text
stringlengths
31
243k
type
stringclasses
1 value
start
int64
36
275k
end
int64
286
280k
depth
int64
0
1
filepath
stringlengths
85
188
parent_class
stringclasses
3 values
class_index
int64
0
10.8k
class LukeEntityEmbeddings(nn.Module): def __init__(self, config: LukeConfig): super().__init__() self.config = config self.entity_embeddings = nn.Embedding(config.entity_vocab_size, config.entity_emb_size, padding_idx=0) if config.entity_emb_size != config.hidden_size: self.entity_embedding_dense = nn.Linear(config.entity_emb_size, config.hidden_size, bias=False) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward( self, entity_ids: torch.LongTensor, position_ids: torch.LongTensor, token_type_ids: torch.LongTensor = None ): if token_type_ids is None: token_type_ids = torch.zeros_like(entity_ids) entity_embeddings = self.entity_embeddings(entity_ids) if self.config.entity_emb_size != self.config.hidden_size: entity_embeddings = self.entity_embedding_dense(entity_embeddings) position_embeddings = self.position_embeddings(position_ids.clamp(min=0)) position_embedding_mask = (position_ids != -1).type_as(position_embeddings).unsqueeze(-1) position_embeddings = position_embeddings * position_embedding_mask position_embeddings = torch.sum(position_embeddings, dim=-2) position_embeddings = position_embeddings / position_embedding_mask.sum(dim=-2).clamp(min=1e-7) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = entity_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings
class_definition
26,319
28,234
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,900
class LukeSelfAttention(nn.Module): def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.use_entity_aware_attention = config.use_entity_aware_attention self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) if self.use_entity_aware_attention: self.w2e_query = nn.Linear(config.hidden_size, self.all_head_size) self.e2w_query = nn.Linear(config.hidden_size, self.all_head_size) self.e2e_query = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, word_hidden_states, entity_hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): word_size = word_hidden_states.size(1) if entity_hidden_states is None: concat_hidden_states = word_hidden_states else: concat_hidden_states = torch.cat([word_hidden_states, entity_hidden_states], dim=1) key_layer = self.transpose_for_scores(self.key(concat_hidden_states)) value_layer = self.transpose_for_scores(self.value(concat_hidden_states)) if self.use_entity_aware_attention and entity_hidden_states is not None: # compute query vectors using word-word (w2w), word-entity (w2e), entity-word (e2w), entity-entity (e2e) # query layers w2w_query_layer = self.transpose_for_scores(self.query(word_hidden_states)) w2e_query_layer = self.transpose_for_scores(self.w2e_query(word_hidden_states)) e2w_query_layer = self.transpose_for_scores(self.e2w_query(entity_hidden_states)) e2e_query_layer = self.transpose_for_scores(self.e2e_query(entity_hidden_states)) # compute w2w, w2e, e2w, and e2e key vectors used with the query vectors computed above w2w_key_layer = key_layer[:, :, :word_size, :] e2w_key_layer = key_layer[:, :, :word_size, :] w2e_key_layer = key_layer[:, :, word_size:, :] e2e_key_layer = key_layer[:, :, word_size:, :] # compute attention scores based on the dot product between the query and key vectors w2w_attention_scores = torch.matmul(w2w_query_layer, w2w_key_layer.transpose(-1, -2)) w2e_attention_scores = torch.matmul(w2e_query_layer, w2e_key_layer.transpose(-1, -2)) e2w_attention_scores = torch.matmul(e2w_query_layer, e2w_key_layer.transpose(-1, -2)) e2e_attention_scores = torch.matmul(e2e_query_layer, e2e_key_layer.transpose(-1, -2)) # combine attention scores to create the final attention score matrix word_attention_scores = torch.cat([w2w_attention_scores, w2e_attention_scores], dim=3) entity_attention_scores = torch.cat([e2w_attention_scores, e2e_attention_scores], dim=3) attention_scores = torch.cat([word_attention_scores, entity_attention_scores], dim=2) else: query_layer = self.transpose_for_scores(self.query(concat_hidden_states)) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in LukeModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) output_word_hidden_states = context_layer[:, :word_size, :] if entity_hidden_states is None: output_entity_hidden_states = None else: output_entity_hidden_states = context_layer[:, word_size:, :] if output_attentions: outputs = (output_word_hidden_states, output_entity_hidden_states, attention_probs) else: outputs = (output_word_hidden_states, output_entity_hidden_states) return outputs
class_definition
28,237
33,853
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,901
class LukeSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
33,924
34,530
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,902
class LukeAttention(nn.Module): def __init__(self, config): super().__init__() self.self = LukeSelfAttention(config) self.output = LukeSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads): raise NotImplementedError("LUKE does not support the pruning of attention heads") def forward( self, word_hidden_states, entity_hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): word_size = word_hidden_states.size(1) self_outputs = self.self( word_hidden_states, entity_hidden_states, attention_mask, head_mask, output_attentions, ) if entity_hidden_states is None: concat_self_outputs = self_outputs[0] concat_hidden_states = word_hidden_states else: concat_self_outputs = torch.cat(self_outputs[:2], dim=1) concat_hidden_states = torch.cat([word_hidden_states, entity_hidden_states], dim=1) attention_output = self.output(concat_self_outputs, concat_hidden_states) word_attention_output = attention_output[:, :word_size, :] if entity_hidden_states is None: entity_attention_output = None else: entity_attention_output = attention_output[:, word_size:, :] # add attentions if we output them outputs = (word_attention_output, entity_attention_output) + self_outputs[2:] return outputs
class_definition
34,533
36,095
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,903
class LukeIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
36,168
36,733
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,904
class LukeOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
36,800
37,408
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,905
class LukeLayer(nn.Module): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = LukeAttention(config) self.intermediate = LukeIntermediate(config) self.output = LukeOutput(config) def forward( self, word_hidden_states, entity_hidden_states, attention_mask=None, head_mask=None, output_attentions=False, ): word_size = word_hidden_states.size(1) self_attention_outputs = self.attention( word_hidden_states, entity_hidden_states, attention_mask, head_mask, output_attentions=output_attentions, ) if entity_hidden_states is None: concat_attention_output = self_attention_outputs[0] else: concat_attention_output = torch.cat(self_attention_outputs[:2], dim=1) outputs = self_attention_outputs[2:] # add self attentions if we output attention weights layer_output = apply_chunking_to_forward( self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, concat_attention_output ) word_layer_output = layer_output[:, :word_size, :] if entity_hidden_states is None: entity_layer_output = None else: entity_layer_output = layer_output[:, word_size:, :] outputs = (word_layer_output, entity_layer_output) + outputs return outputs def feed_forward_chunk(self, attention_output): intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) return layer_output
class_definition
37,411
39,198
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,906
class LukeEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([LukeLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, word_hidden_states, entity_hidden_states, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): all_word_hidden_states = () if output_hidden_states else None all_entity_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_word_hidden_states = all_word_hidden_states + (word_hidden_states,) all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, word_hidden_states, entity_hidden_states, attention_mask, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module( word_hidden_states, entity_hidden_states, attention_mask, layer_head_mask, output_attentions, ) word_hidden_states = layer_outputs[0] if entity_hidden_states is not None: entity_hidden_states = layer_outputs[1] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[2],) if output_hidden_states: all_word_hidden_states = all_word_hidden_states + (word_hidden_states,) all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,) if not return_dict: return tuple( v for v in [ word_hidden_states, all_word_hidden_states, all_self_attentions, entity_hidden_states, all_entity_hidden_states, ] if v is not None ) return BaseLukeModelOutput( last_hidden_state=word_hidden_states, hidden_states=all_word_hidden_states, attentions=all_self_attentions, entity_last_hidden_state=entity_hidden_states, entity_hidden_states=all_entity_hidden_states, )
class_definition
39,201
42,089
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,907
class LukePooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output
class_definition
42,156
42,715
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,908
class EntityPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.entity_emb_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.entity_emb_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states
class_definition
42,718
43,398
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,909
class EntityPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.config = config self.transform = EntityPredictionHeadTransform(config) self.decoder = nn.Linear(config.entity_emb_size, config.entity_vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.entity_vocab_size)) def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) + self.bias return hidden_states
class_definition
43,401
43,944
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,910
class LukePreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = LukeConfig base_model_prefix = "luke" supports_gradient_checkpointing = True _no_split_modules = ["LukeAttention", "LukeEntityEmbeddings"] def _init_weights(self, module: nn.Module): """Initialize the weights""" if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): if module.embedding_dim == 1: # embedding for bias parameters module.weight.data.zero_() else: module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0)
class_definition
43,947
45,106
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,911
class LukeModel(LukePreTrainedModel): def __init__(self, config: LukeConfig, add_pooling_layer: bool = True): super().__init__(config) self.config = config self.embeddings = LukeEmbeddings(config) self.entity_embeddings = LukeEntityEmbeddings(config) self.encoder = LukeEncoder(config) self.pooler = LukePooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def get_entity_embeddings(self): return self.entity_embeddings.entity_embeddings def set_entity_embeddings(self, value): self.entity_embeddings.entity_embeddings = value def _prune_heads(self, heads_to_prune): raise NotImplementedError("LUKE does not support the pruning of attention heads") @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=BaseLukeModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.FloatTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseLukeModelOutputWithPooling]: r""" Returns: Examples: ```python >>> from transformers import AutoTokenizer, LukeModel >>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-base") >>> model = LukeModel.from_pretrained("studio-ousia/luke-base") # Compute the contextualized entity representation corresponding to the entity mention "Beyoncé" >>> text = "Beyoncé lives in Los Angeles." >>> entity_spans = [(0, 7)] # character-based entity span corresponding to "Beyoncé" >>> encoding = tokenizer(text, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt") >>> outputs = model(**encoding) >>> word_last_hidden_state = outputs.last_hidden_state >>> entity_last_hidden_state = outputs.entity_last_hidden_state # Input Wikipedia entities to obtain enriched contextualized representations of word tokens >>> text = "Beyoncé lives in Los Angeles." >>> entities = [ ... "Beyoncé", ... "Los Angeles", ... ] # Wikipedia entity titles corresponding to the entity mentions "Beyoncé" and "Los Angeles" >>> entity_spans = [ ... (0, 7), ... (17, 28), ... ] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles" >>> encoding = tokenizer( ... text, entities=entities, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt" ... ) >>> outputs = model(**encoding) >>> word_last_hidden_state = outputs.last_hidden_state >>> entity_last_hidden_state = outputs.entity_last_hidden_state ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones((batch_size, seq_length), device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) if entity_ids is not None: entity_seq_length = entity_ids.size(1) if entity_attention_mask is None: entity_attention_mask = torch.ones((batch_size, entity_seq_length), device=device) if entity_token_type_ids is None: entity_token_type_ids = torch.zeros((batch_size, entity_seq_length), dtype=torch.long, device=device) # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) # First, compute word embeddings word_embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) # Second, compute extended attention mask extended_attention_mask = self.get_extended_attention_mask(attention_mask, entity_attention_mask) # Third, compute entity embeddings and concatenate with word embeddings if entity_ids is None: entity_embedding_output = None else: entity_embedding_output = self.entity_embeddings(entity_ids, entity_position_ids, entity_token_type_ids) # Fourth, send embeddings through the model encoder_outputs = self.encoder( word_embedding_output, entity_embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) # Fifth, get the output. LukeModel outputs the same as BertModel, namely sequence_output of shape (batch_size, seq_len, hidden_size) sequence_output = encoder_outputs[0] # Sixth, we compute the pooled_output, word_sequence_output and entity_sequence_output based on the sequence_output pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseLukeModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, entity_last_hidden_state=encoder_outputs.entity_last_hidden_state, entity_hidden_states=encoder_outputs.entity_hidden_states, ) def get_extended_attention_mask( self, word_attention_mask: torch.LongTensor, entity_attention_mask: Optional[torch.LongTensor] ): """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: word_attention_mask (`torch.LongTensor`): Attention mask for word tokens with ones indicating tokens to attend to, zeros for tokens to ignore. entity_attention_mask (`torch.LongTensor`, *optional*): Attention mask for entity tokens with ones indicating tokens to attend to, zeros for tokens to ignore. Returns: `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. """ attention_mask = word_attention_mask if entity_attention_mask is not None: attention_mask = torch.cat([attention_mask, entity_attention_mask], dim=-1) if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError(f"Wrong shape for attention_mask (shape {attention_mask.shape})") extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min return extended_attention_mask
class_definition
50,101
59,416
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,912
class LukeLMHead(nn.Module): """Roberta Head for masked language modeling.""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.decoder = nn.Linear(config.hidden_size, config.vocab_size) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) self.decoder.bias = self.bias def forward(self, features, **kwargs): x = self.dense(features) x = gelu(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = self.decoder(x) return x def _tie_weights(self): # To tie those two weights if they get disconnected (on TPU or when the bias is resized) # For accelerate compatibility and to not break backward compatibility if self.decoder.bias.device.type == "meta": self.decoder.bias = self.bias else: self.bias = self.decoder.bias
class_definition
60,114
61,173
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,913
class LukeForMaskedLM(LukePreTrainedModel): _tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight"] def __init__(self, config): super().__init__(config) self.luke = LukeModel(config) self.lm_head = LukeLMHead(config) self.entity_predictions = EntityPredictionHead(config) self.loss_fn = nn.CrossEntropyLoss() # Initialize weights and apply final processing self.post_init() def tie_weights(self): super().tie_weights() self._tie_or_clone_weights(self.entity_predictions.decoder, self.luke.entity_embeddings.entity_embeddings) def get_output_embeddings(self): return self.lm_head.decoder def set_output_embeddings(self, new_embeddings): self.lm_head.decoder = new_embeddings @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=LukeMaskedLMOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.LongTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, entity_labels: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, LukeMaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` entity_labels (`torch.LongTensor` of shape `(batch_size, entity_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` Returns: """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) loss = None mlm_loss = None logits = self.lm_head(outputs.last_hidden_state) if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) mlm_loss = self.loss_fn(logits.view(-1, self.config.vocab_size), labels.view(-1)) if loss is None: loss = mlm_loss mep_loss = None entity_logits = None if outputs.entity_last_hidden_state is not None: entity_logits = self.entity_predictions(outputs.entity_last_hidden_state) if entity_labels is not None: mep_loss = self.loss_fn(entity_logits.view(-1, self.config.entity_vocab_size), entity_labels.view(-1)) if loss is None: loss = mep_loss else: loss = loss + mep_loss if not return_dict: return tuple( v for v in [ loss, mlm_loss, mep_loss, logits, entity_logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions, ] if v is not None ) return LukeMaskedLMOutput( loss=loss, mlm_loss=mlm_loss, mep_loss=mep_loss, logits=logits, entity_logits=entity_logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, )
class_definition
61,390
66,625
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,914
class LukeForEntityClassification(LukePreTrainedModel): def __init__(self, config): super().__init__(config) self.luke = LukeModel(config) self.num_labels = config.num_labels self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=EntityClassificationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.FloatTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, EntityClassificationOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)` or `(batch_size, num_labels)`, *optional*): Labels for computing the classification loss. If the shape is `(batch_size,)`, the cross entropy loss is used for the single-label classification. In this case, labels should contain the indices that should be in `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, num_labels)`, the binary cross entropy loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0 and 1 indicate false and true, respectively. Returns: Examples: ```python >>> from transformers import AutoTokenizer, LukeForEntityClassification >>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-open-entity") >>> model = LukeForEntityClassification.from_pretrained("studio-ousia/luke-large-finetuned-open-entity") >>> text = "Beyoncé lives in Los Angeles." >>> entity_spans = [(0, 7)] # character-based entity span corresponding to "Beyoncé" >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) Predicted class: person ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) feature_vector = outputs.entity_last_hidden_state[:, 0, :] feature_vector = self.dropout(feature_vector) logits = self.classifier(feature_vector) loss = None if labels is not None: # When the number of dimension of `labels` is 1, cross entropy is used as the loss function. The binary # cross entropy is used otherwise. # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if labels.ndim == 1: loss = nn.functional.cross_entropy(logits, labels) else: loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits)) if not return_dict: return tuple( v for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions] if v is not None ) return EntityClassificationOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, )
class_definition
66,877
71,814
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,915
class LukeForEntityPairClassification(LukePreTrainedModel): def __init__(self, config): super().__init__(config) self.luke = LukeModel(config) self.num_labels = config.num_labels self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size * 2, config.num_labels, False) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=EntityPairClassificationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.FloatTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, EntityPairClassificationOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)` or `(batch_size, num_labels)`, *optional*): Labels for computing the classification loss. If the shape is `(batch_size,)`, the cross entropy loss is used for the single-label classification. In this case, labels should contain the indices that should be in `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, num_labels)`, the binary cross entropy loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0 and 1 indicate false and true, respectively. Returns: Examples: ```python >>> from transformers import AutoTokenizer, LukeForEntityPairClassification >>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-tacred") >>> model = LukeForEntityPairClassification.from_pretrained("studio-ousia/luke-large-finetuned-tacred") >>> text = "Beyoncé lives in Los Angeles." >>> entity_spans = [ ... (0, 7), ... (17, 28), ... ] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles" >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> predicted_class_idx = logits.argmax(-1).item() >>> print("Predicted class:", model.config.id2label[predicted_class_idx]) Predicted class: per:cities_of_residence ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) feature_vector = torch.cat( [outputs.entity_last_hidden_state[:, 0, :], outputs.entity_last_hidden_state[:, 1, :]], dim=1 ) feature_vector = self.dropout(feature_vector) logits = self.classifier(feature_vector) loss = None if labels is not None: # When the number of dimension of `labels` is 1, cross entropy is used as the loss function. The binary # cross entropy is used otherwise. # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if labels.ndim == 1: loss = nn.functional.cross_entropy(logits, labels) else: loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits)) if not return_dict: return tuple( v for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions] if v is not None ) return EntityPairClassificationOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, )
