text
stringlengths 31
243k
| type
stringclasses 1
value | start
int64 36
275k
| end
int64 286
280k
| depth
int64 0
1
| filepath
stringlengths 85
188
| parent_class
stringclasses 3
values | class_index
int64 0
10.8k
|
---|---|---|---|---|---|---|---|
class Gemma2DecoderLayer(nn.Module):
def __init__(self, config: Gemma2Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.config = config
self.is_sliding = not bool(layer_idx % 2)
self.self_attn = Gemma2Attention(config=config, layer_idx=layer_idx)
self.mlp = Gemma2MLP(config)
self.input_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.pre_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.sliding_window = config.sliding_window
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if self.is_sliding and attention_mask is not None: # efficient SDPA and no padding
# Flash-attn is a 2D tensor
if self.config._attn_implementation == "flash_attention_2":
if past_key_value is not None: # when decoding
attention_mask = attention_mask[:, -self.sliding_window :]
else:
min_dtype = torch.finfo(hidden_states.dtype).min
sliding_window_mask = torch.tril(
torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-self.sliding_window
)
attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask)
if attention_mask.shape[-1] <= 1: # when decoding
attention_mask = attention_mask[:, :, :, -self.sliding_window :]
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.pre_feedforward_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
|
class_definition
| 13,177 | 16,423 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modular_gemma2.py
| null | 4,000 |
class Gemma2Model(GemmaModel):
def __init__(self, config: Gemma2Config):
super().__init__(config)
self.layers = nn.ModuleList(
[Gemma2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None and not self.training:
batch_size, seq_len, _ = inputs_embeds.shape
past_key_values = HybridCache(
self.config,
max_batch_size=batch_size,
max_cache_len=seq_len,
device=self.device,
dtype=inputs_embeds.dtype,
)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# embed positions
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# normalized
# Gemma2 downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
# See https://github.com/huggingface/transformers/pull/29402
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
hidden_states = hidden_states * normalizer
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
position_embeddings,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
position_embeddings=position_embeddings,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
return output if return_dict else output.to_tuple()
@torch.no_grad()
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: HybridCache,
output_attentions: bool,
):
# Flash Attention currently doesn't support static cache but Gemma2 work only with static cache.
# So we will pass in attention mask as is in any case, not only when ther's padding. Then we'll use its shape
# to cut out keys/values trailing 0 used in static cache. This workaround should be compile compatible
# as it doesn't cause dynamic control issues.
if self.config._attn_implementation == "flash_attention_2":
return attention_mask
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if isinstance(past_key_values, HybridCache):
target_length = past_key_values.get_max_cache_shape()
else:
target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1]
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
return causal_mask
|
class_definition
| 16,426 | 23,178 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modular_gemma2.py
| null | 4,001 |
class Gemma2ForCausalLM(GemmaForCausalLM):
def __init__(self, config):
super().__init__(config)
self.model = Gemma2Model(config)
self.post_init()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
**loss_kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
```python
>>> from transformers import AutoTokenizer, GemmaForCausalLM
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
```"""
if self.training and self.config._attn_implementation != "eager":
logger.warning_once(
"It is strongly recommended to train Gemma2 models with the `eager` attention implementation "
f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
if self.config.final_logit_softcapping is not None:
logits = logits / self.config.final_logit_softcapping
logits = torch.tanh(logits)
logits = logits * self.config.final_logit_softcapping
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
num_logits_to_keep=None,
**kwargs,
):
# Overwritten: has a special cache type, `HybridCache`
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
if past_key_values is not None:
if inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s
# `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride
# during the decoding. Here, simply using `.contiguous()` is not sufficient as in the
# batch size = 1 case, `position_ids` is already contiguous but with varying stride
# which retriggers a capture.
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
else:
# The clone here is for the same reason as for `position_ids`.
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
if (
isinstance(past_key_values, HybridCache)
and attention_mask.ndim == 2
and not self.config._attn_implementation == "flash_attention_2"
):
if model_inputs["inputs_embeds"] is not None:
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
device = model_inputs["inputs_embeds"].device
else:
batch_size, sequence_length = model_inputs["input_ids"].shape
device = model_inputs["input_ids"].device
attention_mask = self.model._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=past_key_values.get_max_cache_shape(),
dtype=self.lm_head.weight.dtype,
device=device,
cache_position=cache_position,
batch_size=batch_size,
)
if num_logits_to_keep is not None:
model_inputs["num_logits_to_keep"] = num_logits_to_keep
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
}
)
return model_inputs
|
class_definition
| 23,181 | 30,775 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modular_gemma2.py
| null | 4,002 |
class Gemma2ForSequenceClassification(GemmaForSequenceClassification):
def __init__(self, config):
super().__init__(config)
self.model = Gemma2Model(config)
self.post_init()
|
class_definition
| 30,778 | 30,979 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modular_gemma2.py
| null | 4,003 |
class Gemma2ForTokenClassification(GemmaForTokenClassification):
def __init__(self, config):
super().__init__(config)
self.model = Gemma2Model(config)
self.post_init()
|
class_definition
| 30,982 | 31,177 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modular_gemma2.py
| null | 4,004 |
class MixtralBlockSparseTop2MLP(nn.Module):
def __init__(self, config: MixtralConfig):
super().__init__()
self.ffn_dim = config.intermediate_size
self.hidden_dim = config.hidden_size
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
current_hidden_states = self.w2(current_hidden_states)
return current_hidden_states
|
class_definition
| 2,944 | 3,649 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modeling_mixtral.py
| null | 4,005 |
class MixtralSparseMoeBlock(nn.Module):
"""
This implementation is
strictly equivalent to standard MoE with full capacity (no
dropped tokens). It's faster since it formulates MoE operations
in terms of block-sparse operations to accommodate imbalanced
assignments of tokens to experts, whereas standard MoE either
(1) drop tokens at the cost of reduced performance or (2) set
capacity factor to number of experts and thus waste computation
and memory on padding.
"""
def __init__(self, config):
super().__init__()
self.hidden_dim = config.hidden_size
self.ffn_dim = config.intermediate_size
self.num_experts = config.num_local_experts
self.top_k = config.num_experts_per_tok
# gating
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
self.experts = nn.ModuleList([MixtralBlockSparseTop2MLP(config) for _ in range(self.num_experts)])
# Jitter parameters
self.jitter_noise = config.router_jitter_noise
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
""" """
batch_size, sequence_length, hidden_dim = hidden_states.shape
if self.training and self.jitter_noise > 0:
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
|
class_definition
| 3,652 | 7,059 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modeling_mixtral.py
| null | 4,006 |
class MixtralRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
MixtralRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
class_definition
| 7,062 | 7,786 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modeling_mixtral.py
| null | 4,007 |
class MixtralAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: MixtralConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
sliding_window=getattr(self.config, "sliding_window", None), # main diff with Llama
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
|
class_definition
| 11,065 | 14,580 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modeling_mixtral.py
| null | 4,008 |
class MixtralDecoderLayer(nn.Module):
def __init__(self, config: MixtralConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = MixtralAttention(config, layer_idx)
self.block_sparse_moe = MixtralSparseMoeBlock(config)
self.input_layernorm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states, router_logits = self.block_sparse_moe(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if output_router_logits:
outputs += (router_logits,)
return outputs
|
class_definition
| 14,583 | 18,279 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modeling_mixtral.py
| null | 4,009 |
class MixtralRotaryEmbedding(nn.Module):
def __init__(self, config: MixtralConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
class_definition
| 18,282 | 21,481 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modeling_mixtral.py
| null | 4,010 |
class MixtralPreTrainedModel(PreTrainedModel):
config_class = MixtralConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["MixtralDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
|
class_definition
| 22,511 | 23,440 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modeling_mixtral.py
| null | 4,011 |
class MixtralModel(MixtralPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MixtralDecoderLayer`]
Args:
config: MixtralConfig
"""
def __init__(self, config: MixtralConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[MixtralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = MixtralRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_logits = () if output_router_logits else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
output_router_logits,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if output_router_logits:
all_router_logits += (layer_outputs[-1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
router_logits=all_router_logits,
)
return output if return_dict else output.to_tuple()
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and past_key_values is not None:
is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Mixtral. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if (
self.config._attn_implementation == "sdpa"
and not (using_static_cache or using_sliding_window_cache)
and not output_attentions
):
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
sliding_window=self.config.sliding_window,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
# SlidingWindowCache or StaticCache
if using_sliding_window_cache or using_static_cache:
target_length = past_key_values.get_max_cache_shape()
# DynamicCache or no cache
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
config=self.config,
past_key_values=past_key_values,
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
config: MixtralConfig,
past_key_values: Cache,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
config (`MixtralConfig`):
The model's configuration class
past_key_values (`Cache`):
The cache class that is being used currently to generate
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
diagonal_attend_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
if config.sliding_window is not None:
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
# the check is needed to verify is current checkpoint was trained with sliding window or not
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
sliding_attend_mask = torch.arange(target_length, device=device) <= (
cache_position.reshape(-1, 1) - config.sliding_window
)
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
causal_mask *= diagonal_attend_mask
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
if attention_mask.shape[-1] > target_length:
attention_mask = attention_mask[:, :target_length]
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
|
class_definition
| 28,250 | 41,937 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modeling_mixtral.py
| null | 4,012 |
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
class_definition
| 41,940 | 42,002 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modeling_mixtral.py
| null | 4,013 |
class MixtralForCausalLM(MixtralPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
def __init__(self, config):
super().__init__(config)
self.model = MixtralModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.router_aux_loss_coef = config.router_aux_loss_coef
self.num_experts = config.num_local_experts
self.num_experts_per_tok = config.num_experts_per_tok
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
num_logits_to_keep (`int`, *optional*):
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, MixtralForCausalLM
>>> model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
aux_loss = None
if output_router_logits:
aux_loss = load_balancing_loss_func(
outputs.router_logits if return_dict else outputs[-1],
self.num_experts,
self.num_experts_per_tok,
attention_mask,
)
if labels is not None:
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
if not return_dict:
output = (logits,) + outputs[1:]
if output_router_logits:
output = (aux_loss,) + output
return (loss,) + output if loss is not None else output
return MoeCausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
|
class_definition
| 45,502 | 51,659 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modeling_mixtral.py
| null | 4,014 |
class MixtralForSequenceClassification(MixtralPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = MixtralModel(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
|
class_definition
| 52,458 | 56,278 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modeling_mixtral.py
| null | 4,015 |
class MixtralForTokenClassification(MixtralPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = MixtralModel(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 56,529 | 59,749 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modeling_mixtral.py
| null | 4,016 |
class MixtralForQuestionAnswering(MixtralPreTrainedModel):
base_model_prefix = "model"
def __init__(self, config):
super().__init__(config)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
self.model = MixtralModel(config) # diff with Llama: transformer->model
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
loss = None
if start_positions is not None and end_positions is not None:
loss = self.loss_function(start_logits, end_logits, start_positions, end_positions, **kwargs)
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return QuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 60,049 | 63,458 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modeling_mixtral.py
| null | 4,017 |
class MixtralConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MixtralModel`]. It is used to instantiate an
Mixtral model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Mixtral-7B-v0.1 or Mixtral-7B-Instruct-v0.1.
[mixtralai/Mixtral-8x7B](https://huggingface.co/mixtralai/Mixtral-8x7B)
[mixtralai/Mixtral-7B-Instruct-v0.1](https://huggingface.co/mixtralai/Mixtral-7B-Instruct-v0.1)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the Mixtral model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MixtralModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 14336):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer encoder.
num_key_value_heads (`int`, *optional*, defaults to 8):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
head_dim (`int`, *optional*, defaults to `hidden_size // num_attention_heads`):
The attention head dimension.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
allows sequence of up to 4096*32 tokens.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the "end-of-sequence" token.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether the model's input and output word embeddings should be tied.
rope_theta (`float`, *optional*, defaults to 1000000.0):
The base period of the RoPE embeddings.
sliding_window (`int`, *optional*):
Sliding window attention window size. If not specified, will default to `4096`.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
num_experts_per_tok (`int`, *optional*, defaults to 2):
The number of experts to route per-token, can be also interpreted as the `top-k` routing
parameter
num_local_experts (`int`, *optional*, defaults to 8):
Number of experts per Sparse MLP layer.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not the router logits should be returned by the model. Enabeling this will also
allow the model to output the auxiliary loss. See [here]() for more details
router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
The aux loss factor for the total loss.
router_jitter_noise (`float`, *optional*, defaults to 0.0):
Amount of noise to add to the router.
```python
>>> from transformers import MixtralModel, MixtralConfig
>>> # Initializing a Mixtral 7B style configuration
>>> configuration = MixtralConfig()
>>> # Initializing a model from the Mixtral 7B style configuration
>>> model = MixtralModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mixtral"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=14336,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=8,
head_dim=None,
hidden_act="silu",
max_position_embeddings=4096 * 32,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
rope_theta=1e6,
sliding_window=None,
attention_dropout=0.0,
num_experts_per_tok=2,
num_local_experts=8,
output_router_logits=False,
router_aux_loss_coef=0.001,
router_jitter_noise=0.0,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.sliding_window = sliding_window
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_dropout = attention_dropout
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
self.num_experts_per_tok = num_experts_per_tok
self.num_local_experts = num_local_experts
self.output_router_logits = output_router_logits
self.router_aux_loss_coef = router_aux_loss_coef
self.router_jitter_noise = router_jitter_noise
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
|
class_definition
| 799 | 8,365 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/configuration_mixtral.py
| null | 4,018 |
class MixtralBlockSparseTop2MLP(nn.Module):
def __init__(self, config: MixtralConfig):
super().__init__()
self.ffn_dim = config.intermediate_size
self.hidden_dim = config.hidden_size
self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, hidden_states):
current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
current_hidden_states = self.w2(current_hidden_states)
return current_hidden_states
|
class_definition
| 5,344 | 6,049 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modular_mixtral.py
| null | 4,019 |
class MixtralSparseMoeBlock(nn.Module):
"""
This implementation is
strictly equivalent to standard MoE with full capacity (no
dropped tokens). It's faster since it formulates MoE operations
in terms of block-sparse operations to accommodate imbalanced
assignments of tokens to experts, whereas standard MoE either
(1) drop tokens at the cost of reduced performance or (2) set
capacity factor to number of experts and thus waste computation
and memory on padding.
"""
def __init__(self, config):
super().__init__()
self.hidden_dim = config.hidden_size
self.ffn_dim = config.intermediate_size
self.num_experts = config.num_local_experts
self.top_k = config.num_experts_per_tok
# gating
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
self.experts = nn.ModuleList([MixtralBlockSparseTop2MLP(config) for _ in range(self.num_experts)])
# Jitter parameters
self.jitter_noise = config.router_jitter_noise
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
""" """
batch_size, sequence_length, hidden_dim = hidden_states.shape
if self.training and self.jitter_noise > 0:
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (batch * sequence_length, n_experts)
router_logits = self.gate(hidden_states)
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
# we cast back to the input dtype
routing_weights = routing_weights.to(hidden_states.dtype)
final_hidden_states = torch.zeros(
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
)
# One hot encode the selected experts to create an expert mask
# this will be used to easily index which expert is going to be sollicitated
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
# Loop over all available experts in the model and perform the computation on each expert
for expert_idx in range(self.num_experts):
expert_layer = self.experts[expert_idx]
idx, top_x = torch.where(expert_mask[expert_idx])
# Index the correct hidden states and compute the expert hidden state for
# the current expert. We need to make sure to multiply the output hidden
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
current_state = hidden_states[None, top_x].reshape(-1, hidden_dim)
current_hidden_states = expert_layer(current_state) * routing_weights[top_x, idx, None]
# However `index_add_` only support torch tensors for indexing so we'll use
# the `top_x` tensor here.
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
return final_hidden_states, router_logits
|
class_definition
| 6,052 | 9,459 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modular_mixtral.py
| null | 4,020 |
class MixtralRMSNorm(MistralRMSNorm):
pass
|
class_definition
| 9,462 | 9,508 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modular_mixtral.py
| null | 4,021 |
class MixtralAttention(MistralAttention):
pass
|
class_definition
| 9,511 | 9,561 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modular_mixtral.py
| null | 4,022 |
class MixtralDecoderLayer(nn.Module):
def __init__(self, config: MixtralConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = MixtralAttention(config, layer_idx)
self.block_sparse_moe = MixtralSparseMoeBlock(config)
self.input_layernorm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = MixtralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_router_logits (`bool`, *optional*):
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
should not be returned during inference.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states, router_logits = self.block_sparse_moe(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if output_router_logits:
outputs += (router_logits,)
return outputs
|
class_definition
| 9,564 | 13,260 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modular_mixtral.py
| null | 4,023 |
class MixtralModel(MistralModel):
def __init__(self, config: MixtralConfig):
super().__init__(config)
self.layers = nn.ModuleList(
[MixtralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, MoeModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_router_logits = () if output_router_logits else None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
output_router_logits,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
output_router_logits=output_router_logits,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
if output_router_logits:
all_router_logits += (layer_outputs[-1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = MoeModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
router_logits=all_router_logits,
)
return output if return_dict else output.to_tuple()
|
class_definition
| 13,263 | 18,398 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modular_mixtral.py
| null | 4,024 |
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
class_definition
| 18,401 | 18,463 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modular_mixtral.py
| null | 4,025 |
class MixtralForCausalLM(MistralForCausalLM):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = MixtralModel(config)
self.router_aux_loss_coef = config.router_aux_loss_coef
self.num_experts = config.num_local_experts
self.num_experts_per_tok = config.num_experts_per_tok
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> Union[Tuple, MoeCausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
num_logits_to_keep (`int`, *optional*):
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, MixtralForCausalLM
>>> model = MixtralForCausalLM.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
>>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mixtral-8x7B-v0.1")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.output_router_logits
)
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_router_logits=output_router_logits,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **kwargs)
aux_loss = None
if output_router_logits:
aux_loss = load_balancing_loss_func(
outputs.router_logits if return_dict else outputs[-1],
self.num_experts,
self.num_experts_per_tok,
attention_mask,
)
if labels is not None:
loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
if not return_dict:
output = (logits,) + outputs[1:]
if output_router_logits:
output = (aux_loss,) + output
return (loss,) + output if loss is not None else output
return MoeCausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits,
)
|
class_definition
| 18,466 | 23,749 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modular_mixtral.py
| null | 4,026 |
class MixtralForSequenceClassification(MistralForSequenceClassification):
pass
|
class_definition
| 23,752 | 23,834 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modular_mixtral.py
| null | 4,027 |
class MixtralForTokenClassification(MistralForTokenClassification):
pass
|
class_definition
| 23,837 | 23,913 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modular_mixtral.py
| null | 4,028 |
class MixtralForQuestionAnswering(MistralForQuestionAnswering):
pass
|
class_definition
| 23,916 | 23,988 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mixtral/modular_mixtral.py
| null | 4,029 |
class Pix2StructTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Pix2StructTextModel`]. It is used to instantiate
a Pix2Struct text model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Pix2Struct text decoder used by
the [google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50244):
Vocabulary size of the `Pix2Struct` text model. Defines the number of different tokens that can be
represented by the `inputs_ids` passed when calling [`Pix2StructTextModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
d_kv (`int`, *optional*, defaults to 64):
Dimensionality of the key, query, value projections in each attention head.
d_ff (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
The number of buckets to use for each attention layer.
relative_attention_max_distance (`int`, *optional*, defaults to 128):
The maximum distance of the longer sequences for the bucket separation.
dropout_rate (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-6):
The epsilon used by the layer normalization layers.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
dense_act_fn (`Union[Callable, str]`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string).
decoder_start_token_id (`int`, *optional*, defaults to 0):
The id of the `decoder_start_token_id` token.
use_cache (`bool`, *optional*, defaults to `False`):
Whether or not the model should return the last key/values attentions (not used by all models).
pad_token_id (`int`, *optional*, defaults to 0):
The id of the `padding` token.
eos_token_id (`int`, *optional*, defaults to 1):
The id of the `end-of-sequence` token.
Example:
```python
>>> from transformers import Pix2StructTextConfig, Pix2StructTextModel
>>> # Initializing a Pix2StructTextConfig with google/pix2struct-base style configuration
>>> configuration = Pix2StructTextConfig()
>>> # Initializing a Pix2StructTextModel (with random weights) from the google/pix2struct-base style configuration
>>> model = Pix2StructTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "pix2struct_text_model"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "hidden_size",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
"decoder_attention_heads": "num_heads",
"encoder_attention_heads": "num_heads",
"encoder_layers": "num_layers",
"decoder_layers": "num_layers",
}
def __init__(
self,
vocab_size=50244,
hidden_size=768,
d_kv=64,
d_ff=2048,
num_layers=12,
num_heads=12,
relative_attention_num_buckets=32,
relative_attention_max_distance=128,
dropout_rate=0.1,
layer_norm_epsilon=1e-6,
initializer_factor=1.0,
dense_act_fn="gelu_new",
decoder_start_token_id=0,
use_cache=False,
pad_token_id=0,
eos_token_id=1,
tie_word_embeddings=False,
is_decoder=True,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.d_kv = d_kv
self.d_ff = d_ff
self.num_layers = num_layers
self.num_heads = num_heads
self.relative_attention_num_buckets = relative_attention_num_buckets
self.relative_attention_max_distance = relative_attention_max_distance
self.dropout_rate = dropout_rate
self.layer_norm_epsilon = layer_norm_epsilon
self.initializer_factor = initializer_factor
self.use_cache = use_cache
self.eos_token_id = eos_token_id
self.decoder_start_token_id = decoder_start_token_id
# for backwards compatibility
self.dense_act_fn = dense_act_fn
super().__init__(
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
decoder_start_token_id=decoder_start_token_id,
tie_word_embeddings=tie_word_embeddings,
is_decoder=is_decoder,
**kwargs,
)
|
class_definition
| 787 | 6,400 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/configuration_pix2struct.py
| null | 4,030 |
class Pix2StructVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Pix2StructVisionModel`]. It is used to
instantiate a Pix2Struct vision model according to the specified arguments, defining the model architecture.
Instantiating a configuration defaults will yield a similar configuration to that of the Pix2Struct-base
[google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
patch_embed_hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the input patch_embedding layer in the Transformer encoder.
d_ff (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
d_kv (`int`, *optional*, defaults to 64):
Dimensionality of the key, query, value projections per attention head.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
dense_act_fn (`str` or `function`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
dropout_rate (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 1e-10):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1.0):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
seq_len (`int`, *optional*, defaults to 4096):
Maximum sequence length (here number of patches) supported by the model.
relative_attention_num_buckets (`int`, *optional*, defaults to 32):
The number of buckets to use for each attention layer.
relative_attention_max_distance (`int`, *optional*, defaults to 128):
The maximum distance (in tokens) to use for each attention layer.
