoms.
states (`torch.FloatTensor`):
Hidden states from the protein folding trunk.
s_s (`torch.FloatTensor`):
Per-residue embeddings derived by concatenating the hidden states of each layer of the ESM-2 LM stem.
s_z (`torch.FloatTensor`):
Pairwise residue embeddings.
distogram_logits (`torch.FloatTensor`):
Input logits to the distogram used to compute residue distances.
lm_logits (`torch.FloatTensor`):
Logits output by the ESM-2 protein language model stem.
aatype (`torch.FloatTensor`):
Input amino acids (AlphaFold2 indices).
atom14_atom_exists (`torch.FloatTensor`):
Whether each atom exists in the atom14 representation.
residx_atom14_to_atom37 (`torch.FloatTensor`):
Mapping between atoms in the atom14 and atom37 representations.
residx_atom37_to_atom14 (`torch.FloatTensor`):
Mapping between atoms in the atom37 and atom14 representations.
atom37_atom_exists (`torch.FloatTensor`):
Whether each atom exists in the atom37 representation.
residue_index (`torch.FloatTensor`):
The index of each residue in the protein chain. Unless internal padding tokens are used, this will just be
a sequence of integers from 0 to `sequence_length`.
lddt_head (`torch.FloatTensor`):
Raw outputs from the lddt head used to compute plddt.
plddt (`torch.FloatTensor`):
Per-residue confidence scores. Regions of low confidence may indicate areas where the model's prediction is
uncertain, or where the protein structure is disordered.
ptm_logits (`torch.FloatTensor`):
Raw logits used for computing ptm.
ptm (`torch.FloatTensor`):
TM-score output representing the model's high-level confidence in the overall structure.
aligned_confidence_probs (`torch.FloatTensor`):
Per-residue confidence scores for the aligned structure.
predicted_aligned_error (`torch.FloatTensor`):
Predicted error between the model's prediction and the ground truth.
max_predicted_aligned_error (`torch.FloatTensor`):
Per-sample maximum predicted error.
"""
frames: torch.FloatTensor = None
sidechain_frames: torch.FloatTensor = None
unnormalized_angles: torch.FloatTensor = None
angles: torch.FloatTensor = None
positions: torch.FloatTensor = None
states: torch.FloatTensor = None
s_s: torch.FloatTensor = None
s_z: torch.FloatTensor = None
distogram_logits: torch.FloatTensor = None
lm_logits: torch.FloatTensor = None
aatype: torch.FloatTensor = None
atom14_atom_exists: torch.FloatTensor = None
residx_atom14_to_atom37: torch.FloatTensor = None
residx_atom37_to_atom14: torch.FloatTensor = None
atom37_atom_exists: torch.FloatTensor = None
residue_index: torch.FloatTensor = None
lddt_head: torch.FloatTensor = None
plddt: torch.FloatTensor = None
ptm_logits: torch.FloatTensor = None
ptm: torch.FloatTensor = None
aligned_confidence_probs: torch.FloatTensor = None
predicted_aligned_error: torch.FloatTensor = None
max_predicted_aligned_error: torch.FloatTensor = None
|
class_definition
| 1,718 | 5,633 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,469 |
class EsmFoldLinear(nn.Linear):
"""
A Linear layer with built-in nonstandard initializations. Called just like torch.nn.Linear.
Implements the initializers in 1.11.4, plus some additional ones found in the code.
"""
def __init__(
self,
in_dim: int,
out_dim: int,
bias: bool = True,
init: str = "default",
init_fn: Optional[Callable[[torch.Tensor, torch.Tensor], None]] = None,
):
"""
Args:
in_dim:
The final dimension of inputs to the layer
out_dim:
The final dimension of layer outputs
bias:
Whether to learn an additive bias. True by default
init:
The initializer to use. Choose from:
"default": LeCun fan-in truncated normal initialization "relu": He initialization w/ truncated normal
distribution "glorot": Fan-average Glorot uniform initialization "gating": Weights=0, Bias=1 "normal":
Normal initialization with std=1/sqrt(fan_in) "final": Weights=0, Bias=0
Overridden by init_fn if the latter is not None.
init_fn:
A custom initializer taking weight and bias as inputs. Overrides init if not None.
"""
super().__init__(in_dim, out_dim, bias=bias)
if bias:
with torch.no_grad():
self.bias.fill_(0)
self.init = init
self.init_fn = init_fn
if init not in ["default", "relu", "glorot", "gating", "normal", "final"]:
raise ValueError("Invalid init string.")
|
class_definition
| 10,563 | 12,209 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,470 |
class EsmFoldLayerNorm(nn.Module):
def __init__(self, c_in, eps=1e-5):
super().__init__()
self.c_in = (c_in,)
self.eps = eps
self.weight = nn.Parameter(torch.ones(c_in))
self.bias = nn.Parameter(torch.zeros(c_in))
def forward(self, x):
d = x.dtype
if d is torch.bfloat16 and not is_deepspeed_initialized():
with torch.cuda.amp.autocast(enabled=False):
out = nn.functional.layer_norm(x, self.c_in, self.weight.to(dtype=d), self.bias.to(dtype=d), self.eps)
else:
out = nn.functional.layer_norm(x, self.c_in, self.weight, self.bias, self.eps)
return out
|
class_definition
| 12,212 | 12,886 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,471 |
class EsmFoldAttention(nn.Module):
"""
Standard multi-head attention using AlphaFold's default layer initialization. Allows multiple bias vectors.
"""
def __init__(
self,
c_q: int,
c_k: int,
c_v: int,
c_hidden: int,
no_heads: int,
gating: bool = True,
):
"""
Args:
c_q:
Input dimension of query data
c_k:
Input dimension of key data
c_v:
Input dimension of value data
c_hidden:
Per-head hidden dimension
no_heads:
Number of attention heads
gating:
Whether the output should be gated using query data
"""
super().__init__()
self.c_q = c_q
self.c_k = c_k
self.c_v = c_v
self.c_hidden = c_hidden
self.no_heads = no_heads
self.gating = gating
# DISCREPANCY: c_hidden is not the per-head channel dimension, as
# stated in the supplement, but the overall channel dimension.
self.linear_q = EsmFoldLinear(self.c_q, self.c_hidden * self.no_heads, bias=False, init="glorot")
self.linear_k = EsmFoldLinear(self.c_k, self.c_hidden * self.no_heads, bias=False, init="glorot")
self.linear_v = EsmFoldLinear(self.c_v, self.c_hidden * self.no_heads, bias=False, init="glorot")
self.linear_o = EsmFoldLinear(self.c_hidden * self.no_heads, self.c_q, init="final")
self.linear_g = None
if self.gating:
self.linear_g = EsmFoldLinear(self.c_q, self.c_hidden * self.no_heads, init="gating")
self.sigmoid = nn.Sigmoid()
def _prep_qkv(self, q_x: torch.Tensor, kv_x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# [*, Q/K/V, H * C_hidden]
q = self.linear_q(q_x)
k = self.linear_k(kv_x)
v = self.linear_v(kv_x)
# [*, Q/K, H, C_hidden]
q = q.view(q.shape[:-1] + (self.no_heads, -1))
k = k.view(k.shape[:-1] + (self.no_heads, -1))
v = v.view(v.shape[:-1] + (self.no_heads, -1))
# [*, H, Q/K, C_hidden]
q = q.transpose(-2, -3)
k = k.transpose(-2, -3)
v = v.transpose(-2, -3)
q /= math.sqrt(self.c_hidden)
return q, k, v
def _wrap_up(self, o: torch.Tensor, q_x: torch.Tensor) -> torch.Tensor:
if self.linear_g is not None:
g = self.sigmoid(self.linear_g(q_x))
# [*, Q, H, C_hidden]
g = g.view(g.shape[:-1] + (self.no_heads, -1))
o = o * g
# [*, Q, H * C_hidden]
o = flatten_final_dims(o, 2)
# [*, Q, C_q]
o = self.linear_o(o)
return o
def forward(
self,
q_x: torch.Tensor,
kv_x: torch.Tensor,
biases: Optional[List[torch.Tensor]] = None,
use_memory_efficient_kernel: bool = False,
use_lma: bool = False,
lma_q_chunk_size: int = 1024,
lma_kv_chunk_size: int = 4096,
use_flash: bool = False,
flash_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Args:
q_x:
[*, Q, C_q] query data
kv_x:
[*, K, C_k] key data
biases:
List of biases that broadcast to [*, H, Q, K]
use_memory_efficient_kernel:
Whether to use a custom memory-efficient attention kernel. This should be the default choice for most.
If none of the "use_<...>" flags are True, a stock PyTorch implementation is used instead
use_lma:
Whether to use low-memory attention (Staats & Rabe 2021). If none of the "use_<...>" flags are True, a
stock PyTorch implementation is used instead
lma_q_chunk_size:
Query chunk size (for LMA)
lma_kv_chunk_size:
Key/Value chunk size (for LMA)
Returns
[*, Q, C_q] attention update
"""
if use_lma and (lma_q_chunk_size is None or lma_kv_chunk_size is None):
raise ValueError("If use_lma is specified, lma_q_chunk_size and lma_kv_chunk_size must be provided")
if use_flash and biases is not None:
raise ValueError("use_flash is incompatible with the bias option. For masking, use flash_mask instead")
attn_options = [use_memory_efficient_kernel, use_lma, use_flash]
if sum(attn_options) > 1:
raise ValueError("Choose at most one alternative attention algorithm")
if biases is None:
biases = []
# [*, H, Q/K, C_hidden]
query, key, value = self._prep_qkv(q_x, kv_x)
key = permute_final_dims(key, (1, 0))
# [*, H, Q, K]
output = torch.matmul(query, key)
for b in biases:
output += b
output = softmax_no_cast(output, -1)
# [*, H, Q, C_hidden]
output = torch.matmul(output, value)
output = output.transpose(-2, -3)
output = self._wrap_up(output, q_x)
return output
|
class_definition
| 13,344 | 18,498 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,472 |
class EsmFoldTriangleAttention(nn.Module):
def __init__(self, c_in, c_hidden, no_heads, starting=True, inf=1e9):
"""
Args:
c_in:
Input channel dimension
c_hidden:
Overall hidden channel dimension (not per-head)
no_heads:
Number of attention heads
"""
super().__init__()
self.c_in = c_in
self.c_hidden = c_hidden
self.no_heads = no_heads
self.starting = starting
self.inf = inf
self.layer_norm = LayerNorm(self.c_in)
self.linear = EsmFoldLinear(c_in, self.no_heads, bias=False, init="normal")
self.mha = EsmFoldAttention(self.c_in, self.c_in, self.c_in, self.c_hidden, self.no_heads)
@torch.jit.ignore
def _chunk(
self,
x: torch.Tensor,
biases: List[torch.Tensor],
chunk_size: int,
use_memory_efficient_kernel: bool = False,
use_lma: bool = False,
inplace_safe: bool = False,
) -> torch.Tensor:
"triangle! triangle!"
mha_inputs = {
"q_x": x,
"kv_x": x,
"biases": biases,
}
return chunk_layer(
partial(self.mha, use_memory_efficient_kernel=use_memory_efficient_kernel, use_lma=use_lma),
mha_inputs,
chunk_size=chunk_size,
no_batch_dims=len(x.shape[:-2]),
_out=x if inplace_safe else None,
)
def forward(
self,
x: torch.Tensor,
mask: Optional[torch.Tensor] = None,
chunk_size: Optional[int] = None,
use_memory_efficient_kernel: bool = False,
use_lma: bool = False,
inplace_safe: bool = False,
) -> torch.Tensor:
"""
Args:
x:
[*, I, J, C_in] input tensor (e.g. the pair representation)
Returns:
[*, I, J, C_in] output tensor
"""
if mask is None:
# [*, I, J]
mask = x.new_ones(
x.shape[:-1],
)
if not self.starting:
x = x.transpose(-2, -3)
mask = mask.transpose(-1, -2)
# [*, I, J, C_in]
x = self.layer_norm(x)
# [*, I, 1, 1, J]
mask_bias = (self.inf * (mask - 1))[..., :, None, None, :]
# [*, H, I, J]
triangle_bias = permute_final_dims(self.linear(x), (2, 0, 1))
# [*, 1, H, I, J]
triangle_bias = triangle_bias.unsqueeze(-4)
biases = [mask_bias, triangle_bias]
if chunk_size is not None:
x = self._chunk(
x,
biases,
chunk_size,
use_memory_efficient_kernel=use_memory_efficient_kernel,
use_lma=use_lma,
inplace_safe=inplace_safe,
)
else:
x = self.mha(
q_x=x, kv_x=x, biases=biases, use_memory_efficient_kernel=use_memory_efficient_kernel, use_lma=use_lma
)
if not self.starting:
x = x.transpose(-2, -3)
return x
|
class_definition
| 18,501 | 21,616 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,473 |
class EsmFoldTriangleMultiplicativeUpdate(nn.Module):
"""
Implements Algorithms 11 and 12.
"""
def __init__(self, config, _outgoing=True):
super().__init__()
c_hidden = config.pairwise_state_dim
self._outgoing = _outgoing
self.linear_a_p = EsmFoldLinear(c_hidden, c_hidden)
self.linear_a_g = EsmFoldLinear(c_hidden, c_hidden, init="gating")
self.linear_b_p = EsmFoldLinear(c_hidden, c_hidden)
self.linear_b_g = EsmFoldLinear(c_hidden, c_hidden, init="gating")
self.linear_g = EsmFoldLinear(c_hidden, c_hidden, init="gating")
self.linear_z = EsmFoldLinear(c_hidden, c_hidden, init="final")
self.layer_norm_in = LayerNorm(c_hidden)
self.layer_norm_out = LayerNorm(c_hidden)
self.sigmoid = nn.Sigmoid()
def _combine_projections(
self, a: torch.Tensor, b: torch.Tensor, _inplace_chunk_size: Optional[int] = None
) -> torch.Tensor:
if self._outgoing:
a = permute_final_dims(a, (2, 0, 1))
b = permute_final_dims(b, (2, 1, 0))
else:
a = permute_final_dims(a, (2, 1, 0))
b = permute_final_dims(b, (2, 0, 1))
if _inplace_chunk_size is not None:
# To be replaced by torch vmap
for i in range(0, a.shape[-3], _inplace_chunk_size):
a_chunk = a[..., i : i + _inplace_chunk_size, :, :]
b_chunk = b[..., i : i + _inplace_chunk_size, :, :]
a[..., i : i + _inplace_chunk_size, :, :] = torch.matmul(
a_chunk,
b_chunk,
)
p = a
else:
p = torch.matmul(a, b)
return permute_final_dims(p, (1, 2, 0))
def _inference_forward(
self,
z: torch.Tensor,
mask: Optional[torch.Tensor] = None,
inplace_chunk_size: Optional[int] = None,
with_add: bool = True,
):
"""
Args:
z:
A [*, N, N, C_z] pair representation
mask:
A [*, N, N] pair mask
inplace_chunk_size:
Size of chunks used in the main computation. Increase to trade memory for speed.
with_add:
If True, z is overwritten with (z + update). Otherwise, it is overwritten with (update).
Returns:
A reference to the overwritten z
More memory-efficient, inference-only version of the forward function. Uses in-place operations, fusion of the
addition that happens after this module in the Evoformer, a smidge of recomputation, and a cache of overwritten
values to lower peak memory consumption of this module from 5x the size of the input tensor z to 2.5x its size.
Useful for inference on extremely long sequences.
It works as follows. We will make reference to variables used in the default forward implementation below.