class_definition
72,066
77,205
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,916
class LukeForEntitySpanClassification(LukePreTrainedModel): def __init__(self, config): super().__init__(config) self.luke = LukeModel(config) self.num_labels = config.num_labels self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size * 3, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @replace_return_docstrings(output_type=EntitySpanClassificationOutput, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.LongTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, entity_start_positions: Optional[torch.LongTensor] = None, entity_end_positions: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, EntitySpanClassificationOutput]: r""" entity_start_positions (`torch.LongTensor`): The start positions of entities in the word token sequence. entity_end_positions (`torch.LongTensor`): The end positions of entities in the word token sequence. labels (`torch.LongTensor` of shape `(batch_size, entity_length)` or `(batch_size, entity_length, num_labels)`, *optional*): Labels for computing the classification loss. If the shape is `(batch_size, entity_length)`, the cross entropy loss is used for the single-label classification. In this case, labels should contain the indices that should be in `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, entity_length, num_labels)`, the binary cross entropy loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0 and 1 indicate false and true, respectively. Returns: Examples: ```python >>> from transformers import AutoTokenizer, LukeForEntitySpanClassification >>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003") >>> model = LukeForEntitySpanClassification.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003") >>> text = "Beyoncé lives in Los Angeles" # List all possible entity spans in the text >>> word_start_positions = [0, 8, 14, 17, 21] # character-based start positions of word tokens >>> word_end_positions = [7, 13, 16, 20, 28] # character-based end positions of word tokens >>> entity_spans = [] >>> for i, start_pos in enumerate(word_start_positions): ... for end_pos in word_end_positions[i:]: ... entity_spans.append((start_pos, end_pos)) >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt") >>> outputs = model(**inputs) >>> logits = outputs.logits >>> predicted_class_indices = logits.argmax(-1).squeeze().tolist() >>> for span, predicted_class_idx in zip(entity_spans, predicted_class_indices): ... if predicted_class_idx != 0: ... print(text[span[0] : span[1]], model.config.id2label[predicted_class_idx]) Beyoncé PER Los Angeles LOC ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) hidden_size = outputs.last_hidden_state.size(-1) entity_start_positions = entity_start_positions.unsqueeze(-1).expand(-1, -1, hidden_size) if entity_start_positions.device != outputs.last_hidden_state.device: entity_start_positions = entity_start_positions.to(outputs.last_hidden_state.device) start_states = torch.gather(outputs.last_hidden_state, -2, entity_start_positions) entity_end_positions = entity_end_positions.unsqueeze(-1).expand(-1, -1, hidden_size) if entity_end_positions.device != outputs.last_hidden_state.device: entity_end_positions = entity_end_positions.to(outputs.last_hidden_state.device) end_states = torch.gather(outputs.last_hidden_state, -2, entity_end_positions) feature_vector = torch.cat([start_states, end_states, outputs.entity_last_hidden_state], dim=2) feature_vector = self.dropout(feature_vector) logits = self.classifier(feature_vector) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) # When the number of dimension of `labels` is 2, cross entropy is used as the loss function. The binary # cross entropy is used otherwise. if labels.ndim == 2: loss = nn.functional.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1)) else: loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits)) if not return_dict: return tuple( v for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions] if v is not None ) return EntitySpanClassificationOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, )
class_definition
77,434
84,231
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,917
class LukeForSequenceClassification(LukePreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.luke = LukeModel(config) self.dropout = nn.Dropout( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=LukeSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.FloatTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, LukeSequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) pooled_output = outputs.pooler_output pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: return tuple( v for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions] if v is not None ) return LukeSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, )
class_definition
84,457
89,138
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,918
class LukeForTokenClassification(LukePreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.luke = LukeModel(config, add_pooling_layer=False) self.dropout = nn.Dropout( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=LukeTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.FloatTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, LukeTokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) sequence_output = outputs.last_hidden_state sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: return tuple( v for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions] if v is not None ) return LukeTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, )
class_definition
89,454
93,129
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,919
class LukeForQuestionAnswering(LukePreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.luke = LukeModel(config, add_pooling_layer=False) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=LukeQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.FloatTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.FloatTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, LukeQuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) sequence_output = outputs.last_hidden_state logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions.clamp_(0, ignored_index) end_positions.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: return tuple( v for v in [ total_loss, start_logits, end_logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions, ] if v is not None ) return LukeQuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, )
class_definition
93,420
98,357
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,920
class LukeForMultipleChoice(LukePreTrainedModel): def __init__(self, config): super().__init__(config) self.luke = LukeModel(config) self.dropout = nn.Dropout( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.classifier = nn.Linear(config.hidden_size, 1) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=LukeMultipleChoiceModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, entity_attention_mask: Optional[torch.FloatTensor] = None, entity_token_type_ids: Optional[torch.LongTensor] = None, entity_position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, LukeMultipleChoiceModelOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above) """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1] input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None inputs_embeds = ( inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1)) if inputs_embeds is not None else None ) entity_ids = entity_ids.view(-1, entity_ids.size(-1)) if entity_ids is not None else None entity_attention_mask = ( entity_attention_mask.view(-1, entity_attention_mask.size(-1)) if entity_attention_mask is not None else None ) entity_token_type_ids = ( entity_token_type_ids.view(-1, entity_token_type_ids.size(-1)) if entity_token_type_ids is not None else None ) entity_position_ids = ( entity_position_ids.view(-1, entity_position_ids.size(-2), entity_position_ids.size(-1)) if entity_position_ids is not None else None ) outputs = self.luke( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, entity_ids=entity_ids, entity_attention_mask=entity_attention_mask, entity_token_type_ids=entity_token_type_ids, entity_position_ids=entity_position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, ) pooled_output = outputs.pooler_output pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, num_choices) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(reshaped_logits.device) loss_fct = CrossEntropyLoss() loss = loss_fct(reshaped_logits, labels) if not return_dict: return tuple( v for v in [ loss, reshaped_logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions, ] if v is not None ) return LukeMultipleChoiceModelOutput( loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states, entity_hidden_states=outputs.entity_hidden_states, attentions=outputs.attentions, )
class_definition
98,592
103,761
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
null
3,921
class LukeTokenizer(PreTrainedTokenizer): """ Constructs a LUKE tokenizer, derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import LukeTokenizer >>> tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base") >>> tokenizer("Hello world")["input_ids"] [0, 31414, 232, 2] >>> tokenizer(" Hello world")["input_ids"] [0, 20920, 232, 2] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one). </Tip> This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. It also creates entity sequences, namely `entity_ids`, `entity_attention_mask`, `entity_token_type_ids`, and `entity_position_ids` to be used by the LUKE model. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. entity_vocab_file (`str`): Path to the entity vocabulary file. task (`str`, *optional*): Task for which you want to prepare sequences. One of `"entity_classification"`, `"entity_pair_classification"`, or `"entity_span_classification"`. If you specify this argument, the entity sequence is automatically created based on the given entity span(s). max_entity_length (`int`, *optional*, defaults to 32): The maximum length of `entity_ids`. max_mention_length (`int`, *optional*, defaults to 30): The maximum number of tokens inside an entity span. entity_token_1 (`str`, *optional*, defaults to `<ent>`): The special token used to represent an entity span in a word token sequence. This token is only used when `task` is set to `"entity_classification"` or `"entity_pair_classification"`. entity_token_2 (`str`, *optional*, defaults to `<ent2>`): The special token used to represent an entity span in a word token sequence. This token is only used when `task` is set to `"entity_pair_classification"`. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (LUKE tokenizer detect beginning of words by the preceding space). """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, entity_vocab_file, task=None, max_entity_length=32, max_mention_length=30, entity_token_1="<ent>", entity_token_2="<ent2>", entity_unk_token="[UNK]", entity_pad_token="[PAD]", entity_mask_token="[MASK]", entity_mask2_token="[MASK2]", errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, **kwargs, ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") # we add 2 special tokens for downstream tasks # for more information about lstrip and rstrip, see https://github.com/huggingface/transformers/pull/2778 entity_token_1 = ( AddedToken(entity_token_1, lstrip=False, rstrip=False) if isinstance(entity_token_1, str) else entity_token_1 ) entity_token_2 = ( AddedToken(entity_token_2, lstrip=False, rstrip=False) if isinstance(entity_token_2, str) else entity_token_2 ) kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", []) kwargs["additional_special_tokens"] += [entity_token_1, entity_token_2] with open(entity_vocab_file, encoding="utf-8") as entity_vocab_handle: self.entity_vocab = json.load(entity_vocab_handle) for entity_special_token in [entity_unk_token, entity_pad_token, entity_mask_token, entity_mask2_token]: if entity_special_token not in self.entity_vocab: raise ValueError( f"Specified entity special token ``{entity_special_token}`` is not found in entity_vocab. " f"Probably an incorrect entity vocab file is loaded: {entity_vocab_file}." ) self.entity_unk_token_id = self.entity_vocab[entity_unk_token] self.entity_pad_token_id = self.entity_vocab[entity_pad_token] self.entity_mask_token_id = self.entity_vocab[entity_mask_token] self.entity_mask2_token_id = self.entity_vocab[entity_mask2_token] self.task = task if task is None or task == "entity_span_classification": self.max_entity_length = max_entity_length elif task == "entity_classification": self.max_entity_length = 1 elif task == "entity_pair_classification": self.max_entity_length = 2 else: raise ValueError( f"Task {task} not supported. Select task from ['entity_classification', 'entity_pair_classification'," " 'entity_span_classification'] only." ) self.max_mention_length = max_mention_length super().__init__( errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, task=task, max_entity_length=32, max_mention_length=30, entity_token_1="<ent>", entity_token_2="<ent2>", entity_unk_token=entity_unk_token, entity_pad_token=entity_pad_token, entity_mask_token=entity_mask_token, entity_mask2_token=entity_mask2_token, **kwargs, ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Luke, RoBERTa->LUKE def vocab_size(self): return len(self.encoder) # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.get_vocab with Roberta->Luke, RoBERTa->LUKE def get_vocab(self): vocab = dict(self.encoder).copy() vocab.update(self.added_tokens_encoder) return vocab # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.bpe with Roberta->Luke, RoBERTa->LUKE def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._tokenize with Roberta->Luke, RoBERTa->LUKE def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._convert_token_to_id with Roberta->Luke, RoBERTa->LUKE def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._convert_id_to_token with Roberta->Luke, RoBERTa->LUKE def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.convert_tokens_to_string with Roberta->Luke, RoBERTa->LUKE def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.build_inputs_with_special_tokens with Roberta->Luke, RoBERTa->LUKE def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A LUKE sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.get_special_tokens_mask with Roberta->Luke, RoBERTa->LUKE def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.create_token_type_ids_from_sequences with Roberta->Luke, RoBERTa->LUKE def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. LUKE does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.prepare_for_tokenization with Roberta->Luke, RoBERTa->LUKE def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): text = " " + text return (text, kwargs) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def __call__( self, text: Union[TextInput, List[TextInput]], text_pair: Optional[Union[TextInput, List[TextInput]]] = None, entity_spans: Optional[Union[EntitySpanInput, List[EntitySpanInput]]] = None, entity_spans_pair: Optional[Union[EntitySpanInput, List[EntitySpanInput]]] = None, entities: Optional[Union[EntityInput, List[EntityInput]]] = None, entities_pair: Optional[Union[EntityInput, List[EntityInput]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, max_entity_length: Optional[int] = None, stride: int = 0, is_split_into_words: Optional[bool] = False, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: """ Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of sequences, depending on the task you want to prepare them for. Args: text (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence must be a string. Note that this tokenizer does not support tokenization based on pretokenized strings. text_pair (`str`, `List[str]`, `List[List[str]]`): The sequence or batch of sequences to be encoded. Each sequence must be a string. Note that this tokenizer does not support tokenization based on pretokenized strings. entity_spans (`List[Tuple[int, int]]`, `List[List[Tuple[int, int]]]`, *optional*): The sequence or batch of sequences of entity spans to be encoded. Each sequence consists of tuples each with two integers denoting character-based start and end positions of entities. If you specify `"entity_classification"` or `"entity_pair_classification"` as the `task` argument in the constructor, the length of each sequence must be 1 or 2, respectively. If you specify `entities`, the length of each sequence must be equal to the length of each sequence of `entities`. entity_spans_pair (`List[Tuple[int, int]]`, `List[List[Tuple[int, int]]]`, *optional*): The sequence or batch of sequences of entity spans to be encoded. Each sequence consists of tuples each with two integers denoting character-based start and end positions of entities. If you specify the `task` argument in the constructor, this argument is ignored. If you specify `entities_pair`, the length of each sequence must be equal to the length of each sequence of `entities_pair`. entities (`List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences of entities to be encoded. Each sequence consists of strings representing entities, i.e., special entities (e.g., [MASK]) or entity titles of Wikipedia (e.g., Los Angeles). This argument is ignored if you specify the `task` argument in the constructor. The length of each sequence must be equal to the length of each sequence of `entity_spans`. If you specify `entity_spans` without specifying this argument, the entity sequence or the batch of entity sequences is automatically constructed by filling it with the [MASK] entity. entities_pair (`List[str]`, `List[List[str]]`, *optional*): The sequence or batch of sequences of entities to be encoded. Each sequence consists of strings representing entities, i.e., special entities (e.g., [MASK]) or entity titles of Wikipedia (e.g., Los Angeles). This argument is ignored if you specify the `task` argument in the constructor. The length of each sequence must be equal to the length of each sequence of `entity_spans_pair`. If you specify `entity_spans_pair` without specifying this argument, the entity sequence or the batch of entity sequences is automatically constructed by filling it with the [MASK] entity. max_entity_length (`int`, *optional*): The maximum length of `entity_ids`. """ # Input type checking for clearer error is_valid_single_text = isinstance(text, str) is_valid_batch_text = isinstance(text, (list, tuple)) and (len(text) == 0 or (isinstance(text[0], str))) if not (is_valid_single_text or is_valid_batch_text): raise ValueError("text input must be of type `str` (single example) or `List[str]` (batch).") is_valid_single_text_pair = isinstance(text_pair, str) is_valid_batch_text_pair = isinstance(text_pair, (list, tuple)) and ( len(text_pair) == 0 or isinstance(text_pair[0], str) ) if not (text_pair is None or is_valid_single_text_pair or is_valid_batch_text_pair): raise ValueError("text_pair input must be of type `str` (single example) or `List[str]` (batch).") is_batched = bool(isinstance(text, (list, tuple))) if is_batched: batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text if entities is None: batch_entities_or_entities_pairs = None else: batch_entities_or_entities_pairs = ( list(zip(entities, entities_pair)) if entities_pair is not None else entities ) if entity_spans is None: batch_entity_spans_or_entity_spans_pairs = None else: batch_entity_spans_or_entity_spans_pairs = ( list(zip(entity_spans, entity_spans_pair)) if entity_spans_pair is not None else entity_spans ) return self.batch_encode_plus( batch_text_or_text_pairs=batch_text_or_text_pairs, batch_entity_spans_or_entity_spans_pairs=batch_entity_spans_or_entity_spans_pairs, batch_entities_or_entities_pairs=batch_entities_or_entities_pairs, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, max_entity_length=max_entity_length, stride=stride, is_split_into_words=is_split_into_words, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) else: return self.encode_plus( text=text, text_pair=text_pair, entity_spans=entity_spans, entity_spans_pair=entity_spans_pair, entities=entities, entities_pair=entities_pair, add_special_tokens=add_special_tokens, padding=padding, truncation=truncation, max_length=max_length, max_entity_length=max_entity_length, stride=stride, is_split_into_words=is_split_into_words, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, return_token_type_ids=return_token_type_ids, return_attention_mask=return_attention_mask, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_offsets_mapping=return_offsets_mapping, return_length=return_length, verbose=verbose, **kwargs, ) def _encode_plus( self, text: Union[TextInput], text_pair: Optional[Union[TextInput]] = None, entity_spans: Optional[EntitySpanInput] = None, entity_spans_pair: Optional[EntitySpanInput] = None, entities: Optional[EntityInput] = None, entities_pair: Optional[EntityInput] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, max_entity_length: Optional[int] = None, stride: int = 0, is_split_into_words: Optional[bool] = False, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast. " "More information on available tokenizers at " "https://github.com/huggingface/transformers/pull/2674" ) if is_split_into_words: raise NotImplementedError("is_split_into_words is not supported in this tokenizer.") ( first_ids, second_ids, first_entity_ids, second_entity_ids, first_entity_token_spans, second_entity_token_spans, ) = self._create_input_sequence( text=text, text_pair=text_pair, entities=entities, entities_pair=entities_pair, entity_spans=entity_spans, entity_spans_pair=entity_spans_pair, **kwargs, ) # prepare_for_model will create the attention_mask and token_type_ids return self.prepare_for_model( first_ids, pair_ids=second_ids, entity_ids=first_entity_ids, pair_entity_ids=second_entity_ids, entity_token_spans=first_entity_token_spans, pair_entity_token_spans=second_entity_token_spans, add_special_tokens=add_special_tokens, padding=padding_strategy.value, truncation=truncation_strategy.value, max_length=max_length, max_entity_length=max_entity_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_tensors=return_tensors, prepend_batch_axis=True, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, verbose=verbose, ) def _batch_encode_plus( self, batch_text_or_text_pairs: Union[List[TextInput], List[TextInputPair]], batch_entity_spans_or_entity_spans_pairs: Optional[ Union[List[EntitySpanInput], List[Tuple[EntitySpanInput, EntitySpanInput]]] ] = None, batch_entities_or_entities_pairs: Optional[ Union[List[EntityInput], List[Tuple[EntityInput, EntityInput]]] ] = None, add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, max_entity_length: Optional[int] = None, stride: int = 0, is_split_into_words: Optional[bool] = False, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, **kwargs, ) -> BatchEncoding: if return_offsets_mapping: raise NotImplementedError( "return_offset_mapping is not available when using Python tokenizers. " "To use this feature, change your tokenizer to one deriving from " "transformers.PreTrainedTokenizerFast." ) if is_split_into_words: raise NotImplementedError("is_split_into_words is not supported in this tokenizer.") # input_ids is a list of tuples (one for each example in the batch) input_ids = [] entity_ids = [] entity_token_spans = [] for index, text_or_text_pair in enumerate(batch_text_or_text_pairs): if not isinstance(text_or_text_pair, (list, tuple)): text, text_pair = text_or_text_pair, None else: text, text_pair = text_or_text_pair entities, entities_pair = None, None if batch_entities_or_entities_pairs is not None: entities_or_entities_pairs = batch_entities_or_entities_pairs[index] if entities_or_entities_pairs: if isinstance(entities_or_entities_pairs[0], str): entities, entities_pair = entities_or_entities_pairs, None else: entities, entities_pair = entities_or_entities_pairs entity_spans, entity_spans_pair = None, None if batch_entity_spans_or_entity_spans_pairs is not None: entity_spans_or_entity_spans_pairs = batch_entity_spans_or_entity_spans_pairs[index] if len(entity_spans_or_entity_spans_pairs) > 0 and isinstance( entity_spans_or_entity_spans_pairs[0], list ): entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs else: entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs, None ( first_ids, second_ids, first_entity_ids, second_entity_ids, first_entity_token_spans, second_entity_token_spans, ) = self._create_input_sequence( text=text, text_pair=text_pair, entities=entities, entities_pair=entities_pair, entity_spans=entity_spans, entity_spans_pair=entity_spans_pair, **kwargs, ) input_ids.append((first_ids, second_ids)) entity_ids.append((first_entity_ids, second_entity_ids)) entity_token_spans.append((first_entity_token_spans, second_entity_token_spans)) batch_outputs = self._batch_prepare_for_model( input_ids, batch_entity_ids_pairs=entity_ids, batch_entity_token_spans_pairs=entity_token_spans, add_special_tokens=add_special_tokens, padding_strategy=padding_strategy, truncation_strategy=truncation_strategy, max_length=max_length, max_entity_length=max_entity_length, stride=stride, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=return_tensors, verbose=verbose, ) return BatchEncoding(batch_outputs) def _check_entity_input_format(self, entities: Optional[EntityInput], entity_spans: Optional[EntitySpanInput]): if not isinstance(entity_spans, list): raise TypeError("entity_spans should be given as a list") elif len(entity_spans) > 0 and not isinstance(entity_spans[0], tuple): raise ValueError( "entity_spans should be given as a list of tuples containing the start and end character indices" ) if entities is not None: if not isinstance(entities, list): raise ValueError("If you specify entities, they should be given as a list") if len(entities) > 0 and not isinstance(entities[0], str): raise ValueError("If you specify entities, they should be given as a list of entity names") if len(entities) != len(entity_spans): raise ValueError("If you specify entities, entities and entity_spans must be the same length") def _create_input_sequence( self, text: Union[TextInput], text_pair: Optional[Union[TextInput]] = None, entities: Optional[EntityInput] = None, entities_pair: Optional[EntityInput] = None, entity_spans: Optional[EntitySpanInput] = None, entity_spans_pair: Optional[EntitySpanInput] = None, **kwargs, ) -> Tuple[list, list, list, list, list, list]: def get_input_ids(text): tokens = self.tokenize(text, **kwargs) return self.convert_tokens_to_ids(tokens) def get_input_ids_and_entity_token_spans(text, entity_spans): if entity_spans is None: return get_input_ids(text), None cur = 0 input_ids = [] entity_token_spans = [None] * len(entity_spans) split_char_positions = sorted(frozenset(itertools.chain(*entity_spans))) char_pos2token_pos = {} for split_char_position in split_char_positions: orig_split_char_position = split_char_position if ( split_char_position > 0 and text[split_char_position - 1] == " " ): # whitespace should be prepended to the following token split_char_position -= 1 if cur != split_char_position: input_ids += get_input_ids(text[cur:split_char_position]) cur = split_char_position char_pos2token_pos[orig_split_char_position] = len(input_ids) input_ids += get_input_ids(text[cur:]) entity_token_spans = [ (char_pos2token_pos[char_start], char_pos2token_pos[char_end]) for char_start, char_end in entity_spans ] return input_ids, entity_token_spans first_ids, second_ids = None, None first_entity_ids, second_entity_ids = None, None first_entity_token_spans, second_entity_token_spans = None, None if self.task is None: if entity_spans is None: first_ids = get_input_ids(text) else: self._check_entity_input_format(entities, entity_spans) first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans) if entities is None: first_entity_ids = [self.entity_mask_token_id] * len(entity_spans) else: first_entity_ids = [self.entity_vocab.get(entity, self.entity_unk_token_id) for entity in entities] if text_pair is not None: if entity_spans_pair is None: second_ids = get_input_ids(text_pair) else: self._check_entity_input_format(entities_pair, entity_spans_pair) second_ids, second_entity_token_spans = get_input_ids_and_entity_token_spans( text_pair, entity_spans_pair ) if entities_pair is None: second_entity_ids = [self.entity_mask_token_id] * len(entity_spans_pair) else: second_entity_ids = [ self.entity_vocab.get(entity, self.entity_unk_token_id) for entity in entities_pair ] elif self.task == "entity_classification": if not (isinstance(entity_spans, list) and len(entity_spans) == 1 and isinstance(entity_spans[0], tuple)): raise ValueError( "Entity spans should be a list containing a single tuple " "containing the start and end character indices of an entity" ) first_entity_ids = [self.entity_mask_token_id] first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans) # add special tokens to input ids entity_token_start, entity_token_end = first_entity_token_spans[0] first_ids = ( first_ids[:entity_token_end] + [self.additional_special_tokens_ids[0]] + first_ids[entity_token_end:] ) first_ids = ( first_ids[:entity_token_start] + [self.additional_special_tokens_ids[0]] + first_ids[entity_token_start:] ) first_entity_token_spans = [(entity_token_start, entity_token_end + 2)] elif self.task == "entity_pair_classification": if not ( isinstance(entity_spans, list) and len(entity_spans) == 2 and isinstance(entity_spans[0], tuple) and isinstance(entity_spans[1], tuple) ): raise ValueError( "Entity spans should be provided as a list of two tuples, " "each tuple containing the start and end character indices of an entity" ) head_span, tail_span = entity_spans first_entity_ids = [self.entity_mask_token_id, self.entity_mask2_token_id] first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans) head_token_span, tail_token_span = first_entity_token_spans token_span_with_special_token_ids = [ (head_token_span, self.additional_special_tokens_ids[0]), (tail_token_span, self.additional_special_tokens_ids[1]), ] if head_token_span[0] < tail_token_span[0]: first_entity_token_spans[0] = (head_token_span[0], head_token_span[1] + 2) first_entity_token_spans[1] = (tail_token_span[0] + 2, tail_token_span[1] + 4) token_span_with_special_token_ids = reversed(token_span_with_special_token_ids) else: first_entity_token_spans[0] = (head_token_span[0] + 2, head_token_span[1] + 4) first_entity_token_spans[1] = (tail_token_span[0], tail_token_span[1] + 2) for (entity_token_start, entity_token_end), special_token_id in token_span_with_special_token_ids: first_ids = first_ids[:entity_token_end] + [special_token_id] + first_ids[entity_token_end:] first_ids = first_ids[:entity_token_start] + [special_token_id] + first_ids[entity_token_start:] elif self.task == "entity_span_classification": if not (isinstance(entity_spans, list) and len(entity_spans) > 0 and isinstance(entity_spans[0], tuple)): raise ValueError( "Entity spans should be provided as a list of tuples, " "each tuple containing the start and end character indices of an entity" ) first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans) first_entity_ids = [self.entity_mask_token_id] * len(entity_spans) else: raise ValueError(f"Task {self.task} not supported") return ( first_ids, second_ids, first_entity_ids, second_entity_ids, first_entity_token_spans, second_entity_token_spans, ) @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def _batch_prepare_for_model( self, batch_ids_pairs: List[Tuple[List[int], None]], batch_entity_ids_pairs: List[Tuple[Optional[List[int]], Optional[List[int]]]], batch_entity_token_spans_pairs: List[Tuple[Optional[List[Tuple[int, int]]], Optional[List[Tuple[int, int]]]]], add_special_tokens: bool = True, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, max_length: Optional[int] = None, max_entity_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[str] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_length: bool = False, verbose: bool = True, ) -> BatchEncoding: """ Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens Args: batch_ids_pairs: list of tokenized input ids or input ids pairs batch_entity_ids_pairs: list of entity ids or entity ids pairs batch_entity_token_spans_pairs: list of entity spans or entity spans pairs max_entity_length: The maximum length of the entity sequence. """ batch_outputs = {} for input_ids, entity_ids, entity_token_span_pairs in zip( batch_ids_pairs, batch_entity_ids_pairs, batch_entity_token_spans_pairs ): first_ids, second_ids = input_ids first_entity_ids, second_entity_ids = entity_ids first_entity_token_spans, second_entity_token_spans = entity_token_span_pairs outputs = self.prepare_for_model( first_ids, second_ids, entity_ids=first_entity_ids, pair_entity_ids=second_entity_ids, entity_token_spans=first_entity_token_spans, pair_entity_token_spans=second_entity_token_spans, add_special_tokens=add_special_tokens, padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward truncation=truncation_strategy.value, max_length=max_length, max_entity_length=max_entity_length, stride=stride, pad_to_multiple_of=None, # we pad in batch afterward padding_side=None, # we pad in batch afterward return_attention_mask=False, # we pad in batch afterward return_token_type_ids=return_token_type_ids, return_overflowing_tokens=return_overflowing_tokens, return_special_tokens_mask=return_special_tokens_mask, return_length=return_length, return_tensors=None, # We convert the whole batch to tensors at the end prepend_batch_axis=False, verbose=verbose, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) batch_outputs = self.pad( batch_outputs, padding=padding_strategy.value, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, ) batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) return batch_outputs @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) def prepare_for_model( self, ids: List[int], pair_ids: Optional[List[int]] = None, entity_ids: Optional[List[int]] = None, pair_entity_ids: Optional[List[int]] = None, entity_token_spans: Optional[List[Tuple[int, int]]] = None, pair_entity_token_spans: Optional[List[Tuple[int, int]]] = None, add_special_tokens: bool = True, padding: Union[bool, str, PaddingStrategy] = False, truncation: Union[bool, str, TruncationStrategy] = None, max_length: Optional[int] = None, max_entity_length: Optional[int] = None, stride: int = 0, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, return_token_type_ids: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_overflowing_tokens: bool = False, return_special_tokens_mask: bool = False, return_offsets_mapping: bool = False, return_length: bool = False, verbose: bool = True, prepend_batch_axis: bool = False, **kwargs, ) -> BatchEncoding: """ Prepares a sequence of input id, entity id and entity span, or a pair of sequences of inputs ids, entity ids, entity spans so that it can be used by the model. It adds special tokens, truncates sequences if overflowing while taking into account the special tokens and manages a moving window (with user defined stride) for overflowing tokens. Please Note, for *pair_ids* different than `None` and *truncation_strategy = longest_first* or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an error. Args: ids (`List[int]`): Tokenized input ids of the first sequence. pair_ids (`List[int]`, *optional*): Tokenized input ids of the second sequence. entity_ids (`List[int]`, *optional*): Entity ids of the first sequence. pair_entity_ids (`List[int]`, *optional*): Entity ids of the second sequence. entity_token_spans (`List[Tuple[int, int]]`, *optional*): Entity spans of the first sequence. pair_entity_token_spans (`List[Tuple[int, int]]`, *optional*): Entity spans of the second sequence. max_entity_length (`int`, *optional*): The maximum length of the entity sequence. """ # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( padding=padding, truncation=truncation, max_length=max_length, pad_to_multiple_of=pad_to_multiple_of, verbose=verbose, **kwargs, ) # Compute lengths pair = bool(pair_ids is not None) len_ids = len(ids) len_pair_ids = len(pair_ids) if pair else 0 if return_token_type_ids and not add_special_tokens: raise ValueError( "Asking to return token_type_ids while setting add_special_tokens to False " "results in an undefined behavior. Please set add_special_tokens to True or " "set return_token_type_ids to None." ) if ( return_overflowing_tokens and truncation_strategy == TruncationStrategy.LONGEST_FIRST and pair_ids is not None ): raise ValueError( "Not possible to return overflowing tokens for pair of sequences with the " "`longest_first`. Please select another truncation strategy than `longest_first`, " "for instance `only_second` or `only_first`." ) # Load from model defaults if return_token_type_ids is None: return_token_type_ids = "token_type_ids" in self.model_input_names if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names encoded_inputs = {} # Compute the total size of the returned word encodings total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) # Truncation: Handle max sequence length and max_entity_length overflowing_tokens = [] if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: # truncate words up to max_length ids, pair_ids, overflowing_tokens = self.truncate_sequences( ids, pair_ids=pair_ids, num_tokens_to_remove=total_len - max_length, truncation_strategy=truncation_strategy, stride=stride, ) if return_overflowing_tokens: encoded_inputs["overflowing_tokens"] = overflowing_tokens encoded_inputs["num_truncated_tokens"] = total_len - max_length # Add special tokens if add_special_tokens: sequence = self.build_inputs_with_special_tokens(ids, pair_ids) token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) entity_token_offset = 1 # 1 * <s> token pair_entity_token_offset = len(ids) + 3 # 1 * <s> token & 2 * <sep> tokens else: sequence = ids + pair_ids if pair else ids token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else []) entity_token_offset = 0 pair_entity_token_offset = len(ids) # Build output dictionary encoded_inputs["input_ids"] = sequence if return_token_type_ids: encoded_inputs["token_type_ids"] = token_type_ids if return_special_tokens_mask: if add_special_tokens: encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) else: encoded_inputs["special_tokens_mask"] = [0] * len(sequence) # Set max entity length if not max_entity_length: max_entity_length = self.max_entity_length if entity_ids is not None: total_entity_len = 0 num_invalid_entities = 0 valid_entity_ids = [ent_id for ent_id, span in zip(entity_ids, entity_token_spans) if span[1] <= len(ids)] valid_entity_token_spans = [span for span in entity_token_spans if span[1] <= len(ids)] total_entity_len += len(valid_entity_ids) num_invalid_entities += len(entity_ids) - len(valid_entity_ids) valid_pair_entity_ids, valid_pair_entity_token_spans = None, None if pair_entity_ids is not None: valid_pair_entity_ids = [ ent_id for ent_id, span in zip(pair_entity_ids, pair_entity_token_spans) if span[1] <= len(pair_ids) ] valid_pair_entity_token_spans = [span for span in pair_entity_token_spans if span[1] <= len(pair_ids)] total_entity_len += len(valid_pair_entity_ids) num_invalid_entities += len(pair_entity_ids) - len(valid_pair_entity_ids) if num_invalid_entities != 0: logger.warning( f"{num_invalid_entities} entities are ignored because their entity spans are invalid due to the" " truncation of input tokens" ) if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and total_entity_len > max_entity_length: # truncate entities up to max_entity_length valid_entity_ids, valid_pair_entity_ids, overflowing_entities = self.truncate_sequences( valid_entity_ids, pair_ids=valid_pair_entity_ids, num_tokens_to_remove=total_entity_len - max_entity_length, truncation_strategy=truncation_strategy, stride=stride, ) valid_entity_token_spans = valid_entity_token_spans[: len(valid_entity_ids)] if valid_pair_entity_token_spans is not None: valid_pair_entity_token_spans = valid_pair_entity_token_spans[: len(valid_pair_entity_ids)] if return_overflowing_tokens: encoded_inputs["overflowing_entities"] = overflowing_entities encoded_inputs["num_truncated_entities"] = total_entity_len - max_entity_length final_entity_ids = valid_entity_ids + valid_pair_entity_ids if valid_pair_entity_ids else valid_entity_ids encoded_inputs["entity_ids"] = list(final_entity_ids) entity_position_ids = [] entity_start_positions = [] entity_end_positions = [] for token_spans, offset in ( (valid_entity_token_spans, entity_token_offset), (valid_pair_entity_token_spans, pair_entity_token_offset), ): if token_spans is not None: for start, end in token_spans: start += offset end += offset position_ids = list(range(start, end))[: self.max_mention_length] position_ids += [-1] * (self.max_mention_length - end + start) entity_position_ids.append(position_ids) entity_start_positions.append(start) entity_end_positions.append(end - 1) encoded_inputs["entity_position_ids"] = entity_position_ids if self.task == "entity_span_classification": encoded_inputs["entity_start_positions"] = entity_start_positions encoded_inputs["entity_end_positions"] = entity_end_positions if return_token_type_ids: encoded_inputs["entity_token_type_ids"] = [0] * len(encoded_inputs["entity_ids"]) # Check lengths self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) # Padding if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: encoded_inputs = self.pad( encoded_inputs, max_length=max_length, max_entity_length=max_entity_length, padding=padding_strategy.value, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, ) if return_length: encoded_inputs["length"] = len(encoded_inputs["input_ids"]) batch_outputs = BatchEncoding( encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis ) return batch_outputs def pad( self, encoded_inputs: Union[ BatchEncoding, List[BatchEncoding], Dict[str, EncodedInput], Dict[str, List[EncodedInput]], List[Dict[str, EncodedInput]], ], padding: Union[bool, str, PaddingStrategy] = True, max_length: Optional[int] = None, max_entity_length: Optional[int] = None, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_attention_mask: Optional[bool] = None, return_tensors: Optional[Union[str, TensorType]] = None, verbose: bool = True, ) -> BatchEncoding: """ Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length in the batch. Padding side (left/right) padding token ids are defined at the tokenizer level (with `self.padding_side`, `self.pad_token_id` and `self.pad_token_type_id`) .. note:: If the `encoded_inputs` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the result will use the same type unless you provide a different tensor type with `return_tensors`. In the case of PyTorch tensors, you will lose the specific device of your tensors however. Args: encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`): Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str, List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader collate function. Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors), see the note above for the return type. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). max_entity_length (`int`, *optional*): The maximum length of the entity sequence. pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). padding_side: The side on which the model should have padding applied. Should be selected between ['right', 'left']. Default value is picked from the class attribute of the same name. return_attention_mask (`bool`, *optional*): Whether to return the attention mask. If left to the default, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. verbose (`bool`, *optional*, defaults to `True`): Whether or not to print more information and warnings. """ # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping): encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()} # The model's main input name, usually `input_ids`, has be passed for padding if self.model_input_names[0] not in encoded_inputs: raise ValueError( "You should supply an encoding or a list of encodings to this method " f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}" ) required_input = encoded_inputs[self.model_input_names[0]] if not required_input: if return_attention_mask: encoded_inputs["attention_mask"] = [] return encoded_inputs # If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch first_element = required_input[0] if isinstance(first_element, (list, tuple)): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. index = 0 while len(required_input[index]) == 0: index += 1 if index < len(required_input): first_element = required_input[index][0] # At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do. if not isinstance(first_element, (int, list, tuple)): if is_tf_tensor(first_element): return_tensors = "tf" if return_tensors is None else return_tensors elif is_torch_tensor(first_element): return_tensors = "pt" if return_tensors is None else return_tensors elif isinstance(first_element, np.ndarray): return_tensors = "np" if return_tensors is None else return_tensors else: raise ValueError( f"type of {first_element} unknown: {type(first_element)}. " "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in encoded_inputs.items(): encoded_inputs[key] = to_py_obj(value) # Convert padding_strategy in PaddingStrategy padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies( padding=padding, max_length=max_length, verbose=verbose ) if max_entity_length is None: max_entity_length = self.max_entity_length required_input = encoded_inputs[self.model_input_names[0]] if required_input and not isinstance(required_input[0], (list, tuple)): encoded_inputs = self._pad( encoded_inputs, max_length=max_length, max_entity_length=max_entity_length, padding_strategy=padding_strategy, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, ) return BatchEncoding(encoded_inputs, tensor_type=return_tensors) batch_size = len(required_input) if any(len(v) != batch_size for v in encoded_inputs.values()): raise ValueError("Some items in the output dictionary have a different batch size than others.") if padding_strategy == PaddingStrategy.LONGEST: max_length = max(len(inputs) for inputs in required_input) max_entity_length = ( max(len(inputs) for inputs in encoded_inputs["entity_ids"]) if "entity_ids" in encoded_inputs else 0 ) padding_strategy = PaddingStrategy.MAX_LENGTH batch_outputs = {} for i in range(batch_size): inputs = {k: v[i] for k, v in encoded_inputs.items()} outputs = self._pad( inputs, max_length=max_length, max_entity_length=max_entity_length, padding_strategy=padding_strategy, pad_to_multiple_of=pad_to_multiple_of, padding_side=padding_side, return_attention_mask=return_attention_mask, ) for key, value in outputs.items(): if key not in batch_outputs: batch_outputs[key] = [] batch_outputs[key].append(value) return BatchEncoding(batch_outputs, tensor_type=return_tensors) def _pad( self, encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], max_length: Optional[int] = None, max_entity_length: Optional[int] = None, padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, pad_to_multiple_of: Optional[int] = None, padding_side: Optional[bool] = None, return_attention_mask: Optional[bool] = None, ) -> dict: """ Pad encoded inputs (on left/right and up to predefined length or max length in the batch) Args: encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). max_length: maximum length of the returned list and optionally padding length (see below). Will truncate by taking into account the special tokens. max_entity_length: The maximum length of the entity sequence. padding_strategy: PaddingStrategy to use for padding. - PaddingStrategy.LONGEST Pad to the longest sequence in the batch - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) - PaddingStrategy.DO_NOT_PAD: Do not pad The tokenizer padding sides are defined in self.padding_side: - 'left': pads on the left of the sequences - 'right': pads on the right of the sequences pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability `>= 7.5` (Volta). padding_side: The side on which the model should have padding applied. Should be selected between ['right', 'left']. Default value is picked from the class attribute of the same name. return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics) """ entities_provided = bool("entity_ids" in encoded_inputs) # Load from model defaults if return_attention_mask is None: return_attention_mask = "attention_mask" in self.model_input_names if padding_strategy == PaddingStrategy.LONGEST: max_length = len(encoded_inputs["input_ids"]) if entities_provided: max_entity_length = len(encoded_inputs["entity_ids"]) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of if ( entities_provided and max_entity_length is not None and pad_to_multiple_of is not None and (max_entity_length % pad_to_multiple_of != 0) ): max_entity_length = ((max_entity_length // pad_to_multiple_of) + 1) * pad_to_multiple_of needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and ( len(encoded_inputs["input_ids"]) != max_length or (entities_provided and len(encoded_inputs["entity_ids"]) != max_entity_length) ) # Initialize attention mask if not present. if return_attention_mask and "attention_mask" not in encoded_inputs: encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"]) if entities_provided and return_attention_mask and "entity_attention_mask" not in encoded_inputs: encoded_inputs["entity_attention_mask"] = [1] * len(encoded_inputs["entity_ids"]) if needs_to_be_padded: difference = max_length - len(encoded_inputs["input_ids"]) padding_side = padding_side if padding_side is not None else self.padding_side if entities_provided: entity_difference = max_entity_length - len(encoded_inputs["entity_ids"]) if padding_side == "right": if return_attention_mask: encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference if entities_provided: encoded_inputs["entity_attention_mask"] = ( encoded_inputs["entity_attention_mask"] + [0] * entity_difference ) if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = encoded_inputs["token_type_ids"] + [0] * difference if entities_provided: encoded_inputs["entity_token_type_ids"] = ( encoded_inputs["entity_token_type_ids"] + [0] * entity_difference ) if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference encoded_inputs["input_ids"] = encoded_inputs["input_ids"] + [self.pad_token_id] * difference if entities_provided: encoded_inputs["entity_ids"] = ( encoded_inputs["entity_ids"] + [self.entity_pad_token_id] * entity_difference ) encoded_inputs["entity_position_ids"] = ( encoded_inputs["entity_position_ids"] + [[-1] * self.max_mention_length] * entity_difference ) if self.task == "entity_span_classification": encoded_inputs["entity_start_positions"] = ( encoded_inputs["entity_start_positions"] + [0] * entity_difference ) encoded_inputs["entity_end_positions"] = ( encoded_inputs["entity_end_positions"] + [0] * entity_difference ) elif padding_side == "left": if return_attention_mask: encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] if entities_provided: encoded_inputs["entity_attention_mask"] = [0] * entity_difference + encoded_inputs[ "entity_attention_mask" ] if "token_type_ids" in encoded_inputs: encoded_inputs["token_type_ids"] = [0] * difference + encoded_inputs["token_type_ids"] if entities_provided: encoded_inputs["entity_token_type_ids"] = [0] * entity_difference + encoded_inputs[ "entity_token_type_ids" ] if "special_tokens_mask" in encoded_inputs: encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] encoded_inputs["input_ids"] = [self.pad_token_id] * difference + encoded_inputs["input_ids"] if entities_provided: encoded_inputs["entity_ids"] = [self.entity_pad_token_id] * entity_difference + encoded_inputs[ "entity_ids" ] encoded_inputs["entity_position_ids"] = [ [-1] * self.max_mention_length ] * entity_difference + encoded_inputs["entity_position_ids"] if self.task == "entity_span_classification": encoded_inputs["entity_start_positions"] = [0] * entity_difference + encoded_inputs[ "entity_start_positions" ] encoded_inputs["entity_end_positions"] = [0] * entity_difference + encoded_inputs[ "entity_end_positions" ] else: raise ValueError("Invalid padding strategy:" + str(padding_side)) return encoded_inputs def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 entity_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["entity_vocab_file"] ) with open(entity_vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.entity_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n") return vocab_file, merge_file, entity_vocab_file
class_definition
7,487
85,647
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/tokenization_luke.py
null
3,922
class DebertaLayerNorm(nn.Module): """LayerNorm module in the TF style (epsilon inside the square root).""" def __init__(self, size, eps=1e-12): super().__init__() self.weight = nn.Parameter(torch.ones(size)) self.bias = nn.Parameter(torch.zeros(size)) self.variance_epsilon = eps def forward(self, hidden_states): input_type = hidden_states.dtype hidden_states = hidden_states.float() mean = hidden_states.mean(-1, keepdim=True) variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True) hidden_states = (hidden_states - mean) / torch.sqrt(variance + self.variance_epsilon) hidden_states = hidden_states.to(input_type) y = self.weight * hidden_states + self.bias return y
class_definition
1,733
2,520
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,923
class DebertaSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
2,523
3,088
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,924
class DisentangledSelfAttention(nn.Module): """ Disentangled self-attention module Parameters: config (`str`): A model config class instance with the configuration to build a new model. The schema is similar to *BertConfig*, for more details, please refer [`DebertaConfig`] """ def __init__(self, config): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.in_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=False) self.q_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float)) self.v_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float)) self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else [] self.relative_attention = getattr(config, "relative_attention", False) self.talking_head = getattr(config, "talking_head", False) if self.talking_head: self.head_logits_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False) self.head_weights_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False) else: self.head_logits_proj = None self.head_weights_proj = None if self.relative_attention: self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.pos_dropout = nn.Dropout(config.hidden_dropout_prob) if "c2p" in self.pos_att_type: self.pos_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=False) if "p2c" in self.pos_att_type: self.pos_q_proj = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_attentions: bool = False, query_states: Optional[torch.Tensor] = None, relative_pos: Optional[torch.Tensor] = None, rel_embeddings: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: """ Call the module Args: hidden_states (`torch.FloatTensor`): Input states to the module usually the output from previous layer, it will be the Q,K and V in *Attention(Q,K,V)* attention_mask (`torch.BoolTensor`): An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j* th token. output_attentions (`bool`, *optional*): Whether return the attention matrix. query_states (`torch.FloatTensor`, *optional*): The *Q* state in *Attention(Q,K,V)*. relative_pos (`torch.LongTensor`): The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with values ranging in [*-max_relative_positions*, *max_relative_positions*]. rel_embeddings (`torch.FloatTensor`): The embedding of relative distances. It's a tensor of shape [\\(2 \\times \\text{max_relative_positions}\\), *hidden_size*]. """ if query_states is None: qp = self.in_proj(hidden_states) # .split(self.all_head_size, dim=-1) query_layer, key_layer, value_layer = self.transpose_for_scores(qp).chunk(3, dim=-1) else: ws = self.in_proj.weight.chunk(self.num_attention_heads * 3, dim=0) qkvw = [torch.cat([ws[i * 3 + k] for i in range(self.num_attention_heads)], dim=0) for k in range(3)] q = torch.matmul(qkvw[0], query_states.t().to(dtype=qkvw[0].dtype)) k = torch.matmul(qkvw[1], hidden_states.t().to(dtype=qkvw[1].dtype)) v = torch.matmul(qkvw[2], hidden_states.t().to(dtype=qkvw[2].dtype)) query_layer, key_layer, value_layer = [self.transpose_for_scores(x) for x in [q, k, v]] query_layer = query_layer + self.transpose_for_scores(self.q_bias[None, None, :]) value_layer = value_layer + self.transpose_for_scores(self.v_bias[None, None, :]) rel_att: int = 0 # Take the dot product between "query" and "key" to get the raw attention scores. scale_factor = 1 + len(self.pos_att_type) scale = scaled_size_sqrt(query_layer, scale_factor) query_layer = query_layer / scale.to(dtype=query_layer.dtype) attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.relative_attention and rel_embeddings is not None and relative_pos is not None: rel_embeddings = self.pos_dropout(rel_embeddings) rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor) if rel_att is not None: attention_scores = attention_scores + rel_att # bxhxlxd if self.head_logits_proj is not None: attention_scores = self.head_logits_proj(attention_scores.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) attention_mask = attention_mask.bool() attention_scores = attention_scores.masked_fill(~(attention_mask), torch.finfo(query_layer.dtype).min) # bsz x height x length x dimension attention_probs = nn.functional.softmax(attention_scores, dim=-1) attention_probs = self.dropout(attention_probs) if self.head_weights_proj is not None: attention_probs = self.head_weights_proj(attention_probs.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (-1,) context_layer = context_layer.view(new_context_layer_shape) if not output_attentions: return (context_layer, None) return (context_layer, attention_probs) def disentangled_att_bias( self, query_layer: torch.Tensor, key_layer: torch.Tensor, relative_pos: torch.Tensor, rel_embeddings: torch.Tensor, scale_factor: int, ): if relative_pos is None: relative_pos = build_relative_position(query_layer, key_layer, query_layer.device) if relative_pos.dim() == 2: relative_pos = relative_pos.unsqueeze(0).unsqueeze(0) elif relative_pos.dim() == 3: relative_pos = relative_pos.unsqueeze(1) # bxhxqxk elif relative_pos.dim() != 4: raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}") att_span = compute_attention_span(query_layer, key_layer, self.max_relative_positions) relative_pos = relative_pos.long() rel_embeddings = rel_embeddings[ self.max_relative_positions - att_span : self.max_relative_positions + att_span, : ].unsqueeze(0) score = 0 # content->position if "c2p" in self.pos_att_type: pos_key_layer = self.pos_proj(rel_embeddings) pos_key_layer = self.transpose_for_scores(pos_key_layer) c2p_att = torch.matmul(query_layer, pos_key_layer.transpose(-1, -2)) c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1) c2p_att = torch.gather(c2p_att, dim=-1, index=c2p_dynamic_expand(c2p_pos, query_layer, relative_pos)) score += c2p_att # position->content if "p2c" in self.pos_att_type: pos_query_layer = self.pos_q_proj(rel_embeddings) pos_query_layer = self.transpose_for_scores(pos_query_layer) pos_query_layer /= scaled_size_sqrt(pos_query_layer, scale_factor) r_pos = build_rpos( query_layer, key_layer, relative_pos, ) p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1) p2c_att = torch.matmul(key_layer, pos_query_layer.transpose(-1, -2).to(dtype=key_layer.dtype)) p2c_att = torch.gather( p2c_att, dim=-1, index=p2c_dynamic_expand(p2c_pos, query_layer, key_layer) ).transpose(-1, -2) p2c_att = uneven_size_corrected(p2c_att, query_layer, key_layer, relative_pos) score += p2c_att return score
class_definition
5,993
15,362
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,925
class DebertaEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config): super().__init__() pad_token_id = getattr(config, "pad_token_id", 0) self.embedding_size = getattr(config, "embedding_size", config.hidden_size) self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id) self.position_biased_input = getattr(config, "position_biased_input", True) if not self.position_biased_input: self.position_embeddings = None else: self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size) if config.type_vocab_size > 0: self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size) else: self.token_type_embeddings = None if self.embedding_size != config.hidden_size: self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False) else: self.embed_proj = None self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.config = config # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None): if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] if position_ids is None: position_ids = self.position_ids[:, :seq_length] if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if self.position_embeddings is not None: position_embeddings = self.position_embeddings(position_ids.long()) else: position_embeddings = torch.zeros_like(inputs_embeds) embeddings = inputs_embeds if self.position_biased_input: embeddings += position_embeddings if self.token_type_embeddings is not None: token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings += token_type_embeddings if self.embed_proj is not None: embeddings = self.embed_proj(embeddings) embeddings = self.LayerNorm(embeddings) if mask is not None: if mask.dim() != embeddings.dim(): if mask.dim() == 4: mask = mask.squeeze(1).squeeze(1) mask = mask.unsqueeze(2) mask = mask.to(embeddings.dtype) embeddings = embeddings * mask embeddings = self.dropout(embeddings) return embeddings
class_definition
15,365
18,548
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,926
class DebertaAttention(nn.Module): def __init__(self, config): super().__init__() self.self = DisentangledSelfAttention(config) self.output = DebertaSelfOutput(config) self.config = config def forward( self, hidden_states, attention_mask, output_attentions: bool = False, query_states=None, relative_pos=None, rel_embeddings=None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: self_output, att_matrix = self.self( hidden_states, attention_mask, output_attentions, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, ) if query_states is None: query_states = hidden_states attention_output = self.output(self_output, query_states) if output_attentions: return (attention_output, att_matrix) else: return (attention_output, None)
class_definition
18,551
19,573
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,927
class DebertaIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states
class_definition
19,665
20,233
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,928
class DebertaOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.config = config def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states
class_definition
20,236
20,832
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,929
class DebertaLayer(nn.Module): def __init__(self, config): super().__init__() self.attention = DebertaAttention(config) self.intermediate = DebertaIntermediate(config) self.output = DebertaOutput(config) def forward( self, hidden_states, attention_mask, query_states=None, relative_pos=None, rel_embeddings=None, output_attentions: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: attention_output, att_matrix = self.attention( hidden_states, attention_mask, output_attentions=output_attentions, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, ) intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) if output_attentions: return (layer_output, att_matrix) else: return (layer_output, None)
class_definition
20,835
21,892
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,930
class DebertaEncoder(PreTrainedModel): """Modified BertEncoder with relative position bias support""" def __init__(self, config): super().__init__(config) self.layer = nn.ModuleList([DebertaLayer(config) for _ in range(config.num_hidden_layers)]) self.relative_attention = getattr(config, "relative_attention", False) if self.relative_attention: self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.rel_embeddings = nn.Embedding(self.max_relative_positions * 2, config.hidden_size) self.gradient_checkpointing = False def get_rel_embedding(self): rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None return rel_embeddings def get_attention_mask(self, attention_mask): if attention_mask.dim() <= 2: extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1) elif attention_mask.dim() == 3: attention_mask = attention_mask.unsqueeze(1) return attention_mask def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None): if self.relative_attention and relative_pos is None: if query_states is not None: relative_pos = build_relative_position(query_states, hidden_states) else: relative_pos = build_relative_position(hidden_states, hidden_states) return relative_pos def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, output_hidden_states: bool = True, output_attentions: bool = False, query_states=None, relative_pos=None, return_dict: bool = True, ): attention_mask = self.get_attention_mask(attention_mask) relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos) all_hidden_states: Optional[Tuple[torch.Tensor]] = (hidden_states,) if output_hidden_states else None all_attentions = () if output_attentions else None next_kv = hidden_states rel_embeddings = self.get_rel_embedding() for i, layer_module in enumerate(self.layer): if self.gradient_checkpointing and self.training: hidden_states, att_m = self._gradient_checkpointing_func( layer_module.__call__, next_kv, attention_mask, query_states, relative_pos, rel_embeddings, output_attentions, ) else: hidden_states, att_m = layer_module( next_kv, attention_mask, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, output_attentions=output_attentions, ) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if query_states is not None: query_states = hidden_states else: next_kv = hidden_states if output_attentions: all_attentions = all_attentions + (att_m,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions )
class_definition
21,895
25,723
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,931
class DebertaPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DebertaConfig base_model_prefix = "deberta" _keys_to_ignore_on_load_unexpected = ["position_embeddings"] supports_gradient_checkpointing = True def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, nn.Linear): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
class_definition
25,726
26,779
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,932
class DebertaModel(DebertaPreTrainedModel): def __init__(self, config): super().__init__(config) self.embeddings = DebertaEmbeddings(config) self.encoder = DebertaEncoder(config) self.z_steps = 0 self.config = config # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, new_embeddings): self.embeddings.word_embeddings = new_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError("The prune function is not implemented in DeBERTa model.") @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) embedding_output = self.embeddings( input_ids=input_ids, token_type_ids=token_type_ids, position_ids=position_ids, mask=attention_mask, inputs_embeds=inputs_embeds, ) encoder_outputs = self.encoder( embedding_output, attention_mask, output_hidden_states=True, output_attentions=output_attentions, return_dict=return_dict, ) encoded_layers = encoder_outputs[1] if self.z_steps > 1: hidden_states = encoded_layers[-2] layers = [self.encoder.layer[-1] for _ in range(self.z_steps)] query_states = encoded_layers[-1] rel_embeddings = self.encoder.get_rel_embedding() attention_mask = self.encoder.get_attention_mask(attention_mask) rel_pos = self.encoder.get_rel_pos(embedding_output) for layer in layers[1:]: query_states = layer( hidden_states, attention_mask, output_attentions=False, query_states=query_states, relative_pos=rel_pos, rel_embeddings=rel_embeddings, ) encoded_layers.append(query_states) sequence_output = encoded_layers[-1] if not return_dict: return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :] return BaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states if output_hidden_states else None, attentions=encoder_outputs.attentions, )