Example:
```python
>>> from transformers import Pix2StructVisionConfig, Pix2StructVisionModel
>>> # Initializing a Pix2StructVisionConfig with google/pix2struct-base style configuration
>>> configuration = Pix2StructVisionConfig()
>>> # Initializing a Pix2StructVisionModel (with random weights) from the google/pix2struct-base style configuration
>>> model = Pix2StructVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "pix2struct_vision_model"
def __init__(
self,
hidden_size=768,
patch_embed_hidden_size=768,
d_ff=2048,
d_kv=64,
num_hidden_layers=12,
num_attention_heads=12,
dense_act_fn="gelu_new",
layer_norm_eps=1e-6,
dropout_rate=0.0,
attention_dropout=0.0,
initializer_range=1e-10,
initializer_factor=1.0,
seq_len=4096,
relative_attention_num_buckets=32,
relative_attention_max_distance=128,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.patch_embed_hidden_size = patch_embed_hidden_size
self.d_ff = d_ff
self.dropout_rate = dropout_rate
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.dense_act_fn = dense_act_fn
self.seq_len = seq_len
self.relative_attention_num_buckets = relative_attention_num_buckets
self.relative_attention_max_distance = relative_attention_max_distance
self.d_kv = d_kv
|
class_definition
| 6,403 | 11,292 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/configuration_pix2struct.py
| null | 4,031 |
class Pix2StructConfig(PretrainedConfig):
r"""
[`Pix2StructConfig`] is the configuration class to store the configuration of a
[`Pix2StructForConditionalGeneration`]. It is used to instantiate a Pix2Struct model according to the specified
arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will
yield a similar configuration to that of the Pix2Struct-base
[google/pix2struct-base](https://huggingface.co/google/pix2struct-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`Pix2StructTextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`Pix2StructVisionConfig`].
initializer_factor (`float`, *optional*, defaults to 1.0):
Factor to multiply the initialization range with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
is_vqa (`bool`, *optional*, defaults to `False`):
Whether the model has been fine-tuned for VQA or not.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import Pix2StructConfig, Pix2StructForConditionalGeneration
>>> # Initializing a Pix2StructConfig with google/pix2struct-base style configuration
>>> configuration = Pix2StructConfig()
>>> # Initializing a Pix2StructForConditionalGeneration (with random weights) from the google/pix2struct-base style configuration
>>> model = Pix2StructForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a Pix2StructConfig from a Pix2StructTextConfig and a Pix2StructVisionConfig
>>> # Initializing a Pix2Struct text and Pix2Struct vision configuration
>>> config_text = Pix2StructTextConfig()
>>> config_vision = Pix2StructVisionConfig()
>>> config = Pix2StructConfig.from_text_vision_configs(config_text, config_vision)
```"""
model_type = "pix2struct"
def __init__(
self,
text_config=None,
vision_config=None,
initializer_factor=1.0,
initializer_range=0.02,
is_vqa=False,
tie_word_embeddings=False,
is_encoder_decoder=True,
**kwargs,
):
super().__init__(tie_word_embeddings=tie_word_embeddings, is_encoder_decoder=is_encoder_decoder, **kwargs)
if text_config is None:
text_config = {}
logger.info("text_config is None. Initializing the Pix2StructTextConfig with default values.")
if vision_config is None:
vision_config = {}
logger.info("vision_config is None. Initializing the Pix2StructVisionConfig with default values.")
text_config["is_encoder_decoder"] = is_encoder_decoder
text_config["tie_word_embeddings"] = tie_word_embeddings
self.text_config = Pix2StructTextConfig(**text_config)
self.vision_config = Pix2StructVisionConfig(**vision_config)
self.decoder_start_token_id = self.text_config.decoder_start_token_id
self.pad_token_id = self.text_config.pad_token_id
self.eos_token_id = self.text_config.eos_token_id
self.initializer_factor = initializer_factor
self.initializer_range = initializer_range
self.text_config.initializer_range = self.initializer_range
self.vision_config.initializer_range = self.initializer_range
self.is_vqa = is_vqa
@classmethod
def from_text_vision_configs(
cls, text_config: Pix2StructTextConfig, vision_config: Pix2StructVisionConfig, **kwargs
):
r"""
Instantiate a [`Pix2StructConfig`] (or a derived class) from pix2struct text model configuration and pix2struct
vision model configuration.
Returns:
[`Pix2StructConfig`]: An instance of a configuration object
"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
|
class_definition
| 11,295 | 15,719 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/configuration_pix2struct.py
| null | 4,032 |
class Pix2StructImagesKwargs(ImagesKwargs, total=False):
max_patches: Optional[int]
header_text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]]
|
class_definition
| 942 | 1,134 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/processing_pix2struct.py
| null | 4,033 |
class Pix2StructProcessorKwargs(ProcessingKwargs, total=False):
images_kwargs: Pix2StructImagesKwargs
_defaults = {
"text_kwargs": {
"add_special_tokens": True,
"padding": False,
"stride": 0,
"return_overflowing_tokens": False,
"return_special_tokens_mask": False,
"return_offsets_mapping": False,
"return_token_type_ids": False,
"return_length": False,
"verbose": True,
},
"images_kwargs": {
"max_patches": 2048,
},
}
|
class_definition
| 1,137 | 1,719 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/processing_pix2struct.py
| null | 4,034 |
class Pix2StructProcessor(ProcessorMixin):
r"""
Constructs a PIX2STRUCT processor which wraps a BERT tokenizer and PIX2STRUCT image processor into a single
processor.
[`Pix2StructProcessor`] offers all the functionalities of [`Pix2StructImageProcessor`] and [`T5TokenizerFast`]. See
the docstring of [`~Pix2StructProcessor.__call__`] and [`~Pix2StructProcessor.decode`] for more information.
Args:
image_processor (`Pix2StructImageProcessor`):
An instance of [`Pix2StructImageProcessor`]. The image processor is a required input.
tokenizer (Union[`T5TokenizerFast`, `T5Tokenizer`]):
An instance of ['T5TokenizerFast`] or ['T5Tokenizer`]. The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "Pix2StructImageProcessor"
tokenizer_class = ("T5Tokenizer", "T5TokenizerFast")
def __init__(self, image_processor, tokenizer):
tokenizer.return_token_type_ids = False
super().__init__(image_processor, tokenizer)
def __call__(
self,
images=None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[Pix2StructProcessorKwargs],
) -> Union[BatchEncoding, BatchFeature]:
"""
This method uses [`Pix2StructImageProcessor.preprocess`] method to prepare image(s) for the model, and
[`T5TokenizerFast.__call__`] to prepare text for the model.
Please refer to the docstring of the above two methods for more information.
"""
legacy = kwargs.pop("legacy", True)
if legacy:
logger.warning_once(
"Legacy behavior is being used. The current behavior will be deprecated in version 5.0.0. "
"In the new behavior, If both images and text are provided, image_processor is not a VQA processor, and `add_special_tokens` is unset, "
"the default value of `add_special_tokens` will be changed to `False` when calling the tokenizer. "
"To test the new behavior, set `legacy=False`as a processor call argument."
)
if images is None and text is None:
raise ValueError("You have to specify either images or text.")
output_kwargs = self._merge_kwargs(
Pix2StructProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
add_special_tokens = output_kwargs["text_kwargs"].pop("add_special_tokens", None)
# Get only text
if images is None and not self.image_processor.is_vqa:
output_kwargs["text_kwargs"]["add_special_tokens"] = (
add_special_tokens if add_special_tokens is not None else True
)
self.current_processor = self.tokenizer
text_encoding = self.tokenizer(text=text, **output_kwargs["text_kwargs"])
return text_encoding
if not self.image_processor.is_vqa:
# add pixel_values
encoding_image_processor = self.image_processor(images, **output_kwargs["images_kwargs"])
else:
# add pixel_values and bbox
output_kwargs["images_kwargs"].setdefault("header_text", text)
encoding_image_processor = self.image_processor(images, **output_kwargs["images_kwargs"])
if text is not None and not self.image_processor.is_vqa:
output_kwargs["text_kwargs"]["add_special_tokens"] = (
add_special_tokens if add_special_tokens is not None else legacy
)
text_encoding = self.tokenizer(text=text, **output_kwargs["text_kwargs"])
if "attention_mask" in text_encoding:
text_encoding["decoder_attention_mask"] = text_encoding.pop("attention_mask")
if "input_ids" in text_encoding:
text_encoding["decoder_input_ids"] = text_encoding.pop("input_ids")
else:
text_encoding = None
if text_encoding is not None:
encoding_image_processor.update(text_encoding)
return encoding_image_processor
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Pix2StructTokenizerFast's [`~PreTrainedTokenizer.batch_decode`].
Please refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Pix2StructTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
class_definition
| 1,762 | 6,875 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/processing_pix2struct.py
| null | 4,035 |
class Pix2StructLayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Construct a layernorm module in the T5 style. No bias and no subtraction of mean.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
# T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
|
class_definition
| 1,796 | 2,897 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/modeling_pix2struct.py
| null | 4,036 |
class Pix2StructVisionEmbeddings(nn.Module):
r"""
Construct the embeddings from patch. In `Pix2Struct` the input is different from classic Vision-transformer models.
Here the input is a sequence of `seq_len` flattened patches that also combines padding patches (tokens). Each patch
is represented by a vector of `hidden_size` values.
"""
def __init__(self, config: Pix2StructConfig) -> None:
super().__init__()
self.patch_projection = nn.Linear(config.patch_embed_hidden_size, config.hidden_size)
self.row_embedder = nn.Embedding(config.seq_len, config.hidden_size)
self.column_embedder = nn.Embedding(config.seq_len, config.hidden_size)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, flattened_patches: torch.Tensor) -> torch.Tensor:
# the row and column indices are stored in the first and second position of the flattened_patches
# flattened_patches: `batch_size`, `seq_len`, `hidden_size` + 2
row_indices = flattened_patches[:, :, 0].long()
col_indices = flattened_patches[:, :, 1].long()
flattened_patches = flattened_patches[:, :, 2:]
embeddings = self.patch_projection(flattened_patches)
row_embeddings = self.row_embedder(row_indices)
col_embeddings = self.column_embedder(col_indices)
# sum all embeddings together
embeddings = embeddings + row_embeddings + col_embeddings
embeddings = self.dropout(embeddings)
return embeddings
|
class_definition
| 3,357 | 4,885 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/modeling_pix2struct.py
| null | 4,037 |
class Pix2StructVisionAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.hidden_size
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_attention_heads
self.dropout = config.attention_dropout
self.inner_dim = self.n_heads * self.key_value_proj_dim
# Mesh TensorFlow initialization to avoid scaling before softmax
self.query = nn.Linear(self.hidden_size, self.inner_dim, bias=False)
self.key = nn.Linear(self.hidden_size, self.inner_dim, bias=False)
self.value = nn.Linear(self.hidden_size, self.inner_dim, bias=False)
self.output = nn.Linear(self.inner_dim, self.hidden_size, bias=False)
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
output_attentions=False,
):
"""
Self-attention block
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
batch_size, seq_length = hidden_states.shape[:2]
def to_projection_shape(states):
"""projection"""
return states.contiguous().view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
# get query states
# (batch_size, n_heads, seq_length, dim_per_head)
query_states = to_projection_shape(self.query(hidden_states))
# get key/value states
key_states = to_projection_shape(self.key(hidden_states))
value_states = to_projection_shape(self.value(hidden_states))
# compute scores
# equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
scores = torch.matmul(query_states, key_states.transpose(3, 2))
if position_bias is None:
position_bias = torch.zeros(
(1, self.n_heads, seq_length, seq_length), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
if attention_mask.dim() == 2:
position_bias = position_bias + attention_mask[:, None, None, :].to(position_bias.device)
elif attention_mask is not None:
# (batch_size, n_heads, seq_length, key_length)
position_bias = position_bias + attention_mask.to(position_bias.device)
elif not is_torchdynamo_compiling():
attention_mask = torch.ones(
(batch_size, seq_length), device=position_bias.device, dtype=position_bias.dtype
)
position_bias = position_bias + attention_mask.to(position_bias.device)
position_bias = 1 - position_bias
position_bias_masked = position_bias.masked_fill(position_bias == 1, torch.finfo(scores.dtype).min)
scores += position_bias_masked
scores = torch.max(scores, torch.tensor(torch.finfo(scores.dtype).min))
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.softmax(scores, dim=-1, dtype=torch.float32).type_as(scores)
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_output = torch.matmul(attn_weights, value_states)
# (batch_size, seq_length, dim)
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
attn_output = self.output(attn_output)
outputs = (attn_output,) + (position_bias,)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
|
class_definition
| 4,888 | 8,980 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/modeling_pix2struct.py
| null | 4,038 |
class Pix2StructVisionMlp(nn.Module):
def __init__(self, config: Pix2StructVisionConfig):
super().__init__()
self.wi_0 = nn.Linear(config.hidden_size, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.hidden_size, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.hidden_size, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
# See https://github.com/huggingface/transformers/issues/20287
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
|
class_definition
| 9,195 | 10,507 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/modeling_pix2struct.py
| null | 4,039 |
class Pix2StructVisionLayer(nn.Module):
def __init__(self, config: Pix2StructConfig) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = Pix2StructVisionAttention(config)
self.mlp = Pix2StructVisionMlp(config)
self.pre_mlp_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pre_attention_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
residual = hidden_states
# in Pix2StructVision, layernorm is applied before self-attention
hidden_states = self.pre_attention_layer_norm(hidden_states)
self_attention_outputs = self.attention(
hidden_states,
attention_mask=attention_mask,
layer_head_mask=head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection
hidden_states = attention_output + residual
# in Pix2StructVision, layernorm is also applied after self-attention
layer_output = self.pre_mlp_layer_norm(hidden_states)
layer_output = self.mlp(layer_output) + hidden_states # second residual connection
outputs = (layer_output,) + outputs
return outputs
|
class_definition
| 10,510 | 12,272 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/modeling_pix2struct.py
| null | 4,040 |
class Pix2StructVisionEncoder(nn.Module):
def __init__(self, config: Pix2StructConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([Pix2StructVisionLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, attention_mask, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
|
class_definition
| 12,275 | 14,336 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/modeling_pix2struct.py
| null | 4,041 |
class Pix2StructPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Pix2StructConfig
_supports_cache_class = True
_supports_static_cache = False
@property
def dummy_inputs(self):
input_ids = torch.tensor(DUMMY_INPUTS)
input_mask = torch.tensor(DUMMY_MASK)
dummy_inputs = {
"decoder_input_ids": input_ids,
"input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
return dummy_inputs
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor # Used for testing weights initialization
if isinstance(module, Pix2StructLayerNorm):
module.weight.data.fill_(factor * 1.0)
elif isinstance(module, Pix2StructTextDenseGatedActDense):
hidden_size = (
self.config.text_config.hidden_size
if isinstance(self.config, Pix2StructConfig)
else self.config.hidden_size
)
d_ff = self.config.text_config.d_ff if isinstance(self.config, Pix2StructConfig) else self.config.d_ff
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
module.wi_0.bias.data.zero_()
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
module.wi_1.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, Pix2StructTextAttention):
# Mesh TensorFlow attention initialization to avoid scaling before softmax
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
hidden_size = (
self.config.text_config.hidden_size
if isinstance(self.config, Pix2StructConfig)
else self.config.hidden_size
)
key_value_proj_dim = (
self.config.text_config.d_kv if isinstance(self.config, Pix2StructConfig) else self.config.hidden_size
)
n_heads = (
self.config.text_config.num_heads
if isinstance(self.config, Pix2StructConfig)
else self.config.num_heads
)
module.query.weight.data.normal_(mean=0.0, std=factor * ((hidden_size * key_value_proj_dim) ** -0.5))
module.key.weight.data.normal_(mean=0.0, std=factor * (hidden_size**-0.5))
module.value.weight.data.normal_(mean=0.0, std=factor * (hidden_size**-0.5))
module.output.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
if module.has_relative_attention_bias:
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
elif isinstance(module, nn.Embedding):
hidden_size = (
self.config.text_config.hidden_size
if isinstance(self.config, Pix2StructConfig)
else self.config.hidden_size
)
module.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, Pix2StructTextModel):
hidden_size = (
self.config.text_config.hidden_size
if isinstance(self.config, Pix2StructConfig)
else self.config.hidden_size
)
module.lm_head.weight.data.normal_(mean=0.0, std=factor * ((hidden_size) ** -0.5))
elif isinstance(module, (nn.Linear, nn.Conv2d)):
# Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
# `trunc_normal_cpu` not implemented in `half` issues
module.weight.data = nn.init.trunc_normal_(
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
).to(module.weight.dtype)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, Pix2StructLayerNorm):
if module.weight is not None:
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right with T5->Pix2Struct
def _shift_right(self, input_ids):
decoder_start_token_id = self.config.decoder_start_token_id
pad_token_id = self.config.pad_token_id
if decoder_start_token_id is None:
raise ValueError(
"self.model.config.decoder_start_token_id has to be defined. In Pix2Struct it is usually set to the pad_token_id. "
"See Pix2Struct docs for more information."
)
# shift inputs to the right
if is_torch_fx_proxy(input_ids):
# Item assignment is not supported natively for proxies.
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
else:
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
|
class_definition
| 14,339 | 20,717 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/modeling_pix2struct.py
| null | 4,042 |
class Pix2StructVisionModel(Pix2StructPreTrainedModel):
config_class = Pix2StructVisionConfig
main_input_name = "flattened_patches"
supports_gradient_checkpointing = True
_no_split_modules = ["Pix2StructVisionLayer"]
def __init__(self, config: Pix2StructConfig):
super().__init__(config)
self.config = config
self.embeddings = Pix2StructVisionEmbeddings(config)
self.encoder = Pix2StructVisionEncoder(config)
self.layernorm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_projection
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None:
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(PIX2STRUCT_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def forward(
self,
flattened_patches: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Example:
```python
>>> import requests
>>> from PIL import Image
>>> from transformers import AutoProcessor, Pix2StructVisionModel
>>> image_processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base")
>>> model = Pix2StructVisionModel.from_pretrained("google/pix2struct-textcaps-base")
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 2048, 768]
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if flattened_patches is None:
raise ValueError("You have to specify flattened_patches")
if attention_mask is None:
# check where `flattened_patches` is not 0
attention_mask = (flattened_patches.sum(dim=-1) != 0).float()
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(flattened_patches)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
if not return_dict:
head_outputs = (sequence_output,)
return head_outputs + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
|
class_definition
| 23,055 | 27,395 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/modeling_pix2struct.py
| null | 4,043 |
class Pix2StructTextDenseGatedActDense(nn.Module):
def __init__(self, config: Pix2StructTextConfig):
super().__init__()
self.wi_0 = nn.Linear(config.hidden_size, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.hidden_size, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.hidden_size, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
# See https://github.com/huggingface/transformers/issues/20287
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
|
class_definition
| 27,513 | 28,836 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/modeling_pix2struct.py
| null | 4,044 |
class Pix2StructTextLayerFF(nn.Module):
def __init__(self, config: Pix2StructTextConfig):
super().__init__()
self.DenseReluDense = Pix2StructTextDenseGatedActDense(config)
self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
# Copied from transformers.models.t5.modeling_t5.T5LayerFF.forward
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
forwarded_states = self.DenseReluDense(forwarded_states)
hidden_states = hidden_states + self.dropout(forwarded_states)
return hidden_states
|
class_definition
| 28,839 | 29,516 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/modeling_pix2struct.py
| null | 4,045 |
class Pix2StructTextAttention(nn.Module):
def __init__(
self, config: Pix2StructTextConfig, has_relative_attention_bias=False, layer_idx: Optional[int] = None
):
super().__init__()
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.hidden_size = config.hidden_size
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and "
"will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
# Mesh TensorFlow initialization to avoid scaling before softmax
self.query = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.key = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.value = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.output = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
@staticmethod
# Copied from transformers.models.t5.modeling_t5.T5Attention._relative_position_bucket
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
# Adapted from transformers.models.t5.modeling_t5.T5Attention.compute_bias
def compute_bias(self, query_length, key_length, device=None, cache_position=None):
"""Compute binned relative position bias"""
if device is None:
device = self.relative_attention_bias.weight.device
if cache_position is None:
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
else:
context_position = cache_position[:, None].to(device)
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=False,
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
# Adapted from transformers.models.t5.modeling_t5.T5Attention.forward
def forward(
self,
hidden_states,
mask=None,
key_value_states=None,
position_bias=None,
past_key_value=None,
layer_head_mask=None,
query_length=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, 1, 1, key_length) (non-causal) or (batch_size, 1, seq_length, key_length) (causal decoder)
batch_size, seq_length = hidden_states.shape[:2]
# if key_value_states are provided this layer is used as a cross-attention layer for the decoder
is_cross_attention = key_value_states is not None
query_states = self.query(hidden_states)
query_states = query_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
if past_key_value is not None:
is_updated = past_key_value.is_updated.get(self.layer_idx)
if is_cross_attention:
# after the first generated id, we can subsequently re-use all key/value_states from cache
curr_past_key_value = past_key_value.cross_attention_cache
else:
curr_past_key_value = past_key_value.self_attention_cache
current_states = key_value_states if is_cross_attention else hidden_states
if is_cross_attention and past_key_value and is_updated:
# reuse k,v, cross_attentions
key_states = curr_past_key_value.key_cache[self.layer_idx]
value_states = curr_past_key_value.value_cache[self.layer_idx]
else:
key_states = self.key(current_states)
value_states = self.value(current_states)
key_states = key_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
value_states = value_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
if past_key_value is not None:
# save all key/value_states to cache to be re-used for fast auto-regressive generation
cache_position = cache_position if not is_cross_attention else None
key_states, value_states = curr_past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
# set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls
if is_cross_attention:
past_key_value.is_updated[self.layer_idx] = True
# compute scores, equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
scores = torch.matmul(query_states, key_states.transpose(3, 2))
if position_bias is None:
key_length = key_states.shape[-2]
# cache position is 0-indexed so we add 1 to get the real length of queries (aka with past)
real_seq_length = query_length if query_length is not None else cache_position[-1] + 1
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, self.n_heads, seq_length, key_length), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(
real_seq_length, key_length, device=scores.device, cache_position=cache_position
)
position_bias = position_bias[:, :, -seq_length:, :]
if mask is not None:
causal_mask = mask[:, :, :, : key_states.shape[-2]]
position_bias = position_bias + causal_mask
if self.pruned_heads:
mask = torch.ones(position_bias.shape[1])
mask[list(self.pruned_heads)] = 0
position_bias_masked = position_bias[:, mask.bool()]
else:
position_bias_masked = position_bias
scores += position_bias_masked
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(batch_size, -1, self.inner_dim)
attn_output = self.output(attn_output)
outputs = (attn_output, past_key_value, position_bias)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
|
class_definition
| 29,519 | 40,288 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/modeling_pix2struct.py
| null | 4,046 |
class Pix2StructTextLayerSelfAttention(nn.Module):
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.attention = Pix2StructTextAttention(
config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx
)
self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.attention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
|
class_definition
| 40,561 | 41,939 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/modeling_pix2struct.py
| null | 4,047 |
class Pix2StructTextLayerCrossAttention(nn.Module):
def __init__(self, config, layer_idx: Optional[int] = None):
super().__init__()
self.attention = Pix2StructTextAttention(config, has_relative_attention_bias=False, layer_idx=layer_idx)
self.layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
key_value_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
query_length=None,
output_attentions=False,
cache_position=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.attention(
normed_hidden_states,
mask=attention_mask,
key_value_states=key_value_states,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
query_length=query_length,
output_attentions=output_attentions,
cache_position=cache_position,
)
layer_output = hidden_states + self.dropout(attention_output[0])
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
return outputs
|
class_definition
| 42,217 | 43,654 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/modeling_pix2struct.py
| null | 4,048 |
class Pix2StructTextBlock(nn.Module):
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.self_attention = Pix2StructTextLayerSelfAttention(
config,
has_relative_attention_bias=has_relative_attention_bias,
layer_idx=layer_idx,
)
self.encoder_decoder_attention = Pix2StructTextLayerCrossAttention(
config,
layer_idx=layer_idx,
)
self.mlp = Pix2StructTextLayerFF(config)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
return_dict=True,
cache_position=None,
):
self_attention_outputs = self.self_attention(
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states, past_key_value = self_attention_outputs[:2]
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
do_cross_attention = encoder_hidden_states is not None
if do_cross_attention:
cross_attention_outputs = self.encoder_decoder_attention(
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
query_length=cache_position[-1] + 1,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states, past_key_value = cross_attention_outputs[:2]
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
# Keep cross-attention outputs and relative position weights
attention_outputs = attention_outputs + cross_attention_outputs[2:]
# Apply Feed Forward layer
hidden_states = self.mlp(hidden_states)
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if use_cache:
outputs = outputs + (past_key_value,) + attention_outputs
else:
outputs = outputs + attention_outputs
return outputs
|
class_definition
| 43,657 | 47,297 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/modeling_pix2struct.py
| null | 4,049 |
class Pix2StructTextModel(Pix2StructPreTrainedModel):
config_class = Pix2StructTextConfig
_no_split_modules = ["Pix2StructTextBlock"]
_tied_weights_keys = ["lm_head.weight"]
supports_gradient_checkpointing = True
def __init__(self, config):
super().__init__(config)
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)
self.layer = nn.ModuleList(
[
Pix2StructTextBlock(config, has_relative_attention_bias=bool(i == 0), layer_idx=i)
for i in range(config.num_layers)
]
)
self.final_layer_norm = Pix2StructLayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
self.gradient_checkpointing = False
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._reorder_cache
def _reorder_cache(self, past_key_values, beam_idx):
# if decoder past is not included in output
# speedy decoding is disabled and no need to reorder
if past_key_values is None:
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
return past_key_values
reordered_decoder_past = ()
for layer_past_states in past_key_values:
# get the correct batch idx from layer past batch dim
# batch dim of `past` is at 2nd position
reordered_layer_past_states = ()
for layer_past_state in layer_past_states:
# need to set correct `past` for each of the four key / value states
reordered_layer_past_states = reordered_layer_past_states + (
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
)
if reordered_layer_past_states[0].shape != layer_past_states[0].shape:
raise ValueError(
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched"
)
if len(reordered_layer_past_states) != len(layer_past_states):
raise ValueError(
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched"
)
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
return reordered_decoder_past
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, new_embeddings):
self.embed_tokens = new_embeddings
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(PIX2STRUCT_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Union[Tuple[torch.FloatTensor, ...], CausalLMOutputWithCrossAttentions]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoProcessor, Pix2StructTextModel
>>> processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base")
>>> model = Pix2StructTextModel.from_pretrained("google/pix2struct-textcaps-base")
>>> inputs = processor(text="Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> loss = outputs.loss
```
"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
if inputs_embeds is None:
assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
inputs_embeds = self.embed_tokens(input_ids)
batch_size, seq_length = input_shape
# initialize past_key_values
return_legacy_cache = False
return_self_attention_cache = False
if use_cache or past_key_values is not None:
if isinstance(past_key_values, Cache) and not isinstance(past_key_values, EncoderDecoderCache):
return_self_attention_cache = True
past_key_values = EncoderDecoderCache(past_key_values, DynamicCache())
elif not isinstance(past_key_values, EncoderDecoderCache):
return_legacy_cache = True
logger.warning_once(
"Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.48.0. "
"You should pass an instance of `EncoderDecoderCache` instead, e.g. "
"`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`."
