text
stringlengths 31
243k
| type
stringclasses 1
value | start
int64 36
275k
| end
int64 286
280k
| depth
int64 0
1
| filepath
stringlengths 85
188
| parent_class
stringclasses 3
values | class_index
int64 0
10.8k
|
---|---|---|---|---|---|---|---|
class LukeEntityEmbeddings(nn.Module):
def __init__(self, config: LukeConfig):
super().__init__()
self.config = config
self.entity_embeddings = nn.Embedding(config.entity_vocab_size, config.entity_emb_size, padding_idx=0)
if config.entity_emb_size != config.hidden_size:
self.entity_embedding_dense = nn.Linear(config.entity_emb_size, config.hidden_size, bias=False)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(
self, entity_ids: torch.LongTensor, position_ids: torch.LongTensor, token_type_ids: torch.LongTensor = None
):
if token_type_ids is None:
token_type_ids = torch.zeros_like(entity_ids)
entity_embeddings = self.entity_embeddings(entity_ids)
if self.config.entity_emb_size != self.config.hidden_size:
entity_embeddings = self.entity_embedding_dense(entity_embeddings)
position_embeddings = self.position_embeddings(position_ids.clamp(min=0))
position_embedding_mask = (position_ids != -1).type_as(position_embeddings).unsqueeze(-1)
position_embeddings = position_embeddings * position_embedding_mask
position_embeddings = torch.sum(position_embeddings, dim=-2)
position_embeddings = position_embeddings / position_embedding_mask.sum(dim=-2).clamp(min=1e-7)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = entity_embeddings + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
|
class_definition
| 26,319 | 28,234 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,900 |
class LukeSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.use_entity_aware_attention = config.use_entity_aware_attention
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
if self.use_entity_aware_attention:
self.w2e_query = nn.Linear(config.hidden_size, self.all_head_size)
self.e2w_query = nn.Linear(config.hidden_size, self.all_head_size)
self.e2e_query = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
word_hidden_states,
entity_hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
):
word_size = word_hidden_states.size(1)
if entity_hidden_states is None:
concat_hidden_states = word_hidden_states
else:
concat_hidden_states = torch.cat([word_hidden_states, entity_hidden_states], dim=1)
key_layer = self.transpose_for_scores(self.key(concat_hidden_states))
value_layer = self.transpose_for_scores(self.value(concat_hidden_states))
if self.use_entity_aware_attention and entity_hidden_states is not None:
# compute query vectors using word-word (w2w), word-entity (w2e), entity-word (e2w), entity-entity (e2e)
# query layers
w2w_query_layer = self.transpose_for_scores(self.query(word_hidden_states))
w2e_query_layer = self.transpose_for_scores(self.w2e_query(word_hidden_states))
e2w_query_layer = self.transpose_for_scores(self.e2w_query(entity_hidden_states))
e2e_query_layer = self.transpose_for_scores(self.e2e_query(entity_hidden_states))
# compute w2w, w2e, e2w, and e2e key vectors used with the query vectors computed above
w2w_key_layer = key_layer[:, :, :word_size, :]
e2w_key_layer = key_layer[:, :, :word_size, :]
w2e_key_layer = key_layer[:, :, word_size:, :]
e2e_key_layer = key_layer[:, :, word_size:, :]
# compute attention scores based on the dot product between the query and key vectors
w2w_attention_scores = torch.matmul(w2w_query_layer, w2w_key_layer.transpose(-1, -2))
w2e_attention_scores = torch.matmul(w2e_query_layer, w2e_key_layer.transpose(-1, -2))
e2w_attention_scores = torch.matmul(e2w_query_layer, e2w_key_layer.transpose(-1, -2))
e2e_attention_scores = torch.matmul(e2e_query_layer, e2e_key_layer.transpose(-1, -2))
# combine attention scores to create the final attention score matrix
word_attention_scores = torch.cat([w2w_attention_scores, w2e_attention_scores], dim=3)
entity_attention_scores = torch.cat([e2w_attention_scores, e2e_attention_scores], dim=3)
attention_scores = torch.cat([word_attention_scores, entity_attention_scores], dim=2)
else:
query_layer = self.transpose_for_scores(self.query(concat_hidden_states))
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in LukeModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
output_word_hidden_states = context_layer[:, :word_size, :]
if entity_hidden_states is None:
output_entity_hidden_states = None
else:
output_entity_hidden_states = context_layer[:, word_size:, :]
if output_attentions:
outputs = (output_word_hidden_states, output_entity_hidden_states, attention_probs)
else:
outputs = (output_word_hidden_states, output_entity_hidden_states)
return outputs
|
class_definition
| 28,237 | 33,853 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,901 |
class LukeSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
|
class_definition
| 33,924 | 34,530 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,902 |
class LukeAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = LukeSelfAttention(config)
self.output = LukeSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
raise NotImplementedError("LUKE does not support the pruning of attention heads")
def forward(
self,
word_hidden_states,
entity_hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
):
word_size = word_hidden_states.size(1)
self_outputs = self.self(
word_hidden_states,
entity_hidden_states,
attention_mask,
head_mask,
output_attentions,
)
if entity_hidden_states is None:
concat_self_outputs = self_outputs[0]
concat_hidden_states = word_hidden_states
else:
concat_self_outputs = torch.cat(self_outputs[:2], dim=1)
concat_hidden_states = torch.cat([word_hidden_states, entity_hidden_states], dim=1)
attention_output = self.output(concat_self_outputs, concat_hidden_states)
word_attention_output = attention_output[:, :word_size, :]
if entity_hidden_states is None:
entity_attention_output = None
else:
entity_attention_output = attention_output[:, word_size:, :]
# add attentions if we output them
outputs = (word_attention_output, entity_attention_output) + self_outputs[2:]
return outputs
|
class_definition
| 34,533 | 36,095 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,903 |
class LukeIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
|
class_definition
| 36,168 | 36,733 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,904 |
class LukeOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
|
class_definition
| 36,800 | 37,408 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,905 |
class LukeLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = LukeAttention(config)
self.intermediate = LukeIntermediate(config)
self.output = LukeOutput(config)
def forward(
self,
word_hidden_states,
entity_hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
):
word_size = word_hidden_states.size(1)
self_attention_outputs = self.attention(
word_hidden_states,
entity_hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
)
if entity_hidden_states is None:
concat_attention_output = self_attention_outputs[0]
else:
concat_attention_output = torch.cat(self_attention_outputs[:2], dim=1)
outputs = self_attention_outputs[2:] # add self attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, concat_attention_output
)
word_layer_output = layer_output[:, :word_size, :]
if entity_hidden_states is None:
entity_layer_output = None
else:
entity_layer_output = layer_output[:, word_size:, :]
outputs = (word_layer_output, entity_layer_output) + outputs
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
|
class_definition
| 37,411 | 39,198 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,906 |
class LukeEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([LukeLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
word_hidden_states,
entity_hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_word_hidden_states = () if output_hidden_states else None
all_entity_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_word_hidden_states = all_word_hidden_states + (word_hidden_states,)
all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
word_hidden_states,
entity_hidden_states,
attention_mask,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(
word_hidden_states,
entity_hidden_states,
attention_mask,
layer_head_mask,
output_attentions,
)
word_hidden_states = layer_outputs[0]
if entity_hidden_states is not None:
entity_hidden_states = layer_outputs[1]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[2],)
if output_hidden_states:
all_word_hidden_states = all_word_hidden_states + (word_hidden_states,)
all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,)
if not return_dict:
return tuple(
v
for v in [
word_hidden_states,
all_word_hidden_states,
all_self_attentions,
entity_hidden_states,
all_entity_hidden_states,
]
if v is not None
)
return BaseLukeModelOutput(
last_hidden_state=word_hidden_states,
hidden_states=all_word_hidden_states,
attentions=all_self_attentions,
entity_last_hidden_state=entity_hidden_states,
entity_hidden_states=all_entity_hidden_states,
)
|
class_definition
| 39,201 | 42,089 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,907 |
class LukePooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
|
class_definition
| 42,156 | 42,715 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,908 |
class EntityPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.entity_emb_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.entity_emb_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
|
class_definition
| 42,718 | 43,398 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,909 |
class EntityPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transform = EntityPredictionHeadTransform(config)
self.decoder = nn.Linear(config.entity_emb_size, config.entity_vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.entity_vocab_size))
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states) + self.bias
return hidden_states
|
class_definition
| 43,401 | 43,944 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,910 |
class LukePreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = LukeConfig
base_model_prefix = "luke"
supports_gradient_checkpointing = True
_no_split_modules = ["LukeAttention", "LukeEntityEmbeddings"]
def _init_weights(self, module: nn.Module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
if module.embedding_dim == 1: # embedding for bias parameters
module.weight.data.zero_()
else:
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
|
class_definition
| 43,947 | 45,106 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,911 |
class LukeModel(LukePreTrainedModel):
def __init__(self, config: LukeConfig, add_pooling_layer: bool = True):
super().__init__(config)
self.config = config
self.embeddings = LukeEmbeddings(config)
self.entity_embeddings = LukeEntityEmbeddings(config)
self.encoder = LukeEncoder(config)
self.pooler = LukePooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def get_entity_embeddings(self):
return self.entity_embeddings.entity_embeddings
def set_entity_embeddings(self, value):
self.entity_embeddings.entity_embeddings = value
def _prune_heads(self, heads_to_prune):
raise NotImplementedError("LUKE does not support the pruning of attention heads")
@add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=BaseLukeModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
entity_attention_mask: Optional[torch.FloatTensor] = None,
entity_token_type_ids: Optional[torch.LongTensor] = None,
entity_position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseLukeModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, LukeModel
>>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-base")
>>> model = LukeModel.from_pretrained("studio-ousia/luke-base")
# Compute the contextualized entity representation corresponding to the entity mention "Beyoncé"
>>> text = "Beyoncé lives in Los Angeles."
>>> entity_spans = [(0, 7)] # character-based entity span corresponding to "Beyoncé"
>>> encoding = tokenizer(text, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt")
>>> outputs = model(**encoding)
>>> word_last_hidden_state = outputs.last_hidden_state
>>> entity_last_hidden_state = outputs.entity_last_hidden_state
# Input Wikipedia entities to obtain enriched contextualized representations of word tokens
>>> text = "Beyoncé lives in Los Angeles."
>>> entities = [
... "Beyoncé",
... "Los Angeles",
... ] # Wikipedia entity titles corresponding to the entity mentions "Beyoncé" and "Los Angeles"
>>> entity_spans = [
... (0, 7),
... (17, 28),
... ] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles"
>>> encoding = tokenizer(
... text, entities=entities, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt"
... )
>>> outputs = model(**encoding)
>>> word_last_hidden_state = outputs.last_hidden_state
>>> entity_last_hidden_state = outputs.entity_last_hidden_state
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length), device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
if entity_ids is not None:
entity_seq_length = entity_ids.size(1)
if entity_attention_mask is None:
entity_attention_mask = torch.ones((batch_size, entity_seq_length), device=device)
if entity_token_type_ids is None:
entity_token_type_ids = torch.zeros((batch_size, entity_seq_length), dtype=torch.long, device=device)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
# First, compute word embeddings
word_embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
)
# Second, compute extended attention mask
extended_attention_mask = self.get_extended_attention_mask(attention_mask, entity_attention_mask)
# Third, compute entity embeddings and concatenate with word embeddings
if entity_ids is None:
entity_embedding_output = None
else:
entity_embedding_output = self.entity_embeddings(entity_ids, entity_position_ids, entity_token_type_ids)
# Fourth, send embeddings through the model
encoder_outputs = self.encoder(
word_embedding_output,
entity_embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Fifth, get the output. LukeModel outputs the same as BertModel, namely sequence_output of shape (batch_size, seq_len, hidden_size)
sequence_output = encoder_outputs[0]
# Sixth, we compute the pooled_output, word_sequence_output and entity_sequence_output based on the sequence_output
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseLukeModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
entity_last_hidden_state=encoder_outputs.entity_last_hidden_state,
entity_hidden_states=encoder_outputs.entity_hidden_states,
)
def get_extended_attention_mask(
self, word_attention_mask: torch.LongTensor, entity_attention_mask: Optional[torch.LongTensor]
):
"""
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
Arguments:
word_attention_mask (`torch.LongTensor`):
Attention mask for word tokens with ones indicating tokens to attend to, zeros for tokens to ignore.
entity_attention_mask (`torch.LongTensor`, *optional*):
Attention mask for entity tokens with ones indicating tokens to attend to, zeros for tokens to ignore.
Returns:
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
"""
attention_mask = word_attention_mask
if entity_attention_mask is not None:
attention_mask = torch.cat([attention_mask, entity_attention_mask], dim=-1)
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(f"Wrong shape for attention_mask (shape {attention_mask.shape})")
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min
return extended_attention_mask
|
class_definition
| 50,101 | 59,416 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,912 |
class LukeLMHead(nn.Module):
"""Roberta Head for masked language modeling."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.decoder.bias = self.bias
def forward(self, features, **kwargs):
x = self.dense(features)
x = gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = self.decoder(x)
return x
def _tie_weights(self):
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
# For accelerate compatibility and to not break backward compatibility
if self.decoder.bias.device.type == "meta":
self.decoder.bias = self.bias
else:
self.bias = self.decoder.bias
|
class_definition
| 60,114 | 61,173 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,913 |
class LukeForMaskedLM(LukePreTrainedModel):
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight"]
def __init__(self, config):
super().__init__(config)
self.luke = LukeModel(config)
self.lm_head = LukeLMHead(config)
self.entity_predictions = EntityPredictionHead(config)
self.loss_fn = nn.CrossEntropyLoss()
# Initialize weights and apply final processing
self.post_init()
def tie_weights(self):
super().tie_weights()
self._tie_or_clone_weights(self.entity_predictions.decoder, self.luke.entity_embeddings.entity_embeddings)
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
@add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=LukeMaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
entity_attention_mask: Optional[torch.LongTensor] = None,
entity_token_type_ids: Optional[torch.LongTensor] = None,
entity_position_ids: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
entity_labels: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LukeMaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
entity_labels (`torch.LongTensor` of shape `(batch_size, entity_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.luke(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
entity_ids=entity_ids,
entity_attention_mask=entity_attention_mask,
entity_token_type_ids=entity_token_type_ids,
entity_position_ids=entity_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
loss = None
mlm_loss = None
logits = self.lm_head(outputs.last_hidden_state)
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
mlm_loss = self.loss_fn(logits.view(-1, self.config.vocab_size), labels.view(-1))
if loss is None:
loss = mlm_loss
mep_loss = None
entity_logits = None
if outputs.entity_last_hidden_state is not None:
entity_logits = self.entity_predictions(outputs.entity_last_hidden_state)
if entity_labels is not None:
mep_loss = self.loss_fn(entity_logits.view(-1, self.config.entity_vocab_size), entity_labels.view(-1))
if loss is None:
loss = mep_loss
else:
loss = loss + mep_loss
if not return_dict:
return tuple(
v
for v in [
loss,
mlm_loss,
mep_loss,
logits,
entity_logits,
outputs.hidden_states,
outputs.entity_hidden_states,
outputs.attentions,
]
if v is not None
)
return LukeMaskedLMOutput(
loss=loss,
mlm_loss=mlm_loss,
mep_loss=mep_loss,
logits=logits,
entity_logits=entity_logits,
hidden_states=outputs.hidden_states,
entity_hidden_states=outputs.entity_hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 61,390 | 66,625 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,914 |
class LukeForEntityClassification(LukePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.luke = LukeModel(config)
self.num_labels = config.num_labels
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=EntityClassificationOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
entity_attention_mask: Optional[torch.FloatTensor] = None,
entity_token_type_ids: Optional[torch.LongTensor] = None,
entity_position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, EntityClassificationOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)` or `(batch_size, num_labels)`, *optional*):
Labels for computing the classification loss. If the shape is `(batch_size,)`, the cross entropy loss is
used for the single-label classification. In this case, labels should contain the indices that should be in
`[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, num_labels)`, the binary cross entropy
loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0
and 1 indicate false and true, respectively.