class_definition
30,322
34,830
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,933
class LegacyDebertaPredictionHeadTransform(nn.Module): def __init__(self, config): super().__init__() self.embedding_size = getattr(config, "embedding_size", config.hidden_size) self.dense = nn.Linear(config.hidden_size, self.embedding_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(self.embedding_size, eps=config.layer_norm_eps) def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states
class_definition
34,833
35,599
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,934
class LegacyDebertaLMPredictionHead(nn.Module): def __init__(self, config): super().__init__() self.transform = LegacyDebertaPredictionHeadTransform(config) self.embedding_size = getattr(config, "embedding_size", config.hidden_size) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(self.embedding_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def _tie_weights(self): self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states
class_definition
35,602
36,537
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,935
class LegacyDebertaOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.predictions = LegacyDebertaLMPredictionHead(config) def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: prediction_scores = self.predictions(sequence_output) return prediction_scores
class_definition
36,634
36,966
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,936
class DebertaLMPredictionHead(nn.Module): """https://github.com/microsoft/DeBERTa/blob/master/DeBERTa/deberta/bert.py#L270""" def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) if isinstance(config.hidden_act, str): self.transform_act_fn = ACT2FN[config.hidden_act] else: self.transform_act_fn = config.hidden_act self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=True) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # note that the input embeddings must be passed as an argument def forward(self, hidden_states, word_embeddings): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm( hidden_states ) # original used MaskedLayerNorm, but passed no mask. This is equivalent. hidden_states = torch.matmul(hidden_states, word_embeddings.weight.t()) + self.bias return hidden_states
class_definition
36,969
38,089
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,937
class DebertaOnlyMLMHead(nn.Module): def __init__(self, config): super().__init__() self.lm_head = DebertaLMPredictionHead(config) # note that the input embeddings must be passed as an argument def forward(self, sequence_output, word_embeddings): prediction_scores = self.lm_head(sequence_output, word_embeddings) return prediction_scores
class_definition
38,092
38,475
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,938
class DebertaForMaskedLM(DebertaPreTrainedModel): _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] def __init__(self, config): super().__init__(config) self.legacy = config.legacy self.deberta = DebertaModel(config) if self.legacy: self.cls = LegacyDebertaOnlyMLMHead(config) else: self._tied_weights_keys = ["lm_predictions.lm_head.weight", "deberta.embeddings.word_embeddings.weight"] self.lm_predictions = DebertaOnlyMLMHead(config) # Initialize weights and apply final processing self.post_init() def get_output_embeddings(self): if self.legacy: return self.cls.predictions.decoder else: return self.lm_predictions.lm_head.dense def set_output_embeddings(self, new_embeddings): if self.legacy: self.cls.predictions.decoder = new_embeddings self.cls.predictions.bias = new_embeddings.bias else: self.lm_predictions.lm_head.dense = new_embeddings self.lm_predictions.lm_head.bias = new_embeddings.bias @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_MASKED_LM, output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC, mask="[MASK]", expected_output=_MASKED_LM_EXPECTED_OUTPUT, expected_loss=_MASKED_LM_EXPECTED_LOSS, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MaskedLMOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] if self.legacy: prediction_scores = self.cls(sequence_output) else: prediction_scores = self.lm_predictions(sequence_output, self.deberta.embeddings.word_embeddings) masked_lm_loss = None if labels is not None: loss_fct = CrossEntropyLoss() # -100 index = padding token masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) if not return_dict: output = (prediction_scores,) + outputs[1:] return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output return MaskedLMOutput( loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
38,586
42,432
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,939
class ContextPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size) self.dropout = nn.Dropout(config.pooler_dropout) self.config = config def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. context_token = hidden_states[:, 0] context_token = self.dropout(context_token) pooled_output = self.dense(context_token) pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output) return pooled_output @property def output_dim(self): return self.config.hidden_size
class_definition
42,435
43,176
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,940
class DebertaForSequenceClassification(DebertaPreTrainedModel): def __init__(self, config): super().__init__(config) num_labels = getattr(config, "num_labels", 2) self.num_labels = num_labels self.deberta = DebertaModel(config) self.pooler = ContextPooler(config) output_dim = self.pooler.output_dim self.classifier = nn.Linear(output_dim, num_labels) drop_out = getattr(config, "cls_dropout", None) drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out self.dropout = nn.Dropout(drop_out) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.deberta.get_input_embeddings() def set_input_embeddings(self, new_embeddings): self.deberta.set_input_embeddings(new_embeddings) @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deberta( input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) encoder_layer = outputs[0] pooled_output = self.pooler(encoder_layer) pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: # regression task loss_fn = nn.MSELoss() logits = logits.view(-1).to(labels.dtype) loss = loss_fn(logits, labels.view(-1)) elif labels.dim() == 1 or labels.size(-1) == 1: label_index = (labels >= 0).nonzero() labels = labels.long() if label_index.size(0) > 0: labeled_logits = torch.gather( logits, 0, label_index.expand(label_index.size(0), logits.size(1)) ) labels = torch.gather(labels, 0, label_index.view(-1)) loss_fct = CrossEntropyLoss() loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1)) else: loss = torch.tensor(0).to(logits) else: log_softmax = nn.LogSoftmax(-1) loss = -((log_softmax(logits) * labels).sum(-1)).mean() elif self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions )
class_definition
43,404
48,329
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,941
class DebertaForTokenClassification(DebertaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.deberta = DebertaModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions )
class_definition
48,564
51,121
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,942
class DebertaForQuestionAnswering(DebertaPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.deberta = DebertaModel(config) self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_QA, output_type=QuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, expected_output=_QA_EXPECTED_OUTPUT, expected_loss=_QA_EXPECTED_LOSS, qa_target_start_index=_QA_TARGET_START_INDEX, qa_target_end_index=_QA_TARGET_END_INDEX, ) def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, start_positions: Optional[torch.Tensor] = None, end_positions: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, QuestionAnsweringModelOutput]: r""" start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.deberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + outputs[1:] return ((total_loss,) + output) if total_loss is not None else output return QuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
51,414
55,701
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
null
3,943
class DebertaTokenizerFast(PreTrainedTokenizerFast): """ Construct a "fast" DeBERTa tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import DebertaTokenizerFast >>> tokenizer = DebertaTokenizerFast.from_pretrained("microsoft/deberta-base") >>> tokenizer("Hello world")["input_ids"] [1, 31414, 232, 2] >>> tokenizer(" Hello world")["input_ids"] [1, 20920, 232, 2] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. </Tip> This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`, *optional*): Path to the vocabulary file. merges_file (`str`, *optional*): Path to the merges file. tokenizer_file (`str`, *optional*): The path to a tokenizer file to use instead of the vocab file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"[CLS]"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"[SEP]"`): The end of sequence token. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (Deberta tokenizer detect beginning of words by the preceding space). """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask", "token_type_ids"] slow_tokenizer_class = DebertaTokenizer def __init__( self, vocab_file=None, merges_file=None, tokenizer_file=None, errors="replace", bos_token="[CLS]", eos_token="[SEP]", sep_token="[SEP]", cls_token="[CLS]", unk_token="[UNK]", pad_token="[PAD]", mask_token="[MASK]", add_prefix_space=False, **kwargs, ): super().__init__( vocab_file, merges_file, tokenizer_file=tokenizer_file, errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, **kwargs, ) self.add_bos_token = kwargs.pop("add_bos_token", False) @property def mask_token(self) -> str: """ `str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not having been set. Deberta tokenizer has a special mask token to be used in the fill-mask pipeline. The mask token will greedily comprise the space before the *[MASK]*. """ if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def mask_token(self, value): """ Overriding the default behavior of the mask token to have it eat the space before it. """ # Mask token behave like a normal word, i.e. include the space before it # So we set lstrip to True value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value self._mask_token = value def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A DeBERTa sequence has the following format: - single sequence: [CLS] X [SEP] - pair of sequences: [CLS] A [SEP] B [SEP] Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._batch_encode_plus def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*args, **kwargs) # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._encode_plus def _encode_plus(self, *args, **kwargs) -> BatchEncoding: is_split_into_words = kwargs.get("is_split_into_words", False) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*args, **kwargs) # Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: files = self._tokenizer.model.save(save_directory, name=filename_prefix) return tuple(files)
class_definition
1,076
10,216
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/tokenization_deberta_fast.py
null
3,944
class DebertaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`DebertaModel`] or a [`TFDebertaModel`]. It is used to instantiate a DeBERTa model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the DeBERTa [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Arguments: vocab_size (`int`, *optional*, defaults to 50265): Vocabulary size of the DeBERTa model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"silu"`, `"gelu"`, `"tanh"`, `"gelu_fast"`, `"mish"`, `"linear"`, `"sigmoid"` and `"gelu_new"` are supported. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). type_vocab_size (`int`, *optional*, defaults to 0): The vocabulary size of the `token_type_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`]. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. relative_attention (`bool`, *optional*, defaults to `False`): Whether use relative position encoding. max_relative_positions (`int`, *optional*, defaults to 1): The range of relative positions `[-max_position_embeddings, max_position_embeddings]`. Use the same value as `max_position_embeddings`. pad_token_id (`int`, *optional*, defaults to 0): The value used to pad input_ids. position_biased_input (`bool`, *optional*, defaults to `True`): Whether add absolute position embedding to content embedding. pos_att_type (`List[str]`, *optional*): The type of relative position attention, it can be a combination of `["p2c", "c2p"]`, e.g. `["p2c"]`, `["p2c", "c2p"]`. layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. legacy (`bool`, *optional*, defaults to `True`): Whether or not the model should use the legacy `LegacyDebertaOnlyMLMHead`, which does not work properly for mask infilling tasks. Example: ```python >>> from transformers import DebertaConfig, DebertaModel >>> # Initializing a DeBERTa microsoft/deberta-base style configuration >>> configuration = DebertaConfig() >>> # Initializing a model (with random weights) from the microsoft/deberta-base style configuration >>> model = DebertaModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "deberta" def __init__( self, vocab_size=50265, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=0, initializer_range=0.02, layer_norm_eps=1e-7, relative_attention=False, max_relative_positions=-1, pad_token_id=0, position_biased_input=True, pos_att_type=None, pooler_dropout=0, pooler_hidden_act="gelu", legacy=True, **kwargs, ): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.relative_attention = relative_attention self.max_relative_positions = max_relative_positions self.pad_token_id = pad_token_id self.position_biased_input = position_biased_input # Backwards compatibility if isinstance(pos_att_type, str): pos_att_type = [x.strip() for x in pos_att_type.lower().split("|")] self.pos_att_type = pos_att_type self.vocab_size = vocab_size self.layer_norm_eps = layer_norm_eps self.pooler_hidden_size = kwargs.get("pooler_hidden_size", hidden_size) self.pooler_dropout = pooler_dropout self.pooler_hidden_act = pooler_hidden_act self.legacy = legacy
class_definition
1,010
7,442
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/configuration_deberta.py
null
3,945
class DebertaOnnxConfig(OnnxConfig): @property def inputs(self) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"} else: dynamic_axis = {0: "batch", 1: "sequence"} if self._config.type_vocab_size > 0: return OrderedDict( [("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)] ) else: return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)]) @property def default_onnx_opset(self) -> int: return 12 def generate_dummy_inputs( self, preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], batch_size: int = -1, seq_length: int = -1, num_choices: int = -1, is_pair: bool = False, framework: Optional["TensorType"] = None, num_channels: int = 3, image_width: int = 40, image_height: int = 40, tokenizer: "PreTrainedTokenizerBase" = None, ) -> Mapping[str, Any]: dummy_inputs = super().generate_dummy_inputs(preprocessor=preprocessor, framework=framework) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
class_definition
7,535
8,945
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/configuration_deberta.py
null
3,946
class TFDebertaContextPooler(keras.layers.Layer): def __init__(self, config: DebertaConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(config.pooler_hidden_size, name="dense") self.dropout = TFDebertaStableDropout(config.pooler_dropout, name="dropout") self.config = config def call(self, hidden_states, training: bool = False): # We "pool" the model by simply taking the hidden state corresponding # to the first token. context_token = hidden_states[:, 0] context_token = self.dropout(context_token, training=training) pooled_output = self.dense(context_token) pooled_output = get_tf_activation(self.config.pooler_hidden_act)(pooled_output) return pooled_output @property def output_dim(self) -> int: return self.config.hidden_size def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.pooler_hidden_size]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None)
class_definition
1,685
2,994
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,947
class TFDebertaXSoftmax(keras.layers.Layer): """ Masked Softmax which is optimized for saving memory Args: input (`tf.Tensor`): The input tensor that will apply softmax. mask (`tf.Tensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation. dim (int): The dimension that will apply softmax """ def __init__(self, axis=-1, **kwargs): super().__init__(**kwargs) self.axis = axis def call(self, inputs: tf.Tensor, mask: tf.Tensor): rmask = tf.logical_not(tf.cast(mask, tf.bool)) output = tf.where(rmask, tf.cast(float("-inf"), dtype=self.compute_dtype), inputs) output = stable_softmax(tf.cast(output, dtype=tf.float32), self.axis) output = tf.where(rmask, 0.0, output) return output
class_definition
2,997
3,823
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,948
class TFDebertaStableDropout(keras.layers.Layer): """ Optimized dropout module for stabilizing the training Args: drop_prob (float): the dropout probabilities """ def __init__(self, drop_prob, **kwargs): super().__init__(**kwargs) self.drop_prob = drop_prob @tf.custom_gradient def xdropout(self, inputs): """ Applies dropout to the inputs, as vanilla dropout, but also scales the remaining elements up by 1/drop_prob. """ mask = tf.cast( 1 - tf.compat.v1.distributions.Bernoulli(probs=1.0 - self.drop_prob).sample(sample_shape=shape_list(inputs)), tf.bool, ) scale = tf.convert_to_tensor(1.0 / (1 - self.drop_prob), dtype=self.compute_dtype) if self.drop_prob > 0: inputs = tf.where(mask, tf.cast(0.0, dtype=self.compute_dtype), inputs) * scale def grad(upstream): if self.drop_prob > 0: return tf.where(mask, tf.cast(0.0, dtype=self.compute_dtype), upstream) * scale else: return upstream return inputs, grad def call(self, inputs: tf.Tensor, training: tf.Tensor = False): if training: return self.xdropout(inputs) return inputs
class_definition
3,826
5,122
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,949
class TFDebertaLayerNorm(keras.layers.Layer): """LayerNorm module in the TF style (epsilon inside the square root).""" def __init__(self, size, eps=1e-12, **kwargs): super().__init__(**kwargs) self.size = size self.eps = eps def build(self, input_shape): self.gamma = self.add_weight(shape=[self.size], initializer=tf.ones_initializer(), name="weight") self.beta = self.add_weight(shape=[self.size], initializer=tf.zeros_initializer(), name="bias") return super().build(input_shape) def call(self, x: tf.Tensor) -> tf.Tensor: mean = tf.reduce_mean(x, axis=[-1], keepdims=True) variance = tf.reduce_mean(tf.square(x - mean), axis=[-1], keepdims=True) std = tf.math.sqrt(variance + self.eps) return self.gamma * (x - mean) / std + self.beta
class_definition
5,125
5,962
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,950
class TFDebertaSelfOutput(keras.layers.Layer): def __init__(self, config: DebertaConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense(config.hidden_size, name="dense") self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = TFDebertaStableDropout(config.hidden_dropout_prob, name="dropout") self.config = config def call(self, hidden_states, input_tensor, training: bool = False): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None)
class_definition
5,965
7,310
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,951
class TFDebertaAttention(keras.layers.Layer): def __init__(self, config: DebertaConfig, **kwargs): super().__init__(**kwargs) self.self = TFDebertaDisentangledSelfAttention(config, name="self") self.dense_output = TFDebertaSelfOutput(config, name="output") self.config = config def call( self, input_tensor: tf.Tensor, attention_mask: tf.Tensor, query_states: tf.Tensor = None, relative_pos: tf.Tensor = None, rel_embeddings: tf.Tensor = None, output_attentions: bool = False, training: bool = False, ) -> Tuple[tf.Tensor]: self_outputs = self.self( hidden_states=input_tensor, attention_mask=attention_mask, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, output_attentions=output_attentions, training=training, ) if query_states is None: query_states = input_tensor attention_output = self.dense_output( hidden_states=self_outputs[0], input_tensor=query_states, training=training ) output = (attention_output,) + self_outputs[1:] return output def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "self", None) is not None: with tf.name_scope(self.self.name): self.self.build(None) if getattr(self, "dense_output", None) is not None: with tf.name_scope(self.dense_output.name): self.dense_output.build(None)
class_definition
7,313
8,978
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,952
class TFDebertaIntermediate(keras.layers.Layer): def __init__(self, config: DebertaConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) if isinstance(config.hidden_act, str): self.intermediate_act_fn = get_tf_activation(config.hidden_act) else: self.intermediate_act_fn = config.hidden_act self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size])
class_definition
8,981
10,009
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,953
class TFDebertaOutput(keras.layers.Layer): def __init__(self, config: DebertaConfig, **kwargs): super().__init__(**kwargs) self.dense = keras.layers.Dense( units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = TFDebertaStableDropout(config.hidden_dropout_prob, name="dropout") self.config = config def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.dropout(hidden_states, training=training) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.intermediate_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None)
class_definition
10,012
11,493
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,954