)
past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values)
elif past_key_values is None:
past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache())
past_key_values_length = 0
if cache_position is not None:
past_key_values_length = cache_position[0]
elif past_key_values is not None:
past_key_values_length = past_key_values.get_seq_length()
if cache_position is None:
cache_position = torch.arange(
past_key_values_length, past_key_values_length + seq_length, device=inputs_embeds.device
)
if attention_mask is None:
# required mask seq length can be calculated via length of past
mask_seq_length = (
past_key_values.get_seq_length() + seq_length if past_key_values is not None else seq_length
)
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
if self.config.is_decoder:
causal_mask = self._update_causal_mask(
attention_mask,
inputs_embeds,
cache_position,
past_key_values.self_attention_cache if past_key_values is not None else None,
output_attentions,
)
else:
causal_mask = attention_mask[:, None, None, :]
causal_mask = causal_mask.to(dtype=inputs_embeds.dtype)
causal_mask = (1.0 - causal_mask) * torch.finfo(inputs_embeds.dtype).min
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions) else None
position_bias = None
encoder_decoder_position_bias = None
hidden_states = self.dropout(inputs_embeds)
for i, layer_module in enumerate(self.layer):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
layer_outputs = self._gradient_checkpointing_func(
layer_module.forward,
hidden_states,
causal_mask,
position_bias,
encoder_hidden_states,
encoder_extended_attention_mask,
encoder_decoder_position_bias,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
use_cache,
output_attentions,
cache_position,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=causal_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
# layer_outputs is a tuple with:
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
if use_cache is False:
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
hidden_states, next_decoder_cache = layer_outputs[:2]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[2]
if encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[3],)
if encoder_hidden_states is not None:
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
logits = self.lm_head(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
loss_fct = nn.CrossEntropyLoss(ignore_index=-100, reduction="mean")
loss = loss_fct(logits.contiguous().view(-1, logits.size(-1)), labels.contiguous().view(-1))
next_cache = next_decoder_cache if use_cache else None
if return_self_attention_cache:
next_cache = past_key_values.self_attention_cache
if return_legacy_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(
v
for v in [
loss,
logits,
next_cache,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
|
class_definition
| 60,673 | 80,864 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/modeling_pix2struct.py
| null | 4,050 |
class Pix2StructForConditionalGeneration(Pix2StructPreTrainedModel, GenerationMixin):
config_class = Pix2StructConfig
main_input_name = "flattened_patches"
_tied_weights_keys = ["decoder.lm_head.weight"]
def __init__(self, config: Pix2StructConfig):
super().__init__(config)
self.encoder = Pix2StructVisionModel(config.vision_config)
self.decoder = Pix2StructTextModel(config.text_config)
self.is_vqa = config.is_vqa
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.decoder.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
self.decoder.set_input_embeddings(new_embeddings)
def get_output_embeddings(self) -> nn.Module:
return self.decoder.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.decoder.set_output_embeddings(new_embeddings)
def get_decoder(self):
return self.decoder
def get_encoder(self):
return self.encoder
@add_start_docstrings_to_model_forward(PIX2STRUCT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
flattened_patches: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
labels: Optional[torch.LongTensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
Inference:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Pix2StructForConditionalGeneration
>>> processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base")
>>> model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base")
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> # autoregressive generation
>>> generated_ids = model.generate(**inputs, max_new_tokens=50)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> print(generated_text)
A stop sign is on a street corner.
>>> # conditional generation
>>> text = "A picture of"
>>> inputs = processor(text=text, images=image, return_tensors="pt", add_special_tokens=False)
>>> generated_ids = model.generate(**inputs, max_new_tokens=50)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
>>> print(generated_text)
A picture of a stop sign with a red stop sign
```
Training:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Pix2StructForConditionalGeneration
>>> processor = AutoProcessor.from_pretrained("google/pix2struct-base")
>>> model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-base")
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = "A stop sign is on the street corner."
>>> inputs = processor(images=image, return_tensors="pt")
>>> labels = processor(text=text, return_tensors="pt").input_ids
>>> # forward pass
>>> outputs = model(**inputs, labels=labels)
>>> loss = outputs.loss
>>> print(f"{loss.item():.5f}")
5.94282
```"""
use_cache = use_cache if use_cache is not None else self.config.text_config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
flattened_patches=flattened_patches,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
decoder_attention_mask = (
decoder_attention_mask
if decoder_attention_mask is not None
else decoder_input_ids.ne(self.config.pad_token_id).float()
)
# Always attend to the first token
decoder_attention_mask[:, 0] = 1
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
labels=labels,
return_dict=return_dict,
cache_position=cache_position,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqLMOutput(
loss=decoder_outputs.loss,
logits=decoder_outputs.logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
|
class_definition
| 81,036 | 88,496 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/modeling_pix2struct.py
| null | 4,051 |
class Pix2StructImageProcessor(BaseImageProcessor):
r"""
Constructs a Pix2Struct image processor.
Args:
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method. According to Pix2Struct paper and code, the image is normalized with its own mean and standard
deviation.
patch_size (`Dict[str, int]`, *optional*, defaults to `{"height": 16, "width": 16}`):
The patch size to use for the image. According to Pix2Struct paper and code, the patch size is 16x16.
max_patches (`int`, *optional*, defaults to 2048):
The maximum number of patches to extract from the image as per the [Pix2Struct
paper](https://arxiv.org/pdf/2210.03347.pdf).
is_vqa (`bool`, *optional*, defaults to `False`):
Whether or not the image processor is for the VQA task. If `True` and `header_text` is passed in, text is
rendered onto the input images.
"""
model_input_names = ["flattened_patches"]
def __init__(
self,
do_convert_rgb: bool = True,
do_normalize: bool = True,
patch_size: Dict[str, int] = None,
max_patches: int = 2048,
is_vqa: bool = False,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.patch_size = patch_size if patch_size is not None else {"height": 16, "width": 16}
self.do_normalize = do_normalize
self.do_convert_rgb = do_convert_rgb
self.max_patches = max_patches
self.is_vqa = is_vqa
def extract_flattened_patches(
self,
image: np.ndarray,
max_patches: int,
patch_size: dict,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Extract flattened patches from an image.
Args:
image (`np.ndarray`):
Image to extract flattened patches from.
max_patches (`int`):
Maximum number of patches to extract.
patch_size (`dict`):
Dictionary containing the patch height and width.
Returns:
result (`np.ndarray`):
A sequence of `max_patches` flattened patches.
"""
requires_backends(self.extract_flattened_patches, "torch")
# convert to torch
image = to_channel_dimension_format(image, ChannelDimension.FIRST, input_data_format)
image = torch.from_numpy(image)
patch_height, patch_width = patch_size["height"], patch_size["width"]
image_height, image_width = get_image_size(image, ChannelDimension.FIRST)
# maximize scale s.t.
scale = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width))
num_feasible_rows = max(min(math.floor(scale * image_height / patch_height), max_patches), 1)
num_feasible_cols = max(min(math.floor(scale * image_width / patch_width), max_patches), 1)
resized_height = max(num_feasible_rows * patch_height, 1)
resized_width = max(num_feasible_cols * patch_width, 1)
image = torch.nn.functional.interpolate(
image.unsqueeze(0),
size=(resized_height, resized_width),
mode="bilinear",
align_corners=False,
antialias=True,
).squeeze(0)
# [1, rows, columns, patch_height * patch_width * image_channels]
patches = torch_extract_patches(image, patch_height, patch_width)
patches_shape = patches.shape
rows = patches_shape[1]
columns = patches_shape[2]
depth = patches_shape[3]
# [rows * columns, patch_height * patch_width * image_channels]
patches = patches.reshape([rows * columns, depth])
# [rows * columns, 1]
row_ids = torch.arange(rows).reshape([rows, 1]).repeat(1, columns).reshape([rows * columns, 1])
col_ids = torch.arange(columns).reshape([1, columns]).repeat(rows, 1).reshape([rows * columns, 1])
# Offset by 1 so the ids do not contain zeros, which represent padding.
row_ids += 1
col_ids += 1
# Prepare additional patch features.
# [rows * columns, 1]
row_ids = row_ids.to(torch.float32)
col_ids = col_ids.to(torch.float32)
# [rows * columns, 2 + patch_height * patch_width * image_channels]
result = torch.cat([row_ids, col_ids, patches], -1)
# [max_patches, 2 + patch_height * patch_width * image_channels]
result = torch.nn.functional.pad(result, [0, 0, 0, max_patches - (rows * columns)]).float()
result = to_numpy_array(result)
return result
def normalize(
self,
image: np.ndarray,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Normalize an image. image = (image - image_mean) / image_std.
The image std is to mimic the tensorflow implementation of the `per_image_standardization`:
https://www.tensorflow.org/api_docs/python/tf/image/per_image_standardization
Args:
image (`np.ndarray`):
Image to normalize.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
if image.dtype == np.uint8:
image = image.astype(np.float32)
# take mean across the whole `image`
mean = np.mean(image)
std = np.std(image)
adjusted_stddev = max(std, 1.0 / math.sqrt(np.prod(image.shape)))
return normalize(
image,
mean=mean,
std=adjusted_stddev,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def preprocess(
self,
images: ImageInput,
header_text: Optional[str] = None,
do_convert_rgb: bool = None,
do_normalize: Optional[bool] = None,
max_patches: Optional[int] = None,
patch_size: Optional[Dict[str, int]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> ImageInput:
"""
Preprocess an image or batch of images. The processor first computes the maximum possible number of
aspect-ratio preserving patches of size `patch_size` that can be extracted from the image. It then pads the
image with zeros to make the image respect the constraint of `max_patches`. Before extracting the patches the
images are standardized following the tensorflow implementation of `per_image_standardization`
(https://www.tensorflow.org/api_docs/python/tf/image/per_image_standardization).
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images.
header_text (`Union[List[str], str]`, *optional*):
Text to render as a header. Only has an effect if `image_processor.is_vqa` is `True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
max_patches (`int`, *optional*, defaults to `self.max_patches`):
Maximum number of patches to extract.
patch_size (`dict`, *optional*, defaults to `self.patch_size`):
Dictionary containing the patch height and width.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
patch_size = patch_size if patch_size is not None else self.patch_size
max_patches = max_patches if max_patches is not None else self.max_patches
is_vqa = self.is_vqa
if kwargs.get("data_format", None) is not None:
raise ValueError("data_format is not an accepted input as the outputs are ")
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
# PIL RGBA images are converted to RGB
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if is_vqa:
if header_text is None:
raise ValueError("A header text must be provided for VQA models.")
font_bytes = kwargs.pop("font_bytes", None)
font_path = kwargs.pop("font_path", None)
if isinstance(header_text, str):
header_text = [header_text] * len(images)
images = [
render_header(image, header_text[i], font_bytes=font_bytes, font_path=font_path)
for i, image in enumerate(images)
]
if do_normalize:
images = [self.normalize(image=image, input_data_format=input_data_format) for image in images]
# convert to torch tensor and permute
images = [
self.extract_flattened_patches(
image=image, max_patches=max_patches, patch_size=patch_size, input_data_format=input_data_format
)
for image in images
]
# create attention mask in numpy
attention_masks = [(image.sum(axis=-1) != 0).astype(np.float32) for image in images]
encoded_outputs = BatchFeature(
data={"flattened_patches": images, "attention_mask": attention_masks}, tensor_type=return_tensors
)
return encoded_outputs
|
class_definition
| 7,309 | 19,727 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/pix2struct/image_processing_pix2struct.py
| null | 4,052 |
class ConditionalDetrFeatureExtractor(ConditionalDetrImageProcessor):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
"The class ConditionalDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use ConditionalDetrImageProcessor instead.",
FutureWarning,
)
super().__init__(*args, **kwargs)
|
class_definition
| 1,146 | 1,552 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/feature_extraction_conditional_detr.py
| null | 4,053 |
class ConditionalDetrDecoderOutput(BaseModelOutputWithCrossAttentions):
"""
Base class for outputs of the Conditional DETR decoder. This class adds one attribute to
BaseModelOutputWithCrossAttentions, namely an optional stack of intermediate decoder activations, i.e. the output
of each decoder layer, each of them gone through a layernorm. This is useful when training the model with auxiliary
decoding losses.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`):
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
layernorm.
"""
intermediate_hidden_states: Optional[torch.FloatTensor] = None
reference_points: Optional[Tuple[torch.FloatTensor]] = None
|
class_definition
| 1,622 | 4,086 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,054 |
class ConditionalDetrModelOutput(Seq2SeqModelOutput):
"""
Base class for outputs of the Conditional DETR encoder-decoder model. This class adds one attribute to
Seq2SeqModelOutput, namely an optional stack of intermediate decoder activations, i.e. the output of each decoder
layer, each of them gone through a layernorm. This is useful when training the model with auxiliary decoding
losses.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, sequence_length, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`):
Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a
layernorm.
"""
intermediate_hidden_states: Optional[torch.FloatTensor] = None
reference_points: Optional[Tuple[torch.FloatTensor]] = None
|
class_definition
| 4,100 | 7,681 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,055 |
class ConditionalDetrObjectDetectionOutput(ModelOutput):
"""
Output type of [`ConditionalDetrForObjectDetection`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
scale-invariant IoU loss.
loss_dict (`Dict`, *optional*):
A dictionary containing the individual losses. Useful for logging.
logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
Classification logits (including no-object) for all queries.
pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
possible padding). You can use [`~ConditionalDetrImageProcessor.post_process_object_detection`] to retrieve the
unnormalized bounding boxes.
auxiliary_outputs (`list[Dict]`, *optional*):
Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
`pred_boxes`) for each decoder layer.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
loss_dict: Optional[Dict] = None
logits: torch.FloatTensor = None
pred_boxes: torch.FloatTensor = None
auxiliary_outputs: Optional[List[Dict]] = None
last_hidden_state: Optional[torch.FloatTensor] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
class_definition
| 7,801 | 12,783 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,056 |
class ConditionalDetrSegmentationOutput(ModelOutput):
"""
Output type of [`ConditionalDetrForSegmentation`].
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)):
Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a
bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized
scale-invariant IoU loss.
loss_dict (`Dict`, *optional*):
A dictionary containing the individual losses. Useful for logging.
logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`):
Classification logits (including no-object) for all queries.
pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`):
Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These
values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding
possible padding). You can use [`~ConditionalDetrImageProcessor.post_process_object_detection`] to retrieve the
unnormalized bounding boxes.
pred_masks (`torch.FloatTensor` of shape `(batch_size, num_queries, height/4, width/4)`):
Segmentation masks logits for all queries. See also
[`~ConditionalDetrImageProcessor.post_process_semantic_segmentation`] or
[`~ConditionalDetrImageProcessor.post_process_instance_segmentation`]
[`~ConditionalDetrImageProcessor.post_process_panoptic_segmentation`] to evaluate semantic, instance and panoptic
segmentation masks respectively.
auxiliary_outputs (`list[Dict]`, *optional*):
Optional, only returned when auxiliary losses are activated (i.e. `config.auxiliary_loss` is set to `True`)
and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and
`pred_boxes`) for each decoder layer.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each
layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax,
used to compute the weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each
layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the
weighted average in the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
loss_dict: Optional[Dict] = None
logits: torch.FloatTensor = None
pred_boxes: torch.FloatTensor = None
pred_masks: torch.FloatTensor = None
auxiliary_outputs: Optional[List[Dict]] = None
last_hidden_state: Optional[torch.FloatTensor] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
|
class_definition
| 12,900 | 18,418 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,057 |
class ConditionalDetrFrozenBatchNorm2d(nn.Module):
"""
BatchNorm2d where the batch statistics and the affine parameters are fixed.
Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than
torchvision.models.resnet[18,34,50,101] produce nans.
"""
def __init__(self, n):
super().__init__()
self.register_buffer("weight", torch.ones(n))
self.register_buffer("bias", torch.zeros(n))
self.register_buffer("running_mean", torch.zeros(n))
self.register_buffer("running_var", torch.ones(n))
def _load_from_state_dict(
self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
):
num_batches_tracked_key = prefix + "num_batches_tracked"
if num_batches_tracked_key in state_dict:
del state_dict[num_batches_tracked_key]
super()._load_from_state_dict(
state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
)
def forward(self, x):
# move reshapes to the beginning
# to make it user-friendly
weight = self.weight.reshape(1, -1, 1, 1)
bias = self.bias.reshape(1, -1, 1, 1)
running_var = self.running_var.reshape(1, -1, 1, 1)
running_mean = self.running_mean.reshape(1, -1, 1, 1)
epsilon = 1e-5
scale = weight * (running_var + epsilon).rsqrt()
bias = bias - running_mean * scale
return x * scale + bias
|
class_definition
| 18,523 | 20,046 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,058 |
class ConditionalDetrConvEncoder(nn.Module):
"""
Convolutional backbone, using either the AutoBackbone API or one from the timm library.
nn.BatchNorm2d layers are replaced by ConditionalDetrFrozenBatchNorm2d as defined above.
"""
def __init__(self, config):
super().__init__()
self.config = config
# For backwards compatibility we have to use the timm library directly instead of the AutoBackbone API
if config.use_timm_backbone:
# We default to values which were previously hard-coded. This enables configurability from the config
# using backbone arguments, while keeping the default behavior the same.
requires_backends(self, ["timm"])
kwargs = getattr(config, "backbone_kwargs", {})
kwargs = {} if kwargs is None else kwargs.copy()
out_indices = kwargs.pop("out_indices", (1, 2, 3, 4))
num_channels = kwargs.pop("in_chans", config.num_channels)
if config.dilation:
kwargs["output_stride"] = kwargs.get("output_stride", 16)
backbone = create_model(
config.backbone,
pretrained=config.use_pretrained_backbone,
features_only=True,
out_indices=out_indices,
in_chans=num_channels,
**kwargs,
)
else:
backbone = load_backbone(config)
# replace batch norm by frozen batch norm
with torch.no_grad():
replace_batch_norm(backbone)
self.model = backbone
self.intermediate_channel_sizes = (
self.model.feature_info.channels() if config.use_timm_backbone else self.model.channels
)
backbone_model_type = None
if config.backbone is not None:
backbone_model_type = config.backbone
elif config.backbone_config is not None:
backbone_model_type = config.backbone_config.model_type
else:
raise ValueError("Either `backbone` or `backbone_config` should be provided in the config")
if "resnet" in backbone_model_type:
for name, parameter in self.model.named_parameters():
if config.use_timm_backbone:
if "layer2" not in name and "layer3" not in name and "layer4" not in name:
parameter.requires_grad_(False)
else:
if "stage.1" not in name and "stage.2" not in name and "stage.3" not in name:
parameter.requires_grad_(False)
def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor):
# send pixel_values through the model to get list of feature maps
features = self.model(pixel_values) if self.config.use_timm_backbone else self.model(pixel_values).feature_maps
out = []
for feature_map in features:
# downsample pixel_mask to match shape of corresponding feature_map
mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0]
out.append((feature_map, mask))
return out
|
class_definition
| 21,084 | 24,261 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,059 |
class ConditionalDetrConvModel(nn.Module):
"""
This module adds 2D position embeddings to all intermediate feature maps of the convolutional encoder.
"""
def __init__(self, conv_encoder, position_embedding):
super().__init__()
self.conv_encoder = conv_encoder
self.position_embedding = position_embedding
def forward(self, pixel_values, pixel_mask):
# send pixel_values and pixel_mask through backbone to get list of (feature_map, pixel_mask) tuples
out = self.conv_encoder(pixel_values, pixel_mask)
pos = []
for feature_map, mask in out:
# position encoding
pos.append(self.position_embedding(feature_map, mask).to(feature_map.dtype))
return out, pos
|
class_definition
| 24,358 | 25,120 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,060 |
class ConditionalDetrSinePositionEmbedding(nn.Module):
"""
This is a more standard version of the position embedding, very similar to the one used by the Attention is all you
need paper, generalized to work on images.