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, LukeForEntityClassification
>>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-open-entity")
>>> model = LukeForEntityClassification.from_pretrained("studio-ousia/luke-large-finetuned-open-entity")
>>> text = "Beyoncé lives in Los Angeles."
>>> entity_spans = [(0, 7)] # character-based entity span corresponding to "Beyoncé"
>>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
Predicted class: person
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.luke(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
entity_ids=entity_ids,
entity_attention_mask=entity_attention_mask,
entity_token_type_ids=entity_token_type_ids,
entity_position_ids=entity_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
feature_vector = outputs.entity_last_hidden_state[:, 0, :]
feature_vector = self.dropout(feature_vector)
logits = self.classifier(feature_vector)
loss = None
if labels is not None:
# When the number of dimension of `labels` is 1, cross entropy is used as the loss function. The binary
# cross entropy is used otherwise.
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if labels.ndim == 1:
loss = nn.functional.cross_entropy(logits, labels)
else:
loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits))
if not return_dict:
return tuple(
v
for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions]
if v is not None
)
return EntityClassificationOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
entity_hidden_states=outputs.entity_hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 66,877 | 71,814 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,915 |
class LukeForEntityPairClassification(LukePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.luke = LukeModel(config)
self.num_labels = config.num_labels
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size * 2, config.num_labels, False)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=EntityPairClassificationOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
entity_attention_mask: Optional[torch.FloatTensor] = None,
entity_token_type_ids: Optional[torch.LongTensor] = None,
entity_position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, EntityPairClassificationOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)` or `(batch_size, num_labels)`, *optional*):
Labels for computing the classification loss. If the shape is `(batch_size,)`, the cross entropy loss is
used for the single-label classification. In this case, labels should contain the indices that should be in
`[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, num_labels)`, the binary cross entropy
loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0
and 1 indicate false and true, respectively.
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, LukeForEntityPairClassification
>>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-tacred")
>>> model = LukeForEntityPairClassification.from_pretrained("studio-ousia/luke-large-finetuned-tacred")
>>> text = "Beyoncé lives in Los Angeles."
>>> entity_spans = [
... (0, 7),
... (17, 28),
... ] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles"
>>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
Predicted class: per:cities_of_residence
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.luke(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
entity_ids=entity_ids,
entity_attention_mask=entity_attention_mask,
entity_token_type_ids=entity_token_type_ids,
entity_position_ids=entity_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
feature_vector = torch.cat(
[outputs.entity_last_hidden_state[:, 0, :], outputs.entity_last_hidden_state[:, 1, :]], dim=1
)
feature_vector = self.dropout(feature_vector)
logits = self.classifier(feature_vector)
loss = None
if labels is not None:
# When the number of dimension of `labels` is 1, cross entropy is used as the loss function. The binary
# cross entropy is used otherwise.
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if labels.ndim == 1:
loss = nn.functional.cross_entropy(logits, labels)
else:
loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits))
if not return_dict:
return tuple(
v
for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions]
if v is not None
)
return EntityPairClassificationOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
entity_hidden_states=outputs.entity_hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 72,066 | 77,205 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,916 |
class LukeForEntitySpanClassification(LukePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.luke = LukeModel(config)
self.num_labels = config.num_labels
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size * 3, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=EntitySpanClassificationOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
entity_attention_mask: Optional[torch.LongTensor] = None,
entity_token_type_ids: Optional[torch.LongTensor] = None,
entity_position_ids: Optional[torch.LongTensor] = None,
entity_start_positions: Optional[torch.LongTensor] = None,
entity_end_positions: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, EntitySpanClassificationOutput]:
r"""
entity_start_positions (`torch.LongTensor`):
The start positions of entities in the word token sequence.
entity_end_positions (`torch.LongTensor`):
The end positions of entities in the word token sequence.
labels (`torch.LongTensor` of shape `(batch_size, entity_length)` or `(batch_size, entity_length, num_labels)`, *optional*):
Labels for computing the classification loss. If the shape is `(batch_size, entity_length)`, the cross
entropy loss is used for the single-label classification. In this case, labels should contain the indices
that should be in `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, entity_length,
num_labels)`, the binary cross entropy loss is used for the multi-label classification. In this case,
labels should only contain `[0, 1]`, where 0 and 1 indicate false and true, respectively.
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, LukeForEntitySpanClassification
>>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003")
>>> model = LukeForEntitySpanClassification.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003")
>>> text = "Beyoncé lives in Los Angeles"
# List all possible entity spans in the text
>>> word_start_positions = [0, 8, 14, 17, 21] # character-based start positions of word tokens
>>> word_end_positions = [7, 13, 16, 20, 28] # character-based end positions of word tokens
>>> entity_spans = []
>>> for i, start_pos in enumerate(word_start_positions):
... for end_pos in word_end_positions[i:]:
... entity_spans.append((start_pos, end_pos))
>>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> predicted_class_indices = logits.argmax(-1).squeeze().tolist()
>>> for span, predicted_class_idx in zip(entity_spans, predicted_class_indices):
... if predicted_class_idx != 0:
... print(text[span[0] : span[1]], model.config.id2label[predicted_class_idx])
Beyoncé PER
Los Angeles LOC
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.luke(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
entity_ids=entity_ids,
entity_attention_mask=entity_attention_mask,
entity_token_type_ids=entity_token_type_ids,
entity_position_ids=entity_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
hidden_size = outputs.last_hidden_state.size(-1)
entity_start_positions = entity_start_positions.unsqueeze(-1).expand(-1, -1, hidden_size)
if entity_start_positions.device != outputs.last_hidden_state.device:
entity_start_positions = entity_start_positions.to(outputs.last_hidden_state.device)
start_states = torch.gather(outputs.last_hidden_state, -2, entity_start_positions)
entity_end_positions = entity_end_positions.unsqueeze(-1).expand(-1, -1, hidden_size)
if entity_end_positions.device != outputs.last_hidden_state.device:
entity_end_positions = entity_end_positions.to(outputs.last_hidden_state.device)
end_states = torch.gather(outputs.last_hidden_state, -2, entity_end_positions)
feature_vector = torch.cat([start_states, end_states, outputs.entity_last_hidden_state], dim=2)
feature_vector = self.dropout(feature_vector)
logits = self.classifier(feature_vector)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
# When the number of dimension of `labels` is 2, cross entropy is used as the loss function. The binary
# cross entropy is used otherwise.
if labels.ndim == 2:
loss = nn.functional.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
else:
loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits))
if not return_dict:
return tuple(
v
for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions]
if v is not None
)
return EntitySpanClassificationOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
entity_hidden_states=outputs.entity_hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 77,434 | 84,231 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,917 |
class LukeForSequenceClassification(LukePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.luke = LukeModel(config)
self.dropout = nn.Dropout(
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=LukeSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
entity_attention_mask: Optional[torch.FloatTensor] = None,
entity_token_type_ids: Optional[torch.LongTensor] = None,
entity_position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LukeSequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.luke(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
entity_ids=entity_ids,
entity_attention_mask=entity_attention_mask,
entity_token_type_ids=entity_token_type_ids,
entity_position_ids=entity_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
pooled_output = outputs.pooler_output
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
return tuple(
v
for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions]
if v is not None
)
return LukeSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
entity_hidden_states=outputs.entity_hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 84,457 | 89,138 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,918 |
class LukeForTokenClassification(LukePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.luke = LukeModel(config, add_pooling_layer=False)
self.dropout = nn.Dropout(
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=LukeTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
entity_attention_mask: Optional[torch.FloatTensor] = None,
entity_token_type_ids: Optional[torch.LongTensor] = None,
entity_position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LukeTokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.luke(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
entity_ids=entity_ids,
entity_attention_mask=entity_attention_mask,
entity_token_type_ids=entity_token_type_ids,
entity_position_ids=entity_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
sequence_output = outputs.last_hidden_state
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
return tuple(
v
for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions]
if v is not None
)
return LukeTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
entity_hidden_states=outputs.entity_hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 89,454 | 93,129 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,919 |
class LukeForQuestionAnswering(LukePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.luke = LukeModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=LukeQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.FloatTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
entity_attention_mask: Optional[torch.FloatTensor] = None,
entity_token_type_ids: Optional[torch.LongTensor] = None,
entity_position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LukeQuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.luke(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
entity_ids=entity_ids,
entity_attention_mask=entity_attention_mask,
entity_token_type_ids=entity_token_type_ids,
entity_position_ids=entity_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
sequence_output = outputs.last_hidden_state
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
return tuple(
v
for v in [
total_loss,
start_logits,
end_logits,
outputs.hidden_states,
outputs.entity_hidden_states,
outputs.attentions,
]
if v is not None
)
return LukeQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
entity_hidden_states=outputs.entity_hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 93,420 | 98,357 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,920 |
class LukeForMultipleChoice(LukePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.luke = LukeModel(config)
self.dropout = nn.Dropout(
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=LukeMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
entity_attention_mask: Optional[torch.FloatTensor] = None,
entity_token_type_ids: Optional[torch.LongTensor] = None,
entity_position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LukeMultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
entity_ids = entity_ids.view(-1, entity_ids.size(-1)) if entity_ids is not None else None
entity_attention_mask = (
entity_attention_mask.view(-1, entity_attention_mask.size(-1))
if entity_attention_mask is not None
else None
)
entity_token_type_ids = (
entity_token_type_ids.view(-1, entity_token_type_ids.size(-1))
if entity_token_type_ids is not None
else None
)
entity_position_ids = (
entity_position_ids.view(-1, entity_position_ids.size(-2), entity_position_ids.size(-1))
if entity_position_ids is not None
else None
)
outputs = self.luke(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
entity_ids=entity_ids,
entity_attention_mask=entity_attention_mask,
entity_token_type_ids=entity_token_type_ids,
entity_position_ids=entity_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
pooled_output = outputs.pooler_output
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(reshaped_logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
return tuple(
v
for v in [
loss,
reshaped_logits,
outputs.hidden_states,
outputs.entity_hidden_states,
outputs.attentions,
]
if v is not None
)
return LukeMultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
entity_hidden_states=outputs.entity_hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 98,592 | 103,761 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/modeling_luke.py
| null | 3,921 |
class LukeTokenizer(PreTrainedTokenizer):
"""
Constructs a LUKE tokenizer, derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```python
>>> from transformers import LukeTokenizer
>>> tokenizer = LukeTokenizer.from_pretrained("studio-ousia/luke-base")
>>> tokenizer("Hello world")["input_ids"]
[0, 31414, 232, 2]
>>> tokenizer(" Hello world")["input_ids"]
[0, 20920, 232, 2]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
</Tip>
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods. It also creates entity sequences, namely
`entity_ids`, `entity_attention_mask`, `entity_token_type_ids`, and `entity_position_ids` to be used by the LUKE
model.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
entity_vocab_file (`str`):
Path to the entity vocabulary file.
task (`str`, *optional*):
Task for which you want to prepare sequences. One of `"entity_classification"`,
`"entity_pair_classification"`, or `"entity_span_classification"`. If you specify this argument, the entity
sequence is automatically created based on the given entity span(s).
max_entity_length (`int`, *optional*, defaults to 32):
The maximum length of `entity_ids`.
max_mention_length (`int`, *optional*, defaults to 30):
The maximum number of tokens inside an entity span.
entity_token_1 (`str`, *optional*, defaults to `<ent>`):
The special token used to represent an entity span in a word token sequence. This token is only used when
`task` is set to `"entity_classification"` or `"entity_pair_classification"`.
entity_token_2 (`str`, *optional*, defaults to `<ent2>`):
The special token used to represent an entity span in a word token sequence. This token is only used when
`task` is set to `"entity_pair_classification"`.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (LUKE tokenizer detect beginning of words by the preceding space).
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
merges_file,
entity_vocab_file,
task=None,
max_entity_length=32,
max_mention_length=30,
entity_token_1="<ent>",
entity_token_2="<ent2>",
entity_unk_token="[UNK]",
entity_pad_token="[PAD]",
entity_mask_token="[MASK]",
entity_mask2_token="[MASK2]",
errors="replace",
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
add_prefix_space=False,
**kwargs,
):
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
bpe_merges = merges_handle.read().split("\n")[1:-1]
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
self.add_prefix_space = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
# we add 2 special tokens for downstream tasks
# for more information about lstrip and rstrip, see https://github.com/huggingface/transformers/pull/2778
entity_token_1 = (
AddedToken(entity_token_1, lstrip=False, rstrip=False)
if isinstance(entity_token_1, str)
else entity_token_1
)
entity_token_2 = (
AddedToken(entity_token_2, lstrip=False, rstrip=False)
if isinstance(entity_token_2, str)
else entity_token_2
)
kwargs["additional_special_tokens"] = kwargs.get("additional_special_tokens", [])
kwargs["additional_special_tokens"] += [entity_token_1, entity_token_2]
with open(entity_vocab_file, encoding="utf-8") as entity_vocab_handle:
self.entity_vocab = json.load(entity_vocab_handle)
for entity_special_token in [entity_unk_token, entity_pad_token, entity_mask_token, entity_mask2_token]:
if entity_special_token not in self.entity_vocab:
raise ValueError(
f"Specified entity special token ``{entity_special_token}`` is not found in entity_vocab. "
f"Probably an incorrect entity vocab file is loaded: {entity_vocab_file}."
)
self.entity_unk_token_id = self.entity_vocab[entity_unk_token]
self.entity_pad_token_id = self.entity_vocab[entity_pad_token]
self.entity_mask_token_id = self.entity_vocab[entity_mask_token]
self.entity_mask2_token_id = self.entity_vocab[entity_mask2_token]
self.task = task
if task is None or task == "entity_span_classification":
self.max_entity_length = max_entity_length
elif task == "entity_classification":
self.max_entity_length = 1
elif task == "entity_pair_classification":
self.max_entity_length = 2
else:
raise ValueError(
f"Task {task} not supported. Select task from ['entity_classification', 'entity_pair_classification',"
" 'entity_span_classification'] only."