class TFDebertaLayer(keras.layers.Layer): def __init__(self, config: DebertaConfig, **kwargs): super().__init__(**kwargs) self.attention = TFDebertaAttention(config, name="attention") self.intermediate = TFDebertaIntermediate(config, name="intermediate") self.bert_output = TFDebertaOutput(config, name="output") def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, query_states: tf.Tensor = None, relative_pos: tf.Tensor = None, rel_embeddings: tf.Tensor = None, output_attentions: bool = False, training: bool = False, ) -> Tuple[tf.Tensor]: attention_outputs = self.attention( input_tensor=hidden_states, attention_mask=attention_mask, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, output_attentions=output_attentions, training=training, ) attention_output = attention_outputs[0] intermediate_output = self.intermediate(hidden_states=attention_output) layer_output = self.bert_output( hidden_states=intermediate_output, input_tensor=attention_output, training=training ) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "attention", None) is not None: with tf.name_scope(self.attention.name): self.attention.build(None) if getattr(self, "intermediate", None) is not None: with tf.name_scope(self.intermediate.name): self.intermediate.build(None) if getattr(self, "bert_output", None) is not None: with tf.name_scope(self.bert_output.name): self.bert_output.build(None)
class_definition
11,496
13,478
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,955
class TFDebertaEncoder(keras.layers.Layer): def __init__(self, config: DebertaConfig, **kwargs): super().__init__(**kwargs) self.layer = [TFDebertaLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] self.relative_attention = getattr(config, "relative_attention", False) self.config = config if self.relative_attention: self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings def build(self, input_shape=None): if self.built: return self.built = True if self.relative_attention: self.rel_embeddings = self.add_weight( name="rel_embeddings.weight", shape=[self.max_relative_positions * 2, self.config.hidden_size], initializer=get_initializer(self.config.initializer_range), ) if getattr(self, "layer", None) is not None: for layer in self.layer: with tf.name_scope(layer.name): layer.build(None) def get_rel_embedding(self): rel_embeddings = self.rel_embeddings if self.relative_attention else None return rel_embeddings def get_attention_mask(self, attention_mask): if len(shape_list(attention_mask)) <= 2: extended_attention_mask = tf.expand_dims(tf.expand_dims(attention_mask, 1), 2) attention_mask = extended_attention_mask * tf.expand_dims(tf.squeeze(extended_attention_mask, -2), -1) attention_mask = tf.cast(attention_mask, tf.uint8) elif len(shape_list(attention_mask)) == 3: attention_mask = tf.expand_dims(attention_mask, 1) return attention_mask def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None): if self.relative_attention and relative_pos is None: q = shape_list(query_states)[-2] if query_states is not None else shape_list(hidden_states)[-2] relative_pos = build_relative_position(q, shape_list(hidden_states)[-2]) return relative_pos def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, query_states: tf.Tensor = None, relative_pos: tf.Tensor = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None attention_mask = self.get_attention_mask(attention_mask) relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos) if isinstance(hidden_states, Sequence): next_kv = hidden_states[0] else: next_kv = hidden_states rel_embeddings = self.get_rel_embedding() for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states=next_kv, attention_mask=attention_mask, query_states=query_states, relative_pos=relative_pos, rel_embeddings=rel_embeddings, output_attentions=output_attentions, training=training, ) hidden_states = layer_outputs[0] if query_states is not None: query_states = hidden_states if isinstance(hidden_states, Sequence): next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None else: next_kv = hidden_states if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) return TFBaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions )
class_definition
13,481
17,917
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,956
class TFDebertaDisentangledSelfAttention(keras.layers.Layer): """ Disentangled self-attention module Parameters: config (`str`): A model config class instance with the configuration to build a new model. The schema is similar to *BertConfig*, for more details, please refer [`DebertaConfig`] """ def __init__(self, config: DebertaConfig, **kwargs): super().__init__(**kwargs) if config.hidden_size % config.num_attention_heads != 0: raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.in_proj = keras.layers.Dense( self.all_head_size * 3, kernel_initializer=get_initializer(config.initializer_range), name="in_proj", use_bias=False, ) self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else [] self.relative_attention = getattr(config, "relative_attention", False) self.talking_head = getattr(config, "talking_head", False) if self.talking_head: self.head_logits_proj = keras.layers.Dense( self.num_attention_heads, kernel_initializer=get_initializer(config.initializer_range), name="head_logits_proj", use_bias=False, ) self.head_weights_proj = keras.layers.Dense( self.num_attention_heads, kernel_initializer=get_initializer(config.initializer_range), name="head_weights_proj", use_bias=False, ) self.softmax = TFDebertaXSoftmax(axis=-1) if self.relative_attention: self.max_relative_positions = getattr(config, "max_relative_positions", -1) if self.max_relative_positions < 1: self.max_relative_positions = config.max_position_embeddings self.pos_dropout = TFDebertaStableDropout(config.hidden_dropout_prob, name="pos_dropout") if "c2p" in self.pos_att_type: self.pos_proj = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="pos_proj", use_bias=False, ) if "p2c" in self.pos_att_type: self.pos_q_proj = keras.layers.Dense( self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="pos_q_proj" ) self.dropout = TFDebertaStableDropout(config.attention_probs_dropout_prob, name="dropout") self.config = config def build(self, input_shape=None): if self.built: return self.built = True self.q_bias = self.add_weight( name="q_bias", shape=(self.all_head_size), initializer=keras.initializers.Zeros() ) self.v_bias = self.add_weight( name="v_bias", shape=(self.all_head_size), initializer=keras.initializers.Zeros() ) if getattr(self, "in_proj", None) is not None: with tf.name_scope(self.in_proj.name): self.in_proj.build([None, None, self.config.hidden_size]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) if getattr(self, "head_logits_proj", None) is not None: with tf.name_scope(self.head_logits_proj.name): self.head_logits_proj.build(None) if getattr(self, "head_weights_proj", None) is not None: with tf.name_scope(self.head_weights_proj.name): self.head_weights_proj.build(None) if getattr(self, "pos_dropout", None) is not None: with tf.name_scope(self.pos_dropout.name): self.pos_dropout.build(None) if getattr(self, "pos_proj", None) is not None: with tf.name_scope(self.pos_proj.name): self.pos_proj.build([self.config.hidden_size]) if getattr(self, "pos_q_proj", None) is not None: with tf.name_scope(self.pos_q_proj.name): self.pos_q_proj.build([self.config.hidden_size]) def transpose_for_scores(self, tensor: tf.Tensor) -> tf.Tensor: shape = shape_list(tensor)[:-1] + [self.num_attention_heads, -1] # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] tensor = tf.reshape(tensor=tensor, shape=shape) # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] return tf.transpose(tensor, perm=[0, 2, 1, 3]) def call( self, hidden_states: tf.Tensor, attention_mask: tf.Tensor, query_states: tf.Tensor = None, relative_pos: tf.Tensor = None, rel_embeddings: tf.Tensor = None, output_attentions: bool = False, training: bool = False, ) -> Tuple[tf.Tensor]: """ Call the module Args: hidden_states (`tf.Tensor`): Input states to the module usually the output from previous layer, it will be the Q,K and V in *Attention(Q,K,V)* attention_mask (`tf.Tensor`): An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j* th token. return_att (`bool`, *optional*): Whether return the attention matrix. query_states (`tf.Tensor`, *optional*): The *Q* state in *Attention(Q,K,V)*. relative_pos (`tf.Tensor`): The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with values ranging in [*-max_relative_positions*, *max_relative_positions*]. rel_embeddings (`tf.Tensor`): The embedding of relative distances. It's a tensor of shape [\\(2 \\times \\text{max_relative_positions}\\), *hidden_size*]. """ if query_states is None: qp = self.in_proj(hidden_states) # .split(self.all_head_size, dim=-1) query_layer, key_layer, value_layer = tf.split( self.transpose_for_scores(qp), num_or_size_splits=3, axis=-1 ) else: def linear(w, b, x): out = tf.matmul(x, w, transpose_b=True) if b is not None: out += tf.transpose(b) return out ws = tf.split( tf.transpose(self.in_proj.weight[0]), num_or_size_splits=self.num_attention_heads * 3, axis=0 ) qkvw = tf.TensorArray(dtype=self.dtype, size=3) for k in tf.range(3): qkvw_inside = tf.TensorArray(dtype=self.dtype, size=self.num_attention_heads) for i in tf.range(self.num_attention_heads): qkvw_inside = qkvw_inside.write(i, ws[i * 3 + k]) qkvw = qkvw.write(k, qkvw_inside.concat()) qkvb = [None] * 3 q = linear(qkvw[0], qkvb[0], query_states) k = linear(qkvw[1], qkvb[1], hidden_states) v = linear(qkvw[2], qkvb[2], hidden_states) query_layer = self.transpose_for_scores(q) key_layer = self.transpose_for_scores(k) value_layer = self.transpose_for_scores(v) query_layer = query_layer + self.transpose_for_scores(self.q_bias[None, None, :]) value_layer = value_layer + self.transpose_for_scores(self.v_bias[None, None, :]) rel_att = None # Take the dot product between "query" and "key" to get the raw attention scores. scale_factor = 1 + len(self.pos_att_type) scale = math.sqrt(shape_list(query_layer)[-1] * scale_factor) query_layer = query_layer / scale attention_scores = tf.matmul(query_layer, tf.transpose(key_layer, [0, 1, 3, 2])) if self.relative_attention: rel_embeddings = self.pos_dropout(rel_embeddings, training=training) rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor) if rel_att is not None: attention_scores = attention_scores + rel_att if self.talking_head: attention_scores = tf.transpose( self.head_logits_proj(tf.transpose(attention_scores, [0, 2, 3, 1])), [0, 3, 1, 2] ) attention_probs = self.softmax(attention_scores, attention_mask) attention_probs = self.dropout(attention_probs, training=training) if self.talking_head: attention_probs = tf.transpose( self.head_weights_proj(tf.transpose(attention_probs, [0, 2, 3, 1])), [0, 3, 1, 2] ) context_layer = tf.matmul(attention_probs, value_layer) context_layer = tf.transpose(context_layer, [0, 2, 1, 3]) context_layer_shape = shape_list(context_layer) # Set the final dimension here explicitly. # Calling tf.reshape(context_layer, (*context_layer_shape[:-2], -1)) raises an error when executing # the model in graph mode as context_layer is reshaped to (None, 7, None) and Dense layer in TFDebertaV2SelfOutput # requires final input dimension to be defined new_context_layer_shape = context_layer_shape[:-2] + [context_layer_shape[-2] * context_layer_shape[-1]] context_layer = tf.reshape(context_layer, new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs def disentangled_att_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor): if relative_pos is None: q = shape_list(query_layer)[-2] relative_pos = build_relative_position(q, shape_list(key_layer)[-2]) shape_list_pos = shape_list(relative_pos) if len(shape_list_pos) == 2: relative_pos = tf.expand_dims(tf.expand_dims(relative_pos, 0), 0) elif len(shape_list_pos) == 3: relative_pos = tf.expand_dims(relative_pos, 1) # bxhxqxk elif len(shape_list_pos) != 4: raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {len(shape_list_pos)}") att_span = tf.cast( tf.minimum( tf.maximum(shape_list(query_layer)[-2], shape_list(key_layer)[-2]), self.max_relative_positions ), tf.int64, ) rel_embeddings = tf.expand_dims( rel_embeddings[self.max_relative_positions - att_span : self.max_relative_positions + att_span, :], 0 ) score = 0 # content->position if "c2p" in self.pos_att_type: pos_key_layer = self.pos_proj(rel_embeddings) pos_key_layer = self.transpose_for_scores(pos_key_layer) c2p_att = tf.matmul(query_layer, tf.transpose(pos_key_layer, [0, 1, 3, 2])) c2p_pos = tf.clip_by_value(relative_pos + att_span, 0, att_span * 2 - 1) c2p_att = torch_gather(c2p_att, c2p_dynamic_expand(c2p_pos, query_layer, relative_pos), -1) score += c2p_att # position->content if "p2c" in self.pos_att_type: pos_query_layer = self.pos_q_proj(rel_embeddings) pos_query_layer = self.transpose_for_scores(pos_query_layer) pos_query_layer /= tf.math.sqrt( tf.cast(shape_list(pos_query_layer)[-1] * scale_factor, dtype=self.compute_dtype) ) if shape_list(query_layer)[-2] != shape_list(key_layer)[-2]: r_pos = build_relative_position(shape_list(key_layer)[-2], shape_list(key_layer)[-2]) else: r_pos = relative_pos p2c_pos = tf.clip_by_value(-r_pos + att_span, 0, att_span * 2 - 1) p2c_att = tf.matmul(key_layer, tf.transpose(pos_query_layer, [0, 1, 3, 2])) p2c_att = tf.transpose( torch_gather(p2c_att, p2c_dynamic_expand(p2c_pos, query_layer, key_layer), -1), [0, 1, 3, 2] ) if shape_list(query_layer)[-2] != shape_list(key_layer)[-2]: pos_index = tf.expand_dims(relative_pos[:, :, :, 0], -1) p2c_att = torch_gather(p2c_att, pos_dynamic_expand(pos_index, p2c_att, key_layer), -2) score += p2c_att return score
class_definition
20,357
33,444
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,957
class TFDebertaEmbeddings(keras.layers.Layer): """Construct the embeddings from word, position and token_type embeddings.""" def __init__(self, config, **kwargs): super().__init__(**kwargs) self.config = config self.embedding_size = getattr(config, "embedding_size", config.hidden_size) self.hidden_size = config.hidden_size self.max_position_embeddings = config.max_position_embeddings self.position_biased_input = getattr(config, "position_biased_input", True) self.initializer_range = config.initializer_range if self.embedding_size != config.hidden_size: self.embed_proj = keras.layers.Dense( config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="embed_proj", use_bias=False, ) self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.dropout = TFDebertaStableDropout(config.hidden_dropout_prob, name="dropout") def build(self, input_shape=None): with tf.name_scope("word_embeddings"): self.weight = self.add_weight( name="weight", shape=[self.config.vocab_size, self.embedding_size], initializer=get_initializer(self.initializer_range), ) with tf.name_scope("token_type_embeddings"): if self.config.type_vocab_size > 0: self.token_type_embeddings = self.add_weight( name="embeddings", shape=[self.config.type_vocab_size, self.embedding_size], initializer=get_initializer(self.initializer_range), ) else: self.token_type_embeddings = None with tf.name_scope("position_embeddings"): if self.position_biased_input: self.position_embeddings = self.add_weight( name="embeddings", shape=[self.max_position_embeddings, self.hidden_size], initializer=get_initializer(self.initializer_range), ) else: self.position_embeddings = None if self.built: return self.built = True if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.config.hidden_size]) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) if getattr(self, "embed_proj", None) is not None: with tf.name_scope(self.embed_proj.name): self.embed_proj.build([None, None, self.embedding_size]) def call( self, input_ids: tf.Tensor = None, position_ids: tf.Tensor = None, token_type_ids: tf.Tensor = None, inputs_embeds: tf.Tensor = None, mask: tf.Tensor = None, training: bool = False, ) -> tf.Tensor: """ Applies embedding based on inputs tensor. Returns: final_embeddings (`tf.Tensor`): output embedding tensor. """ if input_ids is None and inputs_embeds is None: raise ValueError("Need to provide either `input_ids` or `input_embeds`.") if input_ids is not None: check_embeddings_within_bounds(input_ids, self.config.vocab_size) inputs_embeds = tf.gather(params=self.weight, indices=input_ids) input_shape = shape_list(inputs_embeds)[:-1] if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) if position_ids is None: position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0) final_embeddings = inputs_embeds if self.position_biased_input: position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids) final_embeddings += position_embeds if self.config.type_vocab_size > 0: token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids) final_embeddings += token_type_embeds if self.embedding_size != self.hidden_size: final_embeddings = self.embed_proj(final_embeddings) final_embeddings = self.LayerNorm(final_embeddings) if mask is not None: if len(shape_list(mask)) != len(shape_list(final_embeddings)): if len(shape_list(mask)) == 4: mask = tf.squeeze(tf.squeeze(mask, axis=1), axis=1) mask = tf.cast(tf.expand_dims(mask, axis=2), dtype=self.compute_dtype) final_embeddings = final_embeddings * mask final_embeddings = self.dropout(final_embeddings, training=training) return final_embeddings
class_definition
33,447
38,409
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,958
class TFDebertaPredictionHeadTransform(keras.layers.Layer): def __init__(self, config: DebertaConfig, **kwargs): super().__init__(**kwargs) self.embedding_size = getattr(config, "embedding_size", config.hidden_size) self.dense = keras.layers.Dense( units=self.embedding_size, kernel_initializer=get_initializer(config.initializer_range), name="dense", ) if isinstance(config.hidden_act, str): self.transform_act_fn = get_tf_activation(config.hidden_act) else: self.transform_act_fn = config.hidden_act self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") self.config = config def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.dense(inputs=hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) return hidden_states def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "dense", None) is not None: with tf.name_scope(self.dense.name): self.dense.build([None, None, self.config.hidden_size]) if getattr(self, "LayerNorm", None) is not None: with tf.name_scope(self.LayerNorm.name): self.LayerNorm.build([None, None, self.embedding_size])
class_definition
38,412
39,889
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,959
class TFDebertaLMPredictionHead(keras.layers.Layer): def __init__(self, config: DebertaConfig, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.config = config self.embedding_size = getattr(config, "embedding_size", config.hidden_size) self.transform = TFDebertaPredictionHeadTransform(config, name="transform") # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.input_embeddings = input_embeddings def build(self, input_shape=None): self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") if self.built: return self.built = True if getattr(self, "transform", None) is not None: with tf.name_scope(self.transform.name): self.transform.build(None) def get_output_embeddings(self) -> keras.layers.Layer: return self.input_embeddings def set_output_embeddings(self, value: tf.Variable): self.input_embeddings.weight = value self.input_embeddings.vocab_size = shape_list(value)[0] def get_bias(self) -> Dict[str, tf.Variable]: return {"bias": self.bias} def set_bias(self, value: tf.Variable): self.bias = value["bias"] self.config.vocab_size = shape_list(value["bias"])[0] def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.transform(hidden_states=hidden_states) seq_length = shape_list(hidden_states)[1] hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size]) hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) return hidden_states
class_definition
39,892
41,901
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,960
class TFDebertaOnlyMLMHead(keras.layers.Layer): def __init__(self, config: DebertaConfig, input_embeddings: keras.layers.Layer, **kwargs): super().__init__(**kwargs) self.predictions = TFDebertaLMPredictionHead(config, input_embeddings, name="predictions") def call(self, sequence_output: tf.Tensor) -> tf.Tensor: prediction_scores = self.predictions(hidden_states=sequence_output) return prediction_scores def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "predictions", None) is not None: with tf.name_scope(self.predictions.name): self.predictions.build(None)
class_definition
41,904
42,619
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,961
class TFDebertaMainLayer(keras.layers.Layer): config_class = DebertaConfig def __init__(self, config: DebertaConfig, **kwargs): super().__init__(**kwargs) self.config = config self.embeddings = TFDebertaEmbeddings(config, name="embeddings") self.encoder = TFDebertaEncoder(config, name="encoder") def get_input_embeddings(self) -> keras.layers.Layer: return self.embeddings def set_input_embeddings(self, value: tf.Variable): self.embeddings.weight = value self.embeddings.vocab_size = shape_list(value)[0] def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ raise NotImplementedError @unpack_inputs def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: bool = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = shape_list(input_ids) elif inputs_embeds is not None: input_shape = shape_list(inputs_embeds)[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") if attention_mask is None: attention_mask = tf.fill(dims=input_shape, value=1) if token_type_ids is None: token_type_ids = tf.fill(dims=input_shape, value=0) embedding_output = self.embeddings( input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, mask=attention_mask, training=training, ) encoder_outputs = self.encoder( hidden_states=embedding_output, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = encoder_outputs[0] if not return_dict: return (sequence_output,) + encoder_outputs[1:] return TFBaseModelOutput( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "embeddings", None) is not None: with tf.name_scope(self.embeddings.name): self.embeddings.build(None) if getattr(self, "encoder", None) is not None: with tf.name_scope(self.encoder.name): self.encoder.build(None)
class_definition
42,644
46,031
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,962
class TFDebertaPreTrainedModel(TFPreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = DebertaConfig base_model_prefix = "deberta"
class_definition
46,034
46,297
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,963
class TFDebertaModel(TFDebertaPreTrainedModel): def __init__(self, config: DebertaConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.deberta = TFDebertaMainLayer(config, name="deberta") @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFBaseModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) return outputs def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deberta", None) is not None: with tf.name_scope(self.deberta.name): self.deberta.build(None)