"""
def __init__(self, embedding_dim=64, temperature=10000, normalize=False, scale=None):
super().__init__()
self.embedding_dim = embedding_dim
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
def forward(self, pixel_values, pixel_mask):
if pixel_mask is None:
raise ValueError("No pixel mask provided")
y_embed = pixel_mask.cumsum(1, dtype=torch.float32)
x_embed = pixel_mask.cumsum(2, dtype=torch.float32)
if self.normalize:
y_embed = y_embed / (y_embed[:, -1:, :] + 1e-6) * self.scale
x_embed = x_embed / (x_embed[:, :, -1:] + 1e-6) * self.scale
dim_t = torch.arange(self.embedding_dim, dtype=torch.int64, device=pixel_values.device).float()
dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.embedding_dim)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
return pos
|
class_definition
| 25,123 | 26,838 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,061 |
class ConditionalDetrLearnedPositionEmbedding(nn.Module):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, embedding_dim=256):
super().__init__()
self.row_embeddings = nn.Embedding(50, embedding_dim)
self.column_embeddings = nn.Embedding(50, embedding_dim)
def forward(self, pixel_values, pixel_mask=None):
height, width = pixel_values.shape[-2:]
width_values = torch.arange(width, device=pixel_values.device)
height_values = torch.arange(height, device=pixel_values.device)
x_emb = self.column_embeddings(width_values)
y_emb = self.row_embeddings(height_values)
pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1)
pos = pos.permute(2, 0, 1)
pos = pos.unsqueeze(0)
pos = pos.repeat(pixel_values.shape[0], 1, 1, 1)
return pos
|
class_definition
| 26,950 | 27,902 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,062 |
class DetrAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper.
Here, we add position embeddings to the queries and keys (as explained in the DETR paper).
"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if self.head_dim * num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor]):
return tensor if object_queries is None else tensor + object_queries
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
object_queries: Optional[torch.Tensor] = None,
key_value_states: Optional[torch.Tensor] = None,
spatial_position_embeddings: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size, target_len, embed_dim = hidden_states.size()
# add position embeddings to the hidden states before projecting to queries and keys
if object_queries is not None:
hidden_states_original = hidden_states
hidden_states = self.with_pos_embed(hidden_states, object_queries)
# add key-value position embeddings to the key value states
if spatial_position_embeddings is not None:
key_value_states_original = key_value_states
key_value_states = self.with_pos_embed(key_value_states, spatial_position_embeddings)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, batch_size)
value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, batch_size)
value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size)
proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
source_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len):
raise ValueError(
f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (batch_size, 1, target_len, source_len):
raise ValueError(
f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is"
f" {attention_mask.size()}"
)
attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask
attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len)
attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(batch_size, target_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
|
class_definition
| 29,488 | 35,363 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,063 |
class ConditionalDetrAttention(nn.Module):
"""
Cross-Attention used in Conditional DETR 'Conditional DETR for Fast Training Convergence' paper.
The key q_proj, k_proj, v_proj are defined outside the attention. This attention allows the dim of q, k to be
different to v.
"""
def __init__(
self,
embed_dim: int,
out_dim: int,
num_heads: int,
dropout: float = 0.0,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.out_dim = out_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if self.head_dim * num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {num_heads})."
)
# head dimension of values
self.v_head_dim = out_dim // num_heads
if self.v_head_dim * num_heads != self.out_dim:
raise ValueError(
f"out_dim must be divisible by num_heads (got `out_dim`: {self.out_dim} and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.out_proj = nn.Linear(out_dim, out_dim, bias=bias)
def _qk_shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def _v_shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int):
return tensor.view(batch_size, seq_len, self.num_heads, self.v_head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
key_states: Optional[torch.Tensor] = None,
value_states: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
batch_size, target_len, _ = hidden_states.size()
# get query proj
query_states = hidden_states * self.scaling
# get key, value proj
key_states = self._qk_shape(key_states, -1, batch_size)
value_states = self._v_shape(value_states, -1, batch_size)
proj_shape = (batch_size * self.num_heads, -1, self.head_dim)
v_proj_shape = (batch_size * self.num_heads, -1, self.v_head_dim)
query_states = self._qk_shape(query_states, target_len, batch_size).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*v_proj_shape)
source_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len):
raise ValueError(
f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (batch_size, 1, target_len, source_len):
raise ValueError(
f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is"
f" {attention_mask.size()}"
)
attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask
attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len)
attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (batch_size * self.num_heads, target_len, self.v_head_dim):
raise ValueError(
f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.v_head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.v_head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(batch_size, target_len, self.out_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
|
class_definition
| 35,366 | 40,462 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,064 |
class ConditionalDetrEncoderLayer(nn.Module):
def __init__(self, config: ConditionalDetrConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = DetrAttention(
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
object_queries: torch.Tensor = None,
output_attentions: bool = False,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
object_queries (`torch.FloatTensor`, *optional*):
Object queries (also called content embeddings), to be added to the hidden states.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
object_queries=object_queries,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if self.training:
if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any():
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
|
class_definition
| 40,620 | 43,705 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,065 |
class ConditionalDetrDecoderLayer(nn.Module):
def __init__(self, config: ConditionalDetrConfig):
super().__init__()
self.embed_dim = config.d_model
d_model = config.d_model
# Decoder Self-Attention projections
self.sa_qcontent_proj = nn.Linear(d_model, d_model)
self.sa_qpos_proj = nn.Linear(d_model, d_model)
self.sa_kcontent_proj = nn.Linear(d_model, d_model)
self.sa_kpos_proj = nn.Linear(d_model, d_model)
self.sa_v_proj = nn.Linear(d_model, d_model)
self.self_attn = ConditionalDetrAttention(
embed_dim=self.embed_dim,
out_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
# Decoder Cross-Attention projections
self.ca_qcontent_proj = nn.Linear(d_model, d_model)
self.ca_qpos_proj = nn.Linear(d_model, d_model)
self.ca_kcontent_proj = nn.Linear(d_model, d_model)
self.ca_kpos_proj = nn.Linear(d_model, d_model)
self.ca_v_proj = nn.Linear(d_model, d_model)
self.ca_qpos_sine_proj = nn.Linear(d_model, d_model)
self.encoder_attn = ConditionalDetrAttention(
self.embed_dim * 2, self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
self.nhead = config.decoder_attention_heads
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
object_queries: Optional[torch.Tensor] = None,
query_position_embeddings: Optional[torch.Tensor] = None,
query_sine_embed: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
is_first: Optional[bool] = False,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
object_queries (`torch.FloatTensor`, *optional*):
object_queries that are added to the queries and keys
in the cross-attention layer.
query_position_embeddings (`torch.FloatTensor`, *optional*):
object_queries that are added to the queries and keys
in the self-attention layer.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(seq_len, batch, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative
values.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# ========== Begin of Self-Attention =============
# Apply projections here
# shape: num_queries x batch_size x 256
q_content = self.sa_qcontent_proj(
hidden_states
) # target is the input of the first decoder layer. zero by default.
q_pos = self.sa_qpos_proj(query_position_embeddings)
k_content = self.sa_kcontent_proj(hidden_states)
k_pos = self.sa_kpos_proj(query_position_embeddings)
v = self.sa_v_proj(hidden_states)
_, num_queries, n_model = q_content.shape
q = q_content + q_pos
k = k_content + k_pos
hidden_states, self_attn_weights = self.self_attn(
hidden_states=q,
attention_mask=attention_mask,
key_states=k,
value_states=v,
output_attentions=output_attentions,
)
# ============ End of Self-Attention =============
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# ========== Begin of Cross-Attention =============
# Apply projections here
# shape: num_queries x batch_size x 256
q_content = self.ca_qcontent_proj(hidden_states)
k_content = self.ca_kcontent_proj(encoder_hidden_states)
v = self.ca_v_proj(encoder_hidden_states)
batch_size, num_queries, n_model = q_content.shape
_, source_len, _ = k_content.shape
k_pos = self.ca_kpos_proj(object_queries)
# For the first decoder layer, we concatenate the positional embedding predicted from
# the object query (the positional embedding) into the original query (key) in DETR.
if is_first:
q_pos = self.ca_qpos_proj(query_position_embeddings)
q = q_content + q_pos
k = k_content + k_pos
else:
q = q_content
k = k_content
q = q.view(batch_size, num_queries, self.nhead, n_model // self.nhead)
query_sine_embed = self.ca_qpos_sine_proj(query_sine_embed)
query_sine_embed = query_sine_embed.view(batch_size, num_queries, self.nhead, n_model // self.nhead)
q = torch.cat([q, query_sine_embed], dim=3).view(batch_size, num_queries, n_model * 2)
k = k.view(batch_size, source_len, self.nhead, n_model // self.nhead)
k_pos = k_pos.view(batch_size, source_len, self.nhead, n_model // self.nhead)
k = torch.cat([k, k_pos], dim=3).view(batch_size, source_len, n_model * 2)
# Cross-Attention Block
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states, cross_attn_weights = self.encoder_attn(
hidden_states=q,
attention_mask=encoder_attention_mask,
key_states=k,
value_states=v,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# ============ End of Cross-Attention =============
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
|
class_definition
| 43,708 | 51,448 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,066 |
class MLP(nn.Module):
"""
Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates,
height and width of a bounding box w.r.t. an image.
Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py
"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
|
class_definition
| 51,558 | 52,313 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,067 |
class ConditionalDetrPreTrainedModel(PreTrainedModel):
config_class = ConditionalDetrConfig
base_model_prefix = "model"
main_input_name = "pixel_values"
_no_split_modules = [r"ConditionalDetrConvEncoder", r"ConditionalDetrEncoderLayer", r"ConditionalDetrDecoderLayer"]
def _init_weights(self, module):
std = self.config.init_std
xavier_std = self.config.init_xavier_std
if isinstance(module, ConditionalDetrMHAttentionMap):
nn.init.zeros_(module.k_linear.bias)
nn.init.zeros_(module.q_linear.bias)
nn.init.xavier_uniform_(module.k_linear.weight, gain=xavier_std)
nn.init.xavier_uniform_(module.q_linear.weight, gain=xavier_std)
elif isinstance(module, ConditionalDetrLearnedPositionEmbedding):
nn.init.uniform_(module.row_embeddings.weight)
nn.init.uniform_(module.column_embeddings.weight)
if isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
|
class_definition
| 52,416 | 53,919 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,068 |
class ConditionalDetrEncoder(ConditionalDetrPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`ConditionalDetrEncoderLayer`].
The encoder updates the flattened feature map through multiple self-attention layers.
Small tweak for ConditionalDETR:
- object_queries are added to the forward pass.
Args:
config: ConditionalDetrConfig
"""
def __init__(self, config: ConditionalDetrConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
self.layers = nn.ModuleList([ConditionalDetrEncoderLayer(config) for _ in range(config.encoder_layers)])
# in the original ConditionalDETR, no layernorm is used at the end of the encoder, as "normalize_before" is set to False by default
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
inputs_embeds=None,
attention_mask=None,
object_queries=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Flattened feature map (output of the backbone + projection layer) that is passed to the encoder.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`:
- 1 for pixel features that are real (i.e. **not masked**),
- 0 for pixel features that are padding (i.e. **masked**).
[What are attention masks?](../glossary#attention-mask)
object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Object queries that are added to the queries in each self-attention layer.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states = inputs_embeds
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
# we add object_queries as extra input to the encoder_layer
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
object_queries=object_queries,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
|
class_definition
| 57,401 | 62,295 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,069 |
class ConditionalDetrDecoder(ConditionalDetrPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`ConditionalDetrDecoderLayer`].
The decoder updates the query embeddings through multiple self-attention and cross-attention layers.
Some small tweaks for Conditional DETR:
- object_queries and query_position_embeddings are added to the forward pass.
- if self.config.auxiliary_loss is set to True, also returns a stack of activations from all decoding layers.
Args:
config: ConditionalDetrConfig
"""
def __init__(self, config: ConditionalDetrConfig):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.layers = nn.ModuleList([ConditionalDetrDecoderLayer(config) for _ in range(config.decoder_layers)])
# in Conditional DETR, the decoder uses layernorm after the last decoder layer output
self.layernorm = nn.LayerNorm(config.d_model)
d_model = config.d_model
self.gradient_checkpointing = False
# query_scale is the FFN applied on f to generate transformation T
self.query_scale = MLP(d_model, d_model, d_model, 2)
self.ref_point_head = MLP(d_model, d_model, 2, 2)
for layer_id in range(config.decoder_layers - 1):
self.layers[layer_id + 1].ca_qpos_proj = None
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
inputs_embeds=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
object_queries=None,
query_position_embeddings=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
The query embeddings that are passed into the decoder.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on certain queries. Mask values selected in `[0, 1]`:
- 1 for queries that are **not masked**,
- 0 for queries that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected
in `[0, 1]`:
- 1 for pixels that are real (i.e. **not masked**),
- 0 for pixels that are padding (i.e. **masked**).
object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Position embeddings that are added to the queries and keys in each cross-attention layer.
query_position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`):
, *optional*): Position embeddings that are added to the queries and keys in each self-attention layer.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if inputs_embeds is not None:
hidden_states = inputs_embeds
input_shape = inputs_embeds.size()[:-1]
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# optional intermediate hidden states
intermediate = () if self.config.auxiliary_loss else None
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
reference_points_before_sigmoid = self.ref_point_head(
query_position_embeddings
) # [num_queries, batch_size, 2]
reference_points = reference_points_before_sigmoid.sigmoid().transpose(0, 1)
obj_center = reference_points[..., :2].transpose(0, 1)
# get sine embedding for the query vector
query_sine_embed_before_transformation = gen_sine_position_embeddings(obj_center, self.config.d_model)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
if idx == 0:
pos_transformation = 1
else:
pos_transformation = self.query_scale(hidden_states)
# apply transformation
query_sine_embed = query_sine_embed_before_transformation * pos_transformation
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
None,
object_queries,
query_position_embeddings,
query_sine_embed,
encoder_hidden_states,
encoder_attention_mask,
None,
None,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=None,
object_queries=object_queries,
query_position_embeddings=query_position_embeddings,
query_sine_embed=query_sine_embed,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
is_first=(idx == 0),
)
hidden_states = layer_outputs[0]
if self.config.auxiliary_loss:
hidden_states = self.layernorm(hidden_states)
intermediate += (hidden_states,)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# finally, apply layernorm
hidden_states = self.layernorm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
# stack intermediate decoder activations
if self.config.auxiliary_loss:
intermediate = torch.stack(intermediate)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
all_hidden_states,
all_self_attns,
all_cross_attentions,
intermediate,
reference_points,
]
if v is not None
)
return ConditionalDetrDecoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
intermediate_hidden_states=intermediate,
reference_points=reference_points,
)
|
class_definition
| 62,298 | 71,378 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,070 |
class ConditionalDetrModel(ConditionalDetrPreTrainedModel):
def __init__(self, config: ConditionalDetrConfig):
super().__init__(config)
# Create backbone + positional encoding
backbone = ConditionalDetrConvEncoder(config)
object_queries = build_position_encoding(config)
self.backbone = ConditionalDetrConvModel(backbone, object_queries)
# Create projection layer
self.input_projection = nn.Conv2d(backbone.intermediate_channel_sizes[-1], config.d_model, kernel_size=1)
self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model)
self.encoder = ConditionalDetrEncoder(config)
self.decoder = ConditionalDetrDecoder(config)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def freeze_backbone(self):
for name, param in self.backbone.conv_encoder.model.named_parameters():
param.requires_grad_(False)
def unfreeze_backbone(self):
for name, param in self.backbone.conv_encoder.model.named_parameters():
param.requires_grad_(True)
@add_start_docstrings_to_model_forward(CONDITIONAL_DETR_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ConditionalDetrModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], ConditionalDetrModelOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoModel
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50")
>>> model = AutoModel.from_pretrained("microsoft/conditional-detr-resnet-50")
>>> # prepare image for the model
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> # forward pass
>>> outputs = model(**inputs)
>>> # the last hidden states are the final query embeddings of the Transformer decoder
>>> # these are of shape (batch_size, num_queries, hidden_size)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 300, 256]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_channels, height, width = pixel_values.shape
device = pixel_values.device
if pixel_mask is None:
pixel_mask = torch.ones(((batch_size, height, width)), device=device)
# First, sent pixel_values + pixel_mask through Backbone to obtain the features
# pixel_values should be of shape (batch_size, num_channels, height, width)
# pixel_mask should be of shape (batch_size, height, width)
features, object_queries_list = self.backbone(pixel_values, pixel_mask)
# get final feature map and downsampled mask
feature_map, mask = features[-1]
if mask is None:
raise ValueError("Backbone does not return downsampled pixel mask")
# Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
projected_feature_map = self.input_projection(feature_map)
# Third, flatten the feature map + object_queries of shape NxCxHxW to NxCxHW, and permute it to NxHWxC
# In other words, turn their shape into (batch_size, sequence_length, hidden_size)
flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1)
object_queries = object_queries_list[-1].flatten(2).permute(0, 2, 1)
flattened_mask = mask.flatten(1)
# Fourth, sent flattened_features + flattened_mask + object_queries through encoder
# flattened_features is a Tensor of shape (batch_size, heigth*width, hidden_size)
# flattened_mask is a Tensor of shape (batch_size, heigth*width)
if encoder_outputs is None:
encoder_outputs = self.encoder(
inputs_embeds=flattened_features,
attention_mask=flattened_mask,
object_queries=object_queries,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# Fifth, sent query embeddings + object_queries through the decoder (which is conditioned on the encoder output)
query_position_embeddings = self.query_position_embeddings.weight.unsqueeze(0).repeat(batch_size, 1, 1)
queries = torch.zeros_like(query_position_embeddings)
# decoder outputs consists of (dec_features, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
inputs_embeds=queries,
attention_mask=None,
object_queries=object_queries,
query_position_embeddings=query_position_embeddings,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=flattened_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return ConditionalDetrModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
intermediate_hidden_states=decoder_outputs.intermediate_hidden_states,
reference_points=decoder_outputs.reference_points,
)
|
class_definition
| 71,623 | 79,022 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,071 |
class ConditionalDetrMLPPredictionHead(nn.Module):
"""
Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates,
height and width of a bounding box w.r.t. an image.
Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py
"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
def forward(self, x):
for i, layer in enumerate(self.layers):
x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
return x
|
class_definition
| 79,127 | 79,911 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,072 |
class ConditionalDetrForObjectDetection(ConditionalDetrPreTrainedModel):
def __init__(self, config: ConditionalDetrConfig):
super().__init__(config)
# CONDITIONAL DETR encoder-decoder model
self.model = ConditionalDetrModel(config)
# Object detection heads
self.class_labels_classifier = nn.Linear(
config.d_model, config.num_labels
) # We add one for the "no object" class
self.bbox_predictor = ConditionalDetrMLPPredictionHead(
input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3
)
# Initialize weights and apply final processing
self.post_init()
# taken from https://github.com/Atten4Vis/conditionalDETR/blob/master/models/conditional_detr.py
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_coord):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])]
@add_start_docstrings_to_model_forward(CONDITIONAL_DETR_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ConditionalDetrObjectDetectionOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[List[dict]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], ConditionalDetrObjectDetectionOutput]:
r"""
labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the
following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch
respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes
in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`.
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoModelForObjectDetection
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50")
>>> model = AutoModelForObjectDetection.from_pretrained("microsoft/conditional-detr-resnet-50")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax)
>>> target_sizes = torch.tensor([image.size[::-1]])
>>> results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[
... 0
... ]
>>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
... box = [round(i, 2) for i in box.tolist()]
... print(
... f"Detected {model.config.id2label[label.item()]} with confidence "
... f"{round(score.item(), 3)} at location {box}"
... )
Detected remote with confidence 0.833 at location [38.31, 72.1, 177.63, 118.45]
Detected cat with confidence 0.831 at location [9.2, 51.38, 321.13, 469.0]
Detected cat with confidence 0.804 at location [340.3, 16.85, 642.93, 370.95]
Detected remote with confidence 0.683 at location [334.48, 73.49, 366.37, 190.01]
Detected couch with confidence 0.535 at location [0.52, 1.19, 640.35, 475.1]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# First, sent images through CONDITIONAL_DETR base model to obtain encoder + decoder outputs
outputs = self.model(
pixel_values,
pixel_mask=pixel_mask,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
# class logits + predicted bounding boxes
logits = self.class_labels_classifier(sequence_output)
reference = outputs.reference_points if return_dict else outputs[-1]
reference_before_sigmoid = inverse_sigmoid(reference).transpose(0, 1)
hs = sequence_output
tmp = self.bbox_predictor(hs)
tmp[..., :2] += reference_before_sigmoid
pred_boxes = tmp.sigmoid()
# pred_boxes = self.bbox_predictor(sequence_output).sigmoid()
loss, loss_dict, auxiliary_outputs = None, None, None
if labels is not None:
outputs_class, outputs_coord = None, None
if self.config.auxiliary_loss:
outputs_coords = []
intermediate = outputs.intermediate_hidden_states if return_dict else outputs[4]
outputs_class = self.class_labels_classifier(intermediate)
for lvl in range(intermediate.shape[0]):
tmp = self.bbox_predictor(intermediate[lvl])
tmp[..., :2] += reference_before_sigmoid
outputs_coord = tmp.sigmoid()
outputs_coords.append(outputs_coord)
outputs_coord = torch.stack(outputs_coords)
loss, loss_dict, auxiliary_outputs = self.loss_function(
logits, labels, self.device, pred_boxes, self.config, outputs_class, outputs_coord
)
if not return_dict:
if auxiliary_outputs is not None:
output = (logits, pred_boxes) + auxiliary_outputs + outputs
else:
output = (logits, pred_boxes) + outputs
return ((loss, loss_dict) + output) if loss is not None else output
return ConditionalDetrObjectDetectionOutput(
loss=loss,
loss_dict=loss_dict,
logits=logits,
pred_boxes=pred_boxes,
auxiliary_outputs=auxiliary_outputs,
last_hidden_state=outputs.last_hidden_state,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
|
class_definition
| 80,154 | 87,581 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,073 |
class ConditionalDetrForSegmentation(ConditionalDetrPreTrainedModel):
def __init__(self, config: ConditionalDetrConfig):
super().__init__(config)
# object detection model
self.conditional_detr = ConditionalDetrForObjectDetection(config)
# segmentation head
hidden_size, number_of_heads = config.d_model, config.encoder_attention_heads
intermediate_channel_sizes = self.conditional_detr.model.backbone.conv_encoder.intermediate_channel_sizes
self.mask_head = ConditionalDetrMaskHeadSmallConv(
hidden_size + number_of_heads, intermediate_channel_sizes[::-1][-3:], hidden_size
)
self.bbox_attention = ConditionalDetrMHAttentionMap(
hidden_size, hidden_size, number_of_heads, dropout=0.0, std=config.init_xavier_std
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(CONDITIONAL_DETR_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ConditionalDetrSegmentationOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
pixel_mask: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.FloatTensor] = None,
encoder_outputs: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[List[dict]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], ConditionalDetrSegmentationOutput]:
r"""
labels (`List[Dict]` of len `(batch_size,)`, *optional*):
Labels for computing the bipartite matching loss, DICE/F-1 loss and Focal loss. List of dicts, each
dictionary containing at least the following 3 keys: 'class_labels', 'boxes' and 'masks' (the class labels,
bounding boxes and segmentation masks of an image in the batch respectively). The class labels themselves
should be a `torch.LongTensor` of len `(number of bounding boxes in the image,)`, the boxes a
`torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)` and the masks a
`torch.FloatTensor` of shape `(number of bounding boxes in the image, height, width)`.