Naively, triangle multiplication attention requires the manifestation of 5 tensors the size of z: 1) z, the
"square" input tensor, 2) a, the first projection of z, 3) b, the second projection of b, 4) g, a z-sized mask,
and 5) a z-sized tensor for intermediate computations. For large N, this is prohibitively expensive; for
N=4000, for example, z is more than 8GB alone. To avoid this problem, we compute b, g, and all intermediate
tensors in small chunks, noting that the chunks required to compute a chunk of the output depend only on the
tensor a and corresponding vertical and horizontal chunks of z. This suggests an algorithm that loops over
pairs of chunks of z: hereafter "columns" and "rows" of z, even though each "column" and "row" in fact contains
inplace_chunk_size contiguous true columns and rows of z. Writing output chunks to a new tensor would bring
total memory consumption down to 3x the size of z. However, more memory can be saved by writing output chunks
directly to z in-place. WLOG, we choose to write output chunks vertically, overwriting the ith "column" of z at
the end of the ith iteration of the main loop. Despite this overwriting, the ith column is always one column
ahead of previously overwritten columns and can be recovered directly from z. After the first iteration,
however, the ith row of z is always at least partially overwritten. For this reason, we introduce the z-cache,
a tensor one-half the size of z. The z-cache initially contains the left half (2nd and 3rd quadrants) of z. For
0 < i < N/2, the missing left part of the ith row of z is recovered from this cache at the beginning of the ith
iteration. Once i exceeds n/2, the cache is "reoriented" to encompass the 3rd and 4th quadrants of z instead.
Though the 3rd quadrant of the original z is entirely overwritten at this point, it can be recovered from the
z-cache itself. Thereafter, the ith row of z can be recovered in its entirety from the reoriented z-cache.
After the final iteration, z has been completely overwritten and contains the triangular multiplicative update.
If with_add is True, it instead contains the sum of z and the triangular multiplicative update. In either case,
peak memory consumption is just 2.5x the size of z, disregarding memory used for chunks and other small
variables.
"""
if mask is None:
mask = z.new_ones(z.shape[:-1])
mask = mask.unsqueeze(-1)
def compute_projection_helper(pair, mask, a=True):
if a:
linear_g = self.linear_a_g
linear_p = self.linear_a_p
else:
linear_g = self.linear_b_g
linear_p = self.linear_b_p
pair = self.layer_norm_in(pair)
p = linear_g(pair)
p.sigmoid_()
p *= linear_p(pair)
p *= mask
p = permute_final_dims(p, (2, 0, 1))
return p
def compute_projection(pair, mask, a=True, chunked=True):
need_transpose = self._outgoing ^ a
if not chunked:
p = compute_projection_helper(pair, mask, a)
if need_transpose:
p = p.transpose(-1, -2)
else:
# This computation is chunked so as not to exceed our 2.5x
# budget with a large intermediate tensor
linear_g = self.linear_a_g if a else self.linear_b_g
c = linear_g.bias.shape[-1]
out_shape = pair.shape[:-3] + (c,) + pair.shape[-3:-1]
p = pair.new_zeros(out_shape)
for i in range(0, pair.shape[-3], inplace_chunk_size):
pair_chunk = pair[..., i : i + inplace_chunk_size, :, :]
pair_chunk = compute_projection_helper(
pair[..., i : i + inplace_chunk_size, :, :],
mask[..., i : i + inplace_chunk_size, :, :],
a,
)
if need_transpose:
pair_chunk = pair_chunk.transpose(-1, -2)
p[..., i : i + inplace_chunk_size] = pair_chunk
else:
p[..., i : i + inplace_chunk_size, :] = pair_chunk
del pair_chunk
return p
# We start by fully manifesting a. In addition to the input, this
# brings total memory consumption to 2x z (disregarding size of chunks)
# [*, N, N, c]
a = compute_projection(z, mask, True, chunked=True)
if inplace_chunk_size is not None:
n = a.shape[-1]
half_n = n // 2 + n % 2
row_dim = -3
col_dim = -2
b_chunk_dim = row_dim if self._outgoing else col_dim
def empty_slicer(t):
return [slice(None) for _ in t.shape]
def slice_tensor(t, start, end, dim):
# Slices start:end from the dim dimension of t
s = empty_slicer(t)
s[dim] = slice(start, end)
return t[s]
def flip_z_cache_(z_cache, z):
# "Reorient" the z_cache (see below), filling it with quadrants
# 3---recovered from the z_cache---and 4---recovered from z---
# of the input tensor z.
quadrant_3 = slice_tensor(z_cache, half_n, None, row_dim)
z_cache = z_cache.transpose(row_dim, col_dim)
# If n is odd, we need to shrink the z_cache by one row
z_cache = z_cache[..., : (n // 2), :, :]
# Move the 3rd quadrant of z into the
first_half_slicer = empty_slicer(z_cache)
first_half_slicer[col_dim] = slice(0, half_n)
z_cache[first_half_slicer] = quadrant_3
# Get the fourth quadrant of z
quadrant_4 = slice_tensor(z, half_n, None, row_dim)
quadrant_4 = slice_tensor(quadrant_4, half_n, None, col_dim)
# Insert said quadrant into the rotated z-cache
quadrant_3_slicer = empty_slicer(z_cache)
quadrant_3_slicer[col_dim] = slice(half_n, None)
z_cache[quadrant_3_slicer] = quadrant_4
return z_cache
# Initialize the z cache to the left half of z.
z_cache_shape = list(z.shape)
z_cache_shape[col_dim] = half_n
z_cache = z.new_zeros(z_cache_shape)
z_cache_slicer = empty_slicer(z_cache)
z_cache_slicer[col_dim] = slice(0, half_n)
z_cache.copy_(z[z_cache_slicer])
z_cache_rotated = False
# We need to reorient the z-cache at the halfway point, and we
# don't want a single chunk to straddle that point. We contract one
# of the chunks in the middle to address that problem.
i_range = list(range(0, half_n, inplace_chunk_size))
initial_offsets = [i_2 - i_1 for i_1, i_2 in zip(i_range, i_range[1:] + [half_n])]
after_half = list(range(half_n, n, inplace_chunk_size))
after_half_offsets = [inplace_chunk_size for _ in after_half]
combined_range_with_offsets = zip(i_range + after_half, initial_offsets + after_half_offsets)
for i, offset in combined_range_with_offsets:
if not z_cache_rotated and i >= half_n:
z_cache = flip_z_cache_(z_cache, z)
z_cache_rotated = True
z_chunk_b = slice_tensor(z, i, i + offset, b_chunk_dim)
mask_chunk = slice_tensor(mask, i, i + offset, b_chunk_dim)
z_chunk_b = z_chunk_b.clone()
if b_chunk_dim == col_dim:
z_chunk_b = slice_tensor(z, i, i + offset, col_dim)
else: # b_chunk_dim == row_dim
# In this case, the b-dimension (b_chunk_dim) is partially
# overwritten at the end of each iteration. We need to
# restore the missing component from the z-cache.
if not z_cache_rotated:
z_chunk_slicer = empty_slicer(z_chunk_b)
z_chunk_slicer[col_dim] = slice(0, half_n)
z_chunk_b[z_chunk_slicer] = slice_tensor(z_cache, i, i + offset, row_dim)
else:
z_cache_offset = i - half_n
z_chunk_b = slice_tensor(z_cache, z_cache_offset, z_cache_offset + offset, row_dim)
b_chunk = compute_projection(z_chunk_b, mask_chunk, a=False, chunked=False)
del z_chunk_b
x_chunk = torch.matmul(a, b_chunk)
x_chunk = permute_final_dims(x_chunk, (1, 2, 0))
x_chunk = self.layer_norm_out(x_chunk)
x_chunk = self.linear_z(x_chunk)
# The g dimension (col_dim) is parallel to and ahead of the
# overwrites in z. We can extract the g chunk normally.
z_chunk_g = slice_tensor(z, i, i + offset, col_dim)
g_chunk = self.linear_g(self.layer_norm_in(z_chunk_g))
g_chunk.sigmoid_()
del z_chunk_g
x_chunk *= g_chunk
# Write the columns into z in-place
z_slicer = empty_slicer(z)
z_slicer[col_dim] = slice(i, i + offset)
if with_add:
z[z_slicer] += x_chunk
else:
z[z_slicer] = x_chunk
else:
b = compute_projection(z, mask, False, False)
x = torch.matmul(a, b)
x = self.layer_norm_out(x)
x = self.linear_z(x)
g = self.linear_g(z)
g.sigmoid_()
x *= g
if with_add:
z += x
else:
z = x
return z
def forward(
self,
z: torch.Tensor,
mask: Optional[torch.Tensor] = None,
inplace_safe: bool = False,
_add_with_inplace: bool = False,
_inplace_chunk_size: Optional[int] = 256,
) -> torch.Tensor:
"""
Args:
x:
[*, N_res, N_res, C_z] input tensor
mask:
[*, N_res, N_res] input mask
Returns:
[*, N_res, N_res, C_z] output tensor
"""
if inplace_safe:
x = self._inference_forward(
z,
mask,
inplace_chunk_size=_inplace_chunk_size,
with_add=_add_with_inplace,
)
return x
if mask is None:
mask = z.new_ones(z.shape[:-1])
mask = mask.unsqueeze(-1)
z = self.layer_norm_in(z)
a = mask
a = a * self.sigmoid(self.linear_a_g(z))
a = a * self.linear_a_p(z)
b = mask
b = b * self.sigmoid(self.linear_b_g(z))
b = b * self.linear_b_p(z)
if is_fp16_enabled():
with torch.cuda.amp.autocast(enabled=False):
x = self._combine_projections(a.float(), b.float())
else:
x = self._combine_projections(a, b)
del a, b
x = self.layer_norm_out(x)
x = self.linear_z(x)
g = self.sigmoid(self.linear_g(z))
x = x * g
return x
|
class_definition
| 21,619 | 36,144 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,474 |
class EsmFoldPreTrainedModel(EsmPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
# Subclass `EsMPreTrainedModel` to deal with special init
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, EsmFoldLinear):
with torch.no_grad():
if module.init_fn is not None:
module.init_fn(module.weight, module.bias)
elif module.init == "default":
trunc_normal_init_(module.weight, scale=1.0)
elif module.init == "relu":
trunc_normal_init_(module.weight, scale=2.0)
elif module.init == "glorot":
nn.init.xavier_uniform_(module.weight, gain=1)
elif module.init == "gating":
module.weight.fill_(0.0)
if module.bias:
module.bias.fill_(1.0)
elif module.init == "normal":
torch.nn.init.kaiming_normal_(module.weight, nonlinearity="linear")
elif module.init == "final":
module.weight.fill_(0.0)
elif isinstance(module, EsmFoldInvariantPointAttention):
ipa_point_weights_init_(module.head_weights)
elif isinstance(module, EsmFoldTriangularSelfAttentionBlock):
torch.nn.init.zeros_(module.tri_mul_in.linear_z.weight)
torch.nn.init.zeros_(module.tri_mul_in.linear_z.bias)
torch.nn.init.zeros_(module.tri_mul_out.linear_z.weight)
torch.nn.init.zeros_(module.tri_mul_out.linear_z.bias)
torch.nn.init.zeros_(module.tri_att_start.mha.linear_o.weight)
torch.nn.init.zeros_(module.tri_att_start.mha.linear_o.bias)
torch.nn.init.zeros_(module.tri_att_end.mha.linear_o.weight)
torch.nn.init.zeros_(module.tri_att_end.mha.linear_o.bias)
torch.nn.init.zeros_(module.sequence_to_pair.o_proj.weight)
torch.nn.init.zeros_(module.sequence_to_pair.o_proj.bias)
torch.nn.init.zeros_(module.pair_to_sequence.linear.weight)
torch.nn.init.zeros_(module.seq_attention.o_proj.weight)
torch.nn.init.zeros_(module.seq_attention.o_proj.bias)
torch.nn.init.zeros_(module.mlp_seq.mlp[-2].weight)
torch.nn.init.zeros_(module.mlp_seq.mlp[-2].bias)
torch.nn.init.zeros_(module.mlp_pair.mlp[-2].weight)
torch.nn.init.zeros_(module.mlp_pair.mlp[-2].bias)
else:
super()._init_weights(module)
|
class_definition
| 36,147 | 38,815 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,475 |
class EsmFoldSelfAttention(nn.Module):
def __init__(self, embed_dim, num_heads, head_width, gated=False):
super().__init__()
assert embed_dim == num_heads * head_width
self.embed_dim = embed_dim
self.num_heads = num_heads
self.head_width = head_width
self.proj = nn.Linear(embed_dim, embed_dim * 3, bias=False)
self.o_proj = nn.Linear(embed_dim, embed_dim, bias=True)
self.gated = gated
if gated:
self.g_proj = nn.Linear(embed_dim, embed_dim)
torch.nn.init.zeros_(self.g_proj.weight)
torch.nn.init.ones_(self.g_proj.bias)
self.rescale_factor = self.head_width**-0.5
torch.nn.init.zeros_(self.o_proj.bias)
def forward(self, x, mask=None, bias=None, indices=None):
"""
Basic self attention with optional mask and external pairwise bias. To handle sequences of different lengths,
use mask.
Inputs:
x: batch of input sequneces (.. x L x C) mask: batch of boolean masks where 1=valid, 0=padding position (..
x L_k) bias: batch of scalar pairwise attention biases (.. x Lq x Lk x num_heads)
Outputs:
sequence projection (B x L x embed_dim), attention maps (B x L x L x num_heads)
"""
t = self.proj(x).view(*x.shape[:2], self.num_heads, -1)
t = t.permute(0, 2, 1, 3)
q, k, v = t.chunk(3, dim=-1)
q = self.rescale_factor * q
a = torch.einsum("...qc,...kc->...qk", q, k)
# Add external attention bias.
if bias is not None:
a = a + bias.permute(0, 3, 1, 2)
# Do not attend to padding tokens.
if mask is not None:
mask = mask[:, None, None]
a = a.masked_fill(mask == False, -np.inf) # noqa: E712
a = nn.functional.softmax(a, dim=-1)
y = torch.einsum("...hqk,...hkc->...qhc", a, v)
y = y.reshape(*y.shape[:2], -1)
if self.gated:
y = self.g_proj(x).sigmoid() * y
y = self.o_proj(y)
return y, a.permute(0, 3, 1, 2)
|
class_definition
| 38,818 | 40,916 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,476 |
class EsmFoldDropout(nn.Module):
"""
Implementation of dropout with the ability to share the dropout mask along a particular dimension.