)
self.max_mention_length = max_mention_length
super().__init__(
errors=errors,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
add_prefix_space=add_prefix_space,
task=task,
max_entity_length=32,
max_mention_length=30,
entity_token_1="<ent>",
entity_token_2="<ent2>",
entity_unk_token=entity_unk_token,
entity_pad_token=entity_pad_token,
entity_mask_token=entity_mask_token,
entity_mask2_token=entity_mask2_token,
**kwargs,
)
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Luke, RoBERTa->LUKE
def vocab_size(self):
return len(self.encoder)
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.get_vocab with Roberta->Luke, RoBERTa->LUKE
def get_vocab(self):
vocab = dict(self.encoder).copy()
vocab.update(self.added_tokens_encoder)
return vocab
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.bpe with Roberta->Luke, RoBERTa->LUKE
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
self.cache[token] = word
return word
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._tokenize with Roberta->Luke, RoBERTa->LUKE
def _tokenize(self, text):
"""Tokenize a string."""
bpe_tokens = []
for token in re.findall(self.pat, text):
token = "".join(
self.byte_encoder[b] for b in token.encode("utf-8")
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
return bpe_tokens
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._convert_token_to_id with Roberta->Luke, RoBERTa->LUKE
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer._convert_id_to_token with Roberta->Luke, RoBERTa->LUKE
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.convert_tokens_to_string with Roberta->Luke, RoBERTa->LUKE
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
text = "".join(tokens)
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
return text
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.build_inputs_with_special_tokens with Roberta->Luke, RoBERTa->LUKE
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A LUKE sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s></s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.get_special_tokens_mask with Roberta->Luke, RoBERTa->LUKE
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.create_token_type_ids_from_sequences with Roberta->Luke, RoBERTa->LUKE
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. LUKE does not
make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.prepare_for_tokenization with Roberta->Luke, RoBERTa->LUKE
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
text = " " + text
return (text, kwargs)
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def __call__(
self,
text: Union[TextInput, List[TextInput]],
text_pair: Optional[Union[TextInput, List[TextInput]]] = None,
entity_spans: Optional[Union[EntitySpanInput, List[EntitySpanInput]]] = None,
entity_spans_pair: Optional[Union[EntitySpanInput, List[EntitySpanInput]]] = None,
entities: Optional[Union[EntityInput, List[EntityInput]]] = None,
entities_pair: Optional[Union[EntityInput, List[EntityInput]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
max_entity_length: Optional[int] = None,
stride: int = 0,
is_split_into_words: Optional[bool] = False,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
sequences, depending on the task you want to prepare them for.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence must be a string. Note that this
tokenizer does not support tokenization based on pretokenized strings.
text_pair (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence must be a string. Note that this
tokenizer does not support tokenization based on pretokenized strings.
entity_spans (`List[Tuple[int, int]]`, `List[List[Tuple[int, int]]]`, *optional*):
The sequence or batch of sequences of entity spans to be encoded. Each sequence consists of tuples each
with two integers denoting character-based start and end positions of entities. If you specify
`"entity_classification"` or `"entity_pair_classification"` as the `task` argument in the constructor,
the length of each sequence must be 1 or 2, respectively. If you specify `entities`, the length of each
sequence must be equal to the length of each sequence of `entities`.
entity_spans_pair (`List[Tuple[int, int]]`, `List[List[Tuple[int, int]]]`, *optional*):
The sequence or batch of sequences of entity spans to be encoded. Each sequence consists of tuples each
with two integers denoting character-based start and end positions of entities. If you specify the
`task` argument in the constructor, this argument is ignored. If you specify `entities_pair`, the
length of each sequence must be equal to the length of each sequence of `entities_pair`.
entities (`List[str]`, `List[List[str]]`, *optional*):
The sequence or batch of sequences of entities to be encoded. Each sequence consists of strings
representing entities, i.e., special entities (e.g., [MASK]) or entity titles of Wikipedia (e.g., Los
Angeles). This argument is ignored if you specify the `task` argument in the constructor. The length of
each sequence must be equal to the length of each sequence of `entity_spans`. If you specify
`entity_spans` without specifying this argument, the entity sequence or the batch of entity sequences
is automatically constructed by filling it with the [MASK] entity.
entities_pair (`List[str]`, `List[List[str]]`, *optional*):
The sequence or batch of sequences of entities to be encoded. Each sequence consists of strings
representing entities, i.e., special entities (e.g., [MASK]) or entity titles of Wikipedia (e.g., Los
Angeles). This argument is ignored if you specify the `task` argument in the constructor. The length of
each sequence must be equal to the length of each sequence of `entity_spans_pair`. If you specify
`entity_spans_pair` without specifying this argument, the entity sequence or the batch of entity
sequences is automatically constructed by filling it with the [MASK] entity.
max_entity_length (`int`, *optional*):
The maximum length of `entity_ids`.
"""
# Input type checking for clearer error
is_valid_single_text = isinstance(text, str)
is_valid_batch_text = isinstance(text, (list, tuple)) and (len(text) == 0 or (isinstance(text[0], str)))
if not (is_valid_single_text or is_valid_batch_text):
raise ValueError("text input must be of type `str` (single example) or `List[str]` (batch).")
is_valid_single_text_pair = isinstance(text_pair, str)
is_valid_batch_text_pair = isinstance(text_pair, (list, tuple)) and (
len(text_pair) == 0 or isinstance(text_pair[0], str)
)
if not (text_pair is None or is_valid_single_text_pair or is_valid_batch_text_pair):
raise ValueError("text_pair input must be of type `str` (single example) or `List[str]` (batch).")
is_batched = bool(isinstance(text, (list, tuple)))
if is_batched:
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
if entities is None:
batch_entities_or_entities_pairs = None
else:
batch_entities_or_entities_pairs = (
list(zip(entities, entities_pair)) if entities_pair is not None else entities
)
if entity_spans is None:
batch_entity_spans_or_entity_spans_pairs = None
else:
batch_entity_spans_or_entity_spans_pairs = (
list(zip(entity_spans, entity_spans_pair)) if entity_spans_pair is not None else entity_spans
)
return self.batch_encode_plus(
batch_text_or_text_pairs=batch_text_or_text_pairs,
batch_entity_spans_or_entity_spans_pairs=batch_entity_spans_or_entity_spans_pairs,
batch_entities_or_entities_pairs=batch_entities_or_entities_pairs,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
max_entity_length=max_entity_length,
stride=stride,
is_split_into_words=is_split_into_words,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
else:
return self.encode_plus(
text=text,
text_pair=text_pair,
entity_spans=entity_spans,
entity_spans_pair=entity_spans_pair,
entities=entities,
entities_pair=entities_pair,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
max_entity_length=max_entity_length,
stride=stride,
is_split_into_words=is_split_into_words,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def _encode_plus(
self,
text: Union[TextInput],
text_pair: Optional[Union[TextInput]] = None,
entity_spans: Optional[EntitySpanInput] = None,
entity_spans_pair: Optional[EntitySpanInput] = None,
entities: Optional[EntityInput] = None,
entities_pair: Optional[EntityInput] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
max_entity_length: Optional[int] = None,
stride: int = 0,
is_split_into_words: Optional[bool] = False,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast. "
"More information on available tokenizers at "
"https://github.com/huggingface/transformers/pull/2674"
)
if is_split_into_words:
raise NotImplementedError("is_split_into_words is not supported in this tokenizer.")
(
first_ids,
second_ids,
first_entity_ids,
second_entity_ids,
first_entity_token_spans,
second_entity_token_spans,
) = self._create_input_sequence(
text=text,
text_pair=text_pair,
entities=entities,
entities_pair=entities_pair,
entity_spans=entity_spans,
entity_spans_pair=entity_spans_pair,
**kwargs,
)
# prepare_for_model will create the attention_mask and token_type_ids
return self.prepare_for_model(
first_ids,
pair_ids=second_ids,
entity_ids=first_entity_ids,
pair_entity_ids=second_entity_ids,
entity_token_spans=first_entity_token_spans,
pair_entity_token_spans=second_entity_token_spans,
add_special_tokens=add_special_tokens,
padding=padding_strategy.value,
truncation=truncation_strategy.value,
max_length=max_length,
max_entity_length=max_entity_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
prepend_batch_axis=True,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
verbose=verbose,
)
def _batch_encode_plus(
self,
batch_text_or_text_pairs: Union[List[TextInput], List[TextInputPair]],
batch_entity_spans_or_entity_spans_pairs: Optional[
Union[List[EntitySpanInput], List[Tuple[EntitySpanInput, EntitySpanInput]]]
] = None,
batch_entities_or_entities_pairs: Optional[
Union[List[EntityInput], List[Tuple[EntityInput, EntityInput]]]
] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
max_entity_length: Optional[int] = None,
stride: int = 0,
is_split_into_words: Optional[bool] = False,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
)
if is_split_into_words:
raise NotImplementedError("is_split_into_words is not supported in this tokenizer.")
# input_ids is a list of tuples (one for each example in the batch)
input_ids = []
entity_ids = []
entity_token_spans = []
for index, text_or_text_pair in enumerate(batch_text_or_text_pairs):
if not isinstance(text_or_text_pair, (list, tuple)):
text, text_pair = text_or_text_pair, None
else:
text, text_pair = text_or_text_pair
entities, entities_pair = None, None
if batch_entities_or_entities_pairs is not None:
entities_or_entities_pairs = batch_entities_or_entities_pairs[index]
if entities_or_entities_pairs:
if isinstance(entities_or_entities_pairs[0], str):
entities, entities_pair = entities_or_entities_pairs, None
else:
entities, entities_pair = entities_or_entities_pairs
entity_spans, entity_spans_pair = None, None
if batch_entity_spans_or_entity_spans_pairs is not None:
entity_spans_or_entity_spans_pairs = batch_entity_spans_or_entity_spans_pairs[index]
if len(entity_spans_or_entity_spans_pairs) > 0 and isinstance(
entity_spans_or_entity_spans_pairs[0], list
):
entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs
else:
entity_spans, entity_spans_pair = entity_spans_or_entity_spans_pairs, None
(
first_ids,
second_ids,
first_entity_ids,
second_entity_ids,
first_entity_token_spans,
second_entity_token_spans,
) = self._create_input_sequence(
text=text,
text_pair=text_pair,
entities=entities,
entities_pair=entities_pair,
entity_spans=entity_spans,
entity_spans_pair=entity_spans_pair,
**kwargs,
)
input_ids.append((first_ids, second_ids))
entity_ids.append((first_entity_ids, second_entity_ids))
entity_token_spans.append((first_entity_token_spans, second_entity_token_spans))
batch_outputs = self._batch_prepare_for_model(
input_ids,
batch_entity_ids_pairs=entity_ids,
batch_entity_token_spans_pairs=entity_token_spans,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
max_entity_length=max_entity_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
return_tensors=return_tensors,
verbose=verbose,
)
return BatchEncoding(batch_outputs)
def _check_entity_input_format(self, entities: Optional[EntityInput], entity_spans: Optional[EntitySpanInput]):
if not isinstance(entity_spans, list):
raise TypeError("entity_spans should be given as a list")
elif len(entity_spans) > 0 and not isinstance(entity_spans[0], tuple):
raise ValueError(
"entity_spans should be given as a list of tuples containing the start and end character indices"
)
if entities is not None:
if not isinstance(entities, list):
raise ValueError("If you specify entities, they should be given as a list")
if len(entities) > 0 and not isinstance(entities[0], str):
raise ValueError("If you specify entities, they should be given as a list of entity names")
if len(entities) != len(entity_spans):
raise ValueError("If you specify entities, entities and entity_spans must be the same length")
def _create_input_sequence(
self,
text: Union[TextInput],
text_pair: Optional[Union[TextInput]] = None,
entities: Optional[EntityInput] = None,
entities_pair: Optional[EntityInput] = None,
entity_spans: Optional[EntitySpanInput] = None,
entity_spans_pair: Optional[EntitySpanInput] = None,
**kwargs,
) -> Tuple[list, list, list, list, list, list]:
def get_input_ids(text):
tokens = self.tokenize(text, **kwargs)
return self.convert_tokens_to_ids(tokens)
def get_input_ids_and_entity_token_spans(text, entity_spans):
if entity_spans is None:
return get_input_ids(text), None
cur = 0
input_ids = []
entity_token_spans = [None] * len(entity_spans)
split_char_positions = sorted(frozenset(itertools.chain(*entity_spans)))
char_pos2token_pos = {}
for split_char_position in split_char_positions:
orig_split_char_position = split_char_position
if (
split_char_position > 0 and text[split_char_position - 1] == " "
): # whitespace should be prepended to the following token
split_char_position -= 1
if cur != split_char_position:
input_ids += get_input_ids(text[cur:split_char_position])
cur = split_char_position
char_pos2token_pos[orig_split_char_position] = len(input_ids)
input_ids += get_input_ids(text[cur:])
entity_token_spans = [
(char_pos2token_pos[char_start], char_pos2token_pos[char_end]) for char_start, char_end in entity_spans
]
return input_ids, entity_token_spans
first_ids, second_ids = None, None
first_entity_ids, second_entity_ids = None, None
first_entity_token_spans, second_entity_token_spans = None, None
if self.task is None:
if entity_spans is None:
first_ids = get_input_ids(text)
else:
self._check_entity_input_format(entities, entity_spans)
first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
if entities is None:
first_entity_ids = [self.entity_mask_token_id] * len(entity_spans)
else:
first_entity_ids = [self.entity_vocab.get(entity, self.entity_unk_token_id) for entity in entities]
if text_pair is not None:
if entity_spans_pair is None:
second_ids = get_input_ids(text_pair)
else:
self._check_entity_input_format(entities_pair, entity_spans_pair)
second_ids, second_entity_token_spans = get_input_ids_and_entity_token_spans(
text_pair, entity_spans_pair
)
if entities_pair is None:
second_entity_ids = [self.entity_mask_token_id] * len(entity_spans_pair)
else:
second_entity_ids = [
self.entity_vocab.get(entity, self.entity_unk_token_id) for entity in entities_pair
]
elif self.task == "entity_classification":
if not (isinstance(entity_spans, list) and len(entity_spans) == 1 and isinstance(entity_spans[0], tuple)):
raise ValueError(
"Entity spans should be a list containing a single tuple "
"containing the start and end character indices of an entity"
)
first_entity_ids = [self.entity_mask_token_id]
first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
# add special tokens to input ids
entity_token_start, entity_token_end = first_entity_token_spans[0]
first_ids = (
first_ids[:entity_token_end] + [self.additional_special_tokens_ids[0]] + first_ids[entity_token_end:]
)
first_ids = (
first_ids[:entity_token_start]
+ [self.additional_special_tokens_ids[0]]
+ first_ids[entity_token_start:]
)
first_entity_token_spans = [(entity_token_start, entity_token_end + 2)]
elif self.task == "entity_pair_classification":
if not (
isinstance(entity_spans, list)
and len(entity_spans) == 2
and isinstance(entity_spans[0], tuple)
and isinstance(entity_spans[1], tuple)
):
raise ValueError(
"Entity spans should be provided as a list of two tuples, "
"each tuple containing the start and end character indices of an entity"
)
head_span, tail_span = entity_spans
first_entity_ids = [self.entity_mask_token_id, self.entity_mask2_token_id]
first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
head_token_span, tail_token_span = first_entity_token_spans
token_span_with_special_token_ids = [
(head_token_span, self.additional_special_tokens_ids[0]),
(tail_token_span, self.additional_special_tokens_ids[1]),
]
if head_token_span[0] < tail_token_span[0]:
first_entity_token_spans[0] = (head_token_span[0], head_token_span[1] + 2)
first_entity_token_spans[1] = (tail_token_span[0] + 2, tail_token_span[1] + 4)
token_span_with_special_token_ids = reversed(token_span_with_special_token_ids)
else:
first_entity_token_spans[0] = (head_token_span[0] + 2, head_token_span[1] + 4)
first_entity_token_spans[1] = (tail_token_span[0], tail_token_span[1] + 2)
for (entity_token_start, entity_token_end), special_token_id in token_span_with_special_token_ids:
first_ids = first_ids[:entity_token_end] + [special_token_id] + first_ids[entity_token_end:]
first_ids = first_ids[:entity_token_start] + [special_token_id] + first_ids[entity_token_start:]
elif self.task == "entity_span_classification":
if not (isinstance(entity_spans, list) and len(entity_spans) > 0 and isinstance(entity_spans[0], tuple)):
raise ValueError(
"Entity spans should be provided as a list of tuples, "
"each tuple containing the start and end character indices of an entity"
)
first_ids, first_entity_token_spans = get_input_ids_and_entity_token_spans(text, entity_spans)
first_entity_ids = [self.entity_mask_token_id] * len(entity_spans)
else:
raise ValueError(f"Task {self.task} not supported")
return (
first_ids,
second_ids,
first_entity_ids,
second_entity_ids,
first_entity_token_spans,
second_entity_token_spans,
)
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def _batch_prepare_for_model(
self,
batch_ids_pairs: List[Tuple[List[int], None]],
batch_entity_ids_pairs: List[Tuple[Optional[List[int]], Optional[List[int]]]],
batch_entity_token_spans_pairs: List[Tuple[Optional[List[Tuple[int, int]]], Optional[List[Tuple[int, int]]]]],
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
max_entity_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[str] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_length: bool = False,
verbose: bool = True,
) -> BatchEncoding:
"""
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It
adds special tokens, truncates sequences if overflowing while taking into account the special tokens and
manages a moving window (with user defined stride) for overflowing tokens
Args:
batch_ids_pairs: list of tokenized input ids or input ids pairs
batch_entity_ids_pairs: list of entity ids or entity ids pairs
batch_entity_token_spans_pairs: list of entity spans or entity spans pairs
max_entity_length: The maximum length of the entity sequence.