Returns:
Examples:
```python
>>> import io
>>> import requests
>>> from PIL import Image
>>> import torch
>>> import numpy
>>> from transformers import (
... AutoImageProcessor,
... ConditionalDetrConfig,
... ConditionalDetrForSegmentation,
... )
>>> from transformers.image_transforms import rgb_to_id
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50")
>>> # randomly initialize all weights of the model
>>> config = ConditionalDetrConfig()
>>> model = ConditionalDetrForSegmentation(config)
>>> # prepare image for the model
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> # forward pass
>>> outputs = model(**inputs)
>>> # Use the `post_process_panoptic_segmentation` method of the `image_processor` to retrieve post-processed panoptic segmentation maps
>>> # Segmentation results are returned as a list of dictionaries
>>> result = image_processor.post_process_panoptic_segmentation(outputs, target_sizes=[(300, 500)])
>>> # A tensor of shape (height, width) where each value denotes a segment id, filled with -1 if no segment is found
>>> panoptic_seg = result[0]["segmentation"]
>>> # Get prediction score and segment_id to class_id mapping of each segment
>>> panoptic_segments_info = result[0]["segments_info"]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_channels, height, width = pixel_values.shape
device = pixel_values.device
if pixel_mask is None:
pixel_mask = torch.ones((batch_size, height, width), device=device)
# First, get list of feature maps and object_queries
features, object_queries_list = self.conditional_detr.model.backbone(pixel_values, pixel_mask=pixel_mask)
# Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default)
feature_map, mask = features[-1]
batch_size, num_channels, height, width = feature_map.shape
projected_feature_map = self.conditional_detr.model.input_projection(feature_map)
# Third, flatten the feature map + object_queries of shape NxCxHxW to NxCxHW, and permute it to NxHWxC
# In other words, turn their shape into (batch_size, sequence_length, hidden_size)
flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1)
object_queries = object_queries_list[-1].flatten(2).permute(0, 2, 1)
flattened_mask = mask.flatten(1)
# Fourth, sent flattened_features + flattened_mask + object_queries through encoder
# flattened_features is a Tensor of shape (batch_size, heigth*width, hidden_size)
# flattened_mask is a Tensor of shape (batch_size, heigth*width)
if encoder_outputs is None:
encoder_outputs = self.conditional_detr.model.encoder(
inputs_embeds=flattened_features,
attention_mask=flattened_mask,
object_queries=object_queries,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# Fifth, sent query embeddings + object_queries through the decoder (which is conditioned on the encoder output)
query_position_embeddings = self.conditional_detr.model.query_position_embeddings.weight.unsqueeze(0).repeat(
batch_size, 1, 1
)
queries = torch.zeros_like(query_position_embeddings)
# decoder outputs consists of (dec_features, dec_hidden, dec_attn)
decoder_outputs = self.conditional_detr.model.decoder(
inputs_embeds=queries,
attention_mask=None,
object_queries=object_queries,
query_position_embeddings=query_position_embeddings,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=flattened_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = decoder_outputs[0]
# Sixth, compute logits, pred_boxes and pred_masks
logits = self.conditional_detr.class_labels_classifier(sequence_output)
pred_boxes = self.conditional_detr.bbox_predictor(sequence_output).sigmoid()
memory = encoder_outputs[0].permute(0, 2, 1).view(batch_size, self.config.d_model, height, width)
mask = flattened_mask.view(batch_size, height, width)
# FIXME h_boxes takes the last one computed, keep this in mind
# important: we need to reverse the mask, since in the original implementation the mask works reversed
# bbox_mask is of shape (batch_size, num_queries, number_of_attention_heads in bbox_attention, height/32, width/32)
bbox_mask = self.bbox_attention(sequence_output, memory, mask=~mask)
seg_masks = self.mask_head(projected_feature_map, bbox_mask, [features[2][0], features[1][0], features[0][0]])
pred_masks = seg_masks.view(
batch_size, self.conditional_detr.config.num_queries, seg_masks.shape[-2], seg_masks.shape[-1]
)
loss, loss_dict, auxiliary_outputs = None, None, None
if labels is not None:
outputs_class, outputs_coord = None, None
if self.config.auxiliary_loss:
intermediate = decoder_outputs.intermediate_hidden_states if return_dict else decoder_outputs[-1]
outputs_class = self.conditional_detr.class_labels_classifier(intermediate)
outputs_coord = self.conditional_detr.bbox_predictor(intermediate).sigmoid()
loss, loss_dict, auxiliary_outputs = self.loss_function(
logits, labels, self.device, pred_boxes, pred_masks, self.config, outputs_class, outputs_coord
)
if not return_dict:
if auxiliary_outputs is not None:
output = (logits, pred_boxes, pred_masks) + auxiliary_outputs + decoder_outputs + encoder_outputs
else:
output = (logits, pred_boxes, pred_masks) + decoder_outputs + encoder_outputs
return ((loss, loss_dict) + output) if loss is not None else output
return ConditionalDetrSegmentationOutput(
loss=loss,
loss_dict=loss_dict,
logits=logits,
pred_boxes=pred_boxes,
pred_masks=pred_masks,
auxiliary_outputs=auxiliary_outputs,
last_hidden_state=decoder_outputs.last_hidden_state,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
|
class_definition
| 87,821 | 98,126 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,074 |
class ConditionalDetrMaskHeadSmallConv(nn.Module):
"""
Simple convolutional head, using group norm. Upsampling is done using a FPN approach
"""
def __init__(self, dim, fpn_dims, context_dim):
super().__init__()
if dim % 8 != 0:
raise ValueError(
"The hidden_size + number of attention heads must be divisible by 8 as the number of groups in"
" GroupNorm is set to 8"
)
inter_dims = [dim, context_dim // 2, context_dim // 4, context_dim // 8, context_dim // 16, context_dim // 64]
self.lay1 = nn.Conv2d(dim, dim, 3, padding=1)
self.gn1 = nn.GroupNorm(8, dim)
self.lay2 = nn.Conv2d(dim, inter_dims[1], 3, padding=1)
self.gn2 = nn.GroupNorm(min(8, inter_dims[1]), inter_dims[1])
self.lay3 = nn.Conv2d(inter_dims[1], inter_dims[2], 3, padding=1)
self.gn3 = nn.GroupNorm(min(8, inter_dims[2]), inter_dims[2])
self.lay4 = nn.Conv2d(inter_dims[2], inter_dims[3], 3, padding=1)
self.gn4 = nn.GroupNorm(min(8, inter_dims[3]), inter_dims[3])
self.lay5 = nn.Conv2d(inter_dims[3], inter_dims[4], 3, padding=1)
self.gn5 = nn.GroupNorm(min(8, inter_dims[4]), inter_dims[4])
self.out_lay = nn.Conv2d(inter_dims[4], 1, 3, padding=1)
self.dim = dim
self.adapter1 = nn.Conv2d(fpn_dims[0], inter_dims[1], 1)
self.adapter2 = nn.Conv2d(fpn_dims[1], inter_dims[2], 1)
self.adapter3 = nn.Conv2d(fpn_dims[2], inter_dims[3], 1)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_uniform_(m.weight, a=1)
nn.init.constant_(m.bias, 0)
def forward(self, x: Tensor, bbox_mask: Tensor, fpns: List[Tensor]):
# here we concatenate x, the projected feature map, of shape (batch_size, d_model, heigth/32, width/32) with
# the bbox_mask = the attention maps of shape (batch_size, n_queries, n_heads, height/32, width/32).
# We expand the projected feature map to match the number of heads.
x = torch.cat([_expand(x, bbox_mask.shape[1]), bbox_mask.flatten(0, 1)], 1)
x = self.lay1(x)
x = self.gn1(x)
x = nn.functional.relu(x)
x = self.lay2(x)
x = self.gn2(x)
x = nn.functional.relu(x)
cur_fpn = self.adapter1(fpns[0])
if cur_fpn.size(0) != x.size(0):
cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
x = self.lay3(x)
x = self.gn3(x)
x = nn.functional.relu(x)
cur_fpn = self.adapter2(fpns[1])
if cur_fpn.size(0) != x.size(0):
cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
x = self.lay4(x)
x = self.gn4(x)
x = nn.functional.relu(x)
cur_fpn = self.adapter3(fpns[2])
if cur_fpn.size(0) != x.size(0):
cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0))
x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
x = self.lay5(x)
x = self.gn5(x)
x = nn.functional.relu(x)
x = self.out_lay(x)
return x
|
class_definition
| 98,344 | 101,698 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,075 |
class ConditionalDetrMHAttentionMap(nn.Module):
"""This is a 2D attention module, which only returns the attention softmax (no multiplication by value)"""
def __init__(self, query_dim, hidden_dim, num_heads, dropout=0.0, bias=True, std=None):
super().__init__()
self.num_heads = num_heads
self.hidden_dim = hidden_dim
self.dropout = nn.Dropout(dropout)
self.q_linear = nn.Linear(query_dim, hidden_dim, bias=bias)
self.k_linear = nn.Linear(query_dim, hidden_dim, bias=bias)
self.normalize_fact = float(hidden_dim / self.num_heads) ** -0.5
def forward(self, q, k, mask: Optional[Tensor] = None):
q = self.q_linear(q)
k = nn.functional.conv2d(k, self.k_linear.weight.unsqueeze(-1).unsqueeze(-1), self.k_linear.bias)
queries_per_head = q.view(q.shape[0], q.shape[1], self.num_heads, self.hidden_dim // self.num_heads)
keys_per_head = k.view(k.shape[0], self.num_heads, self.hidden_dim // self.num_heads, k.shape[-2], k.shape[-1])
weights = torch.einsum("bqnc,bnchw->bqnhw", queries_per_head * self.normalize_fact, keys_per_head)
if mask is not None:
weights.masked_fill_(mask.unsqueeze(1).unsqueeze(1), torch.finfo(weights.dtype).min)
weights = nn.functional.softmax(weights.flatten(2), dim=-1).view(weights.size())
weights = self.dropout(weights)
return weights
|
class_definition
| 101,800 | 103,215 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/modeling_conditional_detr.py
| null | 4,076 |
class ConditionalDetrImageProcessor(BaseImageProcessor):
r"""
Constructs a Conditional Detr image processor.
Args:
format (`str`, *optional*, defaults to `"coco_detection"`):
Data format of the annotations. One of "coco_detection" or "coco_panoptic".
do_resize (`bool`, *optional*, defaults to `True`):
Controls whether to resize the image's (height, width) dimensions to the specified `size`. Can be
overridden by the `do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 800, "longest_edge": 1333}`):
Size of the image's `(height, width)` dimensions after resizing. Can be overridden by the `size` parameter
in the `preprocess` method. Available options are:
- `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`.
Do NOT keep the aspect ratio.
- `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting
the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge
less or equal to `longest_edge`.
- `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the
aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to
`max_width`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image.
do_rescale (`bool`, *optional*, defaults to `True`):
Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
`do_rescale` parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize:
Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the
`preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_MEAN`):
Mean values to use when normalizing the image. Can be a single value or a list of values, one for each
channel. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_DEFAULT_STD`):
Standard deviation values to use when normalizing the image. Can be a single value or a list of values, one
for each channel. Can be overridden by the `image_std` parameter in the `preprocess` method.
do_convert_annotations (`bool`, *optional*, defaults to `True`):
Controls whether to convert the annotations to the format expected by the DETR model. Converts the
bounding boxes to the format `(center_x, center_y, width, height)` and in the range `[0, 1]`.
Can be overridden by the `do_convert_annotations` parameter in the `preprocess` method.
do_pad (`bool`, *optional*, defaults to `True`):
Controls whether to pad the image. Can be overridden by the `do_pad` parameter in the `preprocess`
method. If `True`, padding will be applied to the bottom and right of the image with zeros.
If `pad_size` is provided, the image will be padded to the specified dimensions.
Otherwise, the image will be padded to the maximum height and width of the batch.
pad_size (`Dict[str, int]`, *optional*):
The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size
provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest
height and width in the batch.
"""
model_input_names = ["pixel_values", "pixel_mask"]
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.__init__
def __init__(
self,
format: Union[str, AnnotationFormat] = AnnotationFormat.COCO_DETECTION,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BILINEAR,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Union[float, List[float]] = None,
image_std: Union[float, List[float]] = None,
do_convert_annotations: Optional[bool] = None,
do_pad: bool = True,
pad_size: Optional[Dict[str, int]] = None,
**kwargs,
) -> None:
if "pad_and_return_pixel_mask" in kwargs:
do_pad = kwargs.pop("pad_and_return_pixel_mask")
if "max_size" in kwargs:
logger.warning_once(
"The `max_size` parameter is deprecated and will be removed in v4.26. "
"Please specify in `size['longest_edge'] instead`.",
)
max_size = kwargs.pop("max_size")
else:
max_size = None if size is None else 1333
size = size if size is not None else {"shortest_edge": 800, "longest_edge": 1333}
size = get_size_dict(size, max_size=max_size, default_to_square=False)
# Backwards compatibility
if do_convert_annotations is None:
do_convert_annotations = do_normalize
super().__init__(**kwargs)
self.format = format
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.do_convert_annotations = do_convert_annotations
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
self.do_pad = do_pad
self.pad_size = pad_size
self._valid_processor_keys = [
"images",
"annotations",
"return_segmentation_masks",
"masks_path",
"do_resize",
"size",
"resample",
"do_rescale",
"rescale_factor",
"do_normalize",
"do_convert_annotations",
"image_mean",
"image_std",
"do_pad",
"pad_size",
"format",
"return_tensors",
"data_format",
"input_data_format",
]
@classmethod
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.from_dict with Detr->ConditionalDetr
def from_dict(cls, image_processor_dict: Dict[str, Any], **kwargs):
"""
Overrides the `from_dict` method from the base class to make sure parameters are updated if image processor is
created using from_dict and kwargs e.g. `ConditionalDetrImageProcessor.from_pretrained(checkpoint, size=600,
max_size=800)`
"""
image_processor_dict = image_processor_dict.copy()
if "max_size" in kwargs:
image_processor_dict["max_size"] = kwargs.pop("max_size")
if "pad_and_return_pixel_mask" in kwargs:
image_processor_dict["pad_and_return_pixel_mask"] = kwargs.pop("pad_and_return_pixel_mask")
return super().from_dict(image_processor_dict, **kwargs)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.prepare_annotation with DETR->ConditionalDetr
def prepare_annotation(
self,
image: np.ndarray,
target: Dict,
format: Optional[AnnotationFormat] = None,
return_segmentation_masks: bool = None,
masks_path: Optional[Union[str, pathlib.Path]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> Dict:
"""
Prepare an annotation for feeding into ConditionalDetr model.
"""
format = format if format is not None else self.format
if format == AnnotationFormat.COCO_DETECTION:
return_segmentation_masks = False if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_detection_annotation(
image, target, return_segmentation_masks, input_data_format=input_data_format
)
elif format == AnnotationFormat.COCO_PANOPTIC:
return_segmentation_masks = True if return_segmentation_masks is None else return_segmentation_masks
target = prepare_coco_panoptic_annotation(
image,
target,
masks_path=masks_path,
return_masks=return_segmentation_masks,
input_data_format=input_data_format,
)
else:
raise ValueError(f"Format {format} is not supported.")
return target
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BILINEAR,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize the image to the given size. Size can be `min_size` (scalar) or `(height, width)` tuple. If size is an
int, smaller edge of the image will be matched to this number.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the image's `(height, width)` dimensions after resizing. Available options are:
- `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`.
Do NOT keep the aspect ratio.
- `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting
the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge
less or equal to `longest_edge`.
- `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the
aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to
`max_width`.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
Resampling filter to use if resizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
if "max_size" in kwargs:
logger.warning_once(
"The `max_size` parameter is deprecated and will be removed in v4.26. "
"Please specify in `size['longest_edge'] instead`.",
)
max_size = kwargs.pop("max_size")
else:
max_size = None
size = get_size_dict(size, max_size=max_size, default_to_square=False)
if "shortest_edge" in size and "longest_edge" in size:
new_size = get_resize_output_image_size(
image, size["shortest_edge"], size["longest_edge"], input_data_format=input_data_format
)
elif "max_height" in size and "max_width" in size:
new_size = get_image_size_for_max_height_width(
image, size["max_height"], size["max_width"], input_data_format=input_data_format
)
elif "height" in size and "width" in size:
new_size = (size["height"], size["width"])
else:
raise ValueError(
"Size must contain 'height' and 'width' keys or 'shortest_edge' and 'longest_edge' keys. Got"
f" {size.keys()}."
)
image = resize(
image,
size=new_size,
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
return image
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.resize_annotation
def resize_annotation(
self,
annotation,
orig_size,
size,
resample: PILImageResampling = PILImageResampling.NEAREST,
) -> Dict:
"""
Resize the annotation to match the resized image. If size is an int, smaller edge of the mask will be matched
to this number.
"""
return resize_annotation(annotation, orig_size=orig_size, target_size=size, resample=resample)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale
def rescale(
self,
image: np.ndarray,
rescale_factor: float,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Rescale the image by the given factor. image = image * rescale_factor.
Args:
image (`np.ndarray`):
Image to rescale.
rescale_factor (`float`):
The value to use for rescaling.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. If unset, is inferred from the input image. Can be
one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.normalize_annotation
def normalize_annotation(self, annotation: Dict, image_size: Tuple[int, int]) -> Dict:
"""
Normalize the boxes in the annotation from `[top_left_x, top_left_y, bottom_right_x, bottom_right_y]` to
`[center_x, center_y, width, height]` format and from absolute to relative pixel values.
"""
return normalize_annotation(annotation, image_size=image_size)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._update_annotation_for_padded_image
def _update_annotation_for_padded_image(
self,
annotation: Dict,
input_image_size: Tuple[int, int],
output_image_size: Tuple[int, int],
padding,
update_bboxes,
) -> Dict:
"""
Update the annotation for a padded image.
"""
new_annotation = {}
new_annotation["size"] = output_image_size
for key, value in annotation.items():
if key == "masks":
masks = value
masks = pad(
masks,
padding,
mode=PaddingMode.CONSTANT,
constant_values=0,
input_data_format=ChannelDimension.FIRST,
)
masks = safe_squeeze(masks, 1)
new_annotation["masks"] = masks
elif key == "boxes" and update_bboxes:
boxes = value
boxes *= np.asarray(
[
input_image_size[1] / output_image_size[1],
input_image_size[0] / output_image_size[0],
input_image_size[1] / output_image_size[1],
input_image_size[0] / output_image_size[0],
]
)
new_annotation["boxes"] = boxes
elif key == "size":
new_annotation["size"] = output_image_size
else:
new_annotation[key] = value
return new_annotation
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor._pad_image
def _pad_image(
self,
image: np.ndarray,
output_size: Tuple[int, int],
annotation: Optional[Dict[str, Any]] = None,
constant_values: Union[float, Iterable[float]] = 0,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
update_bboxes: bool = True,
) -> np.ndarray:
"""
Pad an image with zeros to the given size.
"""
input_height, input_width = get_image_size(image, channel_dim=input_data_format)
output_height, output_width = output_size
pad_bottom = output_height - input_height
pad_right = output_width - input_width
padding = ((0, pad_bottom), (0, pad_right))
padded_image = pad(
image,
padding,
mode=PaddingMode.CONSTANT,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
)
if annotation is not None:
annotation = self._update_annotation_for_padded_image(
annotation, (input_height, input_width), (output_height, output_width), padding, update_bboxes
)
return padded_image, annotation
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.pad
def pad(
self,
images: List[np.ndarray],
annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
constant_values: Union[float, Iterable[float]] = 0,
return_pixel_mask: bool = True,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
update_bboxes: bool = True,
pad_size: Optional[Dict[str, int]] = None,
) -> BatchFeature:
"""
Pads a batch of images to the bottom and right of the image with zeros to the size of largest height and width
in the batch and optionally returns their corresponding pixel mask.
Args:
images (List[`np.ndarray`]):
Images to pad.
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
Annotations to transform according to the padding that is applied to the images.
constant_values (`float` or `Iterable[float]`, *optional*):
The value to use for the padding if `mode` is `"constant"`.
return_pixel_mask (`bool`, *optional*, defaults to `True`):
Whether to return a pixel mask.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
update_bboxes (`bool`, *optional*, defaults to `True`):
Whether to update the bounding boxes in the annotations to match the padded images. If the
bounding boxes have not been converted to relative coordinates and `(centre_x, centre_y, width, height)`
format, the bounding boxes will not be updated.
pad_size (`Dict[str, int]`, *optional*):
The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size
provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest
height and width in the batch.
"""
pad_size = pad_size if pad_size is not None else self.pad_size
if pad_size is not None:
padded_size = (pad_size["height"], pad_size["width"])
else:
padded_size = get_max_height_width(images, input_data_format=input_data_format)
annotation_list = annotations if annotations is not None else [None] * len(images)
padded_images = []
padded_annotations = []
for image, annotation in zip(images, annotation_list):
padded_image, padded_annotation = self._pad_image(
image,
padded_size,
annotation,
constant_values=constant_values,
data_format=data_format,
input_data_format=input_data_format,
update_bboxes=update_bboxes,
)
padded_images.append(padded_image)
padded_annotations.append(padded_annotation)
data = {"pixel_values": padded_images}
if return_pixel_mask:
masks = [
make_pixel_mask(image=image, output_size=padded_size, input_data_format=input_data_format)
for image in images
]
data["pixel_mask"] = masks
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
if annotations is not None:
encoded_inputs["labels"] = [
BatchFeature(annotation, tensor_type=return_tensors) for annotation in padded_annotations
]
return encoded_inputs
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.preprocess
def preprocess(
self,
images: ImageInput,
annotations: Optional[Union[AnnotationType, List[AnnotationType]]] = None,
return_segmentation_masks: bool = None,
masks_path: Optional[Union[str, pathlib.Path]] = None,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample=None, # PILImageResampling
do_rescale: Optional[bool] = None,
rescale_factor: Optional[Union[int, float]] = None,
do_normalize: Optional[bool] = None,
do_convert_annotations: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_pad: Optional[bool] = None,
format: Optional[Union[str, AnnotationFormat]] = None,
return_tensors: Optional[Union[TensorType, str]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
pad_size: Optional[Dict[str, int]] = None,
**kwargs,
) -> BatchFeature:
"""
Preprocess an image or a batch of images so that it can be used by the model.
Args:
images (`ImageInput`):
Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging
from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
annotations (`AnnotationType` or `List[AnnotationType]`, *optional*):
List of annotations associated with the image or batch of images. If annotation is for object
detection, the annotations should be a dictionary with the following keys:
- "image_id" (`int`): The image id.
- "annotations" (`List[Dict]`): List of annotations for an image. Each annotation should be a
dictionary. An image can have no annotations, in which case the list should be empty.
If annotation is for segmentation, the annotations should be a dictionary with the following keys:
- "image_id" (`int`): The image id.
- "segments_info" (`List[Dict]`): List of segments for an image. Each segment should be a dictionary.