"""
def __init__(self, r: float, batch_dim: Union[int, List[int]]):
super().__init__()
self.r = r
if isinstance(batch_dim, int):
batch_dim = [batch_dim]
self.batch_dim = batch_dim
self.dropout = nn.Dropout(self.r)
def forward(self, x: torch.Tensor) -> torch.Tensor:
shape = list(x.shape)
if self.batch_dim is not None:
for bd in self.batch_dim:
shape[bd] = 1
return x * self.dropout(x.new_ones(shape))
|
class_definition
| 40,919 | 41,583 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,477 |
class EsmFoldSequenceToPair(nn.Module):
def __init__(self, sequence_state_dim, inner_dim, pairwise_state_dim):
super().__init__()
self.layernorm = nn.LayerNorm(sequence_state_dim)
self.proj = nn.Linear(sequence_state_dim, inner_dim * 2, bias=True)
self.o_proj = nn.Linear(2 * inner_dim, pairwise_state_dim, bias=True)
torch.nn.init.zeros_(self.proj.bias)
torch.nn.init.zeros_(self.o_proj.bias)
def forward(self, sequence_state):
"""
Inputs:
sequence_state: B x L x sequence_state_dim
Output:
pairwise_state: B x L x L x pairwise_state_dim
Intermediate state:
B x L x L x 2*inner_dim
"""
assert len(sequence_state.shape) == 3
s = self.layernorm(sequence_state)
s = self.proj(s)
q, k = s.chunk(2, dim=-1)
prod = q[:, None, :, :] * k[:, :, None, :]
diff = q[:, None, :, :] - k[:, :, None, :]
x = torch.cat([prod, diff], dim=-1)
x = self.o_proj(x)
return x
|
class_definition
| 41,586 | 42,646 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,478 |
class EsmFoldPairToSequence(nn.Module):
def __init__(self, pairwise_state_dim, num_heads):
super().__init__()
self.layernorm = nn.LayerNorm(pairwise_state_dim)
self.linear = nn.Linear(pairwise_state_dim, num_heads, bias=False)
def forward(self, pairwise_state):
"""
Inputs:
pairwise_state: B x L x L x pairwise_state_dim
Output:
pairwise_bias: B x L x L x num_heads
"""
assert len(pairwise_state.shape) == 4
z = self.layernorm(pairwise_state)
pairwise_bias = self.linear(z)
return pairwise_bias
|
class_definition
| 42,649 | 43,262 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,479 |
class EsmFoldResidueMLP(nn.Module):
def __init__(self, embed_dim, inner_dim, dropout=0):
super().__init__()
self.mlp = nn.Sequential(
nn.LayerNorm(embed_dim),
nn.Linear(embed_dim, inner_dim),
nn.ReLU(),
nn.Linear(inner_dim, embed_dim),
nn.Dropout(dropout),
)
def forward(self, x):
return x + self.mlp(x)
|
class_definition
| 43,265 | 43,670 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,480 |
class EsmFoldTriangularSelfAttentionBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
sequence_state_dim = config.sequence_state_dim
pairwise_state_dim = config.pairwise_state_dim
sequence_num_heads = sequence_state_dim // config.sequence_head_width
pairwise_num_heads = pairwise_state_dim // config.pairwise_head_width
self.layernorm_1 = nn.LayerNorm(sequence_state_dim)
self.sequence_to_pair = EsmFoldSequenceToPair(sequence_state_dim, pairwise_state_dim // 2, pairwise_state_dim)
self.pair_to_sequence = EsmFoldPairToSequence(pairwise_state_dim, sequence_num_heads)
self.seq_attention = EsmFoldSelfAttention(
sequence_state_dim, sequence_num_heads, config.sequence_head_width, gated=True
)
self.tri_mul_out = EsmFoldTriangleMultiplicativeUpdate(config, _outgoing=True)
self.tri_mul_in = EsmFoldTriangleMultiplicativeUpdate(config, _outgoing=False)
self.tri_att_start = EsmFoldTriangleAttention(
pairwise_state_dim, config.pairwise_head_width, pairwise_num_heads, inf=1e9, starting=True
)
self.tri_att_end = EsmFoldTriangleAttention(
pairwise_state_dim, config.pairwise_head_width, pairwise_num_heads, inf=1e9, starting=False
)
self.mlp_seq = EsmFoldResidueMLP(sequence_state_dim, 4 * sequence_state_dim, dropout=config.dropout)
self.mlp_pair = EsmFoldResidueMLP(pairwise_state_dim, 4 * pairwise_state_dim, dropout=config.dropout)
self.drop = nn.Dropout(config.dropout)
self.row_drop = EsmFoldDropout(config.dropout * 2, 2)
self.col_drop = EsmFoldDropout(config.dropout * 2, 1)
def forward(self, sequence_state, pairwise_state, mask=None, chunk_size=None, **__kwargs):
"""
Inputs:
sequence_state: B x L x sequence_state_dim pairwise_state: B x L x L x pairwise_state_dim mask: B x L boolean
tensor of valid positions
Output:
sequence_state: B x L x sequence_state_dim pairwise_state: B x L x L x pairwise_state_dim
"""
if len(sequence_state.shape) != 3:
raise ValueError(f"`sequence_state` should be a 3d-tensor, got {len(sequence_state.shape)} dims.")
if len(pairwise_state.shape) != 4:
raise ValueError(f"`pairwise_state` should be a 4d-tensor, got {len(pairwise_state.shape)} dims.")
if mask is not None and len(mask.shape) != 2:
raise ValueError(f"`mask` should be a 2d-tensor, got {len(mask.shape)} dims.")
batch_dim, seq_dim, sequence_state_dim = sequence_state.shape
pairwise_state_dim = pairwise_state.shape[3]
if sequence_state_dim != self.config.sequence_state_dim:
raise ValueError(
"`sequence_state` last dimension should be equal to `self.sequence_state_dim`. Got "
f"{sequence_state_dim} != {self.config.sequence_state_dim}."
)
if pairwise_state_dim != self.config.pairwise_state_dim:
raise ValueError(
"`pairwise_state` last dimension should be equal to `self.pairwise_state_dim`. Got "
f"{pairwise_state_dim} != {self.config.pairwise_state_dim}."
)
if batch_dim != pairwise_state.shape[0]:
raise ValueError(
f"`sequence_state` and `pairwise_state` have inconsistent batch size: {batch_dim} != "
f"{pairwise_state.shape[0]}."
)
if seq_dim != pairwise_state.shape[1] or seq_dim != pairwise_state.shape[2]:
raise ValueError(
f"`sequence_state` and `pairwise_state` have inconsistent sequence length: {seq_dim} != "
f"{pairwise_state.shape[1]} or {pairwise_state.shape[2]}."
)
# Update sequence state
bias = self.pair_to_sequence(pairwise_state)
# Self attention with bias + mlp.
y = self.layernorm_1(sequence_state)
y, _ = self.seq_attention(y, mask=mask, bias=bias)
sequence_state = sequence_state + self.drop(y)
sequence_state = self.mlp_seq(sequence_state)
# Update pairwise state
pairwise_state = pairwise_state + self.sequence_to_pair(sequence_state)
# Axial attention with triangular bias.
tri_mask = mask.unsqueeze(2) * mask.unsqueeze(1) if mask is not None else None
pairwise_state = pairwise_state + self.row_drop(self.tri_mul_out(pairwise_state, mask=tri_mask))
pairwise_state = pairwise_state + self.col_drop(self.tri_mul_in(pairwise_state, mask=tri_mask))
pairwise_state = pairwise_state + self.row_drop(
self.tri_att_start(pairwise_state, mask=tri_mask, chunk_size=chunk_size)
)
pairwise_state = pairwise_state + self.col_drop(
self.tri_att_end(pairwise_state, mask=tri_mask, chunk_size=chunk_size)
)
# MLP over pairs.
pairwise_state = self.mlp_pair(pairwise_state)
return sequence_state, pairwise_state
|
class_definition
| 43,673 | 48,755 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,481 |
class EsmCategoricalMixture:
def __init__(self, param, bins=50, start=0, end=1):
# All tensors are of shape ..., bins.
self.logits = param
bins = torch.linspace(start, end, bins + 1, device=self.logits.device, dtype=self.logits.dtype)
self.v_bins = (bins[:-1] + bins[1:]) / 2
def log_prob(self, true):
# Shapes are:
# self.probs: ... x bins
# true : ...
true_index = (true.unsqueeze(-1) - self.v_bins[[None] * true.ndim]).abs().argmin(-1)
nll = self.logits.log_softmax(-1)
return torch.take_along_dim(nll, true_index.unsqueeze(-1), dim=-1).squeeze(-1)
def mean(self):
return (self.logits.softmax(-1) @ self.v_bins.unsqueeze(1)).squeeze(-1)
|
class_definition
| 48,758 | 49,512 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,482 |
class EsmFoldRelativePosition(nn.Module):
def __init__(self, config):
super().__init__()
self.bins = config.position_bins
# Note an additional offset is used so that the 0th position
# is reserved for masked pairs.
self.embedding = torch.nn.Embedding(2 * self.bins + 2, config.pairwise_state_dim)
def forward(self, residue_index, mask=None):
"""
Input:
residue_index: B x L tensor of indices (dtype=torch.long) mask: B x L tensor of booleans
Output:
pairwise_state: B x L x L x pairwise_state_dim tensor of embeddings
"""
if residue_index.dtype != torch.long:
raise ValueError(f"`residue_index` has dtype {residue_index.dtype}, it should be `torch.long`.")
if mask is not None and residue_index.shape != mask.shape:
raise ValueError(
f"`residue_index` and `mask` have inconsistent shapes: {residue_index.shape} != {mask.shape}."
)
diff = residue_index[:, None, :] - residue_index[:, :, None]
diff = diff.clamp(-self.bins, self.bins)
diff = diff + self.bins + 1 # Add 1 to adjust for padding index.
if mask is not None:
mask = mask[:, None, :] * mask[:, :, None]
diff[mask == False] = 0 # noqa: E712
output = self.embedding(diff)
return output
|
class_definition
| 50,209 | 51,599 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,483 |
class EsmFoldAngleResnetBlock(nn.Module):
def __init__(self, config):
super().__init__()
self.linear_1 = EsmFoldLinear(config.resnet_dim, config.resnet_dim, init="relu")
self.linear_2 = EsmFoldLinear(config.resnet_dim, config.resnet_dim, init="final")
self.relu = nn.ReLU()
def forward(self, a: torch.Tensor) -> torch.Tensor:
s_initial = a
a = self.relu(a)
a = self.linear_1(a)
a = self.relu(a)
a = self.linear_2(a)
return a + s_initial
|
class_definition
| 51,602 | 52,131 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,484 |
class EsmFoldAngleResnet(nn.Module):
"""
Implements Algorithm 20, lines 11-14
"""
def __init__(self, config):
super().__init__()
self.config = config
self.linear_in = EsmFoldLinear(config.sequence_dim, config.resnet_dim)
self.linear_initial = EsmFoldLinear(config.sequence_dim, config.resnet_dim)
self.layers = nn.ModuleList()
for _ in range(config.num_resnet_blocks):
layer = EsmFoldAngleResnetBlock(config)
self.layers.append(layer)
self.linear_out = EsmFoldLinear(config.resnet_dim, config.num_angles * 2)
self.relu = nn.ReLU()
def forward(self, s: torch.Tensor, s_initial: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
s:
[*, C_hidden] single embedding
s_initial:
[*, C_hidden] single embedding as of the start of the StructureModule
Returns:
[*, no_angles, 2] predicted angles
"""
# NOTE: The ReLU's applied to the inputs are absent from the supplement
# pseudocode but present in the source. For maximal compatibility with
# the pretrained weights, I'm going with the source.
# [*, C_hidden]
s_initial = self.relu(s_initial)
s_initial = self.linear_initial(s_initial)
s = self.relu(s)
s = self.linear_in(s)
s = s + s_initial
for l in self.layers:
s = l(s)
s = self.relu(s)
# [*, no_angles * 2]
s = self.linear_out(s)
# [*, no_angles, 2]
s = s.view(s.shape[:-1] + (-1, 2))
unnormalized_s = s
norm_denom = torch.sqrt(
torch.clamp(
torch.sum(s**2, dim=-1, keepdim=True),
min=self.config.epsilon,
)
)
s = s / norm_denom
return unnormalized_s, s
|
class_definition
| 52,134 | 54,045 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,485 |
class EsmFoldInvariantPointAttention(nn.Module):
"""
Implements Algorithm 22.
"""
def __init__(self, config):
super().__init__()
self.config = config
c_s = config.sequence_dim
c_z = config.pairwise_dim
self.hidden_dim = config.ipa_dim
self.num_heads = config.num_heads_ipa
self.num_qk_points = config.num_qk_points
self.num_v_points = config.num_v_points
# These linear layers differ from their specifications in the
# supplement. There, they lack bias and use Glorot initialization.
# Here as in the official source, they have bias and use the default
# Lecun initialization.
hc = config.ipa_dim * config.num_heads_ipa
self.linear_q = EsmFoldLinear(c_s, hc)
self.linear_kv = EsmFoldLinear(c_s, 2 * hc)
hpq = config.num_heads_ipa * config.num_qk_points * 3
self.linear_q_points = EsmFoldLinear(c_s, hpq)
hpkv = config.num_heads_ipa * (config.num_qk_points + config.num_v_points) * 3
self.linear_kv_points = EsmFoldLinear(c_s, hpkv)
self.linear_b = EsmFoldLinear(c_z, config.num_heads_ipa)
self.head_weights = nn.Parameter(torch.zeros((config.num_heads_ipa)))
concat_out_dim = config.num_heads_ipa * (c_z + config.ipa_dim + config.num_v_points * 4)
self.linear_out = EsmFoldLinear(concat_out_dim, c_s, init="final")
self.softmax = nn.Softmax(dim=-1)
self.softplus = nn.Softplus()
def forward(
self,
s: torch.Tensor,
z: Optional[torch.Tensor],
r: Rigid,
mask: torch.Tensor,
_offload_inference: bool = False,
_z_reference_list: Optional[Sequence[torch.Tensor]] = None,
) -> torch.Tensor:
"""
Args:
s:
[*, N_res, C_s] single representation
z:
[*, N_res, N_res, C_z] pair representation
r:
[*, N_res] transformation object
mask:
[*, N_res] mask
Returns:
[*, N_res, C_s] single representation update
"""
z = [z]
#######################################
# Generate scalar and point activations
#######################################
# [*, N_res, H * C_hidden]
q = self.linear_q(s)
kv = self.linear_kv(s)
# [*, N_res, H, C_hidden]
q = q.view(q.shape[:-1] + (self.num_heads, -1))
# [*, N_res, H, 2 * C_hidden]
kv = kv.view(kv.shape[:-1] + (self.num_heads, -1))
# [*, N_res, H, C_hidden]
k, v = torch.split(kv, self.hidden_dim, dim=-1)
# [*, N_res, H * P_q * 3]
q_pts = self.linear_q_points(s)
# This is kind of clunky, but it's how the original does it
# [*, N_res, H * P_q, 3]
q_pts = torch.split(q_pts, q_pts.shape[-1] // 3, dim=-1)
q_pts = torch.stack(q_pts, dim=-1)
q_pts = r[..., None].apply(q_pts)
# [*, N_res, H, P_q, 3]
q_pts = q_pts.view(q_pts.shape[:-2] + (self.num_heads, self.num_qk_points, 3))
# [*, N_res, H * (P_q + P_v) * 3]
kv_pts = self.linear_kv_points(s)
# [*, N_res, H * (P_q + P_v), 3]
kv_pts = torch.split(kv_pts, kv_pts.shape[-1] // 3, dim=-1)
kv_pts = torch.stack(kv_pts, dim=-1)
kv_pts = r[..., None].apply(kv_pts)
# [*, N_res, H, (P_q + P_v), 3]
kv_pts = kv_pts.view(kv_pts.shape[:-2] + (self.num_heads, -1, 3))
# [*, N_res, H, P_q/P_v, 3]
k_pts, v_pts = torch.split(kv_pts, [self.num_qk_points, self.num_v_points], dim=-2)
##########################
# Compute attention scores
##########################
# [*, N_res, N_res, H]
b = self.linear_b(z[0])
if _offload_inference:
assert sys.getrefcount(z[0]) == 2
z[0] = z[0].cpu()
# [*, H, N_res, N_res]
if is_fp16_enabled():
with torch.cuda.amp.autocast(enabled=False):
a = torch.matmul(
permute_final_dims(q.float(), (1, 0, 2)), # [*, H, N_res, C_hidden]
permute_final_dims(k.float(), (1, 2, 0)), # [*, H, C_hidden, N_res]
)
else:
a = torch.matmul(
permute_final_dims(q, (1, 0, 2)), # [*, H, N_res, C_hidden]
permute_final_dims(k, (1, 2, 0)), # [*, H, C_hidden, N_res]
)
a *= math.sqrt(1.0 / (3 * self.hidden_dim))
a += math.sqrt(1.0 / 3) * permute_final_dims(b, (2, 0, 1))
# [*, N_res, N_res, H, P_q, 3]
pt_att = q_pts.unsqueeze(-4) - k_pts.unsqueeze(-5)
pt_att = pt_att**2
# [*, N_res, N_res, H, P_q]
pt_att = sum(torch.unbind(pt_att, dim=-1))
head_weights = self.softplus(self.head_weights).view(*((1,) * len(pt_att.shape[:-2]) + (-1, 1)))
head_weights = head_weights * math.sqrt(1.0 / (3 * (self.num_qk_points * 9.0 / 2)))
pt_att = pt_att * head_weights
# [*, N_res, N_res, H]
pt_att = torch.sum(pt_att, dim=-1) * (-0.5)
# [*, N_res, N_res]
square_mask = mask.unsqueeze(-1) * mask.unsqueeze(-2)
square_mask = self.config.inf * (square_mask - 1)
# [*, H, N_res, N_res]
pt_att = permute_final_dims(pt_att, (2, 0, 1))
a = a + pt_att
a = a + square_mask.unsqueeze(-3)
a = self.softmax(a)
################
# Compute output
################
# [*, N_res, H, C_hidden]
o = torch.matmul(a, v.transpose(-2, -3).to(dtype=a.dtype)).transpose(-2, -3)
# [*, N_res, H * C_hidden]
o = flatten_final_dims(o, 2)
# [*, H, 3, N_res, P_v]
o_pt = torch.sum(
(a[..., None, :, :, None] * permute_final_dims(v_pts, (1, 3, 0, 2))[..., None, :, :]),
dim=-2,
)
# [*, N_res, H, P_v, 3]
o_pt = permute_final_dims(o_pt, (2, 0, 3, 1))
o_pt = r[..., None, None].invert_apply(o_pt)
# [*, N_res, H * P_v]
o_pt_norm = flatten_final_dims(torch.sqrt(torch.sum(o_pt**2, dim=-1) + self.config.epsilon), 2)
# [*, N_res, H * P_v, 3]
o_pt = o_pt.reshape(*o_pt.shape[:-3], -1, 3)
if _offload_inference:
z[0] = z[0].to(o_pt.device)
# [*, N_res, H, C_z]
o_pair = torch.matmul(a.transpose(-2, -3), z[0].to(dtype=a.dtype))
# [*, N_res, H * C_z]
o_pair = flatten_final_dims(o_pair, 2)
# [*, N_res, C_s]
s = self.linear_out(
torch.cat((o, *torch.unbind(o_pt, dim=-1), o_pt_norm, o_pair), dim=-1).to(dtype=z[0].dtype)
)
return s
|
class_definition
| 54,048 | 60,784 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,486 |
class EsmFoldBackboneUpdate(nn.Module):
"""
Implements part of Algorithm 23.