"""
batch_outputs = {}
for input_ids, entity_ids, entity_token_span_pairs in zip(
batch_ids_pairs, batch_entity_ids_pairs, batch_entity_token_spans_pairs
):
first_ids, second_ids = input_ids
first_entity_ids, second_entity_ids = entity_ids
first_entity_token_spans, second_entity_token_spans = entity_token_span_pairs
outputs = self.prepare_for_model(
first_ids,
second_ids,
entity_ids=first_entity_ids,
pair_entity_ids=second_entity_ids,
entity_token_spans=first_entity_token_spans,
pair_entity_token_spans=second_entity_token_spans,
add_special_tokens=add_special_tokens,
padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward
truncation=truncation_strategy.value,
max_length=max_length,
max_entity_length=max_entity_length,
stride=stride,
pad_to_multiple_of=None, # we pad in batch afterward
padding_side=None, # we pad in batch afterward
return_attention_mask=False, # we pad in batch afterward
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
return_tensors=None, # We convert the whole batch to tensors at the end
prepend_batch_axis=False,
verbose=verbose,
)
for key, value in outputs.items():
if key not in batch_outputs:
batch_outputs[key] = []
batch_outputs[key].append(value)
batch_outputs = self.pad(
batch_outputs,
padding=padding_strategy.value,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_attention_mask=return_attention_mask,
)
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
return batch_outputs
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def prepare_for_model(
self,
ids: List[int],
pair_ids: Optional[List[int]] = None,
entity_ids: Optional[List[int]] = None,
pair_entity_ids: Optional[List[int]] = None,
entity_token_spans: Optional[List[Tuple[int, int]]] = None,
pair_entity_token_spans: Optional[List[Tuple[int, int]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
max_entity_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
prepend_batch_axis: bool = False,
**kwargs,
) -> BatchEncoding:
"""
Prepares a sequence of input id, entity id and entity span, or a pair of sequences of inputs ids, entity ids,
entity spans so that it can be used by the model. It adds special tokens, truncates sequences if overflowing
while taking into account the special tokens and manages a moving window (with user defined stride) for
overflowing tokens. Please Note, for *pair_ids* different than `None` and *truncation_strategy = longest_first*
or `True`, it is not possible to return overflowing tokens. Such a combination of arguments will raise an
error.
Args:
ids (`List[int]`):
Tokenized input ids of the first sequence.
pair_ids (`List[int]`, *optional*):
Tokenized input ids of the second sequence.
entity_ids (`List[int]`, *optional*):
Entity ids of the first sequence.
pair_entity_ids (`List[int]`, *optional*):
Entity ids of the second sequence.
entity_token_spans (`List[Tuple[int, int]]`, *optional*):
Entity spans of the first sequence.
pair_entity_token_spans (`List[Tuple[int, int]]`, *optional*):
Entity spans of the second sequence.
max_entity_length (`int`, *optional*):
The maximum length of the entity sequence.
"""
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
# Compute lengths
pair = bool(pair_ids is not None)
len_ids = len(ids)
len_pair_ids = len(pair_ids) if pair else 0
if return_token_type_ids and not add_special_tokens:
raise ValueError(
"Asking to return token_type_ids while setting add_special_tokens to False "
"results in an undefined behavior. Please set add_special_tokens to True or "
"set return_token_type_ids to None."
)
if (
return_overflowing_tokens
and truncation_strategy == TruncationStrategy.LONGEST_FIRST
and pair_ids is not None
):
raise ValueError(
"Not possible to return overflowing tokens for pair of sequences with the "
"`longest_first`. Please select another truncation strategy than `longest_first`, "
"for instance `only_second` or `only_first`."
)
# Load from model defaults
if return_token_type_ids is None:
return_token_type_ids = "token_type_ids" in self.model_input_names
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
encoded_inputs = {}
# Compute the total size of the returned word encodings
total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0)
# Truncation: Handle max sequence length and max_entity_length
overflowing_tokens = []
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length:
# truncate words up to max_length
ids, pair_ids, overflowing_tokens = self.truncate_sequences(
ids,
pair_ids=pair_ids,
num_tokens_to_remove=total_len - max_length,
truncation_strategy=truncation_strategy,
stride=stride,
)
if return_overflowing_tokens:
encoded_inputs["overflowing_tokens"] = overflowing_tokens
encoded_inputs["num_truncated_tokens"] = total_len - max_length
# Add special tokens
if add_special_tokens:
sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
entity_token_offset = 1 # 1 * <s> token
pair_entity_token_offset = len(ids) + 3 # 1 * <s> token & 2 * <sep> tokens
else:
sequence = ids + pair_ids if pair else ids
token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else [])
entity_token_offset = 0
pair_entity_token_offset = len(ids)
# Build output dictionary
encoded_inputs["input_ids"] = sequence
if return_token_type_ids:
encoded_inputs["token_type_ids"] = token_type_ids
if return_special_tokens_mask:
if add_special_tokens:
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
else:
encoded_inputs["special_tokens_mask"] = [0] * len(sequence)
# Set max entity length
if not max_entity_length:
max_entity_length = self.max_entity_length
if entity_ids is not None:
total_entity_len = 0
num_invalid_entities = 0
valid_entity_ids = [ent_id for ent_id, span in zip(entity_ids, entity_token_spans) if span[1] <= len(ids)]
valid_entity_token_spans = [span for span in entity_token_spans if span[1] <= len(ids)]
total_entity_len += len(valid_entity_ids)
num_invalid_entities += len(entity_ids) - len(valid_entity_ids)
valid_pair_entity_ids, valid_pair_entity_token_spans = None, None
if pair_entity_ids is not None:
valid_pair_entity_ids = [
ent_id
for ent_id, span in zip(pair_entity_ids, pair_entity_token_spans)
if span[1] <= len(pair_ids)
]
valid_pair_entity_token_spans = [span for span in pair_entity_token_spans if span[1] <= len(pair_ids)]
total_entity_len += len(valid_pair_entity_ids)
num_invalid_entities += len(pair_entity_ids) - len(valid_pair_entity_ids)
if num_invalid_entities != 0:
logger.warning(
f"{num_invalid_entities} entities are ignored because their entity spans are invalid due to the"
" truncation of input tokens"
)
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and total_entity_len > max_entity_length:
# truncate entities up to max_entity_length
valid_entity_ids, valid_pair_entity_ids, overflowing_entities = self.truncate_sequences(
valid_entity_ids,
pair_ids=valid_pair_entity_ids,
num_tokens_to_remove=total_entity_len - max_entity_length,
truncation_strategy=truncation_strategy,
stride=stride,
)
valid_entity_token_spans = valid_entity_token_spans[: len(valid_entity_ids)]
if valid_pair_entity_token_spans is not None:
valid_pair_entity_token_spans = valid_pair_entity_token_spans[: len(valid_pair_entity_ids)]
if return_overflowing_tokens:
encoded_inputs["overflowing_entities"] = overflowing_entities
encoded_inputs["num_truncated_entities"] = total_entity_len - max_entity_length
final_entity_ids = valid_entity_ids + valid_pair_entity_ids if valid_pair_entity_ids else valid_entity_ids
encoded_inputs["entity_ids"] = list(final_entity_ids)
entity_position_ids = []
entity_start_positions = []
entity_end_positions = []
for token_spans, offset in (
(valid_entity_token_spans, entity_token_offset),
(valid_pair_entity_token_spans, pair_entity_token_offset),
):
if token_spans is not None:
for start, end in token_spans:
start += offset
end += offset
position_ids = list(range(start, end))[: self.max_mention_length]
position_ids += [-1] * (self.max_mention_length - end + start)
entity_position_ids.append(position_ids)
entity_start_positions.append(start)
entity_end_positions.append(end - 1)
encoded_inputs["entity_position_ids"] = entity_position_ids
if self.task == "entity_span_classification":
encoded_inputs["entity_start_positions"] = entity_start_positions
encoded_inputs["entity_end_positions"] = entity_end_positions
if return_token_type_ids:
encoded_inputs["entity_token_type_ids"] = [0] * len(encoded_inputs["entity_ids"])
# Check lengths
self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose)
# Padding
if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
encoded_inputs = self.pad(
encoded_inputs,
max_length=max_length,
max_entity_length=max_entity_length,
padding=padding_strategy.value,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_attention_mask=return_attention_mask,
)
if return_length:
encoded_inputs["length"] = len(encoded_inputs["input_ids"])
batch_outputs = BatchEncoding(
encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
)
return batch_outputs
def pad(
self,
encoded_inputs: Union[
BatchEncoding,
List[BatchEncoding],
Dict[str, EncodedInput],
Dict[str, List[EncodedInput]],
List[Dict[str, EncodedInput]],
],
padding: Union[bool, str, PaddingStrategy] = True,
max_length: Optional[int] = None,
max_entity_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
verbose: bool = True,
) -> BatchEncoding:
"""
Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
in the batch. Padding side (left/right) padding token ids are defined at the tokenizer level (with
`self.padding_side`, `self.pad_token_id` and `self.pad_token_type_id`) .. note:: If the `encoded_inputs` passed
are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the result will use the same type unless
you provide a different tensor type with `return_tensors`. In the case of PyTorch tensors, you will lose the
specific device of your tensors however.
Args:
encoded_inputs ([`BatchEncoding`], list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`):
Tokenized inputs. Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a batch of
tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]* or *List[Dict[str,
List[int]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader
collate function. Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or
TensorFlow tensors), see the note above for the return type.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
max_entity_length (`int`, *optional*):
The maximum length of the entity sequence.
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
padding_side:
The side on which the model should have padding applied. Should be selected between ['right', 'left'].
Default value is picked from the class attribute of the same name.
return_attention_mask (`bool`, *optional*):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention
masks?](../glossary#attention-mask)
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
verbose (`bool`, *optional*, defaults to `True`):
Whether or not to print more information and warnings.
"""
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], Mapping):
encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()}
# The model's main input name, usually `input_ids`, has be passed for padding
if self.model_input_names[0] not in encoded_inputs:
raise ValueError(
"You should supply an encoding or a list of encodings to this method "
f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
)
required_input = encoded_inputs[self.model_input_names[0]]
if not required_input:
if return_attention_mask:
encoded_inputs["attention_mask"] = []
return encoded_inputs
# If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
first_element = required_input[0]
if isinstance(first_element, (list, tuple)):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
index = 0
while len(required_input[index]) == 0:
index += 1
if index < len(required_input):
first_element = required_input[index][0]
# At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
if not isinstance(first_element, (int, list, tuple)):
if is_tf_tensor(first_element):
return_tensors = "tf" if return_tensors is None else return_tensors
elif is_torch_tensor(first_element):
return_tensors = "pt" if return_tensors is None else return_tensors
elif isinstance(first_element, np.ndarray):
return_tensors = "np" if return_tensors is None else return_tensors
else:
raise ValueError(
f"type of {first_element} unknown: {type(first_element)}. "
"Should be one of a python, numpy, pytorch or tensorflow object."
)
for key, value in encoded_inputs.items():
encoded_inputs[key] = to_py_obj(value)
# Convert padding_strategy in PaddingStrategy
padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
padding=padding, max_length=max_length, verbose=verbose
)
if max_entity_length is None:
max_entity_length = self.max_entity_length
required_input = encoded_inputs[self.model_input_names[0]]
if required_input and not isinstance(required_input[0], (list, tuple)):
encoded_inputs = self._pad(
encoded_inputs,
max_length=max_length,
max_entity_length=max_entity_length,
padding_strategy=padding_strategy,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_attention_mask=return_attention_mask,
)
return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
batch_size = len(required_input)
if any(len(v) != batch_size for v in encoded_inputs.values()):
raise ValueError("Some items in the output dictionary have a different batch size than others.")
if padding_strategy == PaddingStrategy.LONGEST:
max_length = max(len(inputs) for inputs in required_input)
max_entity_length = (
max(len(inputs) for inputs in encoded_inputs["entity_ids"]) if "entity_ids" in encoded_inputs else 0
)
padding_strategy = PaddingStrategy.MAX_LENGTH
batch_outputs = {}
for i in range(batch_size):
inputs = {k: v[i] for k, v in encoded_inputs.items()}
outputs = self._pad(
inputs,
max_length=max_length,
max_entity_length=max_entity_length,
padding_strategy=padding_strategy,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_attention_mask=return_attention_mask,
)
for key, value in outputs.items():
if key not in batch_outputs:
batch_outputs[key] = []
batch_outputs[key].append(value)
return BatchEncoding(batch_outputs, tensor_type=return_tensors)
def _pad(
self,
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
max_length: Optional[int] = None,
max_entity_length: Optional[int] = None,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
) -> dict:
"""
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
Args:
encoded_inputs:
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
max_length: maximum length of the returned list and optionally padding length (see below).
Will truncate by taking into account the special tokens.
max_entity_length: The maximum length of the entity sequence.
padding_strategy: PaddingStrategy to use for padding.
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- PaddingStrategy.DO_NOT_PAD: Do not pad
The tokenizer padding sides are defined in self.padding_side:
- 'left': pads on the left of the sequences
- 'right': pads on the right of the sequences
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
`>= 7.5` (Volta).
padding_side:
The side on which the model should have padding applied. Should be selected between ['right', 'left'].