An image can have no segments, in which case the list should be empty.
- "file_name" (`str`): The file name of the image.
return_segmentation_masks (`bool`, *optional*, defaults to self.return_segmentation_masks):
Whether to return segmentation masks.
masks_path (`str` or `pathlib.Path`, *optional*):
Path to the directory containing the segmentation masks.
do_resize (`bool`, *optional*, defaults to self.do_resize):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to self.size):
Size of the image's `(height, width)` dimensions after resizing. Available options are:
- `{"height": int, "width": int}`: The image will be resized to the exact size `(height, width)`.
Do NOT keep the aspect ratio.
- `{"shortest_edge": int, "longest_edge": int}`: The image will be resized to a maximum size respecting
the aspect ratio and keeping the shortest edge less or equal to `shortest_edge` and the longest edge
less or equal to `longest_edge`.
- `{"max_height": int, "max_width": int}`: The image will be resized to the maximum size respecting the
aspect ratio and keeping the height less or equal to `max_height` and the width less or equal to
`max_width`.
resample (`PILImageResampling`, *optional*, defaults to self.resample):
Resampling filter to use when resizing the image.
do_rescale (`bool`, *optional*, defaults to self.do_rescale):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to self.rescale_factor):
Rescale factor to use when rescaling the image.
do_normalize (`bool`, *optional*, defaults to self.do_normalize):
Whether to normalize the image.
do_convert_annotations (`bool`, *optional*, defaults to self.do_convert_annotations):
Whether to convert the annotations to the format expected by the model. Converts the bounding
boxes from the format `(top_left_x, top_left_y, width, height)` to `(center_x, center_y, width, height)`
and in relative coordinates.
image_mean (`float` or `List[float]`, *optional*, defaults to self.image_mean):
Mean to use when normalizing the image.
image_std (`float` or `List[float]`, *optional*, defaults to self.image_std):
Standard deviation to use when normalizing the image.
do_pad (`bool`, *optional*, defaults to self.do_pad):
Whether to pad the image. If `True`, padding will be applied to the bottom and right of
the image with zeros. If `pad_size` is provided, the image will be padded to the specified
dimensions. Otherwise, the image will be padded to the maximum height and width of the batch.
format (`str` or `AnnotationFormat`, *optional*, defaults to self.format):
Format of the annotations.
return_tensors (`str` or `TensorType`, *optional*, defaults to self.return_tensors):
Type of tensors to return. If `None`, will return the list of images.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
pad_size (`Dict[str, int]`, *optional*):
The size `{"height": int, "width" int}` to pad the images to. Must be larger than any image size
provided for preprocessing. If `pad_size` is not provided, images will be padded to the largest
height and width in the batch.
"""
if "pad_and_return_pixel_mask" in kwargs:
logger.warning_once(
"The `pad_and_return_pixel_mask` argument is deprecated and will be removed in a future version, "
"use `do_pad` instead."
)
do_pad = kwargs.pop("pad_and_return_pixel_mask")
max_size = None
if "max_size" in kwargs:
logger.warning_once(
"The `max_size` argument is deprecated and will be removed in a future version, use"
" `size['longest_edge']` instead."
)
size = kwargs.pop("max_size")
do_resize = self.do_resize if do_resize is None else do_resize
size = self.size if size is None else size
size = get_size_dict(size=size, max_size=max_size, default_to_square=False)
resample = self.resample if resample is None else resample
do_rescale = self.do_rescale if do_rescale is None else do_rescale
rescale_factor = self.rescale_factor if rescale_factor is None else rescale_factor
do_normalize = self.do_normalize if do_normalize is None else do_normalize
image_mean = self.image_mean if image_mean is None else image_mean
image_std = self.image_std if image_std is None else image_std
do_convert_annotations = (
self.do_convert_annotations if do_convert_annotations is None else do_convert_annotations
)
do_pad = self.do_pad if do_pad is None else do_pad
pad_size = self.pad_size if pad_size is None else pad_size
format = self.format if format is None else format
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
# Here, the pad() method pads to the maximum of (width, height). It does not need to be validated.
validate_preprocess_arguments(
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_resize=do_resize,
size=size,
resample=resample,
)
if annotations is not None and isinstance(annotations, dict):
annotations = [annotations]
if annotations is not None and len(images) != len(annotations):
raise ValueError(
f"The number of images ({len(images)}) and annotations ({len(annotations)}) do not match."
)
format = AnnotationFormat(format)
if annotations is not None:
validate_annotations(format, SUPPORTED_ANNOTATION_FORMATS, annotations)
if (
masks_path is not None
and format == AnnotationFormat.COCO_PANOPTIC
and not isinstance(masks_path, (pathlib.Path, str))
):
raise ValueError(
"The path to the directory containing the mask PNG files should be provided as a"
f" `pathlib.Path` or string object, but is {type(masks_path)} instead."
)
# All transformations expect numpy arrays
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
# prepare (COCO annotations as a list of Dict -> DETR target as a single Dict per image)
if annotations is not None:
prepared_images = []
prepared_annotations = []
for image, target in zip(images, annotations):
target = self.prepare_annotation(
image,
target,
format,
return_segmentation_masks=return_segmentation_masks,
masks_path=masks_path,
input_data_format=input_data_format,
)
prepared_images.append(image)
prepared_annotations.append(target)
images = prepared_images
annotations = prepared_annotations
del prepared_images, prepared_annotations
# transformations
if do_resize:
if annotations is not None:
resized_images, resized_annotations = [], []
for image, target in zip(images, annotations):
orig_size = get_image_size(image, input_data_format)
resized_image = self.resize(
image, size=size, max_size=max_size, resample=resample, input_data_format=input_data_format
)
resized_annotation = self.resize_annotation(
target, orig_size, get_image_size(resized_image, input_data_format)
)
resized_images.append(resized_image)
resized_annotations.append(resized_annotation)
images = resized_images
annotations = resized_annotations
del resized_images, resized_annotations
else:
images = [
self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_rescale:
images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images]
if do_normalize:
images = [
self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images
]
if do_convert_annotations and annotations is not None:
annotations = [
self.normalize_annotation(annotation, get_image_size(image, input_data_format))
for annotation, image in zip(annotations, images)
]
if do_pad:
# Pads images and returns their mask: {'pixel_values': ..., 'pixel_mask': ...}
encoded_inputs = self.pad(
images,
annotations=annotations,
return_pixel_mask=True,
data_format=data_format,
input_data_format=input_data_format,
update_bboxes=do_convert_annotations,
return_tensors=return_tensors,
pad_size=pad_size,
)
else:
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
for image in images
]
encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
if annotations is not None:
encoded_inputs["labels"] = [
BatchFeature(annotation, tensor_type=return_tensors) for annotation in annotations
]
return encoded_inputs
# POSTPROCESSING METHODS - TODO: add support for other frameworks
def post_process(self, outputs, target_sizes):
"""
Converts the output of [`ConditionalDetrForObjectDetection`] into the format expected by the Pascal VOC format (xmin, ymin, xmax, ymax).
Only supports PyTorch.
Args:
outputs ([`ConditionalDetrObjectDetectionOutput`]):
Raw outputs of the model.
target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
Tensor containing the size (h, w) of each image of the batch. For evaluation, this must be the original
image size (before any data augmentation). For visualization, this should be the image size after data
augment, but before padding.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
logging.warning_once(
"`post_process` is deprecated and will be removed in v5 of Transformers, please use"
" `post_process_object_detection` instead, with `threshold=0.` for equivalent results.",
)
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
if len(out_logits) != len(target_sizes):
raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
if target_sizes.shape[1] != 2:
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
prob = out_logits.sigmoid()
topk_values, topk_indexes = torch.topk(prob.view(out_logits.shape[0], -1), 300, dim=1)
scores = topk_values
topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode="floor")
labels = topk_indexes % out_logits.shape[2]
boxes = center_to_corners_format(out_bbox)
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
# and from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1)
boxes = boxes * scale_fct[:, None, :]
results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)]
return results
# Copied from transformers.models.deformable_detr.image_processing_deformable_detr.DeformableDetrImageProcessor.post_process_object_detection with DeformableDetr->ConditionalDetr
def post_process_object_detection(
self, outputs, threshold: float = 0.5, target_sizes: Union[TensorType, List[Tuple]] = None, top_k: int = 100
):
"""
Converts the raw output of [`ConditionalDetrForObjectDetection`] into final bounding boxes in (top_left_x,
top_left_y, bottom_right_x, bottom_right_y) format. Only supports PyTorch.
Args:
outputs ([`DetrObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*):
Score threshold to keep object detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
(height, width) of each image in the batch. If left to None, predictions will not be resized.
top_k (`int`, *optional*, defaults to 100):
Keep only top k bounding boxes before filtering by thresholding.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
out_logits, out_bbox = outputs.logits, outputs.pred_boxes
if target_sizes is not None:
if len(out_logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
prob = out_logits.sigmoid()
prob = prob.view(out_logits.shape[0], -1)
k_value = min(top_k, prob.size(1))
topk_values, topk_indexes = torch.topk(prob, k_value, dim=1)
scores = topk_values
topk_boxes = torch.div(topk_indexes, out_logits.shape[2], rounding_mode="floor")
labels = topk_indexes % out_logits.shape[2]
boxes = center_to_corners_format(out_bbox)
boxes = torch.gather(boxes, 1, topk_boxes.unsqueeze(-1).repeat(1, 1, 4))
# and from relative [0, 1] to absolute [0, height] coordinates
if target_sizes is not None:
if isinstance(target_sizes, List):
img_h = torch.Tensor([i[0] for i in target_sizes])
img_w = torch.Tensor([i[1] for i in target_sizes])
else:
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
results = []
for s, l, b in zip(scores, labels, boxes):
score = s[s > threshold]
label = l[s > threshold]
box = b[s > threshold]
results.append({"scores": score, "labels": label, "boxes": box})
return results
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_semantic_segmentation with Detr->ConditionalDetr
def post_process_semantic_segmentation(self, outputs, target_sizes: List[Tuple[int, int]] = None):
"""
Converts the output of [`ConditionalDetrForSegmentation`] into semantic segmentation maps. Only supports PyTorch.
Args:
outputs ([`ConditionalDetrForSegmentation`]):
Raw outputs of the model.
target_sizes (`List[Tuple[int, int]]`, *optional*):
A list of tuples (`Tuple[int, int]`) containing the target size (height, width) of each image in the
batch. If unset, predictions will not be resized.
Returns:
`List[torch.Tensor]`:
A list of length `batch_size`, where each item is a semantic segmentation map of shape (height, width)
corresponding to the target_sizes entry (if `target_sizes` is specified). Each entry of each
`torch.Tensor` correspond to a semantic class id.
"""
class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1]
masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width]
# Remove the null class `[..., :-1]`
masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1]
masks_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
# Semantic segmentation logits of shape (batch_size, num_classes, height, width)
segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs)
batch_size = class_queries_logits.shape[0]
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if batch_size != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
semantic_segmentation = []
for idx in range(batch_size):
resized_logits = nn.functional.interpolate(
segmentation[idx].unsqueeze(dim=0), size=target_sizes[idx], mode="bilinear", align_corners=False
)
semantic_map = resized_logits[0].argmax(dim=0)
semantic_segmentation.append(semantic_map)
else:
semantic_segmentation = segmentation.argmax(dim=1)
semantic_segmentation = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_instance_segmentation with Detr->ConditionalDetr
def post_process_instance_segmentation(
self,
outputs,
threshold: float = 0.5,
mask_threshold: float = 0.5,
overlap_mask_area_threshold: float = 0.8,
target_sizes: Optional[List[Tuple[int, int]]] = None,
return_coco_annotation: Optional[bool] = False,
) -> List[Dict]:
"""
Converts the output of [`ConditionalDetrForSegmentation`] into instance segmentation predictions. Only supports PyTorch.
Args:
outputs ([`ConditionalDetrForSegmentation`]):
Raw outputs of the model.
threshold (`float`, *optional*, defaults to 0.5):
The probability score threshold to keep predicted instance masks.
mask_threshold (`float`, *optional*, defaults to 0.5):
Threshold to use when turning the predicted masks into binary values.
overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8):
The overlap mask area threshold to merge or discard small disconnected parts within each binary
instance mask.
target_sizes (`List[Tuple]`, *optional*):
List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested
final size (height, width) of each prediction. If unset, predictions will not be resized.
return_coco_annotation (`bool`, *optional*):
Defaults to `False`. If set to `True`, segmentation maps are returned in COCO run-length encoding (RLE)
format.
Returns:
`List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys:
- **segmentation** -- A tensor of shape `(height, width)` where each pixel represents a `segment_id` or
`List[List]` run-length encoding (RLE) of the segmentation map if return_coco_annotation is set to
`True`. Set to `None` if no mask if found above `threshold`.
- **segments_info** -- A dictionary that contains additional information on each segment.
- **id** -- An integer representing the `segment_id`.
- **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`.
- **score** -- Prediction score of segment with `segment_id`.
"""
class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1]
masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width]
batch_size = class_queries_logits.shape[0]
num_labels = class_queries_logits.shape[-1] - 1
mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
# Predicted label and score of each query (batch_size, num_queries)
pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1)
# Loop over items in batch size
results: List[Dict[str, TensorType]] = []
for i in range(batch_size):
mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects(
mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels
)
# No mask found
if mask_probs_item.shape[0] <= 0:
height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:]
segmentation = torch.zeros((height, width)) - 1
results.append({"segmentation": segmentation, "segments_info": []})
continue
# Get segmentation map and segment information of batch item
target_size = target_sizes[i] if target_sizes is not None else None
segmentation, segments = compute_segments(
mask_probs=mask_probs_item,
pred_scores=pred_scores_item,
pred_labels=pred_labels_item,
mask_threshold=mask_threshold,
overlap_mask_area_threshold=overlap_mask_area_threshold,
label_ids_to_fuse=[],
target_size=target_size,
)
# Return segmentation map in run-length encoding (RLE) format
if return_coco_annotation:
segmentation = convert_segmentation_to_rle(segmentation)
results.append({"segmentation": segmentation, "segments_info": segments})
return results
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.post_process_panoptic_segmentation with Detr->ConditionalDetr
def post_process_panoptic_segmentation(
self,
outputs,
threshold: float = 0.5,
mask_threshold: float = 0.5,
overlap_mask_area_threshold: float = 0.8,
label_ids_to_fuse: Optional[Set[int]] = None,
target_sizes: Optional[List[Tuple[int, int]]] = None,
) -> List[Dict]:
"""
Converts the output of [`ConditionalDetrForSegmentation`] into image panoptic segmentation predictions. Only supports
PyTorch.
Args:
outputs ([`ConditionalDetrForSegmentation`]):
The outputs from [`ConditionalDetrForSegmentation`].
threshold (`float`, *optional*, defaults to 0.5):
The probability score threshold to keep predicted instance masks.
mask_threshold (`float`, *optional*, defaults to 0.5):
Threshold to use when turning the predicted masks into binary values.
overlap_mask_area_threshold (`float`, *optional*, defaults to 0.8):
The overlap mask area threshold to merge or discard small disconnected parts within each binary
instance mask.
label_ids_to_fuse (`Set[int]`, *optional*):
The labels in this state will have all their instances be fused together. For instance we could say
there can only be one sky in an image, but several persons, so the label ID for sky would be in that
set, but not the one for person.
target_sizes (`List[Tuple]`, *optional*):
List of length (batch_size), where each list item (`Tuple[int, int]]`) corresponds to the requested
final size (height, width) of each prediction in batch. If unset, predictions will not be resized.
Returns:
`List[Dict]`: A list of dictionaries, one per image, each dictionary containing two keys:
- **segmentation** -- a tensor of shape `(height, width)` where each pixel represents a `segment_id` or
`None` if no mask if found above `threshold`. If `target_sizes` is specified, segmentation is resized to
the corresponding `target_sizes` entry.
- **segments_info** -- A dictionary that contains additional information on each segment.
- **id** -- an integer representing the `segment_id`.
- **label_id** -- An integer representing the label / semantic class id corresponding to `segment_id`.
- **was_fused** -- a boolean, `True` if `label_id` was in `label_ids_to_fuse`, `False` otherwise.
Multiple instances of the same class / label were fused and assigned a single `segment_id`.
- **score** -- Prediction score of segment with `segment_id`.
"""
if label_ids_to_fuse is None:
logger.warning_once("`label_ids_to_fuse` unset. No instance will be fused.")
label_ids_to_fuse = set()
class_queries_logits = outputs.logits # [batch_size, num_queries, num_classes+1]
masks_queries_logits = outputs.pred_masks # [batch_size, num_queries, height, width]
batch_size = class_queries_logits.shape[0]
num_labels = class_queries_logits.shape[-1] - 1
mask_probs = masks_queries_logits.sigmoid() # [batch_size, num_queries, height, width]
# Predicted label and score of each query (batch_size, num_queries)
pred_scores, pred_labels = nn.functional.softmax(class_queries_logits, dim=-1).max(-1)
# Loop over items in batch size
results: List[Dict[str, TensorType]] = []
for i in range(batch_size):
mask_probs_item, pred_scores_item, pred_labels_item = remove_low_and_no_objects(
mask_probs[i], pred_scores[i], pred_labels[i], threshold, num_labels
)
# No mask found
if mask_probs_item.shape[0] <= 0:
height, width = target_sizes[i] if target_sizes is not None else mask_probs_item.shape[1:]
segmentation = torch.zeros((height, width)) - 1
results.append({"segmentation": segmentation, "segments_info": []})
continue
# Get segmentation map and segment information of batch item
target_size = target_sizes[i] if target_sizes is not None else None
segmentation, segments = compute_segments(
mask_probs=mask_probs_item,
pred_scores=pred_scores_item,
pred_labels=pred_labels_item,
mask_threshold=mask_threshold,
overlap_mask_area_threshold=overlap_mask_area_threshold,
label_ids_to_fuse=label_ids_to_fuse,
target_size=target_size,
)
results.append({"segmentation": segmentation, "segments_info": segments})
return results
|
class_definition
| 30,228 | 85,727 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/image_processing_conditional_detr.py
| null | 4,077 |
class ConditionalDetrConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ConditionalDetrModel`]. It is used to instantiate
a Conditional DETR model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Conditional DETR
[microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
use_timm_backbone (`bool`, *optional*, defaults to `True`):
Whether or not to use the `timm` library for the backbone. If set to `False`, will use the [`AutoBackbone`]
API.
backbone_config (`PretrainedConfig` or `dict`, *optional*):
The configuration of the backbone model. Only used in case `use_timm_backbone` is set to `False` in which
case it will default to `ResNetConfig()`.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
num_queries (`int`, *optional*, defaults to 100):
Number of object queries, i.e. detection slots. This is the maximal number of objects
[`ConditionalDetrModel`] can detect in a single image. For COCO, we recommend 100 queries.
d_model (`int`, *optional*, defaults to 256):
Dimension of the layers.
encoder_layers (`int`, *optional*, defaults to 6):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 6):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 2048):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 2048):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
init_xavier_std (`float`, *optional*, defaults to 1):
The scaling factor used for the Xavier initialization gain in the HM Attention map module.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
auxiliary_loss (`bool`, *optional*, defaults to `False`):
Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
position_embedding_type (`str`, *optional*, defaults to `"sine"`):
Type of position embeddings to be used on top of the image features. One of `"sine"` or `"learned"`.
backbone (`str`, *optional*, defaults to `"resnet50"`):
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
use_pretrained_backbone (`bool`, *optional*, defaults to `True`):
Whether to use pretrained weights for the backbone.
backbone_kwargs (`dict`, *optional*):
Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
dilation (`bool`, *optional*, defaults to `False`):
Whether to replace stride with dilation in the last convolutional block (DC5). Only supported when
`use_timm_backbone` = `True`.
class_cost (`float`, *optional*, defaults to 1):
Relative weight of the classification error in the Hungarian matching cost.
bbox_cost (`float`, *optional*, defaults to 5):
Relative weight of the L1 error of the bounding box coordinates in the Hungarian matching cost.
giou_cost (`float`, *optional*, defaults to 2):
Relative weight of the generalized IoU loss of the bounding box in the Hungarian matching cost.
mask_loss_coefficient (`float`, *optional*, defaults to 1):
Relative weight of the Focal loss in the panoptic segmentation loss.
dice_loss_coefficient (`float`, *optional*, defaults to 1):
Relative weight of the DICE/F-1 loss in the panoptic segmentation loss.
bbox_loss_coefficient (`float`, *optional*, defaults to 5):
Relative weight of the L1 bounding box loss in the object detection loss.
giou_loss_coefficient (`float`, *optional*, defaults to 2):
Relative weight of the generalized IoU loss in the object detection loss.
eos_coefficient (`float`, *optional*, defaults to 0.1):
Relative classification weight of the 'no-object' class in the object detection loss.
focal_alpha (`float`, *optional*, defaults to 0.25):
Alpha parameter in the focal loss.
Examples:
```python
>>> from transformers import ConditionalDetrConfig, ConditionalDetrModel
>>> # Initializing a Conditional DETR microsoft/conditional-detr-resnet-50 style configuration
>>> configuration = ConditionalDetrConfig()
>>> # Initializing a model (with random weights) from the microsoft/conditional-detr-resnet-50 style configuration
>>> model = ConditionalDetrModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "conditional_detr"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__(
self,
use_timm_backbone=True,
backbone_config=None,
num_channels=3,
num_queries=300,
encoder_layers=6,
encoder_ffn_dim=2048,
encoder_attention_heads=8,
decoder_layers=6,
decoder_ffn_dim=2048,
decoder_attention_heads=8,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
is_encoder_decoder=True,
activation_function="relu",
d_model=256,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
init_xavier_std=1.0,
auxiliary_loss=False,
position_embedding_type="sine",
backbone="resnet50",
use_pretrained_backbone=True,
backbone_kwargs=None,
dilation=False,
class_cost=2,
bbox_cost=5,
giou_cost=2,
mask_loss_coefficient=1,
dice_loss_coefficient=1,
cls_loss_coefficient=2,
bbox_loss_coefficient=5,
giou_loss_coefficient=2,
focal_alpha=0.25,
**kwargs,
):
# We default to values which were previously hard-coded in the model. This enables configurability of the config
# while keeping the default behavior the same.
if use_timm_backbone and backbone_kwargs is None:
backbone_kwargs = {}
if dilation:
backbone_kwargs["output_stride"] = 16
backbone_kwargs["out_indices"] = [1, 2, 3, 4]
backbone_kwargs["in_chans"] = num_channels
# Backwards compatibility
elif not use_timm_backbone and backbone in (None, "resnet50"):
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.")
backbone_config = CONFIG_MAPPING["resnet"](out_features=["stage4"])
elif isinstance(backbone_config, dict):
backbone_model_type = backbone_config.get("model_type")
config_class = CONFIG_MAPPING[backbone_model_type]
backbone_config = config_class.from_dict(backbone_config)
verify_backbone_config_arguments(
use_timm_backbone=use_timm_backbone,
use_pretrained_backbone=use_pretrained_backbone,
backbone=backbone,
backbone_config=backbone_config,
backbone_kwargs=backbone_kwargs,
)
self.use_timm_backbone = use_timm_backbone
self.backbone_config = backbone_config
self.num_channels = num_channels
self.num_queries = num_queries
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.init_xavier_std = init_xavier_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.num_hidden_layers = encoder_layers
self.auxiliary_loss = auxiliary_loss
self.position_embedding_type = position_embedding_type
self.backbone = backbone
self.use_pretrained_backbone = use_pretrained_backbone
self.backbone_kwargs = backbone_kwargs
self.dilation = dilation
# Hungarian matcher
self.class_cost = class_cost
self.bbox_cost = bbox_cost
self.giou_cost = giou_cost
# Loss coefficients
self.mask_loss_coefficient = mask_loss_coefficient
self.dice_loss_coefficient = dice_loss_coefficient
self.cls_loss_coefficient = cls_loss_coefficient
self.bbox_loss_coefficient = bbox_loss_coefficient
self.giou_loss_coefficient = giou_loss_coefficient
self.focal_alpha = focal_alpha
super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
@property
def num_attention_heads(self) -> int:
return self.encoder_attention_heads
@property
def hidden_size(self) -> int:
return self.d_model
|
class_definition
| 1,022 | 12,753 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/configuration_conditional_detr.py
| null | 4,078 |
class ConditionalDetrOnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-5
@property
def default_onnx_opset(self) -> int:
return 12
|
class_definition
| 12,756 | 13,284 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/conditional_detr/configuration_conditional_detr.py
| null | 4,079 |
class VisionTextDualEncoderProcessor(ProcessorMixin):
r"""
Constructs a VisionTextDualEncoder processor which wraps an image processor and a tokenizer into a single
processor.