"""
def __init__(self, config):
super().__init__()
self.linear = EsmFoldLinear(config.sequence_dim, 6, init="final")
def forward(self, s: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
[*, N_res, C_s] single representation
Returns:
[*, N_res, 6] update vector
"""
# [*, 6]
update = self.linear(s)
return update
|
class_definition
| 60,787 | 61,309 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,487 |
class EsmFoldStructureModuleTransitionLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.linear_1 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="relu")
self.linear_2 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="relu")
self.linear_3 = EsmFoldLinear(config.sequence_dim, config.sequence_dim, init="final")
self.relu = nn.ReLU()
def forward(self, s):
s_initial = s
s = self.linear_1(s)
s = self.relu(s)
s = self.linear_2(s)
s = self.relu(s)
s = self.linear_3(s)
s = s + s_initial
return s
|
class_definition
| 61,312 | 61,969 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,488 |
class EsmFoldStructureModuleTransition(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layers = nn.ModuleList()
for _ in range(config.num_transition_layers):
l = EsmFoldStructureModuleTransitionLayer(config)
self.layers.append(l)
self.dropout = nn.Dropout(config.dropout_rate)
self.layer_norm = LayerNorm(config.sequence_dim)
def forward(self, s):
for l in self.layers:
s = l(s)
s = self.dropout(s)
s = self.layer_norm(s)
return s
|
class_definition
| 61,972 | 62,568 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,489 |
class EsmFoldStructureModule(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# Buffers to be lazily initialized later
# self.default_frames
# self.group_idx
# self.atom_mask
# self.lit_positions
self.layer_norm_s = LayerNorm(config.sequence_dim)
self.layer_norm_z = LayerNorm(config.pairwise_dim)
self.linear_in = EsmFoldLinear(config.sequence_dim, config.sequence_dim)
self.ipa = EsmFoldInvariantPointAttention(config)
self.ipa_dropout = nn.Dropout(config.dropout_rate)
self.layer_norm_ipa = LayerNorm(config.sequence_dim)
self.transition = EsmFoldStructureModuleTransition(config)
self.bb_update = EsmFoldBackboneUpdate(config)
self.angle_resnet = EsmFoldAngleResnet(config)
def forward(
self,
evoformer_output_dict,
aatype,
mask=None,
_offload_inference=False,
):
"""
Args:
evoformer_output_dict:
Dictionary containing:
"single":
[*, N_res, C_s] single representation
"pair":
[*, N_res, N_res, C_z] pair representation
aatype:
[*, N_res] amino acid indices
mask:
Optional [*, N_res] sequence mask
Returns:
A dictionary of outputs
"""
s = evoformer_output_dict["single"]
if mask is None:
# [*, N]
mask = s.new_ones(s.shape[:-1])
# [*, N, C_s]
s = self.layer_norm_s(s)
# [*, N, N, C_z]
z = self.layer_norm_z(evoformer_output_dict["pair"])
z_reference_list = None
if _offload_inference:
assert sys.getrefcount(evoformer_output_dict["pair"]) == 2
evoformer_output_dict["pair"] = evoformer_output_dict["pair"].cpu()
z_reference_list = [z]
z = None
# [*, N, C_s]
s_initial = s
s = self.linear_in(s)
# [*, N]
rigids = Rigid.identity(
s.shape[:-1],
s.dtype,
s.device,
self.training,
fmt="quat",
)
outputs = []
for i in range(self.config.num_blocks):
# [*, N, C_s]
s = s + self.ipa(
s,
z,
rigids,
mask,
_offload_inference=_offload_inference,
_z_reference_list=z_reference_list,
)
s = self.ipa_dropout(s)
s = self.layer_norm_ipa(s)
s = self.transition(s)
# [*, N]
rigids = rigids.compose_q_update_vec(self.bb_update(s))
# To hew as closely as possible to AlphaFold, we convert our
# quaternion-based transformations to rotation-matrix ones
# here
backb_to_global = Rigid(
Rotation(rot_mats=rigids.get_rots().get_rot_mats(), quats=None),
rigids.get_trans(),
)
backb_to_global = backb_to_global.scale_translation(self.config.trans_scale_factor)
# [*, N, 7, 2]
unnormalized_angles, angles = self.angle_resnet(s, s_initial)
all_frames_to_global = self.torsion_angles_to_frames(backb_to_global, angles, aatype)
pred_xyz = self.frames_and_literature_positions_to_atom14_pos(all_frames_to_global, aatype)
scaled_rigids = rigids.scale_translation(self.config.trans_scale_factor)
preds = {
"frames": scaled_rigids.to_tensor_7(),
"sidechain_frames": all_frames_to_global.to_tensor_4x4(),
"unnormalized_angles": unnormalized_angles,
"angles": angles,
"positions": pred_xyz,
"states": s,
}
outputs.append(preds)
rigids = rigids.stop_rot_gradient()
del z, z_reference_list
if _offload_inference:
evoformer_output_dict["pair"] = evoformer_output_dict["pair"].to(s.device)
outputs = dict_multimap(torch.stack, outputs)
outputs["single"] = s
return outputs
def _init_residue_constants(self, float_dtype, device):
if not hasattr(self, "default_frames"):
self.register_buffer(
"default_frames",
torch.tensor(
residue_constants.restype_rigid_group_default_frame,
dtype=float_dtype,
device=device,
requires_grad=False,
),
persistent=False,
)
if not hasattr(self, "group_idx"):
self.register_buffer(
"group_idx",
torch.tensor(
residue_constants.restype_atom14_to_rigid_group,
device=device,
requires_grad=False,
),
persistent=False,
)
if not hasattr(self, "atom_mask"):
self.register_buffer(
"atom_mask",
torch.tensor(
residue_constants.restype_atom14_mask,
dtype=float_dtype,
device=device,
requires_grad=False,
),
persistent=False,
)
if not hasattr(self, "lit_positions"):
self.register_buffer(
"lit_positions",
torch.tensor(
residue_constants.restype_atom14_rigid_group_positions,
dtype=float_dtype,
device=device,
requires_grad=False,
),
persistent=False,
)
def torsion_angles_to_frames(self, r, alpha, f):
# Lazily initialize the residue constants on the correct device
self._init_residue_constants(alpha.dtype, alpha.device)
# Separated purely to make testing less annoying
return torsion_angles_to_frames(r, alpha, f, self.default_frames)
def frames_and_literature_positions_to_atom14_pos(self, r, f): # [*, N, 8] # [*, N]
# Lazily initialize the residue constants on the correct device
self._init_residue_constants(r.get_rots().dtype, r.get_rots().device)
return frames_and_literature_positions_to_atom14_pos(
r,
f,
self.default_frames,
self.group_idx,
self.atom_mask,
self.lit_positions,
)
|
class_definition
| 62,571 | 69,245 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,490 |
class EsmFoldingTrunk(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
c_s = config.sequence_state_dim
c_z = config.pairwise_state_dim
self.pairwise_positional_embedding = EsmFoldRelativePosition(config)
self.blocks = nn.ModuleList([EsmFoldTriangularSelfAttentionBlock(config) for _ in range(config.num_blocks)])
self.recycle_bins = 15
self.recycle_s_norm = nn.LayerNorm(c_s)
self.recycle_z_norm = nn.LayerNorm(c_z)
self.recycle_disto = nn.Embedding(self.recycle_bins, c_z)
self.recycle_disto.weight[0].detach().zero_()
self.structure_module = EsmFoldStructureModule(config.structure_module)
self.trunk2sm_s = nn.Linear(c_s, config.structure_module.sequence_dim)
self.trunk2sm_z = nn.Linear(c_z, config.structure_module.pairwise_dim)
self.chunk_size = config.chunk_size
def set_chunk_size(self, chunk_size):
# This parameter means the axial attention will be computed
# in a chunked manner. This should make the memory used more or less O(L) instead of O(L^2).
# It's equivalent to running a for loop over chunks of the dimension we're iterative over,
# where the chunk_size is the size of the chunks, so 128 would mean to parse 128-length chunks.
self.chunk_size = chunk_size
def forward(self, seq_feats, pair_feats, true_aa, residx, mask, no_recycles):
"""
Inputs:
seq_feats: B x L x C tensor of sequence features pair_feats: B x L x L x C tensor of pair features residx: B
x L long tensor giving the position in the sequence mask: B x L boolean tensor indicating valid residues
Output:
predicted_structure: B x L x (num_atoms_per_residue * 3) tensor wrapped in a Coordinates object
"""
device = seq_feats.device
s_s_0 = seq_feats
s_z_0 = pair_feats
if no_recycles is None:
no_recycles = self.config.max_recycles
else:
if no_recycles < 0:
raise ValueError("Number of recycles must not be negative.")
no_recycles += 1 # First 'recycle' is just the standard forward pass through the model.
def trunk_iter(s, z, residx, mask):
z = z + self.pairwise_positional_embedding(residx, mask=mask)
for block in self.blocks:
s, z = block(s, z, mask=mask, residue_index=residx, chunk_size=self.chunk_size)
return s, z
s_s = s_s_0
s_z = s_z_0
recycle_s = torch.zeros_like(s_s)
recycle_z = torch.zeros_like(s_z)
recycle_bins = torch.zeros(*s_z.shape[:-1], device=device, dtype=torch.int64)
for recycle_idx in range(no_recycles):
with ContextManagers([] if recycle_idx == no_recycles - 1 else [torch.no_grad()]):
# === Recycling ===
recycle_s = self.recycle_s_norm(recycle_s.detach()).to(device)
recycle_z = self.recycle_z_norm(recycle_z.detach()).to(device)
recycle_z += self.recycle_disto(recycle_bins.detach()).to(device)
s_s, s_z = trunk_iter(s_s_0 + recycle_s, s_z_0 + recycle_z, residx, mask)
# === Structure module ===
structure = self.structure_module(
{"single": self.trunk2sm_s(s_s), "pair": self.trunk2sm_z(s_z)},
true_aa,
mask.float(),
)
recycle_s = s_s
recycle_z = s_z
# Distogram needs the N, CA, C coordinates, and bin constants same as alphafold.
recycle_bins = EsmFoldingTrunk.distogram(
structure["positions"][-1][:, :, :3],
3.375,
21.375,
self.recycle_bins,
)
structure["s_s"] = s_s
structure["s_z"] = s_z
return structure
@staticmethod
def distogram(coords, min_bin, max_bin, num_bins):
# Coords are [... L x 3 x 3], where it's [N, CA, C] x 3 coordinates.
boundaries = torch.linspace(
min_bin,
max_bin,
num_bins - 1,
device=coords.device,
)
boundaries = boundaries**2
N, CA, C = [x.squeeze(-2) for x in coords.chunk(3, dim=-2)]
# Infer CB coordinates.
b = CA - N
c = C - CA
a = b.cross(c, dim=-1)
CB = -0.58273431 * a + 0.56802827 * b - 0.54067466 * c + CA
dists = (CB[..., None, :, :] - CB[..., :, None, :]).pow(2).sum(dim=-1, keepdims=True)
bins = torch.sum(dists > boundaries, dim=-1) # [..., L, L]
return bins
|
class_definition
| 69,248 | 73,998 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,491 |
class EsmForProteinFolding(EsmPreTrainedModel):
_no_split_modules = ["EsmFoldStructureModule", "EsmFoldTriangularSelfAttentionBlock"]
def __init__(self, config):
super().__init__(config)
self.config = config
self.distogram_bins = 64
self.esm = EsmModel(config, add_pooling_layer=False)
self.esm.requires_grad_(False)
if self.config.esmfold_config.fp16_esm:
self.esm.half()
self.esm_feats = self.config.hidden_size
self.esm_attns = self.config.num_hidden_layers * self.config.num_attention_heads
self.esm_layers = self.config.num_hidden_layers
self.register_buffer("af2_to_esm", self._af2_to_esm_from_vocab_list(config.vocab_list))
self.esm_s_combine = nn.Parameter(torch.zeros(self.esm_layers + 1))
trunk_config = self.config.esmfold_config.trunk
c_s = trunk_config.sequence_state_dim
c_z = trunk_config.pairwise_state_dim
self.esm_s_mlp = nn.Sequential(
LayerNorm(self.esm_feats),
nn.Linear(self.esm_feats, c_s),
nn.ReLU(),
nn.Linear(c_s, c_s),
)