class_definition
51,573
53,346
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,964
class TFDebertaForMaskedLM(TFDebertaPreTrainedModel, TFMaskedLanguageModelingLoss): def __init__(self, config: DebertaConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) if config.is_decoder: logger.warning( "If you want to use `TFDebertaForMaskedLM` make sure `config.is_decoder=False` for " "bi-directional self-attention." ) self.deberta = TFDebertaMainLayer(config, name="deberta") self.mlm = TFDebertaOnlyMLMHead(config, input_embeddings=self.deberta.embeddings, name="cls") def get_lm_head(self) -> keras.layers.Layer: return self.mlm.predictions @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` """ outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] prediction_scores = self.mlm(sequence_output=sequence_output, training=training) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores) if not return_dict: output = (prediction_scores,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFMaskedLMOutput( loss=loss, logits=prediction_scores, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deberta", None) is not None: with tf.name_scope(self.deberta.name): self.deberta.build(None) if getattr(self, "mlm", None) is not None: with tf.name_scope(self.mlm.name): self.mlm.build(None)
class_definition
53,457
56,866
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,965
class TFDebertaForSequenceClassification(TFDebertaPreTrainedModel, TFSequenceClassificationLoss): def __init__(self, config: DebertaConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.deberta = TFDebertaMainLayer(config, name="deberta") self.pooler = TFDebertaContextPooler(config, name="pooler") drop_out = getattr(config, "cls_dropout", None) drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out self.dropout = TFDebertaStableDropout(drop_out, name="cls_dropout") self.classifier = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier", ) self.output_dim = self.pooler.output_dim @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] pooled_output = self.pooler(sequence_output, training=training) pooled_output = self.dropout(pooled_output, training=training) logits = self.classifier(pooled_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deberta", None) is not None: with tf.name_scope(self.deberta.name): self.deberta.build(None) if getattr(self, "pooler", None) is not None: with tf.name_scope(self.pooler.name): self.pooler.build(None) if getattr(self, "dropout", None) is not None: with tf.name_scope(self.dropout.name): self.dropout.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.output_dim])
class_definition
57,094
61,100
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,966
class TFDebertaForTokenClassification(TFDebertaPreTrainedModel, TFTokenClassificationLoss): def __init__(self, config: DebertaConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.deberta = TFDebertaMainLayer(config, name="deberta") self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) self.classifier = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFTokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, labels: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]: r""" labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output, training=training) logits = self.classifier(inputs=sequence_output) loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return TFTokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deberta", None) is not None: with tf.name_scope(self.deberta.name): self.deberta.build(None) if getattr(self, "classifier", None) is not None: with tf.name_scope(self.classifier.name): self.classifier.build([None, None, self.config.hidden_size])
class_definition
61,335
64,551
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,967
class TFDebertaForQuestionAnswering(TFDebertaPreTrainedModel, TFQuestionAnsweringLoss): def __init__(self, config: DebertaConfig, *inputs, **kwargs): super().__init__(config, *inputs, **kwargs) self.num_labels = config.num_labels self.deberta = TFDebertaMainLayer(config, name="deberta") self.qa_outputs = keras.layers.Dense( units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs" ) self.config = config @unpack_inputs @add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length")) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TFQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC, ) def call( self, input_ids: TFModelInputType | None = None, attention_mask: np.ndarray | tf.Tensor | None = None, token_type_ids: np.ndarray | tf.Tensor | None = None, position_ids: np.ndarray | tf.Tensor | None = None, inputs_embeds: np.ndarray | tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, start_positions: np.ndarray | tf.Tensor | None = None, end_positions: np.ndarray | tf.Tensor | None = None, training: Optional[bool] = False, ) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]: r""" start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*): Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence are not taken into account for computing the loss. """ outputs = self.deberta( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, training=training, ) sequence_output = outputs[0] logits = self.qa_outputs(inputs=sequence_output) start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1) start_logits = tf.squeeze(input=start_logits, axis=-1) end_logits = tf.squeeze(input=end_logits, axis=-1) loss = None if start_positions is not None and end_positions is not None: labels = {"start_position": start_positions} labels["end_position"] = end_positions loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits)) if not return_dict: output = (start_logits, end_logits) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFQuestionAnsweringModelOutput( loss=loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def build(self, input_shape=None): if self.built: return self.built = True if getattr(self, "deberta", None) is not None: with tf.name_scope(self.deberta.name): self.deberta.build(None) if getattr(self, "qa_outputs", None) is not None: with tf.name_scope(self.qa_outputs.name): self.qa_outputs.build([None, None, self.config.hidden_size])
class_definition
64,844
69,026
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
null
3,968
class DebertaTokenizer(PreTrainedTokenizer): """ Construct a DeBERTa tokenizer. Based on byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ```python >>> from transformers import DebertaTokenizer >>> tokenizer = DebertaTokenizer.from_pretrained("microsoft/deberta-base") >>> tokenizer("Hello world")["input_ids"] [1, 31414, 232, 2] >>> tokenizer(" Hello world")["input_ids"] [1, 20920, 232, 2] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one). </Tip> This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"[CLS]"`): The beginning of sequence token. eos_token (`str`, *optional*, defaults to `"[SEP]"`): The end of sequence token. sep_token (`str`, *optional*, defaults to `"[SEP]"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"[CLS]"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"[UNK]"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"[PAD]"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"[MASK]"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (Deberta tokenizer detect beginning of words by the preceding space). add_bos_token (`bool`, *optional*, defaults to `False`): Whether or not to add an initial <|endoftext|> to the input. This allows to treat the leading word just as any other word. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask", "token_type_ids"] def __init__( self, vocab_file, merges_file, errors="replace", bos_token="[CLS]", eos_token="[SEP]", sep_token="[SEP]", cls_token="[CLS]", unk_token="[UNK]", pad_token="[PAD]", mask_token="[MASK]", add_prefix_space=False, add_bos_token=False, **kwargs, ): bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token self.add_bos_token = add_bos_token with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""") super().__init__( errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, add_bos_token=add_bos_token, **kwargs, ) @property # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.vocab_size def vocab_size(self): return len(self.encoder) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A DeBERTa sequence has the following format: - single sequence: [CLS] X [SEP] - pair of sequences: [CLS] A [SEP] B [SEP] Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): text = " " + text return (text, kwargs)
class_definition
2,375
17,050
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/tokenization_deberta.py
null
3,969
class GraniteAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: GraniteConfig, layer_idx: Optional[int] = None): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = config.attention_multiplier self.attention_dropout = config.attention_dropout self.is_causal = True self.q_proj = nn.Linear( config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias ) self.k_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.v_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.o_proj = nn.Linear( config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias ) def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights
class_definition
5,616
9,212
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modeling_granite.py
null
3,970
class GraniteRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ GraniteRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class_definition
9,215
9,939
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modeling_granite.py
null
3,971
class GraniteMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj
class_definition
9,942
10,642
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modeling_granite.py
null
3,972
class GraniteDecoderLayer(nn.Module): def __init__(self, config: GraniteConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = GraniteAttention(config=config, layer_idx=layer_idx) self.mlp = GraniteMLP(config) self.input_layernorm = GraniteRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = GraniteRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.residual_multiplier = config.residual_multiplier def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states * self.residual_multiplier # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states * self.residual_multiplier # main diff with Llama outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs
class_definition
10,645
14,434
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modeling_granite.py
null
3,973
class GraniteRotaryEmbedding(nn.Module): def __init__(self, config: GraniteConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq def _dynamic_frequency_update(self, position_ids, device): """ dynamic RoPE layers should recompute `inv_freq` in the following situations: 1 - growing beyond the cached sequence length (allow scaling) 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) """ seq_len = torch.max(position_ids) + 1 if seq_len > self.max_seq_len_cached: # growth inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation self.max_seq_len_cached = seq_len if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset # This .to() is needed if the model has been moved to a device after being initialized (because # the buffer is automatically moved, but not the original copy) self.original_inv_freq = self.original_inv_freq.to(device) self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) self.max_seq_len_cached = self.original_max_seq_len @torch.no_grad() def forward(self, x, position_ids): if "dynamic" in self.rope_type: self._dynamic_frequency_update(position_ids, device=x.device) # Core RoPE block inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 (see https://github.com/huggingface/transformers/pull/29285) device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention cos = cos * self.attention_scaling sin = sin * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class_definition
14,437
17,636
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modeling_granite.py
null
3,974
class GranitePreTrainedModel(PreTrainedModel): config_class = GraniteConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["GraniteDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = True _supports_cache_class = True _supports_quantized_cache = True _supports_static_cache = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
class_definition
18,666
19,595
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modeling_granite.py
null
3,975
class GraniteModel(GranitePreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GraniteDecoderLayer`] Args: config: GraniteConfig """ def __init__(self, config: GraniteConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [GraniteDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = GraniteRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = GraniteRotaryEmbedding(config=config) self.gradient_checkpointing = False self.embedding_multiplier = config.embedding_multiplier # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(GRANITE_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) inputs_embeds = inputs_embeds * self.embedding_multiplier # main diff with Llama if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple() def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and (attention_mask == 0.0).any(): return attention_mask return None # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_static_cache = isinstance(past_key_values, StaticCache) # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype, device = input_tensor.dtype, input_tensor.device sequence_length = input_tensor.shape[1] if using_static_cache: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type == "cuda" and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 min_dtype = torch.finfo(dtype).min causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to plcae the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask
class_definition
24,405
35,803
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modeling_granite.py
null
3,976
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class_definition
35,806
35,868
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modeling_granite.py
null
3,977
class GraniteForCausalLM(GranitePreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} def __init__(self, config): super().__init__(config) self.model = GraniteModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(GRANITE_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, num_logits_to_keep: int = 0, **kwargs: Unpack[KwargsForCausalLM], ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. num_logits_to_keep (`int`, *optional*): Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. Returns: Example: ```python >>> from transformers import AutoTokenizer, GraniteForCausalLM >>> model = GraniteForCausalLM.from_pretrained("meta-granite/Granite-2-7b-hf") >>> tokenizer = AutoTokenizer.from_pretrained("meta-granite/Granite-2-7b-hf") >>> prompt = "Hey, are you conscious? Can you talk to me?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, **kwargs, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) logits = logits / self.config.logits_scaling # main diff with Llama loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
35,871
41,095
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modeling_granite.py
null
3,978
class GraniteConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`GraniteModel`]. It is used to instantiate an Granite model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Granite-3B. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 32000): Vocabulary size of the Granite model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`GraniteModel`] hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 11008): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. max_position_embeddings (`int`, *optional*, defaults to 2048): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*): Padding token id. bos_token_id (`int`, *optional*, defaults to 1): Beginning of stream token id. eos_token_id (`int`, *optional*, defaults to 2): End of stream token id. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. rope_scaling (`Dict`, *optional*): Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update `max_position_embeddings` to the expected new maximum. See the following thread for more information on how these scaling strategies behave: https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an experimental feature, subject to breaking API changes in future versions. attention_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. mlp_bias (`bool`, *optional*, defaults to `False`): Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers. embedding_multiplier (`float`, *optional*, defaults to 1.0): embedding multiplier logits_scaling (`float`, *optional*, defaults to 1.0): divisor for output logits residual_multiplier (`float`, *optional*, defaults to 1.0): residual multiplier attention_multiplier (`float`, *optional*, defaults to 1.0): attention multiplier ```python >>> from transformers import GraniteModel, GraniteConfig >>> # Initializing a Granite granite-3b style configuration >>> configuration = GraniteConfig() >>> # Initializing a model from the granite-7b style configuration >>> model = GraniteModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "granite" keys_to_ignore_at_inference = ["past_key_values"] # Default tensor parallel plan for base model `GraniteModel` base_model_tp_plan = { "layers.*.self_attn.q_proj": "colwise", "layers.*.self_attn.k_proj": "colwise", "layers.*.self_attn.v_proj": "colwise", "layers.*.self_attn.o_proj": "rowwise", "layers.*.mlp.gate_proj": "colwise", "layers.*.mlp.up_proj": "colwise", "layers.*.mlp.down_proj": "rowwise", } def __init__( self, vocab_size=32000, hidden_size=4096, intermediate_size=11008, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=None, hidden_act="silu", max_position_embeddings=2048, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=None, bos_token_id=1, eos_token_id=2, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, attention_bias=False, attention_dropout=0.0, mlp_bias=False, embedding_multiplier=1.0, logits_scaling=1.0, residual_multiplier=1.0, attention_multiplier=1.0, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.mlp_bias = mlp_bias self.embedding_multiplier = embedding_multiplier self.logits_scaling = logits_scaling self.residual_multiplier = residual_multiplier self.attention_multiplier = attention_multiplier super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) rope_config_validation(self)
class_definition
1,147
9,086
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/configuration_granite.py
null
3,979
class GraniteAttention(LlamaAttention): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: GraniteConfig, layer_idx: Optional[int] = None): super().__init__(config, layer_idx) self.scaling = config.attention_multiplier
class_definition
1,214
1,501
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modular_granite.py
null
3,980
class GraniteDecoderLayer(LlamaDecoderLayer): def __init__(self, config: GraniteConfig, layer_idx: int): super().__init__(config, layer_idx) self.residual_multiplier = config.residual_multiplier self.self_attn = GraniteAttention(config=config, layer_idx=layer_idx) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC **kwargs, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: """ Args: hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` attention_mask (`torch.FloatTensor`, *optional*): attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, query_sequence_length, key_sequence_length)` if default attention is used. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. use_cache (`bool`, *optional*): If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see `past_key_values`). past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): Indices depicting the position of the input sequence tokens in the sequence position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*): Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`, with `head_dim` being the embedding dimension of each attention head. kwargs (`dict`, *optional*): Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code into the model """ residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states * self.residual_multiplier # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states * self.residual_multiplier # main diff with Llama outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs
class_definition
1,504
5,042
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modular_granite.py
null
3,981
class GraniteModel(LlamaModel): def __init__(self, config: GraniteConfig): super().__init__(config) self.embedding_multiplier = config.embedding_multiplier self.layers = nn.ModuleList( [GraniteDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) inputs_embeds = inputs_embeds * self.embedding_multiplier # main diff with Llama if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, position_embeddings, ) else: layer_outputs = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple()
class_definition
5,045
9,829
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modular_granite.py
null
3,982
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
class_definition
9,832
9,894
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modular_granite.py
null
3,983
class GraniteForCausalLM(LlamaForCausalLM): def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, num_logits_to_keep: int = 0, **kwargs: Unpack[KwargsForCausalLM], ) -> Union[Tuple, CausalLMOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, **kwargs, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) logits = logits / self.config.logits_scaling # main diff with Llama loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
9,897
12,466
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modular_granite.py
null
3,984
class Gemma2RMSNorm(nn.Module): def __init__(self, dim: int, eps: float = 1e-6): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.zeros(dim)) def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): output = self._norm(x.float()) # Llama does x.to(float16) * w whilst Gemma2 is (x * w).to(float16) # See https://github.com/huggingface/transformers/pull/29402 output = output * (1.0 + self.weight.float()) return output.type_as(x) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.eps}"
class_definition
2,395
3,068
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modeling_gemma2.py
null
3,985
class Gemma2MLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_activation] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj
class_definition
3,071
3,747