Default value is picked from the class attribute of the same name.
return_attention_mask:
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
"""
entities_provided = bool("entity_ids" in encoded_inputs)
# Load from model defaults
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
if padding_strategy == PaddingStrategy.LONGEST:
max_length = len(encoded_inputs["input_ids"])
if entities_provided:
max_entity_length = len(encoded_inputs["entity_ids"])
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
if (
entities_provided
and max_entity_length is not None
and pad_to_multiple_of is not None
and (max_entity_length % pad_to_multiple_of != 0)
):
max_entity_length = ((max_entity_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and (
len(encoded_inputs["input_ids"]) != max_length
or (entities_provided and len(encoded_inputs["entity_ids"]) != max_entity_length)
)
# Initialize attention mask if not present.
if return_attention_mask and "attention_mask" not in encoded_inputs:
encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"])
if entities_provided and return_attention_mask and "entity_attention_mask" not in encoded_inputs:
encoded_inputs["entity_attention_mask"] = [1] * len(encoded_inputs["entity_ids"])
if needs_to_be_padded:
difference = max_length - len(encoded_inputs["input_ids"])
padding_side = padding_side if padding_side is not None else self.padding_side
if entities_provided:
entity_difference = max_entity_length - len(encoded_inputs["entity_ids"])
if padding_side == "right":
if return_attention_mask:
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
if entities_provided:
encoded_inputs["entity_attention_mask"] = (
encoded_inputs["entity_attention_mask"] + [0] * entity_difference
)
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = encoded_inputs["token_type_ids"] + [0] * difference
if entities_provided:
encoded_inputs["entity_token_type_ids"] = (
encoded_inputs["entity_token_type_ids"] + [0] * entity_difference
)
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
encoded_inputs["input_ids"] = encoded_inputs["input_ids"] + [self.pad_token_id] * difference
if entities_provided:
encoded_inputs["entity_ids"] = (
encoded_inputs["entity_ids"] + [self.entity_pad_token_id] * entity_difference
)
encoded_inputs["entity_position_ids"] = (
encoded_inputs["entity_position_ids"] + [[-1] * self.max_mention_length] * entity_difference
)
if self.task == "entity_span_classification":
encoded_inputs["entity_start_positions"] = (
encoded_inputs["entity_start_positions"] + [0] * entity_difference
)
encoded_inputs["entity_end_positions"] = (
encoded_inputs["entity_end_positions"] + [0] * entity_difference
)
elif padding_side == "left":
if return_attention_mask:
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
if entities_provided:
encoded_inputs["entity_attention_mask"] = [0] * entity_difference + encoded_inputs[
"entity_attention_mask"
]
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = [0] * difference + encoded_inputs["token_type_ids"]
if entities_provided:
encoded_inputs["entity_token_type_ids"] = [0] * entity_difference + encoded_inputs[
"entity_token_type_ids"
]
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
encoded_inputs["input_ids"] = [self.pad_token_id] * difference + encoded_inputs["input_ids"]
if entities_provided:
encoded_inputs["entity_ids"] = [self.entity_pad_token_id] * entity_difference + encoded_inputs[
"entity_ids"
]
encoded_inputs["entity_position_ids"] = [
[-1] * self.max_mention_length
] * entity_difference + encoded_inputs["entity_position_ids"]
if self.task == "entity_span_classification":
encoded_inputs["entity_start_positions"] = [0] * entity_difference + encoded_inputs[
"entity_start_positions"
]
encoded_inputs["entity_end_positions"] = [0] * entity_difference + encoded_inputs[
"entity_end_positions"
]
else:
raise ValueError("Invalid padding strategy:" + str(padding_side))
return encoded_inputs
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
writer.write("#version: 0.2\n")
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
entity_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["entity_vocab_file"]
)
with open(entity_vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.entity_vocab, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
return vocab_file, merge_file, entity_vocab_file
|
class_definition
| 7,487 | 85,647 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/luke/tokenization_luke.py
| null | 3,922 |
class DebertaLayerNorm(nn.Module):
"""LayerNorm module in the TF style (epsilon inside the square root)."""
def __init__(self, size, eps=1e-12):
super().__init__()
self.weight = nn.Parameter(torch.ones(size))
self.bias = nn.Parameter(torch.zeros(size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_type = hidden_states.dtype
hidden_states = hidden_states.float()
mean = hidden_states.mean(-1, keepdim=True)
variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
hidden_states = (hidden_states - mean) / torch.sqrt(variance + self.variance_epsilon)
hidden_states = hidden_states.to(input_type)
y = self.weight * hidden_states + self.bias
return y
|
class_definition
| 1,733 | 2,520 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,923 |
class DebertaSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
|
class_definition
| 2,523 | 3,088 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,924 |
class DisentangledSelfAttention(nn.Module):
"""
Disentangled self-attention module
Parameters:
config (`str`):
A model config class instance with the configuration to build a new model. The schema is similar to
*BertConfig*, for more details, please refer [`DebertaConfig`]
"""
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.in_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=False)
self.q_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float))
self.v_bias = nn.Parameter(torch.zeros((self.all_head_size), dtype=torch.float))
self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
self.relative_attention = getattr(config, "relative_attention", False)
self.talking_head = getattr(config, "talking_head", False)
if self.talking_head:
self.head_logits_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False)
self.head_weights_proj = nn.Linear(config.num_attention_heads, config.num_attention_heads, bias=False)
else:
self.head_logits_proj = None
self.head_weights_proj = None
if self.relative_attention:
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
if self.max_relative_positions < 1:
self.max_relative_positions = config.max_position_embeddings
self.pos_dropout = nn.Dropout(config.hidden_dropout_prob)
if "c2p" in self.pos_att_type:
self.pos_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
if "p2c" in self.pos_att_type:
self.pos_q_proj = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
output_attentions: bool = False,
query_states: Optional[torch.Tensor] = None,
relative_pos: Optional[torch.Tensor] = None,
rel_embeddings: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""
Call the module
Args:
hidden_states (`torch.FloatTensor`):
Input states to the module usually the output from previous layer, it will be the Q,K and V in
*Attention(Q,K,V)*
attention_mask (`torch.BoolTensor`):
An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
th token.
output_attentions (`bool`, *optional*):
Whether return the attention matrix.
query_states (`torch.FloatTensor`, *optional*):
The *Q* state in *Attention(Q,K,V)*.
relative_pos (`torch.LongTensor`):
The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
values ranging in [*-max_relative_positions*, *max_relative_positions*].
rel_embeddings (`torch.FloatTensor`):
The embedding of relative distances. It's a tensor of shape [\\(2 \\times
\\text{max_relative_positions}\\), *hidden_size*].
"""
if query_states is None:
qp = self.in_proj(hidden_states) # .split(self.all_head_size, dim=-1)
query_layer, key_layer, value_layer = self.transpose_for_scores(qp).chunk(3, dim=-1)
else:
ws = self.in_proj.weight.chunk(self.num_attention_heads * 3, dim=0)
qkvw = [torch.cat([ws[i * 3 + k] for i in range(self.num_attention_heads)], dim=0) for k in range(3)]
q = torch.matmul(qkvw[0], query_states.t().to(dtype=qkvw[0].dtype))
k = torch.matmul(qkvw[1], hidden_states.t().to(dtype=qkvw[1].dtype))
v = torch.matmul(qkvw[2], hidden_states.t().to(dtype=qkvw[2].dtype))
query_layer, key_layer, value_layer = [self.transpose_for_scores(x) for x in [q, k, v]]
query_layer = query_layer + self.transpose_for_scores(self.q_bias[None, None, :])
value_layer = value_layer + self.transpose_for_scores(self.v_bias[None, None, :])
rel_att: int = 0
# Take the dot product between "query" and "key" to get the raw attention scores.
scale_factor = 1 + len(self.pos_att_type)
scale = scaled_size_sqrt(query_layer, scale_factor)
query_layer = query_layer / scale.to(dtype=query_layer.dtype)
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.relative_attention and rel_embeddings is not None and relative_pos is not None:
rel_embeddings = self.pos_dropout(rel_embeddings)
rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor)
if rel_att is not None:
attention_scores = attention_scores + rel_att
# bxhxlxd
if self.head_logits_proj is not None:
attention_scores = self.head_logits_proj(attention_scores.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
attention_mask = attention_mask.bool()
attention_scores = attention_scores.masked_fill(~(attention_mask), torch.finfo(query_layer.dtype).min)
# bsz x height x length x dimension
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
attention_probs = self.dropout(attention_probs)
if self.head_weights_proj is not None:
attention_probs = self.head_weights_proj(attention_probs.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (-1,)
context_layer = context_layer.view(new_context_layer_shape)
if not output_attentions:
return (context_layer, None)
return (context_layer, attention_probs)
def disentangled_att_bias(
self,
query_layer: torch.Tensor,
key_layer: torch.Tensor,
relative_pos: torch.Tensor,
rel_embeddings: torch.Tensor,
scale_factor: int,
):
if relative_pos is None:
relative_pos = build_relative_position(query_layer, key_layer, query_layer.device)
if relative_pos.dim() == 2:
relative_pos = relative_pos.unsqueeze(0).unsqueeze(0)
elif relative_pos.dim() == 3:
relative_pos = relative_pos.unsqueeze(1)
# bxhxqxk
elif relative_pos.dim() != 4:
raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {relative_pos.dim()}")
att_span = compute_attention_span(query_layer, key_layer, self.max_relative_positions)
relative_pos = relative_pos.long()
rel_embeddings = rel_embeddings[
self.max_relative_positions - att_span : self.max_relative_positions + att_span, :
].unsqueeze(0)
score = 0
# content->position
if "c2p" in self.pos_att_type:
pos_key_layer = self.pos_proj(rel_embeddings)
pos_key_layer = self.transpose_for_scores(pos_key_layer)
c2p_att = torch.matmul(query_layer, pos_key_layer.transpose(-1, -2))
c2p_pos = torch.clamp(relative_pos + att_span, 0, att_span * 2 - 1)
c2p_att = torch.gather(c2p_att, dim=-1, index=c2p_dynamic_expand(c2p_pos, query_layer, relative_pos))
score += c2p_att
# position->content
if "p2c" in self.pos_att_type:
pos_query_layer = self.pos_q_proj(rel_embeddings)
pos_query_layer = self.transpose_for_scores(pos_query_layer)
pos_query_layer /= scaled_size_sqrt(pos_query_layer, scale_factor)
r_pos = build_rpos(
query_layer,
key_layer,
relative_pos,
)
p2c_pos = torch.clamp(-r_pos + att_span, 0, att_span * 2 - 1)
p2c_att = torch.matmul(key_layer, pos_query_layer.transpose(-1, -2).to(dtype=key_layer.dtype))
p2c_att = torch.gather(
p2c_att, dim=-1, index=p2c_dynamic_expand(p2c_pos, query_layer, key_layer)
).transpose(-1, -2)
p2c_att = uneven_size_corrected(p2c_att, query_layer, key_layer, relative_pos)
score += p2c_att
return score
|
class_definition
| 5,993 | 15,362 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,925 |
class DebertaEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
pad_token_id = getattr(config, "pad_token_id", 0)
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
self.word_embeddings = nn.Embedding(config.vocab_size, self.embedding_size, padding_idx=pad_token_id)
self.position_biased_input = getattr(config, "position_biased_input", True)
if not self.position_biased_input:
self.position_embeddings = None
else:
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.embedding_size)
if config.type_vocab_size > 0:
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, self.embedding_size)
else:
self.token_type_embeddings = None
if self.embedding_size != config.hidden_size:
self.embed_proj = nn.Linear(self.embedding_size, config.hidden_size, bias=False)
else:
self.embed_proj = None
self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.config = config
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, mask=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
if self.position_embeddings is not None:
position_embeddings = self.position_embeddings(position_ids.long())
else:
position_embeddings = torch.zeros_like(inputs_embeds)
embeddings = inputs_embeds
if self.position_biased_input:
embeddings += position_embeddings
if self.token_type_embeddings is not None:
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings += token_type_embeddings
if self.embed_proj is not None:
embeddings = self.embed_proj(embeddings)
embeddings = self.LayerNorm(embeddings)
if mask is not None:
if mask.dim() != embeddings.dim():
if mask.dim() == 4:
mask = mask.squeeze(1).squeeze(1)
mask = mask.unsqueeze(2)
mask = mask.to(embeddings.dtype)
embeddings = embeddings * mask
embeddings = self.dropout(embeddings)
return embeddings
|
class_definition
| 15,365 | 18,548 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,926 |
class DebertaAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = DisentangledSelfAttention(config)
self.output = DebertaSelfOutput(config)
self.config = config
def forward(
self,
hidden_states,
attention_mask,
output_attentions: bool = False,
query_states=None,
relative_pos=None,
rel_embeddings=None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
self_output, att_matrix = self.self(
hidden_states,
attention_mask,
output_attentions,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
)
if query_states is None:
query_states = hidden_states
attention_output = self.output(self_output, query_states)
if output_attentions:
return (attention_output, att_matrix)
else:
return (attention_output, None)
|
class_definition
| 18,551 | 19,573 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,927 |
class DebertaIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
|
class_definition
| 19,665 | 20,233 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,928 |
class DebertaOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = DebertaLayerNorm(config.hidden_size, config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.config = config
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
|
class_definition
| 20,236 | 20,832 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,929 |
class DebertaLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = DebertaAttention(config)
self.intermediate = DebertaIntermediate(config)
self.output = DebertaOutput(config)
def forward(
self,
hidden_states,
attention_mask,
query_states=None,
relative_pos=None,
rel_embeddings=None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
attention_output, att_matrix = self.attention(
hidden_states,
attention_mask,
output_attentions=output_attentions,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
)
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
if output_attentions:
return (layer_output, att_matrix)
else:
return (layer_output, None)
|
class_definition
| 20,835 | 21,892 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,930 |
class DebertaEncoder(PreTrainedModel):
"""Modified BertEncoder with relative position bias support"""
def __init__(self, config):
super().__init__(config)
self.layer = nn.ModuleList([DebertaLayer(config) for _ in range(config.num_hidden_layers)])
self.relative_attention = getattr(config, "relative_attention", False)
if self.relative_attention:
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
if self.max_relative_positions < 1:
self.max_relative_positions = config.max_position_embeddings
self.rel_embeddings = nn.Embedding(self.max_relative_positions * 2, config.hidden_size)
self.gradient_checkpointing = False
def get_rel_embedding(self):
rel_embeddings = self.rel_embeddings.weight if self.relative_attention else None
return rel_embeddings
def get_attention_mask(self, attention_mask):
if attention_mask.dim() <= 2:
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
attention_mask = extended_attention_mask * extended_attention_mask.squeeze(-2).unsqueeze(-1)
elif attention_mask.dim() == 3:
attention_mask = attention_mask.unsqueeze(1)
return attention_mask
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
if self.relative_attention and relative_pos is None:
if query_states is not None:
relative_pos = build_relative_position(query_states, hidden_states)
else:
relative_pos = build_relative_position(hidden_states, hidden_states)
return relative_pos
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
output_hidden_states: bool = True,
output_attentions: bool = False,
query_states=None,
relative_pos=None,
return_dict: bool = True,
):
attention_mask = self.get_attention_mask(attention_mask)
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
all_hidden_states: Optional[Tuple[torch.Tensor]] = (hidden_states,) if output_hidden_states else None
all_attentions = () if output_attentions else None
next_kv = hidden_states
rel_embeddings = self.get_rel_embedding()
for i, layer_module in enumerate(self.layer):
if self.gradient_checkpointing and self.training:
hidden_states, att_m = self._gradient_checkpointing_func(
layer_module.__call__,
next_kv,
attention_mask,
query_states,
relative_pos,
rel_embeddings,
output_attentions,
)
else:
hidden_states, att_m = layer_module(
next_kv,
attention_mask,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
output_attentions=output_attentions,
)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if query_states is not None:
query_states = hidden_states
else:
next_kv = hidden_states
if output_attentions:
all_attentions = all_attentions + (att_m,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
|
class_definition
| 21,895 | 25,723 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,931 |
class DebertaPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DebertaConfig
base_model_prefix = "deberta"
_keys_to_ignore_on_load_unexpected = ["position_embeddings"]
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
|
class_definition
| 25,726 | 26,779 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,932 |
class DebertaModel(DebertaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = DebertaEmbeddings(config)
self.encoder = DebertaEncoder(config)
self.z_steps = 0
self.config = config
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, new_embeddings):
self.embeddings.word_embeddings = new_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError("The prune function is not implemented in DeBERTa model.")