# 0 is padding, N is unknown residues, N + 1 is mask.
self.n_tokens_embed = residue_constants.restype_num + 3
self.pad_idx = 0
self.unk_idx = self.n_tokens_embed - 2
self.mask_idx = self.n_tokens_embed - 1
self.esm_dict_cls_idx = self.config.vocab_list.index("<cls>")
self.esm_dict_mask_idx = self.config.vocab_list.index("<mask>")
self.esm_dict_eos_idx = self.config.vocab_list.index("<eos>")
self.esm_dict_padding_idx = self.config.vocab_list.index("<pad>")
if self.config.esmfold_config.embed_aa:
self.embedding = nn.Embedding(self.n_tokens_embed, c_s, padding_idx=0)
self.trunk = EsmFoldingTrunk(trunk_config)
self.distogram_head = nn.Linear(c_z, self.distogram_bins)
self.ptm_head = nn.Linear(c_z, self.distogram_bins)
self.lm_head = nn.Linear(c_s, self.n_tokens_embed)
self.lddt_bins = 50
structure_module_config = trunk_config.structure_module
self.lddt_head = nn.Sequential(
nn.LayerNorm(structure_module_config.sequence_dim),
nn.Linear(structure_module_config.sequence_dim, self.config.esmfold_config.lddt_head_hid_dim),
nn.Linear(self.config.esmfold_config.lddt_head_hid_dim, self.config.esmfold_config.lddt_head_hid_dim),
nn.Linear(self.config.esmfold_config.lddt_head_hid_dim, 37 * self.lddt_bins),
)
@staticmethod
def _af2_to_esm_from_vocab_list(vocab_list: List[str]) -> torch.Tensor:
# Remember that t is shifted from residue_constants by 1 (0 is padding).
esm_reorder = [vocab_list.index("<pad>")] + [vocab_list.index(v) for v in residue_constants.restypes_with_x]
return torch.tensor(esm_reorder)
@add_start_docstrings_to_model_forward(ESMFOLD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=EsmForProteinFoldingOutput, config_class=EsmConfig)
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
masking_pattern: Optional[torch.Tensor] = None,
num_recycles: Optional[int] = None,
) -> EsmForProteinFoldingOutput:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, EsmForProteinFolding
>>> model = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1")
>>> inputs = tokenizer(["MLKNVQVQLV"], return_tensors="pt", add_special_tokens=False) # A tiny random peptide
>>> outputs = model(**inputs)
>>> folded_positions = outputs.positions
```
"""
cfg = self.config.esmfold_config
aa = input_ids # B x L
B = aa.shape[0]
L = aa.shape[1]
device = input_ids.device
if attention_mask is None:
attention_mask = torch.ones_like(aa, device=device)
if position_ids is None:
position_ids = torch.arange(L, device=device).expand_as(input_ids)
# === ESM ===
esmaa = self.af2_idx_to_esm_idx(aa, attention_mask)
if masking_pattern is not None:
masked_aa, esmaa, mlm_targets = self.bert_mask(aa, esmaa, attention_mask, masking_pattern)
else:
masked_aa = aa
mlm_targets = None
# We get sequence and pair representations from whatever version of ESM /
# configuration we are using. The sequence representation esm_s is always
# present. The pair embedding esm_z may be present depending on the
# configuration of the model. If esm_z is not used by the model then it
# is returned as None here.
esm_s = self.compute_language_model_representations(esmaa)
# Convert esm_s and esm_z, if present, to the precision used by the trunk and
# the structure module. These tensors may be a lower precision if, for example,
# we're running the language model in fp16 precision.
esm_s = esm_s.to(self.esm_s_combine.dtype)
if cfg.esm_ablate_sequence:
esm_s = esm_s * 0
esm_s = esm_s.detach()
# === preprocessing ===
esm_s = (self.esm_s_combine.softmax(0).unsqueeze(0) @ esm_s).squeeze(2)
s_s_0 = self.esm_s_mlp(esm_s)
s_z_0 = s_s_0.new_zeros(B, L, L, cfg.trunk.pairwise_state_dim)
if self.config.esmfold_config.embed_aa:
s_s_0 += self.embedding(masked_aa)
structure: dict = self.trunk(s_s_0, s_z_0, aa, position_ids, attention_mask, no_recycles=num_recycles)
# Documenting what we expect:
structure = {
k: v
for k, v in structure.items()
if k
in [
"s_z",
"s_s",
"frames",
"sidechain_frames",
"unnormalized_angles",
"angles",
"positions",
"states",
]
}
# Add BERT mask for the loss to use, if available.
if mlm_targets:
structure["mlm_targets"] = mlm_targets
disto_logits = self.distogram_head(structure["s_z"])
disto_logits = (disto_logits + disto_logits.transpose(1, 2)) / 2
structure["distogram_logits"] = disto_logits
lm_logits = self.lm_head(structure["s_s"])
structure["lm_logits"] = lm_logits
structure["aatype"] = aa
make_atom14_masks(structure)
# Of course, this doesn't respect the true mask because it doesn't know about it...
# We're not going to properly mask change of index tensors:
# "residx_atom14_to_atom37",
# "residx_atom37_to_atom14",
for k in [
"atom14_atom_exists",
"atom37_atom_exists",
]:
structure[k] *= attention_mask.unsqueeze(-1)
structure["residue_index"] = position_ids
lddt_head = self.lddt_head(structure["states"]).reshape(structure["states"].shape[0], B, L, -1, self.lddt_bins)
structure["lddt_head"] = lddt_head
plddt = categorical_lddt(lddt_head[-1], bins=self.lddt_bins)
structure["plddt"] = plddt
ptm_logits = self.ptm_head(structure["s_z"])
structure["ptm_logits"] = ptm_logits
structure["ptm"] = compute_tm(ptm_logits, max_bin=31, no_bins=self.distogram_bins)
structure.update(compute_predicted_aligned_error(ptm_logits, max_bin=31, no_bins=self.distogram_bins))
return EsmForProteinFoldingOutput(**structure)
def af2_idx_to_esm_idx(self, aa, mask):
# avoid indexing on different devices
if self.af2_to_esm.device != aa.device:
self.af2_to_esm = self.af2_to_esm.to(aa.device)
aa = (aa + 1).masked_fill(mask != 1, 0)
return self.af2_to_esm[aa]
def compute_language_model_representations(self, esmaa: torch.Tensor) -> torch.Tensor:
device = next(self.parameters()).device
B, L = esmaa.shape # B = batch size, L = sequence length.
if self.config.esmfold_config.bypass_lm:
esm_s = torch.zeros(B, L, self.esm_s_combine.size[0], -1, self.esm_feats, device=device)
return esm_s
bosi, eosi = self.esm_dict_cls_idx, self.esm_dict_eos_idx
bos = esmaa.new_full((B, 1), bosi)
eos = esmaa.new_full((B, 1), self.esm_dict_padding_idx)
esmaa = torch.cat([bos, esmaa, eos], dim=1)
# Use the first padding index as eos during inference.
esmaa[range(B), (esmaa != 1).sum(1)] = eosi
# _, esm_z, esm_s = self.esm(esmaa, return_pairs=self.config.esmfold_config.use_esm_attn_map)
# Because we do not support use_esm_attn_map in the HF port as it is not used in any public models,
# esm_z is always None
esm_hidden_states = self.esm(esmaa, attention_mask=esmaa != 1, output_hidden_states=True)["hidden_states"]
esm_s = torch.stack(esm_hidden_states, dim=2)
esm_s = esm_s[:, 1:-1] # B, L, nLayers, C
return esm_s
def bert_mask(self, aa, esmaa, mask, pattern):
new_aa = aa.clone()
target = aa.clone()
new_esmaa = esmaa.clone()
new_aa[pattern == 1] = self.mask_idx
target[pattern != 1] = 0
new_esmaa[pattern == 1] = self.esm_dict_mask_idx
return new_aa, new_esmaa, target
@torch.no_grad()
def infer(
self,
seqs: Union[str, List[str]],
position_ids=None,
):
if isinstance(seqs, str):
lst = [seqs]
else:
lst = seqs
# Returns the raw outputs of the model given an input sequence.
device = next(self.parameters()).device
aatype = collate_dense_tensors(
[
torch.from_numpy(
residue_constants.sequence_to_onehot(
sequence=seq,
mapping=residue_constants.restype_order_with_x,
map_unknown_to_x=True,
)
)
.to(device)
.argmax(dim=1)
for seq in lst
]
) # B=1 x L
mask = collate_dense_tensors([aatype.new_ones(len(seq)) for seq in lst])
position_ids = (
torch.arange(aatype.shape[1], device=device).expand(len(lst), -1)
if position_ids is None
else position_ids.to(device)
)
if position_ids.ndim == 1:
position_ids = position_ids.unsqueeze(0)
return self.forward(
aatype,
mask,
position_ids=position_ids,
)
@staticmethod
def output_to_pdb(output: Dict) -> List[str]:
"""Returns the pbd (file) string from the model given the model output."""
output = {k: v.to("cpu").numpy() for k, v in output.items()}
pdbs = []
final_atom_positions = atom14_to_atom37(output["positions"][-1], output)
final_atom_mask = output["atom37_atom_exists"]
for i in range(output["aatype"].shape[0]):
aa = output["aatype"][i]
pred_pos = final_atom_positions[i]
mask = final_atom_mask[i]
resid = output["residue_index"][i] + 1
pred = OFProtein(
aatype=aa,
atom_positions=pred_pos,
atom_mask=mask,
residue_index=resid,
b_factors=output["plddt"][i],
)
pdbs.append(to_pdb(pred))
return pdbs
def infer_pdb(self, seqs, *args, **kwargs) -> str:
"""Returns the pdb (file) string from the model given an input sequence."""
assert isinstance(seqs, str)
output = self.infer(seqs, *args, **kwargs)
return self.output_to_pdb(output)[0]
def infer_pdbs(self, seqs: List[str], *args, **kwargs) -> List[str]:
"""Returns the pdb (file) string from the model given an input sequence."""
output = self.infer(seqs, *args, **kwargs)
return self.output_to_pdb(output)
|
class_definition
| 74,592 | 86,907 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/modeling_esmfold.py
| null | 4,492 |
class Rotation:
"""
A 3D rotation. Depending on how the object is initialized, the rotation is represented by either a rotation matrix
or a quaternion, though both formats are made available by helper functions. To simplify gradient computation, the
underlying format of the rotation cannot be changed in-place. Like Rigid, the class is designed to mimic the
behavior of a torch Tensor, almost as if each Rotation object were a tensor of rotations, in one format or another.
"""
def __init__(
self,
rot_mats: Optional[torch.Tensor] = None,
quats: Optional[torch.Tensor] = None,
normalize_quats: bool = True,
):
"""
Args:
rot_mats:
A [*, 3, 3] rotation matrix tensor. Mutually exclusive with quats
quats:
A [*, 4] quaternion. Mutually exclusive with rot_mats. If normalize_quats is not True, must be a unit
quaternion
normalize_quats:
If quats is specified, whether to normalize quats
"""
if (rot_mats is None and quats is None) or (rot_mats is not None and quats is not None):
raise ValueError("Exactly one input argument must be specified")
if (rot_mats is not None and rot_mats.shape[-2:] != (3, 3)) or (quats is not None and quats.shape[-1] != 4):
raise ValueError("Incorrectly shaped rotation matrix or quaternion")
# Force full-precision
if quats is not None:
quats = quats.to(dtype=torch.float32)
if rot_mats is not None:
rot_mats = rot_mats.to(dtype=torch.float32)
if quats is not None and normalize_quats:
quats = quats / torch.linalg.norm(quats, dim=-1, keepdim=True)
self._rot_mats = rot_mats
self._quats = quats
@staticmethod
def identity(
shape,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
requires_grad: bool = True,
fmt: str = "quat",
) -> Rotation:
"""
Returns an identity Rotation.
Args:
shape:
The "shape" of the resulting Rotation object. See documentation for the shape property
dtype:
The torch dtype for the rotation
device:
The torch device for the new rotation
requires_grad:
Whether the underlying tensors in the new rotation object should require gradient computation
fmt:
One of "quat" or "rot_mat". Determines the underlying format of the new object's rotation
Returns:
A new identity rotation
"""
if fmt == "rot_mat":
rot_mats = identity_rot_mats(
shape,
dtype,
device,
requires_grad,
)
return Rotation(rot_mats=rot_mats, quats=None)
elif fmt == "quat":
quats = identity_quats(shape, dtype, device, requires_grad)
return Rotation(rot_mats=None, quats=quats, normalize_quats=False)
else:
raise ValueError(f"Invalid format: f{fmt}")
# Magic methods
def __getitem__(self, index: Any) -> Rotation:
"""
Allows torch-style indexing over the virtual shape of the rotation object. See documentation for the shape
property.
Args:
index:
A torch index. E.g. (1, 3, 2), or (slice(None,))
Returns:
The indexed rotation
"""
if type(index) is not tuple:
index = (index,)
if self._rot_mats is not None:
rot_mats = self._rot_mats[index + (slice(None), slice(None))]
return Rotation(rot_mats=rot_mats)
elif self._quats is not None:
quats = self._quats[index + (slice(None),)]
return Rotation(quats=quats, normalize_quats=False)
else:
raise ValueError("Both rotations are None")
def __mul__(self, right: torch.Tensor) -> Rotation:
"""
Pointwise left multiplication of the rotation with a tensor. Can be used to e.g. mask the Rotation.
Args:
right:
The tensor multiplicand
Returns:
The product
"""
if not (isinstance(right, torch.Tensor)):
raise TypeError("The other multiplicand must be a Tensor")
if self._rot_mats is not None:
rot_mats = self._rot_mats * right[..., None, None]
return Rotation(rot_mats=rot_mats, quats=None)
elif self._quats is not None:
quats = self._quats * right[..., None]
return Rotation(rot_mats=None, quats=quats, normalize_quats=False)
else:
raise ValueError("Both rotations are None")
def __rmul__(self, left: torch.Tensor) -> Rotation:
"""
Reverse pointwise multiplication of the rotation with a tensor.
Args:
left:
The left multiplicand
Returns:
The product
"""
return self.__mul__(left)
# Properties
@property
def shape(self) -> torch.Size:
"""
Returns the virtual shape of the rotation object. This shape is defined as the batch dimensions of the
underlying rotation matrix or quaternion. If the Rotation was initialized with a [10, 3, 3] rotation matrix
tensor, for example, the resulting shape would be [10].
Returns:
The virtual shape of the rotation object
"""
if self._rot_mats is not None:
return self._rot_mats.shape[:-2]
elif self._quats is not None:
return self._quats.shape[:-1]
else:
raise ValueError("Both rotations are None")
@property
def dtype(self) -> torch.dtype:
"""
Returns the dtype of the underlying rotation.
Returns:
The dtype of the underlying rotation
"""
if self._rot_mats is not None:
return self._rot_mats.dtype
elif self._quats is not None:
return self._quats.dtype
else:
raise ValueError("Both rotations are None")
@property
def device(self) -> torch.device:
"""
The device of the underlying rotation
Returns:
The device of the underlying rotation
"""
if self._rot_mats is not None:
return self._rot_mats.device
elif self._quats is not None:
return self._quats.device
else:
raise ValueError("Both rotations are None")
@property
def requires_grad(self) -> bool:
"""
Returns the requires_grad property of the underlying rotation
Returns:
The requires_grad property of the underlying tensor
"""
if self._rot_mats is not None:
return self._rot_mats.requires_grad
elif self._quats is not None:
return self._quats.requires_grad
else:
raise ValueError("Both rotations are None")
def get_rot_mats(self) -> torch.Tensor:
"""
Returns the underlying rotation as a rotation matrix tensor.
Returns:
The rotation as a rotation matrix tensor
"""
if self._rot_mats is not None:
return self._rot_mats
elif self._quats is not None:
return quat_to_rot(self._quats)
else:
raise ValueError("Both rotations are None")
def get_quats(self) -> torch.Tensor:
"""
Returns the underlying rotation as a quaternion tensor.
Depending on whether the Rotation was initialized with a quaternion, this function may call torch.linalg.eigh.
Returns:
The rotation as a quaternion tensor.