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modeling_gemma2.py
null
3,986
class Gemma2Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: Gemma2Config, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = config.query_pre_attn_scalar**-0.5 self.attention_dropout = self.config.attention_dropout self.is_causal = True self.q_proj = nn.Linear( config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias ) self.k_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.v_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.o_proj = nn.Linear( config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias ) self.attn_logit_softcapping = self.config.attn_logit_softcapping self.sliding_window = config.sliding_window if not bool(layer_idx % 2) else None def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=self.attention_dropout if self.training else 0.0, scaling=self.scaling, sliding_window=self.sliding_window, softcap=self.attn_logit_softcapping, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights
class_definition
7,423
11,267
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modeling_gemma2.py
null
3,987
class Gemma2DecoderLayer(nn.Module): def __init__(self, config: Gemma2Config, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.config = config self.is_sliding = not bool(layer_idx % 2) self.self_attn = Gemma2Attention(config=config, layer_idx=layer_idx) self.mlp = Gemma2MLP(config) self.input_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.pre_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.sliding_window = config.sliding_window def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: if self.is_sliding and attention_mask is not None: # efficient SDPA and no padding # Flash-attn is a 2D tensor if self.config._attn_implementation == "flash_attention_2": if past_key_value is not None: # when decoding attention_mask = attention_mask[:, -self.sliding_window :] else: min_dtype = torch.finfo(hidden_states.dtype).min sliding_window_mask = torch.tril( torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-self.sliding_window ) attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask) if attention_mask.shape[-1] <= 1: # when decoding attention_mask = attention_mask[:, :, :, -self.sliding_window :] residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, position_embeddings=position_embeddings, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, ) hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.pre_feedforward_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = self.post_feedforward_layernorm(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (self_attn_weights,) return outputs
class_definition
11,270
14,516
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modeling_gemma2.py
null
3,988
class Gemma2RotaryEmbedding(nn.Module): def __init__(self, config: Gemma2Config, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and config.rope_scaling is not None: self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq def _dynamic_frequency_update(self, position_ids, device): """ dynamic RoPE layers should recompute `inv_freq` in the following situations: 1 - growing beyond the cached sequence length (allow scaling) 2 - the current sequence length is in the original scale (avoid losing precision with small sequences) """ seq_len = torch.max(position_ids) + 1 if seq_len > self.max_seq_len_cached: # growth inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len) self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation self.max_seq_len_cached = seq_len if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset # This .to() is needed if the model has been moved to a device after being initialized (because # the buffer is automatically moved, but not the original copy) self.original_inv_freq = self.original_inv_freq.to(device) self.register_buffer("inv_freq", self.original_inv_freq, persistent=False) self.max_seq_len_cached = self.original_max_seq_len @torch.no_grad() def forward(self, x, position_ids): if "dynamic" in self.rope_type: self._dynamic_frequency_update(position_ids, device=x.device) # Core RoPE block inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() # Force float32 (see https://github.com/huggingface/transformers/pull/29285) device_type = x.device.type device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() sin = emb.sin() # Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention cos = cos * self.attention_scaling sin = sin * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class_definition
14,519
17,716
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modeling_gemma2.py
null
3,989
class Gemma2PreTrainedModel(PreTrainedModel): config_class = Gemma2Config base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["Gemma2DecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn_2 = True _supports_sdpa = True _supports_flex_attn = True _supports_cache_class = True _supports_quantized_cache = True _supports_static_cache = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_()
class_definition
18,742
19,668
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modeling_gemma2.py
null
3,990
class Gemma2Model(Gemma2PreTrainedModel): """ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Gemma2DecoderLayer`] Args: config: Gemma2Config """ def __init__(self, config: Gemma2Config): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [Gemma2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = Gemma2RotaryEmbedding(config=config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[HybridCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **flash_attn_kwargs: Unpack[FlashAttentionKwargs], ) -> Union[Tuple, BaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if self.gradient_checkpointing and self.training and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`." ) use_cache = False if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None and not self.training: batch_size, seq_len, _ = inputs_embeds.shape past_key_values = HybridCache( self.config, max_batch_size=batch_size, max_cache_len=seq_len, device=self.device, dtype=inputs_embeds.dtype, ) if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions ) # embed positions hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) # normalized # Gemma2 downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5 # See https://github.com/huggingface/transformers/pull/29402 normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype) hidden_states = hidden_states * normalizer # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None for decoder_layer in self.layers[: self.config.num_hidden_layers]: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, position_embeddings, causal_mask, position_ids, past_key_values, output_attentions, use_cache, cache_position, ) else: layer_outputs = decoder_layer( hidden_states, position_embeddings=position_embeddings, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, **flash_attn_kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attns += (layer_outputs[1],) hidden_states = self.norm(hidden_states) if output_hidden_states: all_hidden_states += (hidden_states,) output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns, ) return output if return_dict else output.to_tuple() @torch.no_grad() def _update_causal_mask( self, attention_mask: torch.Tensor, input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: HybridCache, output_attentions: bool, ): # Flash Attention currently doesn't support static cache but Gemma2 work only with static cache. # So we will pass in attention mask as is in any case, not only when ther's padding. Then we'll use its shape # to cut out keys/values trailing 0 used in static cache. This workaround should be compile compatible # as it doesn't cause dynamic control issues. if self.config._attn_implementation == "flash_attention_2": return attention_mask dtype, device = input_tensor.dtype, input_tensor.device sequence_length = input_tensor.shape[1] if isinstance(past_key_values, HybridCache): target_length = past_key_values.get_max_cache_shape() else: target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1] # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, device=device, cache_position=cache_position, batch_size=input_tensor.shape[0], ) return causal_mask @staticmethod def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, device: torch.device, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. device (`torch.device`): The device to plcae the 4D attention mask on. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask
class_definition
24,475
34,889
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modeling_gemma2.py
null
3,991
class Gemma2ForCausalLM(Gemma2PreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] _tp_plan = {"lm_head": "colwise_rep"} def __init__(self, config): super().__init__(config) self.model = Gemma2Model(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def get_output_embeddings(self): return self.lm_head def set_output_embeddings(self, new_embeddings): self.lm_head = new_embeddings def set_decoder(self, decoder): self.model = decoder def get_decoder(self): return self.model @add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING) @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[HybridCache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, num_logits_to_keep: int = 0, **loss_kwargs, ) -> Union[Tuple, CausalLMOutputWithPast]: r""" Args: labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. num_logits_to_keep (`int`, *optional*): Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size. Returns: Example: ```python >>> from transformers import AutoTokenizer, GemmaForCausalLM >>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b") >>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b") >>> prompt = "What is your favorite condiment?" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> # Generate >>> generate_ids = model.generate(inputs.input_ids, max_length=30) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] "What is your favorite condiment?" ```""" if self.training and self.config._attn_implementation != "eager": logger.warning_once( "It is strongly recommended to train Gemma2 models with the `eager` attention implementation " f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`." ) output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :]) if self.config.final_logit_softcapping is not None: logits = logits / self.config.final_logit_softcapping logits = torch.tanh(logits) logits = logits * self.config.final_logit_softcapping loss = None if labels is not None: loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, cache_position=None, position_ids=None, use_cache=True, num_logits_to_keep=None, **kwargs, ): # Overwritten: has a special cache type, `HybridCache` # If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens # Exception 1: when passing input_embeds, input_ids may be missing entries # Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here if past_key_values is not None: if inputs_embeds is not None: # Exception 1 input_ids = input_ids[:, -cache_position.shape[0] :] elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2) input_ids = input_ids[:, cache_position] if attention_mask is not None and position_ids is None: # create position_ids on the fly for batch generation position_ids = attention_mask.long().cumsum(-1) - 1 position_ids.masked_fill_(attention_mask == 0, 1) if past_key_values: position_ids = position_ids[:, -input_ids.shape[1] :] # This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s # `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride # during the decoding. Here, simply using `.contiguous()` is not sufficient as in the # batch size = 1 case, `position_ids` is already contiguous but with varying stride # which retriggers a capture. position_ids = position_ids.clone(memory_format=torch.contiguous_format) # if `inputs_embeds` are passed, we only want to use them in the 1st generation step if inputs_embeds is not None and cache_position[0] == 0: model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None} else: # The clone here is for the same reason as for `position_ids`. model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None} if ( isinstance(past_key_values, HybridCache) and attention_mask.ndim == 2 and not self.config._attn_implementation == "flash_attention_2" ): if model_inputs["inputs_embeds"] is not None: batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape device = model_inputs["inputs_embeds"].device else: batch_size, sequence_length = model_inputs["input_ids"].shape device = model_inputs["input_ids"].device attention_mask = self.model._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=past_key_values.get_max_cache_shape(), dtype=self.lm_head.weight.dtype, device=device, cache_position=cache_position, batch_size=batch_size, ) if num_logits_to_keep is not None: model_inputs["num_logits_to_keep"] = num_logits_to_keep model_inputs.update( { "position_ids": position_ids, "cache_position": cache_position, "past_key_values": past_key_values, "use_cache": use_cache, "attention_mask": attention_mask, } ) return model_inputs
class_definition
34,892
44,277
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modeling_gemma2.py
null
3,992
class Gemma2ForSequenceClassification(Gemma2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = Gemma2Model(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(logits.device) else: sequence_lengths = -1 pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )
class_definition
45,073
48,889
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modeling_gemma2.py
null
3,993
class Gemma2ForTokenClassification(Gemma2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = Gemma2Model(config) if getattr(config, "classifier_dropout", None) is not None: classifier_dropout = config.classifier_dropout elif getattr(config, "hidden_dropout", None) is not None: classifier_dropout = config.hidden_dropout else: classifier_dropout = 0.1 self.dropout = nn.Dropout(classifier_dropout) self.score = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value @add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC, ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TokenClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] sequence_output = self.dropout(sequence_output) logits = self.score(sequence_output) loss = None if labels is not None: loss = self.loss_function(logits, labels, self.config) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )
class_definition
49,138
52,354
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modeling_gemma2.py
null
3,994
class Gemma2Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Gemma2Model`]. It is used to instantiate an Gemma2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Gemma2-7B. e.g. [google/gemma2-7b](https://huggingface.co/google/gemma2-7b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 256000): Vocabulary size of the Gemma2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Gemma2Model`] hidden_size (`int`, *optional*, defaults to 2304): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 9216): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 26): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*, defaults to 4): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. head_dim (`int`, *optional*, defaults to 256): The attention head dimension. hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"` if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function. max_position_embeddings (`int`, *optional*, defaults to 8192): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*, defaults to 0): Padding token id. eos_token_id (`int`, *optional*, defaults to 1): End of stream token id. bos_token_id (`int`, *optional*, defaults to 2): Beginning of stream token id. tie_word_embeddings (`bool`, *optional*, defaults to `True`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. query_pre_attn_scalar (`float`, *optional*, defaults to 256): scaling factor used on the attention scores sliding_window (`int`, *optional*, defaults to 4096): in Gemma2, every other layer uses sliding window attention. This is the size of the sliding window. final_logit_softcapping (`float`, *optional*, defaults to 30.0): scaling factor when applying tanh softcapping on the logits. attn_logit_softcapping (`float`, *optional*, defaults to 50.0): scaling factor when applying tanh softcapping on the attention scores. cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`. ```python >>> from transformers import Gemma2Model, Gemma2Config >>> # Initializing a Gemma2 gemma2-7b style configuration >>> configuration = Gemma2Config() >>> # Initializing a model from the gemma2-7b style configuration >>> model = Gemma2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "gemma2" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=256000, hidden_size=2304, intermediate_size=9216, num_hidden_layers=26, num_attention_heads=8, num_key_value_heads=4, head_dim=256, hidden_activation="gelu_pytorch_tanh", max_position_embeddings=8192, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=0, eos_token_id=1, bos_token_id=2, tie_word_embeddings=True, rope_theta=10000.0, attention_bias=False, attention_dropout=0.0, query_pre_attn_scalar=256, sliding_window=4096, final_logit_softcapping=30.0, attn_logit_softcapping=50.0, cache_implementation="hybrid", **kwargs, ): super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.head_dim = head_dim self.num_key_value_heads = num_key_value_heads self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.hidden_activation = hidden_activation self.query_pre_attn_scalar = query_pre_attn_scalar self.sliding_window = sliding_window self.final_logit_softcapping = final_logit_softcapping self.attn_logit_softcapping = attn_logit_softcapping self.cache_implementation = cache_implementation
class_definition
1,507
8,709
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/configuration_gemma2.py
null
3,995
class Gemma2Config(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`Gemma2Model`]. It is used to instantiate an Gemma2 model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the Gemma2-7B. e.g. [google/gemma2-7b](https://huggingface.co/google/gemma2-7b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 256000): Vocabulary size of the Gemma2 model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`Gemma2Model`] hidden_size (`int`, *optional*, defaults to 2304): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 9216): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 26): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 8): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*, defaults to 4): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. head_dim (`int`, *optional*, defaults to 256): The attention head dimension. hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"` if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function. max_position_embeddings (`int`, *optional*, defaults to 8192): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*, defaults to 0): Padding token id. eos_token_id (`int`, *optional*, defaults to 1): End of stream token id. bos_token_id (`int`, *optional*, defaults to 2): Beginning of stream token id. tie_word_embeddings (`bool`, *optional*, defaults to `True`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. query_pre_attn_scalar (`float`, *optional*, defaults to 256): scaling factor used on the attention scores sliding_window (`int`, *optional*, defaults to 4096): in Gemma2, every other layer uses sliding window attention. This is the size of the sliding window. final_logit_softcapping (`float`, *optional*, defaults to 30.0): scaling factor when applying tanh softcapping on the logits. attn_logit_softcapping (`float`, *optional*, defaults to 50.0): scaling factor when applying tanh softcapping on the attention scores. cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`. ```python >>> from transformers import Gemma2Model, Gemma2Config >>> # Initializing a Gemma2 gemma2-7b style configuration >>> configuration = Gemma2Config() >>> # Initializing a model from the gemma2-7b style configuration >>> model = Gemma2Model(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "gemma2" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=256000, hidden_size=2304, intermediate_size=9216, num_hidden_layers=26, num_attention_heads=8, num_key_value_heads=4, head_dim=256, hidden_activation="gelu_pytorch_tanh", max_position_embeddings=8192, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=0, eos_token_id=1, bos_token_id=2, tie_word_embeddings=True, rope_theta=10000.0, attention_bias=False, attention_dropout=0.0, query_pre_attn_scalar=256, sliding_window=4096, final_logit_softcapping=30.0, attn_logit_softcapping=50.0, cache_implementation="hybrid", **kwargs, ): super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.head_dim = head_dim self.num_key_value_heads = num_key_value_heads self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.attention_bias = attention_bias self.attention_dropout = attention_dropout self.hidden_activation = hidden_activation self.query_pre_attn_scalar = query_pre_attn_scalar self.sliding_window = sliding_window self.final_logit_softcapping = final_logit_softcapping self.attn_logit_softcapping = attn_logit_softcapping self.cache_implementation = cache_implementation
class_definition
1,492
8,694
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modular_gemma2.py
null
3,996
class Gemma2RMSNorm(GemmaRMSNorm): pass
class_definition
8,697
8,740
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modular_gemma2.py
null
3,997
class Gemma2MLP(GemmaMLP): def __init__(self, config): super().__init__() self.act_fn = ACT2FN[config.hidden_activation]
class_definition
8,743
8,883
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modular_gemma2.py
null
3,998
class Gemma2Attention(GemmaAttention): def __init__(self, config: Gemma2Config, layer_idx: int): super().__init__(config, layer_idx) self.attn_logit_softcapping = self.config.attn_logit_softcapping self.attention_dropout = self.config.attention_dropout self.is_causal = True self.scaling = config.query_pre_attn_scalar**-0.5 self.sliding_window = config.sliding_window if not bool(layer_idx % 2) else None def forward( self, hidden_states: torch.Tensor, position_embeddings: Tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False): logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=self.attention_dropout if self.training else 0.0, scaling=self.scaling, sliding_window=self.sliding_window, softcap=self.attn_logit_softcapping, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights
class_definition
10,225
13,174
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modular_gemma2.py
null
3,999