[`VisionTextDualEncoderProcessor`] offers all the functionalities of [`AutoImageProcessor`] and [`AutoTokenizer`].
See the [`~VisionTextDualEncoderProcessor.__call__`] and [`~VisionTextDualEncoderProcessor.decode`] for more
information.
Args:
image_processor ([`AutoImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`PreTrainedTokenizer`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
feature_extractor = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.",
FutureWarning,
)
feature_extractor = kwargs.pop("feature_extractor")
image_processor = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You have to specify an image_processor.")
if tokenizer is None:
raise ValueError("You have to specify a tokenizer.")
super().__init__(image_processor, tokenizer)
self.current_processor = self.image_processor
def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to VisionTextDualEncoderTokenizer's [`~PreTrainedTokenizer.__call__`] if `text` is not
`None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwargs` arguments to
AutoImageProcessor's [`~AutoImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none.")
if text is not None:
encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
if images is not None:
image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
if text is not None and images is not None:
encoding["pixel_values"] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to VisionTextDualEncoderTokenizer's
[`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to VisionTextDualEncoderTokenizer's [`~PreTrainedTokenizer.decode`].
Please refer to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
@property
def feature_extractor_class(self):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
FutureWarning,
)
return self.image_processor_class
@property
def feature_extractor(self):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
FutureWarning,
)
return self.image_processor
|
class_definition
| 775 | 6,928 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vision_text_dual_encoder/processing_vision_text_dual_encoder.py
| null | 4,080 |
class TFVisionTextDualEncoderModel(TFPreTrainedModel):
config_class = VisionTextDualEncoderConfig
base_model_prefix = "vision_text_dual_encoder"
load_weight_prefix = "tf_vision_text_dual_encoder_model"
def __init__(
self,
config: Optional[VisionTextDualEncoderConfig] = None,
vision_model: Optional[TFPreTrainedModel] = None,
text_model: Optional[TFPreTrainedModel] = None,
):
if config is None and (vision_model is None or text_model is None):
raise ValueError("Either a configuration or an vision and a text model has to be provided")
if config is None:
config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_model.config, text_model.config)
else:
if not isinstance(config, self.config_class):
raise ValueError(f"config: {config} has to be of type {self.config_class}")
# initialize with config
super().__init__(config)
if vision_model is None:
if isinstance(config.vision_config, CLIPVisionConfig):
vision_model = TFCLIPVisionModel.from_config(config.vision_config, name="vision_model")
else:
vision_model = TFAutoModel.from_config(config.vision_config, name="vision_model")
if text_model is None:
text_model = TFAutoModel.from_config(config.text_config, name="text_model")
self.vision_model = vision_model
self.text_model = text_model
# make sure that the individual model's config refers to the shared config
# so that the updates to the config will be synced
self.vision_model.config = self.config.vision_config
self.text_model.config = self.config.text_config
self.vision_embed_dim = config.vision_config.hidden_size
self.text_embed_dim = config.text_config.hidden_size
self.projection_dim = config.projection_dim
self.visual_projection = keras.layers.Dense(self.projection_dim, use_bias=False, name="visual_projection")
self.text_projection = keras.layers.Dense(self.projection_dim, use_bias=False, name="text_projection")
self.logit_scale = None
self.config = config
def build(self, input_shape=None):
if self.built:
return
self.built = True
# Build in the build() method to make sure the names are right
initializer = keras.initializers.Constant(self.config.logit_scale_init_value)
self.logit_scale = self.add_weight(shape=(1,), initializer=initializer, name="logit_scale")
if getattr(self, "visual_projection", None) is not None:
with tf.name_scope(self.visual_projection.name):
self.visual_projection.build([None, None, self.vision_embed_dim])
if getattr(self, "text_projection", None) is not None:
with tf.name_scope(self.text_projection.name):
self.text_projection.build([None, None, self.text_embed_dim])
with tf.name_scope(self.vision_model.name):
self.vision_model.build(None)
with tf.name_scope(self.text_model.name):
self.text_model.build(None)
def tf_to_pt_weight_rename(self, tf_weight):
# Matt: The TF and PT weights don't align because our TF base classes have an extra layer compared to PT models
# (the main model stem is in the MainLayer class). If we remove that layer, then weight names sync up as normal.
# However, the name of that extra layer is the name of the MainLayer in the base model.
if "vision_model" in tf_weight:
if tf_weight.count("vision_model") == 1:
return (re.sub(r"vision_model\..*?\.", "vision_model.", tf_weight),)
elif tf_weight.count("vision_model") == 2:
return (re.sub(r"vision_model\..*?\.vision_model", "vision_model.vision_model", tf_weight),)
else:
raise ValueError(
f"Unexpected weight name {tf_weight}. Please file an issue on the"
" Transformers repo to let us know about this error!"
)
elif "text_model" in tf_weight:
return (re.sub(r"text_model\..*?\.", "text_model.", tf_weight),)
else:
return (tf_weight,)
@add_start_docstrings_to_model_forward(VISION_TEXT_DUAL_ENCODER_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
token_type_ids=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Returns:
text_features (`tf.Tensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying
the projection layer to the pooled output of [`TFCLIPTextModel`].
Examples:
```python
>>> from transformers import TFVisionTextDualEncoderModel, AutoTokenizer
>>> model = TFVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian", from_pt=True)
>>> tokenizer = AutoTokenizer.from_pretrained("clip-italian/clip-italian")
>>> inputs = tokenizer(["una foto di un gatto", "una foto di un cane"], padding=True, return_tensors="np")
>>> text_features = model.get_text_features(**inputs)
```"""
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = text_outputs[1]
text_features = self.text_projection(pooled_output)
return text_features
@add_start_docstrings_to_model_forward(VISION_TEXT_DUAL_ENCODER_VISION_INPUTS_DOCSTRING)
def get_image_features(
self,
pixel_values=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Returns:
image_features (`tf.Tensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying
the projection layer to the pooled output of [`TFCLIPVisionModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import TFVisionTextDualEncoderModel, AutoImageProcessor
>>> model = TFVisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian", from_pt=True)
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor(images=image, return_tensors="np")
>>> image_features = model.get_image_features(**inputs)
```"""
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = vision_outputs[1] # pooled_output
image_features = self.visual_projection(pooled_output)
return image_features
@unpack_inputs
@add_start_docstrings_to_model_forward(VISION_TEXT_DUAL_ENCODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFCLIPOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: tf.Tensor | None = None,
pixel_values: tf.Tensor | None = None,
attention_mask: tf.Tensor | None = None,
position_ids: tf.Tensor | None = None,
return_loss: Optional[bool] = None,
token_type_ids: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFCLIPOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import (
... TFVisionTextDualEncoderModel,
... VisionTextDualEncoderProcessor,
... AutoImageProcessor,
... AutoTokenizer,
... )
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
>>> processor = VisionTextDualEncoderProcessor(image_processor, tokenizer)
>>> model = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
... "google/vit-base-patch16-224", "google-bert/bert-base-uncased"
... )
>>> # contrastive training
>>> urls = [
... "http://images.cocodataset.org/val2017/000000039769.jpg",
... "https://farm3.staticflickr.com/2674/5850229113_4fe05d5265_z.jpg",
... ]
>>> images = [Image.open(requests.get(url, stream=True).raw) for url in urls]
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=images, return_tensors="np", padding=True
... )
>>> outputs = model(
... input_ids=inputs.input_ids,
... attention_mask=inputs.attention_mask,
... pixel_values=inputs.pixel_values,
... return_loss=True,
... )
>>> loss, logits_per_image = outputs.loss, outputs.logits_per_image # this is the image-text similarity score
>>> # save and load from pretrained
>>> model.save_pretrained("vit-bert")
>>> model = TFVisionTextDualEncoderModel.from_pretrained("vit-bert")
>>> # inference
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = tf.nn.softmax(logits_per_image, axis=1) # we can take the softmax to get the label probabilities
```"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
image_embeds = vision_outputs[1] # pooler_output
image_embeds = self.visual_projection(image_embeds)
text_embeds = text_outputs[1] # pooler_output
text_embeds = self.text_projection(text_embeds)
# normalized features
image_embeds = image_embeds / tf.norm(image_embeds, axis=-1, keepdims=True)
text_embeds = text_embeds / tf.norm(text_embeds, axis=-1, keepdims=True)
# cosine similarity as logits
logit_scale = tf.math.exp(self.logit_scale)
logits_per_text = tf.matmul(text_embeds, image_embeds, transpose_b=True) * logit_scale
logits_per_image = tf.transpose(logits_per_text)
loss = None
if return_loss:
loss = clip_loss(logits_per_text)
if loss.shape.rank == 0:
loss = tf.expand_dims(loss, 0)
if not return_dict:
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output
return TFCLIPOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
@classmethod
def from_vision_text_pretrained(
cls,
vision_model_name_or_path: str = None,
text_model_name_or_path: str = None,
*model_args,
**kwargs,
) -> TFPreTrainedModel:
"""
Params:
vision_model_name_or_path (`str`, *optional*, defaults to `None`):
Information necessary to initiate the vision model. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *PyTorch checkpoint folder* (e.g, `./pt_model`). In this case, `from_pt`
should be set to `True` and a configuration object should be provided as `config` argument.
text_model_name_or_path (`str`, *optional*):
Information necessary to initiate the text model. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~TFPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *PyTorch checkpoint folder* (e.g, `./pt_model`). In this case, `from_pt`
should be set to `True` and a configuration object should be provided as `config` argument.
model_args (remaining positional arguments, *optional*):
All remaning positional arguments will be passed to the underlying model's `__init__` method.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`).
- To update the text configuration, use the prefix *text_* for each configuration parameter.
- To update the vision configuration, use the prefix *vision_* for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a `config` is provided or automatically loaded.
Example:
```python
>>> from transformers import TFVisionTextDualEncoderModel
>>> # initialize a model from pretrained ViT and BERT models. Note that the projection layers will be randomly initialized.
>>> model = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
... "google/vit-base-patch16-224", "google-bert/bert-base-uncased"
... )
>>> # saving model after fine-tuning
>>> model.save_pretrained("./vit-bert")
>>> # load fine-tuned model
>>> model = TFVisionTextDualEncoderModel.from_pretrained("./vit-bert")
```"""
kwargs_vision = {
argument[len("vision_") :]: value for argument, value in kwargs.items() if argument.startswith("vision_")
}
kwargs_text = {
argument[len("text_") :]: value for argument, value in kwargs.items() if argument.startswith("text_")
}
# remove vision, text kwargs from kwargs
for key in kwargs_vision.keys():
del kwargs["vision_" + key]
for key in kwargs_text.keys():
del kwargs["text_" + key]
# Load and initialize the vision and text model
vision_model = kwargs_vision.pop("model", None)
if vision_model is None:
if vision_model_name_or_path is None:
raise ValueError(
"If `vision_model` is not defined as an argument, a `vision_model_name_or_path` has to be defined"
)
kwargs_vision["name"] = "vision_model"
kwargs_vision["load_weight_prefix"] = cls.load_weight_prefix
vision_config_dict, unused_args = PretrainedConfig.get_config_dict(vision_model_name_or_path, **kwargs)
if vision_config_dict.get("model_type", None) == "clip_vision_model":
vision_config = CLIPVisionConfig.from_dict(vision_config_dict)
else:
vision_config = AutoConfig.from_pretrained(vision_model_name_or_path)
if vision_config.model_type == "clip_vision_model":
kwargs_vision["config"] = vision_config
vision_class = TFCLIPVisionModel
elif vision_config.model_type == "clip":
kwargs_vision["config"] = vision_config.vision_config
vision_class = TFCLIPVisionModel
else:
kwargs_vision["config"] = vision_config
vision_class = TFAutoModel
vision_model = vision_class.from_pretrained(vision_model_name_or_path, *model_args, **kwargs_vision)
text_model = kwargs_text.pop("model", None)
if text_model is None:
if text_model_name_or_path is None:
raise ValueError(
"If `text_model` is not defined as an argument, a `text_model_name_or_path` has to be defined"
)
kwargs_text["name"] = "text_model"
kwargs_text["load_weight_prefix"] = cls.load_weight_prefix
if "config" not in kwargs_text:
text_config = AutoConfig.from_pretrained(text_model_name_or_path)
kwargs_text["config"] = text_config
text_model = TFAutoModel.from_pretrained(text_model_name_or_path, *model_args, **kwargs_text)
# instantiate config with corresponding kwargs
config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_model.config, text_model.config, **kwargs)
# init model
model = cls(config=config, vision_model=vision_model, text_model=text_model)
# the projection layers are always newly initialized when loading the model
# using pre-trained vision and text model.
logger.warning(
"The projection layer and logit scale weights `['visual_projection.weight', 'text_projection.weight',"
" 'logit_scale']` are newly initialized. You should probably TRAIN this model on a down-stream task to be"
" able to use it for predictions and inference."
)
if vision_model.name != "vision_model":
raise ValueError("vision model must be created with the name `vision_model`.")
if text_model.name != "text_model":
raise ValueError("text model must be created with the name `text_model`.")
model.build_in_name_scope() # Ensure model is fully built
return model
@property
def dummy_inputs(self):
"""
Dummy inputs to build the network.
Returns:
`Dict[str, tf.Tensor]`: The dummy inputs.
"""
input_ids = tf.constant(DUMMY_INPUTS, dtype=tf.int32)
batch_size, seq_len = input_ids.shape
VISION_DUMMY_INPUTS = tf.random.uniform(
shape=(
batch_size,
self.config.vision_config.num_channels,
self.config.vision_config.image_size,
self.config.vision_config.image_size,
),
dtype=tf.float32,
)
pixel_values = tf.constant(VISION_DUMMY_INPUTS)
dummy = {"pixel_values": pixel_values, "input_ids": input_ids}
return dummy
|
class_definition
| 8,694 | 28,639 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vision_text_dual_encoder/modeling_tf_vision_text_dual_encoder.py
| null | 4,081 |
class FlaxVisionTextDualEncoderModule(nn.Module):
config: VisionTextDualEncoderConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
vision_config = self.config.vision_config
text_config = self.config.text_config
self.vision_embed_dim = vision_config.hidden_size
self.text_embed_dim = text_config.hidden_size
self.projection_dim = self.config.projection_dim
vision_module = FLAX_MODEL_MAPPING.get(self.config.vision_config.__class__, FlaxCLIPVisionModel).module_class
text_module = FLAX_MODEL_MAPPING[self.config.text_config.__class__].module_class
self.vision_model = vision_module(vision_config, dtype=self.dtype)
self.text_model = text_module(text_config, dtype=self.dtype)
self.visual_projection = nn.Dense(
self.projection_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(0.02),
use_bias=False,
)
self.text_projection = nn.Dense(
self.projection_dim,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(0.02),
use_bias=False,
)
self.logit_scale = self.param(
"logit_scale", lambda _, shape: jnp.ones(shape) * self.config.logit_scale_init_value, []
)
def __call__(
self,
input_ids=None,
pixel_values=None,
attention_mask=None,
position_ids=None,
token_type_ids=None,
deterministic: bool = True,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
return_dict = return_dict if return_dict is not None else self.config.return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = vision_outputs[1]
image_embeds = self.visual_projection(image_embeds)
text_embeds = text_outputs[1]
text_embeds = self.text_projection(text_embeds)
# normalized features
image_embeds = image_embeds / jnp.linalg.norm(image_embeds, axis=-1, keepdims=True)
text_embeds = text_embeds / jnp.linalg.norm(text_embeds, axis=-1, keepdims=True)
# cosine similarity as logits
logit_scale = jnp.exp(self.logit_scale)
logits_per_text = jnp.matmul(text_embeds, image_embeds.T) * logit_scale
logits_per_image = logits_per_text.T
if not return_dict:
return (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return FlaxCLIPOutput(
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
|
class_definition
| 6,567 | 10,012 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vision_text_dual_encoder/modeling_flax_vision_text_dual_encoder.py
| null | 4,082 |
class FlaxVisionTextDualEncoderModel(FlaxPreTrainedModel):
config_class = VisionTextDualEncoderConfig
module_class = FlaxVisionTextDualEncoderModule
def __init__(
self,
config: VisionTextDualEncoderConfig,
input_shape: Optional[Tuple] = None,
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
if not _do_init:
raise ValueError(
"`FlaxVisionTextDualEncoderModel` cannot be created without initializing, `_do_init` must be `True`."
)
if input_shape is None:
input_shape = ((1, 1), (1, config.vision_config.image_size, config.vision_config.image_size, 3))
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensor
input_ids = jnp.zeros(input_shape[0], dtype="i4")
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape[0])
token_type_ids = jnp.ones_like(input_ids)
attention_mask = jnp.ones_like(input_ids)
pixel_values = jax.random.normal(rng, input_shape[1])
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(rngs, input_ids, pixel_values, attention_mask, position_ids, token_type_ids)[
"params"
]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def __call__(
self,
input_ids,
pixel_values,
attention_mask=None,
position_ids=None,
token_type_ids=None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
pixel_values = jnp.transpose(pixel_values, (0, 2, 3, 1))
if position_ids is None:
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
if token_type_ids is None:
token_type_ids = jnp.zeros_like(input_ids)
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
return self.module.apply(
{"params": params or self.params},
jnp.array(input_ids, dtype="i4"),
jnp.array(pixel_values, dtype=jnp.float32),
jnp.array(attention_mask, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
jnp.array(token_type_ids, dtype="i4"),
not train,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
)
def get_text_features(
self,
input_ids,
attention_mask=None,
position_ids=None,
token_type_ids=None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train=False,
):
r"""
Args:
input_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
Returns:
text_features (`jnp.ndarray` of shape `(batch_size, output_dim`): The text embeddings obtained by applying
the projection layer to the pooled output of text model.
"""
if position_ids is None:
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
if token_type_ids is None:
token_type_ids = jnp.zeros_like(input_ids)
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
def _get_features(module, input_ids, attention_mask, position_ids, token_type_ids, deterministic):
text_outputs = module.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
token_type_ids=token_type_ids,
deterministic=deterministic,
)
pooled_output = text_outputs[1]
text_features = module.text_projection(pooled_output)
return text_features
return self.module.apply(
{"params": params or self.params},
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
jnp.array(token_type_ids, dtype="i4"),
not train,
method=_get_features,
rngs=rngs,
)
def get_image_features(
self, pixel_values, params: dict = None, dropout_rng: jax.random.PRNGKey = None, train=False
):
r"""
Args:
pixel_values (`numpy.ndarray` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained
using [`ImageFeatureExtractionMixin`]. See [`ImageFeatureExtractionMixin.__call__`] for details.
Returns:
image_features (`jnp.ndarray` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the pooled output of vision model.
"""
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
def _get_features(module, pixel_values, deterministic):
vision_outputs = module.vision_model(pixel_values=pixel_values, deterministic=deterministic)
pooled_output = vision_outputs[1] # pooled_output
image_features = module.visual_projection(pooled_output)
return image_features
return self.module.apply(
{"params": params or self.params},
jnp.array(pixel_values, dtype=jnp.float32),
not train,
method=_get_features,
rngs=rngs,
)
@classmethod
def from_vision_text_pretrained(
cls,
vision_model_name_or_path: str = None,
text_model_name_or_path: str = None,
*model_args,
**kwargs,
) -> FlaxPreTrainedModel:
"""
Params:
vision_model_name_or_path (`str`, *optional*, defaults to `None`):
Information necessary to initiate the vision model. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *PyTorch checkpoint folder* (e.g, `./pt_model`). In this case, `from_pt`
should be set to `True` and a configuration object should be provided as `config` argument. This
loading path is slower than converting the PyTorch checkpoint in a Flax model using the provided
conversion scripts and loading the Flax model afterwards.
text_model_name_or_path (`str`, *optional*):
Information necessary to initiate the text model. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~FlaxPreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *PyTorch checkpoint folder* (e.g, `./pt_model`). In this case, `from_pt`
should be set to `True` and a configuration object should be provided as `config` argument. This
loading path is slower than converting the PyTorch checkpoint in a Flax model using the provided
conversion scripts and loading the Flax model afterwards.
model_args (remaining positional arguments, *optional*):
All remaning positional arguments will be passed to the underlying model's `__init__` method.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`).
- To update the text configuration, use the prefix *text_* for each configuration parameter.
- To update the vision configuration, use the prefix *vision_* for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a `config` is provided or automatically loaded.
Example:
```python
>>> from transformers import FlaxVisionTextDualEncoderModel
>>> # initialize a model from pretrained ViT and BERT models. Note that the projection layers will be randomly initialized.
>>> model = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
... "google/vit-base-patch16-224", "google-bert/bert-base-uncased"
... )
>>> # saving model after fine-tuning
>>> model.save_pretrained("./vit-bert")
>>> # load fine-tuned model
>>> model = FlaxVisionTextDualEncoderModel.from_pretrained("./vit-bert")
```"""
kwargs_vision = {
argument[len("vision_") :]: value for argument, value in kwargs.items() if argument.startswith("vision_")
}
kwargs_text = {
argument[len("text_") :]: value for argument, value in kwargs.items() if argument.startswith("text_")
}
# remove text, vision kwargs from kwargs
for key in kwargs_vision.keys():
del kwargs["vision_" + key]
for key in kwargs_text.keys():
del kwargs["text_" + key]
# Load and initialize the text and vision model
vision_model = kwargs_vision.pop("model", None)
if vision_model is None:
if vision_model_name_or_path is None:
raise ValueError(
"If `vision_model` is not defined as an argument, a `vision_model_name_or_path` has to be defined"
)
if "config" not in kwargs_vision:
vision_config = AutoConfig.from_pretrained(vision_model_name_or_path)
if vision_config.model_type == "clip":
kwargs_vision["config"] = vision_config.vision_config
vision_model = FlaxCLIPVisionModel.from_pretrained(
vision_model_name_or_path, *model_args, **kwargs_vision
)
else:
kwargs_vision["config"] = vision_config
vision_model = FlaxAutoModel.from_pretrained(vision_model_name_or_path, *model_args, **kwargs_vision)
text_model = kwargs_text.pop("model", None)
if text_model is None:
if text_model_name_or_path is None:
raise ValueError(
"If `text_model` is not defined as an argument, a `text_model_name_or_path` has to be defined"
)
if "config" not in kwargs_text:
text_config = AutoConfig.from_pretrained(text_model_name_or_path)
kwargs_text["config"] = text_config
text_model = FlaxAutoModel.from_pretrained(text_model_name_or_path, *model_args, **kwargs_text)
# instantiate config with corresponding kwargs
dtype = kwargs.pop("dtype", jnp.float32)
config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_model.config, text_model.config, **kwargs)
# init model
model = cls(config, *model_args, dtype=dtype, **kwargs)
model.params["vision_model"] = vision_model.params
model.params["text_model"] = text_model.params
# the projection layers are always newly initialized when loading the model
# using pre-trained vision and text model.
logger.warning(
"The projection layer and logit scale weights `[('visual_projection', 'kernel'), ('text_projection',"
" 'kernel'), ('logit_scale',)]` are newly initialized. You should probably TRAIN this model on a"
" down-stream task to be able to use it for predictions and inference."