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
embedding_output = self.embeddings(
input_ids=input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
mask=attention_mask,
inputs_embeds=inputs_embeds,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask,
output_hidden_states=True,
output_attentions=output_attentions,
return_dict=return_dict,
)
encoded_layers = encoder_outputs[1]
if self.z_steps > 1:
hidden_states = encoded_layers[-2]
layers = [self.encoder.layer[-1] for _ in range(self.z_steps)]
query_states = encoded_layers[-1]
rel_embeddings = self.encoder.get_rel_embedding()
attention_mask = self.encoder.get_attention_mask(attention_mask)
rel_pos = self.encoder.get_rel_pos(embedding_output)
for layer in layers[1:]:
query_states = layer(
hidden_states,
attention_mask,
output_attentions=False,
query_states=query_states,
relative_pos=rel_pos,
rel_embeddings=rel_embeddings,
)
encoded_layers.append(query_states)
sequence_output = encoded_layers[-1]
if not return_dict:
return (sequence_output,) + encoder_outputs[(1 if output_hidden_states else 2) :]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states if output_hidden_states else None,
attentions=encoder_outputs.attentions,
)
|
class_definition
| 30,322 | 34,830 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,933 |
class LegacyDebertaPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
self.dense = nn.Linear(config.hidden_size, self.embedding_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(self.embedding_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
|
class_definition
| 34,833 | 35,599 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,934 |
class LegacyDebertaLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = LegacyDebertaPredictionHeadTransform(config)
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(self.embedding_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def _tie_weights(self):
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
|
class_definition
| 35,602 | 36,537 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,935 |
class LegacyDebertaOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = LegacyDebertaLMPredictionHead(config)
def forward(self, sequence_output: torch.Tensor) -> torch.Tensor:
prediction_scores = self.predictions(sequence_output)
return prediction_scores
|
class_definition
| 36,634 | 36,966 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,936 |
class DebertaLMPredictionHead(nn.Module):
"""https://github.com/microsoft/DeBERTa/blob/master/DeBERTa/deberta/bert.py#L270"""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=True)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# note that the input embeddings must be passed as an argument
def forward(self, hidden_states, word_embeddings):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(
hidden_states
) # original used MaskedLayerNorm, but passed no mask. This is equivalent.
hidden_states = torch.matmul(hidden_states, word_embeddings.weight.t()) + self.bias
return hidden_states
|
class_definition
| 36,969 | 38,089 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,937 |
class DebertaOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.lm_head = DebertaLMPredictionHead(config)
# note that the input embeddings must be passed as an argument
def forward(self, sequence_output, word_embeddings):
prediction_scores = self.lm_head(sequence_output, word_embeddings)
return prediction_scores
|
class_definition
| 38,092 | 38,475 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,938 |
class DebertaForMaskedLM(DebertaPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
self.legacy = config.legacy
self.deberta = DebertaModel(config)
if self.legacy:
self.cls = LegacyDebertaOnlyMLMHead(config)
else:
self._tied_weights_keys = ["lm_predictions.lm_head.weight", "deberta.embeddings.word_embeddings.weight"]
self.lm_predictions = DebertaOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
if self.legacy:
return self.cls.predictions.decoder
else:
return self.lm_predictions.lm_head.dense
def set_output_embeddings(self, new_embeddings):
if self.legacy:
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
else:
self.lm_predictions.lm_head.dense = new_embeddings
self.lm_predictions.lm_head.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_MASKED_LM,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="[MASK]",
expected_output=_MASKED_LM_EXPECTED_OUTPUT,
expected_loss=_MASKED_LM_EXPECTED_LOSS,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.deberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
if self.legacy:
prediction_scores = self.cls(sequence_output)
else:
prediction_scores = self.lm_predictions(sequence_output, self.deberta.embeddings.word_embeddings)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 38,586 | 42,432 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,939 |
class ContextPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.pooler_hidden_size, config.pooler_hidden_size)
self.dropout = nn.Dropout(config.pooler_dropout)
self.config = config
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
context_token = hidden_states[:, 0]
context_token = self.dropout(context_token)
pooled_output = self.dense(context_token)
pooled_output = ACT2FN[self.config.pooler_hidden_act](pooled_output)
return pooled_output
@property
def output_dim(self):
return self.config.hidden_size
|
class_definition
| 42,435 | 43,176 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,940 |
class DebertaForSequenceClassification(DebertaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
num_labels = getattr(config, "num_labels", 2)
self.num_labels = num_labels
self.deberta = DebertaModel(config)
self.pooler = ContextPooler(config)
output_dim = self.pooler.output_dim
self.classifier = nn.Linear(output_dim, num_labels)
drop_out = getattr(config, "cls_dropout", None)
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
self.dropout = nn.Dropout(drop_out)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.deberta.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
self.deberta.set_input_embeddings(new_embeddings)
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.deberta(
input_ids,
token_type_ids=token_type_ids,
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
encoder_layer = outputs[0]
pooled_output = self.pooler(encoder_layer)
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
# regression task
loss_fn = nn.MSELoss()
logits = logits.view(-1).to(labels.dtype)
loss = loss_fn(logits, labels.view(-1))
elif labels.dim() == 1 or labels.size(-1) == 1:
label_index = (labels >= 0).nonzero()
labels = labels.long()
if label_index.size(0) > 0:
labeled_logits = torch.gather(
logits, 0, label_index.expand(label_index.size(0), logits.size(1))
)
labels = torch.gather(labels, 0, label_index.view(-1))
loss_fct = CrossEntropyLoss()
loss = loss_fct(labeled_logits.view(-1, self.num_labels).float(), labels.view(-1))
else:
loss = torch.tensor(0).to(logits)
else:
log_softmax = nn.LogSoftmax(-1)
loss = -((log_softmax(logits) * labels).sum(-1)).mean()
elif self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
|
class_definition
| 43,404 | 48,329 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,941 |
class DebertaForTokenClassification(DebertaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.deberta = DebertaModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.deberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
|
class_definition
| 48,564 | 51,121 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,942 |
class DebertaForQuestionAnswering(DebertaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.deberta = DebertaModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_QA,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_QA_EXPECTED_OUTPUT,
expected_loss=_QA_EXPECTED_LOSS,
qa_target_start_index=_QA_TARGET_START_INDEX,
qa_target_end_index=_QA_TARGET_END_INDEX,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.deberta(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 51,414 | 55,701 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_deberta.py
| null | 3,943 |
class DebertaTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" DeBERTa tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```python
>>> from transformers import DebertaTokenizerFast
>>> tokenizer = DebertaTokenizerFast.from_pretrained("microsoft/deberta-base")
>>> tokenizer("Hello world")["input_ids"]
[1, 31414, 232, 2]
>>> tokenizer(" Hello world")["input_ids"]
[1, 20920, 232, 2]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since
the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
</Tip>
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`, *optional*):
Path to the vocabulary file.
merges_file (`str`, *optional*):
Path to the merges file.
tokenizer_file (`str`, *optional*):
The path to a tokenizer file to use instead of the vocab file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
bos_token (`str`, *optional*, defaults to `"[CLS]"`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `"[SEP]"`):
The end of sequence token.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (Deberta tokenizer detect beginning of words by the preceding space).
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask", "token_type_ids"]
slow_tokenizer_class = DebertaTokenizer
def __init__(
self,
vocab_file=None,
merges_file=None,
tokenizer_file=None,
errors="replace",
bos_token="[CLS]",
eos_token="[SEP]",
sep_token="[SEP]",
cls_token="[CLS]",
unk_token="[UNK]",
pad_token="[PAD]",
mask_token="[MASK]",
add_prefix_space=False,
**kwargs,
):
super().__init__(
vocab_file,
merges_file,
tokenizer_file=tokenizer_file,
errors=errors,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
add_prefix_space=add_prefix_space,
**kwargs,
)
self.add_bos_token = kwargs.pop("add_bos_token", False)
@property
def mask_token(self) -> str:
"""
`str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not
having been set.
Deberta tokenizer has a special mask token to be used in the fill-mask pipeline. The mask token will greedily
comprise the space before the *[MASK]*.
"""
if self._mask_token is None:
if self.verbose:
logger.error("Using mask_token, but it is not set yet.")
return None
return str(self._mask_token)
@mask_token.setter
def mask_token(self, value):
"""
Overriding the default behavior of the mask token to have it eat the space before it.
"""
# Mask token behave like a normal word, i.e. include the space before it
# So we set lstrip to True
value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value
self._mask_token = value
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A DeBERTa sequence has the following format:
- single sequence: [CLS] X [SEP]
- pair of sequences: [CLS] A [SEP] B [SEP]
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
# Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._batch_encode_plus
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*args, **kwargs)
# Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast._encode_plus
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
is_split_into_words = kwargs.get("is_split_into_words", False)
assert self.add_prefix_space or not is_split_into_words, (
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
"to use it with pretokenized inputs."
)
return super()._encode_plus(*args, **kwargs)
# Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
|
class_definition
| 1,076 | 10,216 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/tokenization_deberta_fast.py
| null | 3,944 |
class DebertaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DebertaModel`] or a [`TFDebertaModel`]. It is
used to instantiate a DeBERTa model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the DeBERTa
[microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Arguments:
vocab_size (`int`, *optional*, defaults to 50265):
Vocabulary size of the DeBERTa model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"`, `"gelu"`, `"tanh"`, `"gelu_fast"`, `"mish"`, `"linear"`, `"sigmoid"` and `"gelu_new"`
are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 0):
The vocabulary size of the `token_type_ids` passed when calling [`DebertaModel`] or [`TFDebertaModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
relative_attention (`bool`, *optional*, defaults to `False`):
Whether use relative position encoding.
max_relative_positions (`int`, *optional*, defaults to 1):
The range of relative positions `[-max_position_embeddings, max_position_embeddings]`. Use the same value
as `max_position_embeddings`.
pad_token_id (`int`, *optional*, defaults to 0):
The value used to pad input_ids.
position_biased_input (`bool`, *optional*, defaults to `True`):
Whether add absolute position embedding to content embedding.
pos_att_type (`List[str]`, *optional*):
The type of relative position attention, it can be a combination of `["p2c", "c2p"]`, e.g. `["p2c"]`,
`["p2c", "c2p"]`.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
legacy (`bool`, *optional*, defaults to `True`):
Whether or not the model should use the legacy `LegacyDebertaOnlyMLMHead`, which does not work properly
for mask infilling tasks.
Example:
```python
>>> from transformers import DebertaConfig, DebertaModel
>>> # Initializing a DeBERTa microsoft/deberta-base style configuration
>>> configuration = DebertaConfig()
>>> # Initializing a model (with random weights) from the microsoft/deberta-base style configuration
>>> model = DebertaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "deberta"
def __init__(
self,
vocab_size=50265,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=0,
initializer_range=0.02,
layer_norm_eps=1e-7,
relative_attention=False,
max_relative_positions=-1,
pad_token_id=0,
position_biased_input=True,
pos_att_type=None,
pooler_dropout=0,
pooler_hidden_act="gelu",
legacy=True,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.relative_attention = relative_attention
self.max_relative_positions = max_relative_positions
self.pad_token_id = pad_token_id
self.position_biased_input = position_biased_input
# Backwards compatibility
if isinstance(pos_att_type, str):
pos_att_type = [x.strip() for x in pos_att_type.lower().split("|")]
self.pos_att_type = pos_att_type
self.vocab_size = vocab_size
self.layer_norm_eps = layer_norm_eps
self.pooler_hidden_size = kwargs.get("pooler_hidden_size", hidden_size)
self.pooler_dropout = pooler_dropout
self.pooler_hidden_act = pooler_hidden_act
self.legacy = legacy
|
class_definition
| 1,010 | 7,442 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/configuration_deberta.py
| null | 3,945 |
class DebertaOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
if self._config.type_vocab_size > 0:
return OrderedDict(
[("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis)]
)
else:
return OrderedDict([("input_ids", dynamic_axis), ("attention_mask", dynamic_axis)])
@property
def default_onnx_opset(self) -> int:
return 12
def generate_dummy_inputs(
self,
preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],
batch_size: int = -1,
seq_length: int = -1,
num_choices: int = -1,
is_pair: bool = False,
framework: Optional["TensorType"] = None,
num_channels: int = 3,
image_width: int = 40,
image_height: int = 40,
tokenizer: "PreTrainedTokenizerBase" = None,
) -> Mapping[str, Any]:
dummy_inputs = super().generate_dummy_inputs(preprocessor=preprocessor, framework=framework)
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
|
class_definition
| 7,535 | 8,945 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/configuration_deberta.py
| null | 3,946 |
class TFDebertaContextPooler(keras.layers.Layer):
def __init__(self, config: DebertaConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(config.pooler_hidden_size, name="dense")
self.dropout = TFDebertaStableDropout(config.pooler_dropout, name="dropout")
self.config = config
def call(self, hidden_states, training: bool = False):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
context_token = hidden_states[:, 0]
context_token = self.dropout(context_token, training=training)
pooled_output = self.dense(context_token)
pooled_output = get_tf_activation(self.config.pooler_hidden_act)(pooled_output)
return pooled_output
@property
def output_dim(self) -> int:
return self.config.hidden_size
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.pooler_hidden_size])
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
|
class_definition
| 1,685 | 2,994 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,947 |
class TFDebertaXSoftmax(keras.layers.Layer):
"""
Masked Softmax which is optimized for saving memory
Args:
input (`tf.Tensor`): The input tensor that will apply softmax.
mask (`tf.Tensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
dim (int): The dimension that will apply softmax
"""
def __init__(self, axis=-1, **kwargs):
super().__init__(**kwargs)
self.axis = axis
def call(self, inputs: tf.Tensor, mask: tf.Tensor):
rmask = tf.logical_not(tf.cast(mask, tf.bool))
output = tf.where(rmask, tf.cast(float("-inf"), dtype=self.compute_dtype), inputs)
output = stable_softmax(tf.cast(output, dtype=tf.float32), self.axis)
output = tf.where(rmask, 0.0, output)
return output
|
class_definition
| 2,997 | 3,823 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,948 |
class TFDebertaStableDropout(keras.layers.Layer):
"""
Optimized dropout module for stabilizing the training
Args:
drop_prob (float): the dropout probabilities
"""
def __init__(self, drop_prob, **kwargs):
super().__init__(**kwargs)
self.drop_prob = drop_prob
@tf.custom_gradient
def xdropout(self, inputs):
"""
Applies dropout to the inputs, as vanilla dropout, but also scales the remaining elements up by 1/drop_prob.