"""
if self._rot_mats is not None:
return rot_to_quat(self._rot_mats)
elif self._quats is not None:
return self._quats
else:
raise ValueError("Both rotations are None")
def get_cur_rot(self) -> torch.Tensor:
"""
Return the underlying rotation in its current form
Returns:
The stored rotation
"""
if self._rot_mats is not None:
return self._rot_mats
elif self._quats is not None:
return self._quats
else:
raise ValueError("Both rotations are None")
# Rotation functions
def compose_q_update_vec(self, q_update_vec: torch.Tensor, normalize_quats: bool = True) -> Rotation:
"""
Returns a new quaternion Rotation after updating the current object's underlying rotation with a quaternion
update, formatted as a [*, 3] tensor whose final three columns represent x, y, z such that (1, x, y, z) is the
desired (not necessarily unit) quaternion update.
Args:
q_update_vec:
A [*, 3] quaternion update tensor
normalize_quats:
Whether to normalize the output quaternion
Returns:
An updated Rotation
"""
quats = self.get_quats()
new_quats = quats + quat_multiply_by_vec(quats, q_update_vec)
return Rotation(
rot_mats=None,
quats=new_quats,
normalize_quats=normalize_quats,
)
def compose_r(self, r: Rotation) -> Rotation:
"""
Compose the rotation matrices of the current Rotation object with those of another.
Args:
r:
An update rotation object
Returns:
An updated rotation object
"""
r1 = self.get_rot_mats()
r2 = r.get_rot_mats()
new_rot_mats = rot_matmul(r1, r2)
return Rotation(rot_mats=new_rot_mats, quats=None)
def compose_q(self, r: Rotation, normalize_quats: bool = True) -> Rotation:
"""
Compose the quaternions of the current Rotation object with those of another.
Depending on whether either Rotation was initialized with quaternions, this function may call
torch.linalg.eigh.
Args:
r:
An update rotation object
Returns:
An updated rotation object
"""
q1 = self.get_quats()
q2 = r.get_quats()
new_quats = quat_multiply(q1, q2)
return Rotation(rot_mats=None, quats=new_quats, normalize_quats=normalize_quats)
def apply(self, pts: torch.Tensor) -> torch.Tensor:
"""
Apply the current Rotation as a rotation matrix to a set of 3D coordinates.
Args:
pts:
A [*, 3] set of points
Returns:
[*, 3] rotated points
"""
rot_mats = self.get_rot_mats()
return rot_vec_mul(rot_mats, pts)
def invert_apply(self, pts: torch.Tensor) -> torch.Tensor:
"""
The inverse of the apply() method.
Args:
pts:
A [*, 3] set of points
Returns:
[*, 3] inverse-rotated points
"""
rot_mats = self.get_rot_mats()
inv_rot_mats = invert_rot_mat(rot_mats)
return rot_vec_mul(inv_rot_mats, pts)
def invert(self) -> Rotation:
"""
Returns the inverse of the current Rotation.
Returns:
The inverse of the current Rotation
"""
if self._rot_mats is not None:
return Rotation(rot_mats=invert_rot_mat(self._rot_mats), quats=None)
elif self._quats is not None:
return Rotation(
rot_mats=None,
quats=invert_quat(self._quats),
normalize_quats=False,
)
else:
raise ValueError("Both rotations are None")
# "Tensor" stuff
def unsqueeze(self, dim: int) -> Rotation:
"""
Analogous to torch.unsqueeze. The dimension is relative to the shape of the Rotation object.
Args:
dim: A positive or negative dimension index.
Returns:
The unsqueezed Rotation.
"""
if dim >= len(self.shape):
raise ValueError("Invalid dimension")
if self._rot_mats is not None:
rot_mats = self._rot_mats.unsqueeze(dim if dim >= 0 else dim - 2)
return Rotation(rot_mats=rot_mats, quats=None)
elif self._quats is not None:
quats = self._quats.unsqueeze(dim if dim >= 0 else dim - 1)
return Rotation(rot_mats=None, quats=quats, normalize_quats=False)
else:
raise ValueError("Both rotations are None")
@staticmethod
def cat(rs: Sequence[Rotation], dim: int) -> Rotation:
"""
Concatenates rotations along one of the batch dimensions. Analogous to torch.cat().
Note that the output of this operation is always a rotation matrix, regardless of the format of input
rotations.
Args:
rs:
A list of rotation objects
dim:
The dimension along which the rotations should be concatenated
Returns:
A concatenated Rotation object in rotation matrix format
"""
rot_mats = torch.cat(
[r.get_rot_mats() for r in rs],
dim=dim if dim >= 0 else dim - 2,
)
return Rotation(rot_mats=rot_mats, quats=None)
def map_tensor_fn(self, fn: Callable[[torch.Tensor], torch.Tensor]) -> Rotation:
"""
Apply a Tensor -> Tensor function to underlying rotation tensors, mapping over the rotation dimension(s). Can
be used e.g. to sum out a one-hot batch dimension.
Args:
fn:
A Tensor -> Tensor function to be mapped over the Rotation
Returns:
The transformed Rotation object
"""
if self._rot_mats is not None:
rot_mats = self._rot_mats.view(self._rot_mats.shape[:-2] + (9,))
rot_mats = torch.stack(list(map(fn, torch.unbind(rot_mats, dim=-1))), dim=-1)
rot_mats = rot_mats.view(rot_mats.shape[:-1] + (3, 3))
return Rotation(rot_mats=rot_mats, quats=None)
elif self._quats is not None:
quats = torch.stack(list(map(fn, torch.unbind(self._quats, dim=-1))), dim=-1)
return Rotation(rot_mats=None, quats=quats, normalize_quats=False)
else:
raise ValueError("Both rotations are None")
def cuda(self) -> Rotation:
"""
Analogous to the cuda() method of torch Tensors
Returns:
A copy of the Rotation in CUDA memory
"""
if self._rot_mats is not None:
return Rotation(rot_mats=self._rot_mats.cuda(), quats=None)
elif self._quats is not None:
return Rotation(rot_mats=None, quats=self._quats.cuda(), normalize_quats=False)
else:
raise ValueError("Both rotations are None")
def to(self, device: Optional[torch.device], dtype: Optional[torch.dtype]) -> Rotation:
"""
Analogous to the to() method of torch Tensors
Args:
device:
A torch device
dtype:
A torch dtype
Returns:
A copy of the Rotation using the new device and dtype
"""
if self._rot_mats is not None:
return Rotation(
rot_mats=self._rot_mats.to(device=device, dtype=dtype),
quats=None,
)
elif self._quats is not None:
return Rotation(
rot_mats=None,
quats=self._quats.to(device=device, dtype=dtype),
normalize_quats=False,
)
else:
raise ValueError("Both rotations are None")
def detach(self) -> Rotation:
"""
Returns a copy of the Rotation whose underlying Tensor has been detached from its torch graph.
Returns:
A copy of the Rotation whose underlying Tensor has been detached from its torch graph
"""
if self._rot_mats is not None:
return Rotation(rot_mats=self._rot_mats.detach(), quats=None)
elif self._quats is not None:
return Rotation(
rot_mats=None,
quats=self._quats.detach(),
normalize_quats=False,
)
else:
raise ValueError("Both rotations are None")
|
class_definition
| 7,792 | 24,320 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/openfold_utils/rigid_utils.py
| null | 4,493 |
class Rigid:
"""
A class representing a rigid transformation. Little more than a wrapper around two objects: a Rotation object and a
[*, 3] translation Designed to behave approximately like a single torch tensor with the shape of the shared batch
dimensions of its component parts.
"""
def __init__(self, rots: Optional[Rotation], trans: Optional[torch.Tensor]):
"""
Args:
rots: A [*, 3, 3] rotation tensor
trans: A corresponding [*, 3] translation tensor
"""
# (we need device, dtype, etc. from at least one input)
batch_dims, dtype, device, requires_grad = None, None, None, None
if trans is not None:
batch_dims = trans.shape[:-1]
dtype = trans.dtype
device = trans.device
requires_grad = trans.requires_grad
elif rots is not None:
batch_dims = rots.shape
dtype = rots.dtype
device = rots.device
requires_grad = rots.requires_grad
else:
raise ValueError("At least one input argument must be specified")
if rots is None:
rots = Rotation.identity(
batch_dims,
dtype,
device,
requires_grad,
)
elif trans is None:
trans = identity_trans(
batch_dims,
dtype,
device,
requires_grad,
)
assert rots is not None
assert trans is not None
if (rots.shape != trans.shape[:-1]) or (rots.device != trans.device):
raise ValueError("Rots and trans incompatible")
# Force full precision. Happens to the rotations automatically.
trans = trans.to(dtype=torch.float32)
self._rots = rots
self._trans = trans
@staticmethod
def identity(
shape: Tuple[int, ...],
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
requires_grad: bool = True,
fmt: str = "quat",
) -> Rigid:
"""
Constructs an identity transformation.
Args:
shape:
The desired shape
dtype:
The dtype of both internal tensors
device:
The device of both internal tensors
requires_grad:
Whether grad should be enabled for the internal tensors
Returns:
The identity transformation
"""
return Rigid(
Rotation.identity(shape, dtype, device, requires_grad, fmt=fmt),
identity_trans(shape, dtype, device, requires_grad),
)
def __getitem__(self, index: Any) -> Rigid:
"""
Indexes the affine transformation with PyTorch-style indices. The index is applied to the shared dimensions of
both the rotation and the translation.
E.g.::
r = Rotation(rot_mats=torch.rand(10, 10, 3, 3), quats=None) t = Rigid(r, torch.rand(10, 10, 3)) indexed =
t[3, 4:6] assert(indexed.shape == (2,)) assert(indexed.get_rots().shape == (2,))
assert(indexed.get_trans().shape == (2, 3))
Args:
index: A standard torch tensor index. E.g. 8, (10, None, 3),
or (3, slice(0, 1, None))
Returns:
The indexed tensor
"""
if type(index) is not tuple:
index = (index,)
return Rigid(
self._rots[index],
self._trans[index + (slice(None),)],
)
def __mul__(self, right: torch.Tensor) -> Rigid:
"""
Pointwise left multiplication of the transformation with a tensor. Can be used to e.g. mask the Rigid.
Args:
right:
The tensor multiplicand
Returns:
The product
"""
if not (isinstance(right, torch.Tensor)):
raise TypeError("The other multiplicand must be a Tensor")
new_rots = self._rots * right
new_trans = self._trans * right[..., None]
return Rigid(new_rots, new_trans)
def __rmul__(self, left: torch.Tensor) -> Rigid:
"""
Reverse pointwise multiplication of the transformation with a tensor.
Args:
left:
The left multiplicand
Returns:
The product
"""
return self.__mul__(left)
@property
def shape(self) -> torch.Size:
"""
Returns the shape of the shared dimensions of the rotation and the translation.
Returns:
The shape of the transformation
"""
return self._trans.shape[:-1]
@property
def device(self) -> torch.device:
"""
Returns the device on which the Rigid's tensors are located.
Returns:
The device on which the Rigid's tensors are located
"""
return self._trans.device
def get_rots(self) -> Rotation:
"""
Getter for the rotation.
Returns:
The rotation object
"""
return self._rots
def get_trans(self) -> torch.Tensor:
"""
Getter for the translation.
Returns:
The stored translation
"""
return self._trans
def compose_q_update_vec(self, q_update_vec: torch.Tensor) -> Rigid:
"""
Composes the transformation with a quaternion update vector of shape [*, 6], where the final 6 columns
represent the x, y, and z values of a quaternion of form (1, x, y, z) followed by a 3D translation.
Args:
q_vec: The quaternion update vector.
Returns:
The composed transformation.
"""
q_vec, t_vec = q_update_vec[..., :3], q_update_vec[..., 3:]
new_rots = self._rots.compose_q_update_vec(q_vec)
trans_update = self._rots.apply(t_vec)
new_translation = self._trans + trans_update
return Rigid(new_rots, new_translation)
def compose(self, r: Rigid) -> Rigid:
"""
Composes the current rigid object with another.
Args:
r:
Another Rigid object
Returns:
The composition of the two transformations
"""
new_rot = self._rots.compose_r(r._rots)
new_trans = self._rots.apply(r._trans) + self._trans
return Rigid(new_rot, new_trans)
def apply(self, pts: torch.Tensor) -> torch.Tensor:
"""
Applies the transformation to a coordinate tensor.
Args:
pts: A [*, 3] coordinate tensor.
Returns:
The transformed points.
"""
rotated = self._rots.apply(pts)
return rotated + self._trans
def invert_apply(self, pts: torch.Tensor) -> torch.Tensor:
"""
Applies the inverse of the transformation to a coordinate tensor.
Args:
pts: A [*, 3] coordinate tensor
Returns:
The transformed points.
"""
pts = pts - self._trans
return self._rots.invert_apply(pts)
def invert(self) -> Rigid:
"""
Inverts the transformation.
Returns:
The inverse transformation.
"""
rot_inv = self._rots.invert()
trn_inv = rot_inv.apply(self._trans)
return Rigid(rot_inv, -1 * trn_inv)
def map_tensor_fn(self, fn: Callable[[torch.Tensor], torch.Tensor]) -> Rigid:
"""
Apply a Tensor -> Tensor function to underlying translation and rotation tensors, mapping over the
translation/rotation dimensions respectively.
Args:
fn:
A Tensor -> Tensor function to be mapped over the Rigid
Returns:
The transformed Rigid object
"""
new_rots = self._rots.map_tensor_fn(fn)
new_trans = torch.stack(list(map(fn, torch.unbind(self._trans, dim=-1))), dim=-1)
return Rigid(new_rots, new_trans)
def to_tensor_4x4(self) -> torch.Tensor:
"""
Converts a transformation to a homogenous transformation tensor.
Returns:
A [*, 4, 4] homogenous transformation tensor
"""
tensor = self._trans.new_zeros((*self.shape, 4, 4))
tensor[..., :3, :3] = self._rots.get_rot_mats()
tensor[..., :3, 3] = self._trans
tensor[..., 3, 3] = 1
return tensor
@staticmethod
def from_tensor_4x4(t: torch.Tensor) -> Rigid:
"""
Constructs a transformation from a homogenous transformation tensor.
Args:
t: [*, 4, 4] homogenous transformation tensor
Returns:
T object with shape [*]
"""
if t.shape[-2:] != (4, 4):
raise ValueError("Incorrectly shaped input tensor")
rots = Rotation(rot_mats=t[..., :3, :3], quats=None)
trans = t[..., :3, 3]
return Rigid(rots, trans)
def to_tensor_7(self) -> torch.Tensor:
"""
Converts a transformation to a tensor with 7 final columns, four for the quaternion followed by three for the
translation.
Returns:
A [*, 7] tensor representation of the transformation
"""
tensor = self._trans.new_zeros((*self.shape, 7))
tensor[..., :4] = self._rots.get_quats()
tensor[..., 4:] = self._trans
return tensor
@staticmethod
def from_tensor_7(t: torch.Tensor, normalize_quats: bool = False) -> Rigid:
if t.shape[-1] != 7:
raise ValueError("Incorrectly shaped input tensor")
quats, trans = t[..., :4], t[..., 4:]
rots = Rotation(rot_mats=None, quats=quats, normalize_quats=normalize_quats)
return Rigid(rots, trans)
@staticmethod
def from_3_points(
p_neg_x_axis: torch.Tensor, origin: torch.Tensor, p_xy_plane: torch.Tensor, eps: float = 1e-8
) -> Rigid:
"""
Implements algorithm 21. Constructs transformations from sets of 3 points using the Gram-Schmidt algorithm.