)
return model
|
class_definition
| 10,079 | 24,117 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vision_text_dual_encoder/modeling_flax_vision_text_dual_encoder.py
| null | 4,083 |
class VisionTextDualEncoderConfig(PretrainedConfig):
r"""
[`VisionTextDualEncoderConfig`] is the configuration class to store the configuration of a
[`VisionTextDualEncoderModel`]. It is used to instantiate [`VisionTextDualEncoderModel`] model according to the
specified arguments, defining the text model and vision model configs.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
projection_dim (`int`, *optional*, defaults to 512):
Dimensionality of text and vision projection layers.
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The initial value of the *logit_scale* parameter. Default is used as per the original CLIP implementation.
kwargs (*optional*):
Dictionary of keyword arguments.
Examples:
```python
>>> from transformers import ViTConfig, BertConfig, VisionTextDualEncoderConfig, VisionTextDualEncoderModel
>>> # Initializing a BERT and ViT configuration
>>> config_vision = ViTConfig()
>>> config_text = BertConfig()
>>> config = VisionTextDualEncoderConfig.from_vision_text_configs(config_vision, config_text, projection_dim=512)
>>> # Initializing a BERT and ViT model (with random weights)
>>> model = VisionTextDualEncoderModel(config=config)
>>> # Accessing the model configuration
>>> config_vision = model.config.vision_config
>>> config_text = model.config.text_config
>>> # Saving the model, including its configuration
>>> model.save_pretrained("vit-bert")
>>> # loading model and config from pretrained folder
>>> vision_text_config = VisionTextDualEncoderConfig.from_pretrained("vit-bert")
>>> model = VisionTextDualEncoderModel.from_pretrained("vit-bert", config=vision_text_config)
```"""
model_type = "vision-text-dual-encoder"
sub_configs = {"vision_config": AutoConfig, "text_config": AutoConfig}
is_composition = True
def __init__(self, projection_dim=512, logit_scale_init_value=2.6592, **kwargs):
super().__init__(**kwargs)
if "vision_config" not in kwargs:
raise ValueError("`vision_config` can not be `None`.")
if "text_config" not in kwargs:
raise ValueError("`text_config` can not be `None`.")
vision_config = kwargs.pop("vision_config")
text_config = kwargs.pop("text_config")
vision_model_type = vision_config.pop("model_type")
text_model_type = text_config.pop("model_type")
vision_config_class = VISION_MODEL_CONFIGS.get(vision_model_type)
if vision_config_class is not None:
self.vision_config = vision_config_class(**vision_config)
else:
self.vision_config = AutoConfig.for_model(vision_model_type, **vision_config)
if hasattr(self.vision_config, "vision_config"):
self.vision_config = self.vision_config.vision_config
self.text_config = AutoConfig.for_model(text_model_type, **text_config)
self.projection_dim = projection_dim
self.logit_scale_init_value = logit_scale_init_value
@classmethod
def from_vision_text_configs(cls, vision_config: PretrainedConfig, text_config: PretrainedConfig, **kwargs):
r"""
Instantiate a [`VisionTextDualEncoderConfig`] (or a derived class) from text model configuration and vision
model configuration.
Returns:
[`VisionTextDualEncoderConfig`]: An instance of a configuration object
"""
return cls(vision_config=vision_config.to_dict(), text_config=text_config.to_dict(), **kwargs)
|
class_definition
| 1,212 | 4,969 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vision_text_dual_encoder/configuration_vision_text_dual_encoder.py
| null | 4,084 |
class VisionTextDualEncoderModel(PreTrainedModel):
config_class = VisionTextDualEncoderConfig
base_model_prefix = "vision_text_dual_encoder"
_supports_flash_attn_2 = True
_supports_sdpa = True
def __init__(
self,
config: Optional[VisionTextDualEncoderConfig] = None,
vision_model: Optional[PreTrainedModel] = None,
text_model: Optional[PreTrainedModel] = None,
):
if config is None and (vision_model is None or text_model is None):
raise ValueError("Either a configuration or an vision and a text model has to be provided")
if config is None:
config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_model.config, text_model.config)
else:
if not isinstance(config, self.config_class):
raise ValueError(f"config: {config} has to be of type {self.config_class}")
# initialize with config
super().__init__(config)
if vision_model is None:
if isinstance(config.vision_config, CLIPVisionConfig):
vision_model = CLIPVisionModel(config.vision_config)
else:
vision_model = AutoModel.from_config(config.vision_config)
if text_model is None:
text_model = AutoModel.from_config(config.text_config)
self.vision_model = vision_model
self.text_model = text_model
# make sure that the individual model's config refers to the shared config
# so that the updates to the config will be synced
self.config.vision_config._attn_implementation = self.vision_model.config._attn_implementation
self.config.text_config._attn_implementation = self.text_model.config._attn_implementation
self.vision_model.config = self.config.vision_config
self.text_model.config = self.config.text_config
self.vision_embed_dim = config.vision_config.hidden_size
self.text_embed_dim = config.text_config.hidden_size
self.projection_dim = config.projection_dim
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
@add_start_docstrings_to_model_forward(VISION_TEXT_DUAL_ENCODER_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
token_type_ids=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`CLIPTextModel`].
Examples:
```python
>>> from transformers import VisionTextDualEncoderModel, AutoTokenizer
>>> model = VisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian")
>>> tokenizer = AutoTokenizer.from_pretrained("clip-italian/clip-italian")
>>> inputs = tokenizer(["una foto di un gatto", "una foto di un cane"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
```"""
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = text_outputs[1]
text_features = self.text_projection(pooled_output)
return text_features
@add_start_docstrings_to_model_forward(VISION_TEXT_DUAL_ENCODER_VISION_INPUTS_DOCSTRING)
def get_image_features(
self,
pixel_values=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the pooled output of [`CLIPVisionModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import VisionTextDualEncoderModel, AutoImageProcessor
>>> model = VisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian")
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
```"""
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = vision_outputs[1] # pooled_output
image_features = self.visual_projection(pooled_output)
return image_features
@add_start_docstrings_to_model_forward(VISION_TEXT_DUAL_ENCODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CLIPOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
token_type_ids: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], CLIPOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import (
... VisionTextDualEncoderModel,
... VisionTextDualEncoderProcessor,
... AutoImageProcessor,
... AutoTokenizer,
... )
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
>>> processor = VisionTextDualEncoderProcessor(image_processor, tokenizer)
>>> model = VisionTextDualEncoderModel.from_vision_text_pretrained(
... "google/vit-base-patch16-224", "google-bert/bert-base-uncased"
... )
>>> # contrastive training
>>> urls = [
... "http://images.cocodataset.org/val2017/000000039769.jpg",
... "https://farm3.staticflickr.com/2674/5850229113_4fe05d5265_z.jpg",
... ]
>>> images = [Image.open(requests.get(url, stream=True).raw) for url in urls]
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=images, return_tensors="pt", padding=True
... )
>>> outputs = model(
... input_ids=inputs.input_ids,
... attention_mask=inputs.attention_mask,
... pixel_values=inputs.pixel_values,
... return_loss=True,
... )
>>> loss, logits_per_image = outputs.loss, outputs.logits_per_image # this is the image-text similarity score
>>> # save and load from pretrained
>>> model.save_pretrained("vit-bert")
>>> model = VisionTextDualEncoderModel.from_pretrained("vit-bert")
>>> # inference
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
```"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = vision_outputs[1] # pooler_output
image_embeds = self.visual_projection(image_embeds)
text_embeds = text_outputs[1] # pooler_output
text_embeds = self.text_projection(text_embeds)
# normalized features
image_embeds = image_embeds / image_embeds.norm(dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
logits_per_image = logits_per_text.T
loss = None
if return_loss:
loss = clip_loss(logits_per_text)
if not return_dict:
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output
return CLIPOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
@classmethod
def from_pretrained(cls, *args, **kwargs):
# At the moment fast initialization is not supported
# for composite models
kwargs["_fast_init"] = False
return super().from_pretrained(*args, **kwargs)
@classmethod
def from_vision_text_pretrained(
cls,
vision_model_name_or_path: str = None,
text_model_name_or_path: str = None,
*model_args,
**kwargs,
) -> PreTrainedModel:
"""
Params:
vision_model_name_or_path (`str`, *optional*, defaults to `None`):
Information necessary to initiate the vision model. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *PyTorch checkpoint folder* (e.g, `./pt_model`). In this case, `from_pt`
should be set to `True` and a configuration object should be provided as `config` argument. This
loading path is slower than converting the PyTorch checkpoint in a Flax model using the provided
conversion scripts and loading the Flax model afterwards.
text_model_name_or_path (`str`, *optional*):
Information necessary to initiate the text model. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *PyTorch checkpoint folder* (e.g, `./pt_model`). In this case, `from_pt`
should be set to `True` and a configuration object should be provided as `config` argument. This
loading path is slower than converting the PyTorch checkpoint in a Flax model using the provided
conversion scripts and loading the Flax model afterwards.
model_args (remaining positional arguments, *optional*):
All remaning positional arguments will be passed to the underlying model's `__init__` method.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`).
- To update the text configuration, use the prefix *text_* for each configuration parameter.
- To update the vision configuration, use the prefix *vision_* for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a `config` is provided or automatically loaded.
Example:
```python
>>> from transformers import VisionTextDualEncoderModel
>>> # initialize a model from pretrained ViT and BERT models. Note that the projection layers will be randomly initialized.
>>> model = VisionTextDualEncoderModel.from_vision_text_pretrained(
... "google/vit-base-patch16-224", "google-bert/bert-base-uncased"
... )
>>> # saving model after fine-tuning
>>> model.save_pretrained("./vit-bert")
>>> # load fine-tuned model
>>> model = VisionTextDualEncoderModel.from_pretrained("./vit-bert")
```"""
kwargs_vision = {
argument[len("vision_") :]: value for argument, value in kwargs.items() if argument.startswith("vision_")
}
kwargs_text = {
argument[len("text_") :]: value for argument, value in kwargs.items() if argument.startswith("text_")
}
# remove vision, text kwargs from kwargs
for key in kwargs_vision.keys():
del kwargs["vision_" + key]
for key in kwargs_text.keys():
del kwargs["text_" + key]
# Load and initialize the vision and text model
vision_model = kwargs_vision.pop("model", None)
if vision_model is None:
if vision_model_name_or_path is None:
raise ValueError(
"If `vision_model` is not defined as an argument, a `vision_model_name_or_path` has to be defined"
)
if "config" not in kwargs_vision:
vision_config = AutoConfig.from_pretrained(vision_model_name_or_path)
if vision_config.model_type == "clip":
kwargs_vision["config"] = vision_config.vision_config
vision_model = CLIPVisionModel.from_pretrained(vision_model_name_or_path, *model_args, **kwargs_vision)
# TODO: Should we use the pre-trained projection as well ?
else:
kwargs_vision["config"] = vision_config
vision_model = AutoModel.from_pretrained(vision_model_name_or_path, *model_args, **kwargs_vision)
text_model = kwargs_text.pop("model", None)
if text_model is None:
if text_model_name_or_path is None:
raise ValueError(
"If `text_model` is not defined as an argument, a `text_model_name_or_path` has to be defined"
)
if "config" not in kwargs_text:
text_config = AutoConfig.from_pretrained(text_model_name_or_path)
kwargs_text["config"] = text_config
text_model = AutoModel.from_pretrained(text_model_name_or_path, *model_args, **kwargs_text)
# instantiate config with corresponding kwargs
config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_model.config, text_model.config, **kwargs)
# init model
model = cls(config=config, vision_model=vision_model, text_model=text_model)
# the projection layers are always newly initialized when loading the model
# using pre-trained vision and text model.
logger.warning(
"The projection layer and logit scale weights `['visual_projection.weight', 'text_projection.weight',"
" 'logit_scale']` are newly initialized. You should probably TRAIN this model on a down-stream task to be"
" able to use it for predictions and inference."
)
return model
|
class_definition
| 8,461 | 25,198 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py
| null | 4,085 |
class MvpLearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
# MVP is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim)
def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
"""`input_ids' shape is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids.shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
).expand(bsz, -1)
return super().forward(positions + self.offset)
|
class_definition
| 2,555 | 3,457 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mvp/modeling_mvp.py
| null | 4,086 |
class MvpAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
attn_prompt: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
if attn_prompt is not None:
key_states = torch.cat([attn_prompt[0].expand(bsz, -1, -1, -1), key_states], dim=2)
value_states = torch.cat([attn_prompt[1].expand(bsz, -1, -1, -1), value_states], dim=2)
if attention_mask is not None:
prompt_mask = torch.zeros(bsz, 1, tgt_len, attn_prompt[0].size(1)).to(attention_mask.device)
attention_mask = torch.cat([prompt_mask, attention_mask], dim=(-1))
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned aross GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
|
class_definition
| 3,460 | 10,889 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mvp/modeling_mvp.py
| null | 4,087 |
class MvpEncoderLayer(nn.Module):
def __init__(self, config: MvpConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = MvpAttention(
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: torch.FloatTensor,
layer_head_mask: torch.FloatTensor,
self_attn_prompt: torch.FloatTensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
self_attn_prompt (`torch.FloatTensor`): prompt of self attention of shape
`(2, encoder_attention_heads, pro_len, head_dim)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
attn_prompt=self_attn_prompt,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
|
class_definition
| 10,892 | 14,261 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mvp/modeling_mvp.py
| null | 4,088 |
class MvpDecoderLayer(nn.Module):
def __init__(self, config: MvpConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = MvpAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = MvpAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
self_attn_prompt: Optional[torch.Tensor] = None,
cross_attn_prompt: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
self_attn_prompt (`torch.FloatTensor`): prompt of self attention of shape
`(2, decoder_attention_heads, pro_len, head_dim)`.
cross_attn_prompt (`torch.FloatTensor`): prompt of cross attention of shape
`(2, decoder_attention_heads, pro_len, head_dim)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
attn_prompt=self_attn_prompt,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
attn_prompt=cross_attn_prompt,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
|
class_definition
| 14,264 | 20,553 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mvp/modeling_mvp.py
| null | 4,089 |
class MvpClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(
self,
input_dim: int,
inner_dim: int,
num_classes: int,
pooler_dropout: float,
):
super().__init__()
self.dense = nn.Linear(input_dim, inner_dim)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
|
class_definition
| 20,647 | 21,432 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mvp/modeling_mvp.py
| null | 4,090 |
class MvpPrompt(nn.Module):
"""Layer-wise prompt for encoder or decoder."""
def __init__(self, config, num_layers, num_heads):
super().__init__()
self.prompt_length = config.prompt_length
self.num_layers = num_layers
self.num_heads = num_heads
self.head_dim = config.d_model // num_heads
self.dropout = nn.Dropout(p=config.dropout)
self.prompt_embedding = nn.Embedding(config.prompt_length, config.d_model)
self.prompt_trans = nn.Sequential(
nn.Linear(config.d_model, config.prompt_mid_dim),
nn.GELU(),
nn.Linear(config.prompt_mid_dim, num_layers * 2 * config.d_model),
)
def forward(self, prompt_ids: torch.Tensor) -> Tuple[torch.Tensor]:
prompt = self.prompt_trans(self.prompt_embedding(prompt_ids))
prompt = prompt.view(self.prompt_length, self.num_layers * 2, self.num_heads, self.head_dim)
prompt = self.dropout(prompt)
prompt = prompt.permute([1, 2, 0, 3]).split(2)
return prompt
|
class_definition
| 21,435 | 22,482 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mvp/modeling_mvp.py
| null | 4,091 |
class MvpPreTrainedModel(PreTrainedModel):
config_class = MvpConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
dummy_inputs = {
"attention_mask": input_ids.ne(pad_token),
"input_ids": input_ids,
}
return dummy_inputs
|
class_definition
| 22,485 | 23,441 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mvp/modeling_mvp.py
| null | 4,092 |
class MvpEncoder(MvpPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`MvpEncoderLayer`].
Args:
config: MvpConfig
embed_tokens (nn.Embedding): output embedding
use_prompt (bool): whether to use prompt
"""
def __init__(
self, config: MvpConfig, embed_tokens: Optional[nn.Embedding] = None, use_prompt: Optional[bool] = False
):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_positions = MvpLearnedPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
)
self.layers = nn.ModuleList([MvpEncoderLayer(config) for _ in range(config.encoder_layers)])
self.layernorm_embedding = nn.LayerNorm(embed_dim)
self.use_prompt = use_prompt
if use_prompt:
self.prompt_length = config.prompt_length
self.self_attn_prompt = MvpPrompt(
config,
config.encoder_layers,
config.encoder_attention_heads,
)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.shape
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# layer-wise prompt
if self.use_prompt:
prompt_ids = torch.arange(self.prompt_length).to(self.device)
self_attn_prompt = self.self_attn_prompt(prompt_ids)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
(self_attn_prompt[idx] if self.use_prompt else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
self_attn_prompt=(self_attn_prompt[idx] if self.use_prompt else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
|
class_definition
| 34,034 | 42,775 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mvp/modeling_mvp.py
| null | 4,093 |
class MvpDecoder(MvpPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`MvpDecoderLayer`]
Args:
config: MvpConfig
embed_tokens (nn.Embedding): output embedding
use_prompt (bool): whether to use prompt
"""
def __init__(
self, config: MvpConfig, embed_tokens: Optional[nn.Embedding] = None, use_prompt: Optional[bool] = False
):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_positions = MvpLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
)
self.layers = nn.ModuleList([MvpDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.use_prompt = use_prompt
if use_prompt:
self.prompt_length = config.prompt_length
self.self_attn_prompt = MvpPrompt(
config,
config.decoder_layers,
config.decoder_attention_heads,
)
self.cross_attn_prompt = MvpPrompt(
config,
config.decoder_layers,
config.decoder_attention_heads,
)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input_ids.shape
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input, past_key_values_length)
hidden_states = inputs_embeds + positions
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# layer-wise prompt
if self.use_prompt:
prompt_ids = torch.arange(self.prompt_length).to(self.device)
self_attn_prompt = self.self_attn_prompt(prompt_ids)
cross_attn_prompt = self.cross_attn_prompt(prompt_ids)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
self_attn_prompt[idx] if self.use_prompt else None,
cross_attn_prompt[idx] if self.use_prompt else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
self_attn_prompt=(self_attn_prompt[idx] if self.use_prompt else None),
cross_attn_prompt=(cross_attn_prompt[idx] if self.use_prompt else None),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
|
class_definition
| 42,778 | 56,699 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mvp/modeling_mvp.py
| null | 4,094 |
class MvpModel(MvpPreTrainedModel):
_keys_to_ignore_on_load_unexpected = ["final_logits_bias"]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: MvpConfig):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.use_prompt = config.use_prompt
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.encoder = MvpEncoder(config, self.shared, config.use_prompt)
self.decoder = MvpDecoder(config, self.shared, config.use_prompt)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def set_lightweight_tuning(self):
assert self.use_prompt, "If you want to use lightweight tuning, make sure that `use_prompt=True`."
self.requires_grad_(False)
self.encoder.self_attn_prompt.requires_grad_(True)
self.decoder.self_attn_prompt.requires_grad_(True)
self.decoder.cross_attn_prompt.requires_grad_(True)
@add_start_docstrings_to_model_forward(MVP_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqModelOutput]:
# different to other models, Mvp automatically creates decoder_input_ids from
# input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
if input_ids is None:
raise ValueError(
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
"passed, `input_ids` cannot be `None`. Please pass either "
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
)
decoder_input_ids = shift_tokens_right(
input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
|
class_definition
| 56,841 | 62,800 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mvp/modeling_mvp.py
| null | 4,095 |
class MvpForConditionalGeneration(MvpPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: MvpConfig):
super().__init__(config)
self.model = MvpModel(config)
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
self._resize_final_logits_bias(new_num_tokens)
return new_embeddings
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
old_num_tokens = self.final_logits_bias.shape[-1]
if new_num_tokens <= old_num_tokens:
new_bias = self.final_logits_bias[:, :new_num_tokens]
else:
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_lightweight_tuning(self):
self.model.set_lightweight_tuning()
self.lm_head.requires_grad_(False)
@add_start_docstrings_to_model_forward(MVP_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(MVP_CONDITIONAL_GENERATION_EXAMPLE)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
|
class_definition
| 62,947 | 69,251 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mvp/modeling_mvp.py
| null | 4,096 |
class MvpForSequenceClassification(MvpPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: MvpConfig, **kwargs):
super().__init__(config, **kwargs)
self.model = MvpModel(config)
self.classification_head = MvpClassificationHead(
config.d_model,
config.d_model,
config.num_labels,
config.classifier_dropout,
)
# Initialize weights and apply final processing
self.post_init()
def set_lightweight_tuning(self):
self.model.set_lightweight_tuning()
self.classification_head.requires_grad_(False)
@add_start_docstrings_to_model_forward(MVP_INPUTS_DOCSTRING)
@add_end_docstrings(MVP_SEQUENCE_CLASSIFICATION_SAMPLE)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
if input_ids is None and inputs_embeds is not None:
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0] # last hidden state
eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
:, -1, :
]
logits = self.classification_head(sentence_representation)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqSequenceClassifierOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
|
class_definition
| 69,448 | 74,900 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mvp/modeling_mvp.py
| null | 4,097 |
class MvpForQuestionAnswering(MvpPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.model = MvpModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def set_lightweight_tuning(self):
self.model.set_lightweight_tuning()
self.qa_outputs.requires_grad_(False)
@add_start_docstrings_to_model_forward(MVP_INPUTS_DOCSTRING)
@add_end_docstrings(MVP_QUESTION_ANSWERING_SAMPLE)
def forward(
self,
input_ids: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqQuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if start_positions is not None and end_positions is not None:
use_cache = False
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (
start_logits,
end_logits,
) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return Seq2SeqQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
|
class_definition
| 75,184 | 80,526 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mvp/modeling_mvp.py
| null | 4,098 |
class MvpDecoderWrapper(MvpPreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [`EncoderDecoderModel`] framework.
"""
def __init__(self, config):
super().__init__(config)
self.decoder = MvpDecoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
|
class_definition
| 80,616 | 81,054 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/mvp/modeling_mvp.py
| null | 4,099 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.