"""
mask = tf.cast(
1
- tf.compat.v1.distributions.Bernoulli(probs=1.0 - self.drop_prob).sample(sample_shape=shape_list(inputs)),
tf.bool,
)
scale = tf.convert_to_tensor(1.0 / (1 - self.drop_prob), dtype=self.compute_dtype)
if self.drop_prob > 0:
inputs = tf.where(mask, tf.cast(0.0, dtype=self.compute_dtype), inputs) * scale
def grad(upstream):
if self.drop_prob > 0:
return tf.where(mask, tf.cast(0.0, dtype=self.compute_dtype), upstream) * scale
else:
return upstream
return inputs, grad
def call(self, inputs: tf.Tensor, training: tf.Tensor = False):
if training:
return self.xdropout(inputs)
return inputs
|
class_definition
| 3,826 | 5,122 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,949 |
class TFDebertaLayerNorm(keras.layers.Layer):
"""LayerNorm module in the TF style (epsilon inside the square root)."""
def __init__(self, size, eps=1e-12, **kwargs):
super().__init__(**kwargs)
self.size = size
self.eps = eps
def build(self, input_shape):
self.gamma = self.add_weight(shape=[self.size], initializer=tf.ones_initializer(), name="weight")
self.beta = self.add_weight(shape=[self.size], initializer=tf.zeros_initializer(), name="bias")
return super().build(input_shape)
def call(self, x: tf.Tensor) -> tf.Tensor:
mean = tf.reduce_mean(x, axis=[-1], keepdims=True)
variance = tf.reduce_mean(tf.square(x - mean), axis=[-1], keepdims=True)
std = tf.math.sqrt(variance + self.eps)
return self.gamma * (x - mean) / std + self.beta
|
class_definition
| 5,125 | 5,962 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,950 |
class TFDebertaSelfOutput(keras.layers.Layer):
def __init__(self, config: DebertaConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(config.hidden_size, name="dense")
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = TFDebertaStableDropout(config.hidden_dropout_prob, name="dropout")
self.config = config
def call(self, hidden_states, input_tensor, training: bool = False):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
|
class_definition
| 5,965 | 7,310 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,951 |
class TFDebertaAttention(keras.layers.Layer):
def __init__(self, config: DebertaConfig, **kwargs):
super().__init__(**kwargs)
self.self = TFDebertaDisentangledSelfAttention(config, name="self")
self.dense_output = TFDebertaSelfOutput(config, name="output")
self.config = config
def call(
self,
input_tensor: tf.Tensor,
attention_mask: tf.Tensor,
query_states: tf.Tensor = None,
relative_pos: tf.Tensor = None,
rel_embeddings: tf.Tensor = None,
output_attentions: bool = False,
training: bool = False,
) -> Tuple[tf.Tensor]:
self_outputs = self.self(
hidden_states=input_tensor,
attention_mask=attention_mask,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
output_attentions=output_attentions,
training=training,
)
if query_states is None:
query_states = input_tensor
attention_output = self.dense_output(
hidden_states=self_outputs[0], input_tensor=query_states, training=training
)
output = (attention_output,) + self_outputs[1:]
return output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self", None) is not None:
with tf.name_scope(self.self.name):
self.self.build(None)
if getattr(self, "dense_output", None) is not None:
with tf.name_scope(self.dense_output.name):
self.dense_output.build(None)
|
class_definition
| 7,313 | 8,978 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,952 |
class TFDebertaIntermediate(keras.layers.Layer):
def __init__(self, config: DebertaConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
|
class_definition
| 8,981 | 10,009 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,953 |
class TFDebertaOutput(keras.layers.Layer):
def __init__(self, config: DebertaConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = TFDebertaStableDropout(config.hidden_dropout_prob, name="dropout")
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.intermediate_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
|
class_definition
| 10,012 | 11,493 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,954 |
class TFDebertaLayer(keras.layers.Layer):
def __init__(self, config: DebertaConfig, **kwargs):
super().__init__(**kwargs)
self.attention = TFDebertaAttention(config, name="attention")
self.intermediate = TFDebertaIntermediate(config, name="intermediate")
self.bert_output = TFDebertaOutput(config, name="output")
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
query_states: tf.Tensor = None,
relative_pos: tf.Tensor = None,
rel_embeddings: tf.Tensor = None,
output_attentions: bool = False,
training: bool = False,
) -> Tuple[tf.Tensor]:
attention_outputs = self.attention(
input_tensor=hidden_states,
attention_mask=attention_mask,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
output_attentions=output_attentions,
training=training,
)
attention_output = attention_outputs[0]
intermediate_output = self.intermediate(hidden_states=attention_output)
layer_output = self.bert_output(
hidden_states=intermediate_output, input_tensor=attention_output, training=training
)
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "bert_output", None) is not None:
with tf.name_scope(self.bert_output.name):
self.bert_output.build(None)
|
class_definition
| 11,496 | 13,478 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,955 |
class TFDebertaEncoder(keras.layers.Layer):
def __init__(self, config: DebertaConfig, **kwargs):
super().__init__(**kwargs)
self.layer = [TFDebertaLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
self.relative_attention = getattr(config, "relative_attention", False)
self.config = config
if self.relative_attention:
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
if self.max_relative_positions < 1:
self.max_relative_positions = config.max_position_embeddings
def build(self, input_shape=None):
if self.built:
return
self.built = True
if self.relative_attention:
self.rel_embeddings = self.add_weight(
name="rel_embeddings.weight",
shape=[self.max_relative_positions * 2, self.config.hidden_size],
initializer=get_initializer(self.config.initializer_range),
)
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
def get_rel_embedding(self):
rel_embeddings = self.rel_embeddings if self.relative_attention else None
return rel_embeddings
def get_attention_mask(self, attention_mask):
if len(shape_list(attention_mask)) <= 2:
extended_attention_mask = tf.expand_dims(tf.expand_dims(attention_mask, 1), 2)
attention_mask = extended_attention_mask * tf.expand_dims(tf.squeeze(extended_attention_mask, -2), -1)
attention_mask = tf.cast(attention_mask, tf.uint8)
elif len(shape_list(attention_mask)) == 3:
attention_mask = tf.expand_dims(attention_mask, 1)
return attention_mask
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
if self.relative_attention and relative_pos is None:
q = shape_list(query_states)[-2] if query_states is not None else shape_list(hidden_states)[-2]
relative_pos = build_relative_position(q, shape_list(hidden_states)[-2])
return relative_pos
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
query_states: tf.Tensor = None,
relative_pos: tf.Tensor = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
training: bool = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
attention_mask = self.get_attention_mask(attention_mask)
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
if isinstance(hidden_states, Sequence):
next_kv = hidden_states[0]
else:
next_kv = hidden_states
rel_embeddings = self.get_rel_embedding()
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states=next_kv,
attention_mask=attention_mask,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if query_states is not None:
query_states = hidden_states
if isinstance(hidden_states, Sequence):
next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
else:
next_kv = hidden_states
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
|
class_definition
| 13,481 | 17,917 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,956 |
class TFDebertaDisentangledSelfAttention(keras.layers.Layer):
"""
Disentangled self-attention module
Parameters:
config (`str`):
A model config class instance with the configuration to build a new model. The schema is similar to
*BertConfig*, for more details, please refer [`DebertaConfig`]
"""
def __init__(self, config: DebertaConfig, **kwargs):
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.in_proj = keras.layers.Dense(
self.all_head_size * 3,
kernel_initializer=get_initializer(config.initializer_range),
name="in_proj",
use_bias=False,
)
self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
self.relative_attention = getattr(config, "relative_attention", False)
self.talking_head = getattr(config, "talking_head", False)
if self.talking_head:
self.head_logits_proj = keras.layers.Dense(
self.num_attention_heads,
kernel_initializer=get_initializer(config.initializer_range),
name="head_logits_proj",
use_bias=False,
)
self.head_weights_proj = keras.layers.Dense(
self.num_attention_heads,
kernel_initializer=get_initializer(config.initializer_range),
name="head_weights_proj",
use_bias=False,
)
self.softmax = TFDebertaXSoftmax(axis=-1)
if self.relative_attention:
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
if self.max_relative_positions < 1:
self.max_relative_positions = config.max_position_embeddings
self.pos_dropout = TFDebertaStableDropout(config.hidden_dropout_prob, name="pos_dropout")
if "c2p" in self.pos_att_type:
self.pos_proj = keras.layers.Dense(
self.all_head_size,
kernel_initializer=get_initializer(config.initializer_range),
name="pos_proj",
use_bias=False,
)
if "p2c" in self.pos_att_type:
self.pos_q_proj = keras.layers.Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="pos_q_proj"
)
self.dropout = TFDebertaStableDropout(config.attention_probs_dropout_prob, name="dropout")
self.config = config
def build(self, input_shape=None):
if self.built:
return
self.built = True
self.q_bias = self.add_weight(
name="q_bias", shape=(self.all_head_size), initializer=keras.initializers.Zeros()
)
self.v_bias = self.add_weight(
name="v_bias", shape=(self.all_head_size), initializer=keras.initializers.Zeros()
)
if getattr(self, "in_proj", None) is not None:
with tf.name_scope(self.in_proj.name):
self.in_proj.build([None, None, self.config.hidden_size])
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
if getattr(self, "head_logits_proj", None) is not None:
with tf.name_scope(self.head_logits_proj.name):
self.head_logits_proj.build(None)
if getattr(self, "head_weights_proj", None) is not None:
with tf.name_scope(self.head_weights_proj.name):
self.head_weights_proj.build(None)
if getattr(self, "pos_dropout", None) is not None:
with tf.name_scope(self.pos_dropout.name):
self.pos_dropout.build(None)
if getattr(self, "pos_proj", None) is not None:
with tf.name_scope(self.pos_proj.name):
self.pos_proj.build([self.config.hidden_size])
if getattr(self, "pos_q_proj", None) is not None:
with tf.name_scope(self.pos_q_proj.name):
self.pos_q_proj.build([self.config.hidden_size])
def transpose_for_scores(self, tensor: tf.Tensor) -> tf.Tensor:
shape = shape_list(tensor)[:-1] + [self.num_attention_heads, -1]
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
tensor = tf.reshape(tensor=tensor, shape=shape)
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
return tf.transpose(tensor, perm=[0, 2, 1, 3])
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
query_states: tf.Tensor = None,
relative_pos: tf.Tensor = None,
rel_embeddings: tf.Tensor = None,
output_attentions: bool = False,
training: bool = False,
) -> Tuple[tf.Tensor]:
"""
Call the module
Args:
hidden_states (`tf.Tensor`):
Input states to the module usually the output from previous layer, it will be the Q,K and V in
*Attention(Q,K,V)*
attention_mask (`tf.Tensor`):
An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
th token.
return_att (`bool`, *optional*):
Whether return the attention matrix.
query_states (`tf.Tensor`, *optional*):
The *Q* state in *Attention(Q,K,V)*.
relative_pos (`tf.Tensor`):
The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
values ranging in [*-max_relative_positions*, *max_relative_positions*].
rel_embeddings (`tf.Tensor`):
The embedding of relative distances. It's a tensor of shape [\\(2 \\times
\\text{max_relative_positions}\\), *hidden_size*].
"""
if query_states is None:
qp = self.in_proj(hidden_states) # .split(self.all_head_size, dim=-1)
query_layer, key_layer, value_layer = tf.split(
self.transpose_for_scores(qp), num_or_size_splits=3, axis=-1
)
else:
def linear(w, b, x):
out = tf.matmul(x, w, transpose_b=True)
if b is not None:
out += tf.transpose(b)
return out
ws = tf.split(
tf.transpose(self.in_proj.weight[0]), num_or_size_splits=self.num_attention_heads * 3, axis=0
)
qkvw = tf.TensorArray(dtype=self.dtype, size=3)
for k in tf.range(3):
qkvw_inside = tf.TensorArray(dtype=self.dtype, size=self.num_attention_heads)
for i in tf.range(self.num_attention_heads):
qkvw_inside = qkvw_inside.write(i, ws[i * 3 + k])
qkvw = qkvw.write(k, qkvw_inside.concat())
qkvb = [None] * 3
q = linear(qkvw[0], qkvb[0], query_states)
k = linear(qkvw[1], qkvb[1], hidden_states)
v = linear(qkvw[2], qkvb[2], hidden_states)
query_layer = self.transpose_for_scores(q)
key_layer = self.transpose_for_scores(k)
value_layer = self.transpose_for_scores(v)
query_layer = query_layer + self.transpose_for_scores(self.q_bias[None, None, :])
value_layer = value_layer + self.transpose_for_scores(self.v_bias[None, None, :])
rel_att = None
# Take the dot product between "query" and "key" to get the raw attention scores.
scale_factor = 1 + len(self.pos_att_type)
scale = math.sqrt(shape_list(query_layer)[-1] * scale_factor)
query_layer = query_layer / scale
attention_scores = tf.matmul(query_layer, tf.transpose(key_layer, [0, 1, 3, 2]))
if self.relative_attention:
rel_embeddings = self.pos_dropout(rel_embeddings, training=training)
rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor)
if rel_att is not None:
attention_scores = attention_scores + rel_att
if self.talking_head:
attention_scores = tf.transpose(
self.head_logits_proj(tf.transpose(attention_scores, [0, 2, 3, 1])), [0, 3, 1, 2]
)
attention_probs = self.softmax(attention_scores, attention_mask)
attention_probs = self.dropout(attention_probs, training=training)
if self.talking_head:
attention_probs = tf.transpose(
self.head_weights_proj(tf.transpose(attention_probs, [0, 2, 3, 1])), [0, 3, 1, 2]
)
context_layer = tf.matmul(attention_probs, value_layer)
context_layer = tf.transpose(context_layer, [0, 2, 1, 3])
context_layer_shape = shape_list(context_layer)