Args:
p_neg_x_axis: [*, 3] coordinates
origin: [*, 3] coordinates used as frame origins
p_xy_plane: [*, 3] coordinates
eps: Small epsilon value
Returns:
A transformation object of shape [*]
"""
p_neg_x_axis_unbound = torch.unbind(p_neg_x_axis, dim=-1)
origin_unbound = torch.unbind(origin, dim=-1)
p_xy_plane_unbound = torch.unbind(p_xy_plane, dim=-1)
e0 = [c1 - c2 for c1, c2 in zip(origin_unbound, p_neg_x_axis_unbound)]
e1 = [c1 - c2 for c1, c2 in zip(p_xy_plane_unbound, origin_unbound)]
denom = torch.sqrt(sum(c * c for c in e0) + eps * torch.ones_like(e0[0]))
e0 = [c / denom for c in e0]
dot = sum((c1 * c2 for c1, c2 in zip(e0, e1)))
e1 = [c2 - c1 * dot for c1, c2 in zip(e0, e1)]
denom = torch.sqrt(sum((c * c for c in e1)) + eps * torch.ones_like(e1[0]))
e1 = [c / denom for c in e1]
e2 = [
e0[1] * e1[2] - e0[2] * e1[1],
e0[2] * e1[0] - e0[0] * e1[2],
e0[0] * e1[1] - e0[1] * e1[0],
]
rots = torch.stack([c for tup in zip(e0, e1, e2) for c in tup], dim=-1)
rots = rots.reshape(rots.shape[:-1] + (3, 3))
rot_obj = Rotation(rot_mats=rots, quats=None)
return Rigid(rot_obj, torch.stack(origin_unbound, dim=-1))
def unsqueeze(self, dim: int) -> Rigid:
"""
Analogous to torch.unsqueeze. The dimension is relative to the shared dimensions of the rotation/translation.
Args:
dim: A positive or negative dimension index.
Returns:
The unsqueezed transformation.
"""
if dim >= len(self.shape):
raise ValueError("Invalid dimension")
rots = self._rots.unsqueeze(dim)
trans = self._trans.unsqueeze(dim if dim >= 0 else dim - 1)
return Rigid(rots, trans)
@staticmethod
def cat(ts: Sequence[Rigid], dim: int) -> Rigid:
"""
Concatenates transformations along a new dimension.
Args:
ts:
A list of T objects
dim:
The dimension along which the transformations should be concatenated
Returns:
A concatenated transformation object
"""
rots = Rotation.cat([t._rots for t in ts], dim)
trans = torch.cat([t._trans for t in ts], dim=dim if dim >= 0 else dim - 1)
return Rigid(rots, trans)
def apply_rot_fn(self, fn: Callable[[Rotation], Rotation]) -> Rigid:
"""
Applies a Rotation -> Rotation function to the stored rotation object.
Args:
fn: A function of type Rotation -> Rotation
Returns:
A transformation object with a transformed rotation.
"""
return Rigid(fn(self._rots), self._trans)
def apply_trans_fn(self, fn: Callable[[torch.Tensor], torch.Tensor]) -> Rigid:
"""
Applies a Tensor -> Tensor function to the stored translation.
Args:
fn:
A function of type Tensor -> Tensor to be applied to the translation
Returns:
A transformation object with a transformed translation.
"""
return Rigid(self._rots, fn(self._trans))
def scale_translation(self, trans_scale_factor: float) -> Rigid:
"""
Scales the translation by a constant factor.
Args:
trans_scale_factor:
The constant factor
Returns:
A transformation object with a scaled translation.
"""
return self.apply_trans_fn(lambda t: t * trans_scale_factor)
def stop_rot_gradient(self) -> Rigid:
"""
Detaches the underlying rotation object
Returns:
A transformation object with detached rotations
"""
return self.apply_rot_fn(lambda r: r.detach())
@staticmethod
def make_transform_from_reference(
n_xyz: torch.Tensor, ca_xyz: torch.Tensor, c_xyz: torch.Tensor, eps: float = 1e-20
) -> Rigid:
"""
Returns a transformation object from reference coordinates.
Note that this method does not take care of symmetries. If you provide the atom positions in the non-standard
way, the N atom will end up not at [-0.527250, 1.359329, 0.0] but instead at [-0.527250, -1.359329, 0.0]. You
need to take care of such cases in your code.
Args:
n_xyz: A [*, 3] tensor of nitrogen xyz coordinates.
ca_xyz: A [*, 3] tensor of carbon alpha xyz coordinates.
c_xyz: A [*, 3] tensor of carbon xyz coordinates.
Returns:
A transformation object. After applying the translation and rotation to the reference backbone, the
coordinates will approximately equal to the input coordinates.
"""
translation = -1 * ca_xyz
n_xyz = n_xyz + translation
c_xyz = c_xyz + translation
c_x, c_y, c_z = [c_xyz[..., i] for i in range(3)]
norm = torch.sqrt(eps + c_x**2 + c_y**2)
sin_c1 = -c_y / norm
cos_c1 = c_x / norm
c1_rots = sin_c1.new_zeros((*sin_c1.shape, 3, 3))
c1_rots[..., 0, 0] = cos_c1
c1_rots[..., 0, 1] = -1 * sin_c1
c1_rots[..., 1, 0] = sin_c1
c1_rots[..., 1, 1] = cos_c1
c1_rots[..., 2, 2] = 1
norm = torch.sqrt(eps + c_x**2 + c_y**2 + c_z**2)
sin_c2 = c_z / norm
cos_c2 = torch.sqrt(c_x**2 + c_y**2) / norm
c2_rots = sin_c2.new_zeros((*sin_c2.shape, 3, 3))
c2_rots[..., 0, 0] = cos_c2
c2_rots[..., 0, 2] = sin_c2
c2_rots[..., 1, 1] = 1
c2_rots[..., 2, 0] = -1 * sin_c2
c2_rots[..., 2, 2] = cos_c2
c_rots = rot_matmul(c2_rots, c1_rots)
n_xyz = rot_vec_mul(c_rots, n_xyz)
_, n_y, n_z = [n_xyz[..., i] for i in range(3)]
norm = torch.sqrt(eps + n_y**2 + n_z**2)
sin_n = -n_z / norm
cos_n = n_y / norm
n_rots = sin_c2.new_zeros((*sin_c2.shape, 3, 3))
n_rots[..., 0, 0] = 1
n_rots[..., 1, 1] = cos_n
n_rots[..., 1, 2] = -1 * sin_n
n_rots[..., 2, 1] = sin_n
n_rots[..., 2, 2] = cos_n
rots = rot_matmul(n_rots, c_rots)
rots = rots.transpose(-1, -2)
translation = -1 * translation
rot_obj = Rotation(rot_mats=rots, quats=None)
return Rigid(rot_obj, translation)
def cuda(self) -> Rigid:
"""
Moves the transformation object to GPU memory
Returns:
A version of the transformation on GPU
"""
return Rigid(self._rots.cuda(), self._trans.cuda())
|
class_definition
| 24,323 | 41,129 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/openfold_utils/rigid_utils.py
| null | 4,494 |
class ChunkSizeTuner:
def __init__(
self,
# Heuristically, runtimes for most of the modules in the network
# plateau earlier than this on all GPUs I've run the model on.
max_chunk_size: int = 512,
):
self.max_chunk_size = max_chunk_size
self.cached_chunk_size: Optional[int] = None
self.cached_arg_data: Optional[tuple] = None
def _determine_favorable_chunk_size(self, fn: Callable, args: tuple, min_chunk_size: int) -> int:
logging.info("Tuning chunk size...")
if min_chunk_size >= self.max_chunk_size:
return min_chunk_size
candidates: List[int] = [2**l for l in range(int(math.log(self.max_chunk_size, 2)) + 1)]
candidates = [c for c in candidates if c > min_chunk_size]
candidates = [min_chunk_size] + candidates
candidates[-1] += 4
def test_chunk_size(chunk_size: int) -> bool:
try:
with torch.no_grad():
fn(*args, chunk_size=chunk_size)
return True
except RuntimeError:
return False
min_viable_chunk_size_index = 0
i = len(candidates) - 1
while i > min_viable_chunk_size_index:
viable = test_chunk_size(candidates[i])
if not viable:
i = (min_viable_chunk_size_index + i) // 2
else:
min_viable_chunk_size_index = i
i = (i + len(candidates) - 1) // 2
return candidates[min_viable_chunk_size_index]
def _compare_arg_caches(self, ac1: Iterable, ac2: Iterable) -> bool:
consistent = True
for a1, a2 in zip(ac1, ac2):
assert type(ac1) is type(ac2)
if isinstance(ac1, (list, tuple)):
consistent &= self._compare_arg_caches(a1, a2)
elif isinstance(ac1, dict):
a1_items = [v for _, v in sorted(a1.items(), key=lambda x: x[0])]
a2_items = [v for _, v in sorted(a2.items(), key=lambda x: x[0])]
consistent &= self._compare_arg_caches(a1_items, a2_items)
else:
consistent &= a1 == a2
return consistent
def tune_chunk_size(
self,
representative_fn: Callable,
args: tuple,
min_chunk_size: int,
) -> int:
consistent = True
arg_data: tuple = tree_map(lambda a: a.shape if isinstance(a, torch.Tensor) else a, args, object)
if self.cached_arg_data is not None:
# If args have changed shape/value, we need to re-tune
assert len(self.cached_arg_data) == len(arg_data)
consistent = self._compare_arg_caches(self.cached_arg_data, arg_data)
else:
# Otherwise, we can reuse the precomputed value
consistent = False
if not consistent:
self.cached_chunk_size = self._determine_favorable_chunk_size(
representative_fn,
args,
min_chunk_size,
)
self.cached_arg_data = arg_data
assert self.cached_chunk_size is not None
return self.cached_chunk_size
|
class_definition
| 11,212 | 14,389 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/openfold_utils/chunk_utils.py
| null | 4,495 |
class Protein:
"""Protein structure representation."""
# Cartesian coordinates of atoms in angstroms. The atom types correspond to
# residue_constants.atom_types, i.e. the first three are N, CA, CB.
atom_positions: np.ndarray # [num_res, num_atom_type, 3]
# Amino-acid type for each residue represented as an integer between 0 and
# 20, where 20 is 'X'.
aatype: np.ndarray # [num_res]
# Binary float mask to indicate presence of a particular atom. 1.0 if an atom
# is present and 0.0 if not. This should be used for loss masking.
atom_mask: np.ndarray # [num_res, num_atom_type]
# Residue index as used in PDB. It is not necessarily continuous or 0-indexed.
residue_index: np.ndarray # [num_res]
# B-factors, or temperature factors, of each residue (in sq. angstroms units),
# representing the displacement of the residue from its ground truth mean
# value.
b_factors: np.ndarray # [num_res, num_atom_type]
# Chain indices for multi-chain predictions
chain_index: Optional[np.ndarray] = None
# Optional remark about the protein. Included as a comment in output PDB
# files
remark: Optional[str] = None
# Templates used to generate this protein (prediction-only)
parents: Optional[Sequence[str]] = None
# Chain corresponding to each parent
parents_chain_index: Optional[Sequence[int]] = None
|
class_definition
| 993 | 2,397 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/esm/openfold_utils/protein.py
| null | 4,496 |
class UnivNetConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`UnivNetModel`]. It is used to instantiate a
UnivNet vocoder model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the UnivNet
[dg845/univnet-dev](https://huggingface.co/dg845/univnet-dev) architecture, which corresponds to the 'c32'
architecture in [maum-ai/univnet](https://github.com/maum-ai/univnet/blob/master/config/default_c32.yaml).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
model_in_channels (`int`, *optional*, defaults to 64):
The number of input channels for the UnivNet residual network. This should correspond to
`noise_sequence.shape[1]` and the value used in the [`UnivNetFeatureExtractor`] class.
model_hidden_channels (`int`, *optional*, defaults to 32):
The number of hidden channels of each residual block in the UnivNet residual network.
num_mel_bins (`int`, *optional*, defaults to 100):
The number of frequency bins in the conditioning log-mel spectrogram. This should correspond to the value
used in the [`UnivNetFeatureExtractor`] class.
resblock_kernel_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[3, 3, 3]`):
A tuple of integers defining the kernel sizes of the 1D convolutional layers in the UnivNet residual
network. The length of `resblock_kernel_sizes` defines the number of resnet blocks and should match that of
`resblock_stride_sizes` and `resblock_dilation_sizes`.
resblock_stride_sizes (`Tuple[int]` or `List[int]`, *optional*, defaults to `[8, 8, 4]`):
A tuple of integers defining the stride sizes of the 1D convolutional layers in the UnivNet residual
network. The length of `resblock_stride_sizes` should match that of `resblock_kernel_sizes` and
`resblock_dilation_sizes`.
resblock_dilation_sizes (`Tuple[Tuple[int]]` or `List[List[int]]`, *optional*, defaults to `[[1, 3, 9, 27], [1, 3, 9, 27], [1, 3, 9, 27]]`):
A nested tuple of integers defining the dilation rates of the dilated 1D convolutional layers in the
UnivNet residual network. The length of `resblock_dilation_sizes` should match that of
`resblock_kernel_sizes` and `resblock_stride_sizes`. The length of each nested list in
`resblock_dilation_sizes` defines the number of convolutional layers per resnet block.
kernel_predictor_num_blocks (`int`, *optional*, defaults to 3):
The number of residual blocks in the kernel predictor network, which calculates the kernel and bias for
each location variable convolution layer in the UnivNet residual network.
kernel_predictor_hidden_channels (`int`, *optional*, defaults to 64):
The number of hidden channels for each residual block in the kernel predictor network.
kernel_predictor_conv_size (`int`, *optional*, defaults to 3):
The kernel size of each 1D convolutional layer in the kernel predictor network.
kernel_predictor_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for each residual block in the kernel predictor network.
initializer_range (`float`, *optional*, defaults to 0.01):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
leaky_relu_slope (`float`, *optional*, defaults to 0.2):
The angle of the negative slope used by the leaky ReLU activation.
Example:
```python
>>> from transformers import UnivNetModel, UnivNetConfig
>>> # Initializing a Tortoise TTS style configuration
>>> configuration = UnivNetConfig()
>>> # Initializing a model (with random weights) from the Tortoise TTS style configuration
>>> model = UnivNetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "univnet"
def __init__(
self,
model_in_channels=64,
model_hidden_channels=32,
num_mel_bins=100,
resblock_kernel_sizes=[3, 3, 3],
resblock_stride_sizes=[8, 8, 4],
resblock_dilation_sizes=[[1, 3, 9, 27], [1, 3, 9, 27], [1, 3, 9, 27]],
kernel_predictor_num_blocks=3,
kernel_predictor_hidden_channels=64,
kernel_predictor_conv_size=3,
kernel_predictor_dropout=0.0,
initializer_range=0.01,
leaky_relu_slope=0.2,
**kwargs,
):
if not (len(resblock_kernel_sizes) == len(resblock_stride_sizes) == len(resblock_dilation_sizes)):
raise ValueError(
"`resblock_kernel_sizes`, `resblock_stride_sizes`, and `resblock_dilation_sizes` must all have the"
" same length (which will be the number of resnet blocks in the model)."
)
self.model_in_channels = model_in_channels
self.model_hidden_channels = model_hidden_channels
self.num_mel_bins = num_mel_bins
self.resblock_kernel_sizes = resblock_kernel_sizes
self.resblock_stride_sizes = resblock_stride_sizes
self.resblock_dilation_sizes = resblock_dilation_sizes
self.kernel_predictor_num_blocks = kernel_predictor_num_blocks
self.kernel_predictor_hidden_channels = kernel_predictor_hidden_channels
self.kernel_predictor_conv_size = kernel_predictor_conv_size
self.kernel_predictor_dropout = kernel_predictor_dropout
self.initializer_range = initializer_range
self.leaky_relu_slope = leaky_relu_slope
super().__init__(**kwargs)
|
class_definition
| 769 | 6,727 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/univnet/configuration_univnet.py
| null | 4,497 |
class UnivNetFeatureExtractor(SequenceFeatureExtractor):
r"""
Constructs a UnivNet feature extractor.
This class extracts log-mel-filter bank features from raw speech using the short time Fourier Transform (STFT). The
STFT implementation follows that of TacoTron 2 and Hifi-GAN.
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
most of the main methods. Users should refer to this superclass for more information regarding those methods.
Args:
feature_size (`int`, *optional*, defaults to 1):
The feature dimension of the extracted features.
sampling_rate (`int`, *optional*, defaults to 24000):
The sampling rate at which the audio files should be digitalized expressed in hertz (Hz).
padding_value (`float`, *optional*, defaults to 0.0):
The value to pad with when applying the padding strategy defined by the `padding` argument to
[`UnivNetFeatureExtractor.__call__`]. Should correspond to audio silence. The `pad_end` argument to
`__call__` will also use this padding value.
do_normalize (`bool`, *optional*, defaults to `False`):
Whether to perform Tacotron 2 normalization on the input. Normalizing can help to significantly improve the
performance for some models.
num_mel_bins (`int`, *optional*, defaults to 100):
The number of mel-frequency bins in the extracted spectrogram features. This should match
`UnivNetModel.config.num_mel_bins`.
hop_length (`int`, *optional*, defaults to 256):
The direct number of samples between sliding windows. Otherwise referred to as "shift" in many papers. Note
that this is different from other audio feature extractors such as [`SpeechT5FeatureExtractor`] which take
the `hop_length` in ms.
win_length (`int`, *optional*, defaults to 1024):
The direct number of samples for each sliding window. Note that this is different from other audio feature
extractors such as [`SpeechT5FeatureExtractor`] which take the `win_length` in ms.
win_function (`str`, *optional*, defaults to `"hann_window"`):
Name for the window function used for windowing, must be accessible via `torch.{win_function}`
filter_length (`int`, *optional*, defaults to 1024):
The number of FFT components to use. If `None`, this is determined using
`transformers.audio_utils.optimal_fft_length`.
max_length_s (`int`, *optional*, defaults to 10):
The maximum input lenght of the model in seconds. This is used to pad the audio.
fmin (`float`, *optional*, defaults to 0.0):
Minimum mel frequency in Hz.
fmax (`float`, *optional*):
Maximum mel frequency in Hz. If not set, defaults to `sampling_rate / 2`.
mel_floor (`float`, *optional*, defaults to 1e-09):
Minimum value of mel frequency banks. Note that the way [`UnivNetFeatureExtractor`] uses `mel_floor` is
different than in [`transformers.audio_utils.spectrogram`].
center (`bool`, *optional*, defaults to `False`):
Whether to pad the waveform so that frame `t` is centered around time `t * hop_length`. If `False`, frame
`t` will start at time `t * hop_length`.
compression_factor (`float`, *optional*, defaults to 1.0):
The multiplicative compression factor for dynamic range compression during spectral normalization.
compression_clip_val (`float`, *optional*, defaults to 1e-05):
The clip value applied to the waveform before applying dynamic range compression during spectral
normalization.
normalize_min (`float`, *optional*, defaults to -11.512925148010254):
The min value used for Tacotron 2-style linear normalization. The default is the original value from the
Tacotron 2 implementation.
normalize_max (`float`, *optional*, defaults to 2.3143386840820312):
The max value used for Tacotron 2-style linear normalization. The default is the original value from the
Tacotron 2 implementation.
model_in_channels (`int`, *optional*, defaults to 64):
The number of input channels to the [`UnivNetModel`] model. This should match
`UnivNetModel.config.model_in_channels`.
pad_end_length (`int`, *optional*, defaults to 10):
If padding the end of each waveform, the number of spectrogram frames worth of samples to append. The
number of appended samples will be `pad_end_length * hop_length`.
return_attention_mask (`bool`, *optional*, defaults to `True`):
Whether or not [`~UnivNetFeatureExtractor.__call__`] should return `attention_mask`.
"""
model_input_names = ["input_features", "noise_sequence", "padding_mask"]
def __init__(
self,
feature_size: int = 1,
sampling_rate: int = 24000,
padding_value: float = 0.0,
do_normalize: bool = False,
num_mel_bins: int = 100,
hop_length: int = 256,
win_length: int = 1024,
win_function: str = "hann_window",
filter_length: Optional[int] = 1024,
max_length_s: int = 10,
fmin: float = 0.0,
fmax: Optional[float] = None,
mel_floor: float = 1e-9,
center: bool = False,
compression_factor: float = 1.0,
compression_clip_val: float = 1e-5,
normalize_min: float = -11.512925148010254,
normalize_max: float = 2.3143386840820312,
model_in_channels: int = 64,
pad_end_length: int = 10,
return_attention_mask=True,
**kwargs,
):
super().__init__(
feature_size=feature_size,
sampling_rate=sampling_rate,
padding_value=padding_value,
return_attention_mask=return_attention_mask,
**kwargs,
)
self.do_normalize = do_normalize
self.num_mel_bins = num_mel_bins
self.hop_length = hop_length
self.win_length = win_length
self.win_function = win_function
self.filter_length = filter_length
self.fmin = fmin
if fmax is None:
# Follows the librosa.filters.mel implementation
fmax = float(sampling_rate) / 2
self.fmax = fmax
self.mel_floor = mel_floor
self.max_length_s = max_length_s
self.num_max_samples = max_length_s * sampling_rate
if self.filter_length is None:
self.n_fft = optimal_fft_length(self.win_length)
else:
self.n_fft = self.filter_length
self.n_freqs = (self.n_fft // 2) + 1
self.window = window_function(window_length=self.win_length, name=self.win_function, periodic=True)
self.mel_filters = mel_filter_bank(
num_frequency_bins=self.n_freqs,
num_mel_filters=self.num_mel_bins,
min_frequency=self.fmin,
max_frequency=self.fmax,
sampling_rate=self.sampling_rate,
norm="slaney",
mel_scale="slaney",
)
self.center = center
self.compression_factor = compression_factor
self.compression_clip_val = compression_clip_val
self.normalize_min = normalize_min
self.normalize_max = normalize_max
self.model_in_channels = model_in_channels
self.pad_end_length = pad_end_length
def normalize(self, spectrogram):
return 2 * ((spectrogram - self.normalize_min) / (self.normalize_max - self.normalize_min)) - 1
def denormalize(self, spectrogram):
return self.normalize_min + (self.normalize_max - self.normalize_min) * ((spectrogram + 1) / 2)
def mel_spectrogram(self, waveform: np.ndarray) -> np.ndarray:
"""
Calculates log MEL spectrograms from a batch of waveforms. Note that the input waveform(s) will be padded by
`int(self.n_fft - self.hop_length) / 2` on both sides using the `reflect` padding mode.
Args:
waveform (`np.ndarray` of shape `(length,)`):
The input waveform. This must be a single real-valued, mono waveform.
Returns:
`numpy.ndarray`: Array containing a log-mel spectrogram of shape `(num_frames, num_mel_bins)`.
"""
# Do custom padding based on the official MelGAN and Hifi-GAN implementations
# See https://github.com/maum-ai/univnet/blob/9bb2b54838bb6d7ce767131cc7b8b61198bc7558/utils/stft.py#L84-L86
waveform = np.pad(
waveform,
(int((self.n_fft - self.hop_length) / 2), int((self.n_fft - self.hop_length) / 2)),
mode="reflect",
)
# Get the complex spectrogram.
# Note: waveform must be unbatched currently due to the implementation of spectrogram(...).
complex_spectrogram = spectrogram(
waveform,
window=self.window,
frame_length=self.n_fft,
hop_length=self.hop_length,
fft_length=self.n_fft,
power=None,
center=self.center,
mel_filters=None,
mel_floor=None,
)
# Apply the MEL filter bank and MEL floor manually since UnivNet uses a slightly different implementation
amplitude_spectrogram = np.sqrt(
np.real(complex_spectrogram) ** 2 + np.imag(complex_spectrogram) ** 2 + self.mel_floor
)
mel_spectrogram = np.matmul(self.mel_filters.T, amplitude_spectrogram)
# Perform spectral normalization to get the log mel spectrogram.
log_mel_spectrogram = np.log(
np.clip(mel_spectrogram, a_min=self.compression_clip_val, a_max=None) * self.compression_factor
)
# Return spectrogram with num_mel_bins last
return log_mel_spectrogram.T
def generate_noise(
self,
noise_length: int,
generator: Optional[np.random.Generator] = None,
) -> np.ndarray:
"""
Generates a random noise sequence of standard Gaussian noise for use in the `noise_sequence` argument of
[`UnivNetModel.forward`].
Args:
spectrogram_length (`int`):
The length (dim 0) of the generated noise.
model_in_channels (`int`, *optional*, defaults to `None`):
The number of features (dim 1) of the generated noise. This should correspond to the
`model_in_channels` of the [`UnivNetGan`] model. If not set, this will default to
`self.config.model_in_channels`.
generator (`numpy.random.Generator`, *optional*, defaults to `None`)
An optional `numpy.random.Generator` random number generator to control noise generation. If not set, a
new generator with fresh entropy will be created.
Returns:
`numpy.ndarray`: Array containing random standard Gaussian noise of shape `(noise_length,
model_in_channels)`.
"""
if generator is None:
generator = np.random.default_rng()
noise_shape = (noise_length, self.model_in_channels)
noise = generator.standard_normal(noise_shape, dtype=np.float32)
return noise
def batch_decode(self, waveforms, waveform_lengths=None) -> List[np.ndarray]:
r"""
Removes padding from generated audio after running [`UnivNetModel.forward`]. This returns a ragged list of 1D
audio waveform arrays and not a single tensor/array because in general the waveforms will have different
lengths after removing padding.
Args:
waveforms (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
The batched output waveforms from the [`UnivNetModel`].
waveform_lengths (`torch.FloatTensor` of shape `(batch_size,)`, *optional*):
The batched lengths of each waveform before padding.
Returns:
`List[np.ndarray]`: A ragged list of 1D waveform arrays with padding removed.
"""
# Collapse the batched waveform tensor to a list of 1D audio waveforms
waveforms = [waveform.detach().clone().cpu().numpy() for waveform in waveforms]
if waveform_lengths is not None:
waveforms = [waveform[: waveform_lengths[i]] for i, waveform in enumerate(waveforms)]
return waveforms
def __call__(
self,
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
sampling_rate: Optional[int] = None,
padding: Union[bool, str, PaddingStrategy] = True,
max_length: Optional[int] = None,
truncation: bool = True,
pad_to_multiple_of: Optional[int] = None,
return_noise: bool = True,
generator: Optional[np.random.Generator] = None,
pad_end: bool = False,
pad_length: Optional[int] = None,
do_normalize: Optional[str] = None,
return_attention_mask: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
) -> BatchFeature:
"""
Main method to featurize and prepare for the model one or several sequence(s).
Args:
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
stereo, i.e. single float per timestep.
sampling_rate (`int`, *optional*):
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition
pipeline.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the input `raw_speech` waveforms (according to the model's padding side and
padding index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
If `pad_end = True`, that padding will occur before the `padding` strategy is applied.
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`, *optional*, defaults to `True`):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
`>= 7.5` (Volta), or on TPUs which benefit from having sequence lengths be a multiple of 128.
return_noise (`bool`, *optional*, defaults to `True`):
Whether to generate and return a noise waveform for use in [`UnivNetModel.forward`].
generator (`numpy.random.Generator`, *optional*, defaults to `None`):
An optional `numpy.random.Generator` random number generator to use when generating noise.
pad_end (`bool`, *optional*, defaults to `False`):
Whether to pad the end of each waveform with silence. This can help reduce artifacts at the end of the
generated audio sample; see https://github.com/seungwonpark/melgan/issues/8 for more details. This
padding will be done before the padding strategy specified in `padding` is performed.
pad_length (`int`, *optional*, defaults to `None`):
If padding the end of each waveform, the length of the padding in spectrogram frames. If not set, this
will default to `self.config.pad_end_length`.
do_normalize (`bool`, *optional*):
Whether to perform Tacotron 2 normalization on the input. Normalizing can help to significantly improve
the performance for some models. If not set, this will default to `self.config.do_normalize`.
return_attention_mask (`bool`, *optional*):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific feature_extractor's default.
[What are attention masks?](../glossary#attention-mask)
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.np.array` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
"""
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"
f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"
f" was sampled with {self.sampling_rate} and not {sampling_rate}."
)
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug."
)
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
is_batched = is_batched_numpy or (
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
)
if is_batched:
raw_speech = [np.asarray(speech, dtype=np.float32) for speech in raw_speech]
elif not is_batched and not isinstance(raw_speech, np.ndarray):
raw_speech = np.asarray(raw_speech, dtype=np.float32)
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
raw_speech = raw_speech.astype(np.float32)
# always return batch
if not is_batched:
raw_speech = [np.asarray(raw_speech, dtype=np.float32)]
# Pad end to reduce artifacts
if pad_end:
pad_length = pad_length if pad_length is not None else self.pad_end_length
raw_speech = [
np.pad(waveform, (0, pad_length * self.hop_length), constant_values=self.padding_value)
for waveform in raw_speech
]
batched_speech = BatchFeature({"input_features": raw_speech})
padded_inputs = self.pad(
batched_speech,
padding=padding,
max_length=max_length if max_length is not None else self.num_max_samples,
truncation=truncation,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
# make sure list is in array format
# input_features = padded_inputs.get("input_features").transpose(2, 0, 1)
input_features = padded_inputs.get("input_features")
mel_spectrograms = [self.mel_spectrogram(waveform) for waveform in input_features]
if isinstance(input_features[0], List):
batched_speech["input_features"] = [np.asarray(mel, dtype=np.float32) for mel in mel_spectrograms]
else:
batched_speech["input_features"] = [mel.astype(np.float32) for mel in mel_spectrograms]
# convert attention_mask to correct format
attention_mask = padded_inputs.get("attention_mask")
if attention_mask is not None:
batched_speech["padding_mask"] = [np.asarray(array, dtype=np.int32) for array in attention_mask]
if return_noise:
noise = [
self.generate_noise(spectrogram.shape[0], generator)
for spectrogram in batched_speech["input_features"]
]
batched_speech["noise_sequence"] = noise
if do_normalize:
batched_speech["input_features"] = [
self.normalize(spectrogram) for spectrogram in batched_speech["input_features"]
]
if return_tensors is not None:
batched_speech = batched_speech.convert_to_tensors(return_tensors)
return batched_speech
def to_dict(self) -> Dict[str, Any]:
output = super().to_dict()
# Don't serialize these as they are derived from the other properties.
names = ["window", "mel_filters", "n_fft", "n_freqs", "num_max_samples"]
for name in names:
if name in output:
del output[name]
return output
|
class_definition
| 1,048 | 22,820 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/univnet/feature_extraction_univnet.py
| null | 4,498 |
class UnivNetModelOutput(ModelOutput):
"""
Output class for the [`UnivNetModel`], which includes the generated audio waveforms and the original unpadded
lengths of those waveforms (so that the padding can be removed by [`UnivNetModel.batch_decode`]).
Args:
waveforms (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Batched 1D (mono-channel) output audio waveforms.
waveform_lengths (`torch.FloatTensor` of shape `(batch_size,)`):
The batched length in samples of each unpadded waveform in `waveforms`.
"""
waveforms: torch.FloatTensor = None
waveform_lengths: torch.FloatTensor = None
|
class_definition
| 1,159 | 1,829 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/univnet/modeling_univnet.py
| null | 4,499 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.