# Set the final dimension here explicitly.
# Calling tf.reshape(context_layer, (*context_layer_shape[:-2], -1)) raises an error when executing
# the model in graph mode as context_layer is reshaped to (None, 7, None) and Dense layer in TFDebertaV2SelfOutput
# requires final input dimension to be defined
new_context_layer_shape = context_layer_shape[:-2] + [context_layer_shape[-2] * context_layer_shape[-1]]
context_layer = tf.reshape(context_layer, new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
def disentangled_att_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
if relative_pos is None:
q = shape_list(query_layer)[-2]
relative_pos = build_relative_position(q, shape_list(key_layer)[-2])
shape_list_pos = shape_list(relative_pos)
if len(shape_list_pos) == 2:
relative_pos = tf.expand_dims(tf.expand_dims(relative_pos, 0), 0)
elif len(shape_list_pos) == 3:
relative_pos = tf.expand_dims(relative_pos, 1)
# bxhxqxk
elif len(shape_list_pos) != 4:
raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {len(shape_list_pos)}")
att_span = tf.cast(
tf.minimum(
tf.maximum(shape_list(query_layer)[-2], shape_list(key_layer)[-2]), self.max_relative_positions
),
tf.int64,
)
rel_embeddings = tf.expand_dims(
rel_embeddings[self.max_relative_positions - att_span : self.max_relative_positions + att_span, :], 0
)
score = 0
# content->position
if "c2p" in self.pos_att_type:
pos_key_layer = self.pos_proj(rel_embeddings)
pos_key_layer = self.transpose_for_scores(pos_key_layer)
c2p_att = tf.matmul(query_layer, tf.transpose(pos_key_layer, [0, 1, 3, 2]))
c2p_pos = tf.clip_by_value(relative_pos + att_span, 0, att_span * 2 - 1)
c2p_att = torch_gather(c2p_att, c2p_dynamic_expand(c2p_pos, query_layer, relative_pos), -1)
score += c2p_att
# position->content
if "p2c" in self.pos_att_type:
pos_query_layer = self.pos_q_proj(rel_embeddings)
pos_query_layer = self.transpose_for_scores(pos_query_layer)
pos_query_layer /= tf.math.sqrt(
tf.cast(shape_list(pos_query_layer)[-1] * scale_factor, dtype=self.compute_dtype)
)
if shape_list(query_layer)[-2] != shape_list(key_layer)[-2]:
r_pos = build_relative_position(shape_list(key_layer)[-2], shape_list(key_layer)[-2])
else:
r_pos = relative_pos
p2c_pos = tf.clip_by_value(-r_pos + att_span, 0, att_span * 2 - 1)
p2c_att = tf.matmul(key_layer, tf.transpose(pos_query_layer, [0, 1, 3, 2]))
p2c_att = tf.transpose(
torch_gather(p2c_att, p2c_dynamic_expand(p2c_pos, query_layer, key_layer), -1), [0, 1, 3, 2]
)
if shape_list(query_layer)[-2] != shape_list(key_layer)[-2]:
pos_index = tf.expand_dims(relative_pos[:, :, :, 0], -1)
p2c_att = torch_gather(p2c_att, pos_dynamic_expand(pos_index, p2c_att, key_layer), -2)
score += p2c_att
return score
|
class_definition
| 20,357 | 33,444 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,957 |
class TFDebertaEmbeddings(keras.layers.Layer):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
self.hidden_size = config.hidden_size
self.max_position_embeddings = config.max_position_embeddings
self.position_biased_input = getattr(config, "position_biased_input", True)
self.initializer_range = config.initializer_range
if self.embedding_size != config.hidden_size:
self.embed_proj = keras.layers.Dense(
config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
name="embed_proj",
use_bias=False,
)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = TFDebertaStableDropout(config.hidden_dropout_prob, name="dropout")
def build(self, input_shape=None):
with tf.name_scope("word_embeddings"):
self.weight = self.add_weight(
name="weight",
shape=[self.config.vocab_size, self.embedding_size],
initializer=get_initializer(self.initializer_range),
)
with tf.name_scope("token_type_embeddings"):
if self.config.type_vocab_size > 0:
self.token_type_embeddings = self.add_weight(
name="embeddings",
shape=[self.config.type_vocab_size, self.embedding_size],
initializer=get_initializer(self.initializer_range),
)
else:
self.token_type_embeddings = None
with tf.name_scope("position_embeddings"):
if self.position_biased_input:
self.position_embeddings = self.add_weight(
name="embeddings",
shape=[self.max_position_embeddings, self.hidden_size],
initializer=get_initializer(self.initializer_range),
)
else:
self.position_embeddings = None
if self.built:
return
self.built = True
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
if getattr(self, "embed_proj", None) is not None:
with tf.name_scope(self.embed_proj.name):
self.embed_proj.build([None, None, self.embedding_size])
def call(
self,
input_ids: tf.Tensor = None,
position_ids: tf.Tensor = None,
token_type_ids: tf.Tensor = None,
inputs_embeds: tf.Tensor = None,
mask: tf.Tensor = None,
training: bool = False,
) -> tf.Tensor:
"""
Applies embedding based on inputs tensor.
Returns:
final_embeddings (`tf.Tensor`): output embedding tensor.
"""
if input_ids is None and inputs_embeds is None:
raise ValueError("Need to provide either `input_ids` or `input_embeds`.")
if input_ids is not None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
input_shape = shape_list(inputs_embeds)[:-1]
if token_type_ids is None:
token_type_ids = tf.fill(dims=input_shape, value=0)
if position_ids is None:
position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)
final_embeddings = inputs_embeds
if self.position_biased_input:
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
final_embeddings += position_embeds
if self.config.type_vocab_size > 0:
token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
final_embeddings += token_type_embeds
if self.embedding_size != self.hidden_size:
final_embeddings = self.embed_proj(final_embeddings)
final_embeddings = self.LayerNorm(final_embeddings)
if mask is not None:
if len(shape_list(mask)) != len(shape_list(final_embeddings)):
if len(shape_list(mask)) == 4:
mask = tf.squeeze(tf.squeeze(mask, axis=1), axis=1)
mask = tf.cast(tf.expand_dims(mask, axis=2), dtype=self.compute_dtype)
final_embeddings = final_embeddings * mask
final_embeddings = self.dropout(final_embeddings, training=training)
return final_embeddings
|
class_definition
| 33,447 | 38,409 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,958 |
class TFDebertaPredictionHeadTransform(keras.layers.Layer):
def __init__(self, config: DebertaConfig, **kwargs):
super().__init__(**kwargs)
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
self.dense = keras.layers.Dense(
units=self.embedding_size,
kernel_initializer=get_initializer(config.initializer_range),
name="dense",
)
if isinstance(config.hidden_act, str):
self.transform_act_fn = get_tf_activation(config.hidden_act)
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.embedding_size])
|
class_definition
| 38,412 | 39,889 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,959 |
class TFDebertaLMPredictionHead(keras.layers.Layer):
def __init__(self, config: DebertaConfig, input_embeddings: keras.layers.Layer, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
self.transform = TFDebertaPredictionHeadTransform(config, name="transform")
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.input_embeddings = input_embeddings
def build(self, input_shape=None):
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
if self.built:
return
self.built = True
if getattr(self, "transform", None) is not None:
with tf.name_scope(self.transform.name):
self.transform.build(None)
def get_output_embeddings(self) -> keras.layers.Layer:
return self.input_embeddings
def set_output_embeddings(self, value: tf.Variable):
self.input_embeddings.weight = value
self.input_embeddings.vocab_size = shape_list(value)[0]
def get_bias(self) -> Dict[str, tf.Variable]:
return {"bias": self.bias}
def set_bias(self, value: tf.Variable):
self.bias = value["bias"]
self.config.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.transform(hidden_states=hidden_states)
seq_length = shape_list(hidden_states)[1]
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size])
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
return hidden_states
|
class_definition
| 39,892 | 41,901 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,960 |
class TFDebertaOnlyMLMHead(keras.layers.Layer):
def __init__(self, config: DebertaConfig, input_embeddings: keras.layers.Layer, **kwargs):
super().__init__(**kwargs)
self.predictions = TFDebertaLMPredictionHead(config, input_embeddings, name="predictions")
def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
prediction_scores = self.predictions(hidden_states=sequence_output)
return prediction_scores
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "predictions", None) is not None:
with tf.name_scope(self.predictions.name):
self.predictions.build(None)
|
class_definition
| 41,904 | 42,619 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,961 |
class TFDebertaMainLayer(keras.layers.Layer):
config_class = DebertaConfig
def __init__(self, config: DebertaConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embeddings = TFDebertaEmbeddings(config, name="embeddings")
self.encoder = TFDebertaEncoder(config, name="encoder")
def get_input_embeddings(self) -> keras.layers.Layer:
return self.embeddings
def set_input_embeddings(self, value: tf.Variable):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = tf.fill(dims=input_shape, value=1)
if token_type_ids is None:
token_type_ids = tf.fill(dims=input_shape, value=0)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
mask=attention_mask,
training=training,
)
encoder_outputs = self.encoder(
hidden_states=embedding_output,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return TFBaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
|
class_definition
| 42,644 | 46,031 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,962 |
class TFDebertaPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DebertaConfig
base_model_prefix = "deberta"
|
class_definition
| 46,034 | 46,297 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,963 |
class TFDebertaModel(TFDebertaPreTrainedModel):
def __init__(self, config: DebertaConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.deberta = TFDebertaMainLayer(config, name="deberta")
@unpack_inputs
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
outputs = self.deberta(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "deberta", None) is not None:
with tf.name_scope(self.deberta.name):
self.deberta.build(None)
|
class_definition
| 51,573 | 53,346 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,964 |
class TFDebertaForMaskedLM(TFDebertaPreTrainedModel, TFMaskedLanguageModelingLoss):
def __init__(self, config: DebertaConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
if config.is_decoder:
logger.warning(
"If you want to use `TFDebertaForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.deberta = TFDebertaMainLayer(config, name="deberta")
self.mlm = TFDebertaOnlyMLMHead(config, input_embeddings=self.deberta.embeddings, name="cls")
def get_lm_head(self) -> keras.layers.Layer:
return self.mlm.predictions
@unpack_inputs
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
outputs = self.deberta(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
prediction_scores = self.mlm(sequence_output=sequence_output, training=training)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFMaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "deberta", None) is not None:
with tf.name_scope(self.deberta.name):
self.deberta.build(None)
if getattr(self, "mlm", None) is not None:
with tf.name_scope(self.mlm.name):
self.mlm.build(None)
|
class_definition
| 53,457 | 56,866 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,965 |
class TFDebertaForSequenceClassification(TFDebertaPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: DebertaConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.deberta = TFDebertaMainLayer(config, name="deberta")
self.pooler = TFDebertaContextPooler(config, name="pooler")
drop_out = getattr(config, "cls_dropout", None)
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
self.dropout = TFDebertaStableDropout(drop_out, name="cls_dropout")
self.classifier = keras.layers.Dense(
units=config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
name="classifier",
)
self.output_dim = self.pooler.output_dim
@unpack_inputs
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs = self.deberta(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
pooled_output = self.pooler(sequence_output, training=training)
pooled_output = self.dropout(pooled_output, training=training)
logits = self.classifier(pooled_output)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "deberta", None) is not None:
with tf.name_scope(self.deberta.name):
self.deberta.build(None)
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build(None)
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.output_dim])
|
class_definition
| 57,094 | 61,100 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,966 |
class TFDebertaForTokenClassification(TFDebertaPreTrainedModel, TFTokenClassificationLoss):
def __init__(self, config: DebertaConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.deberta = TFDebertaMainLayer(config, name="deberta")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.classifier = keras.layers.Dense(
units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
outputs = self.deberta(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output, training=training)
logits = self.classifier(inputs=sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "deberta", None) is not None:
with tf.name_scope(self.deberta.name):
self.deberta.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
|
class_definition
| 61,335 | 64,551 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,967 |
class TFDebertaForQuestionAnswering(TFDebertaPreTrainedModel, TFQuestionAnsweringLoss):
def __init__(self, config: DebertaConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.deberta = TFDebertaMainLayer(config, name="deberta")
self.qa_outputs = keras.layers.Dense(
units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: np.ndarray | tf.Tensor | None = None,
end_positions: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
outputs = self.deberta(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.qa_outputs(inputs=sequence_output)
start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1)
start_logits = tf.squeeze(input=start_logits, axis=-1)
end_logits = tf.squeeze(input=end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions}
labels["end_position"] = end_positions
loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits))
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "deberta", None) is not None:
with tf.name_scope(self.deberta.name):
self.deberta.build(None)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.config.hidden_size])
|
class_definition
| 64,844 | 69,026 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/modeling_tf_deberta.py
| null | 3,968 |
class DebertaTokenizer(PreTrainedTokenizer):
"""
Construct a DeBERTa tokenizer. Based on byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```python
>>> from transformers import DebertaTokenizer
>>> tokenizer = DebertaTokenizer.from_pretrained("microsoft/deberta-base")
>>> tokenizer("Hello world")["input_ids"]
[1, 31414, 232, 2]
>>> tokenizer(" Hello world")["input_ids"]
[1, 20920, 232, 2]
```
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
<Tip>
When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
</Tip>
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
errors (`str`, *optional*, defaults to `"replace"`):
Paradigm to follow when decoding bytes to UTF-8. See
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
bos_token (`str`, *optional*, defaults to `"[CLS]"`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `"[SEP]"`):
The end of sequence token.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
add_prefix_space (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word. (Deberta tokenizer detect beginning of words by the preceding space).
add_bos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an initial <|endoftext|> to the input. This allows to treat the leading word just as
any other word.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask", "token_type_ids"]
def __init__(
self,
vocab_file,
merges_file,
errors="replace",
bos_token="[CLS]",
eos_token="[SEP]",
sep_token="[SEP]",
cls_token="[CLS]",
unk_token="[UNK]",
pad_token="[PAD]",
mask_token="[MASK]",
add_prefix_space=False,
add_bos_token=False,
**kwargs,
):
bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token
cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
self.add_bos_token = add_bos_token
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
self.errors = errors # how to handle errors in decoding
self.byte_encoder = bytes_to_unicode()
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
with open(merges_file, encoding="utf-8") as merges_handle:
bpe_merges = merges_handle.read().split("\n")[1:-1]
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
self.cache = {}
self.add_prefix_space = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
super().__init__(
errors=errors,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
cls_token=cls_token,
pad_token=pad_token,
mask_token=mask_token,
add_prefix_space=add_prefix_space,
add_bos_token=add_bos_token,
**kwargs,
)
@property
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.vocab_size
def vocab_size(self):
return len(self.encoder)
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.get_vocab
def get_vocab(self):
return dict(self.encoder, **self.added_tokens_encoder)
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.bpe
def bpe(self, token):
if token in self.cache:
return self.cache[token]
word = tuple(token)
pairs = get_pairs(word)
if not pairs:
return token
while True:
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
if bigram not in self.bpe_ranks:
break
first, second = bigram
new_word = []
i = 0
while i < len(word):
try:
j = word.index(first, i)
except ValueError:
new_word.extend(word[i:])
break
else:
new_word.extend(word[i:j])
i = j
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
new_word = tuple(new_word)
word = new_word
if len(word) == 1:
break
else:
pairs = get_pairs(word)
word = " ".join(word)
self.cache[token] = word
return word
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A DeBERTa sequence has the following format:
- single sequence: [CLS] X [SEP]
- pair of sequences: [CLS] A [SEP] B [SEP]
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A DeBERTa
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._tokenize
def _tokenize(self, text):
"""Tokenize a string."""
bpe_tokens = []
for token in re.findall(self.pat, text):
token = "".join(
self.byte_encoder[b] for b in token.encode("utf-8")
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
return bpe_tokens
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_token_to_id
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer._convert_id_to_token
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.convert_tokens_to_string
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
text = "".join(tokens)
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
return text
# Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
merge_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
index = 0
with open(merge_file, "w", encoding="utf-8") as writer:
writer.write("#version: 0.2\n")
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!"
)
index = token_index
writer.write(" ".join(bpe_tokens) + "\n")
index += 1
return vocab_file, merge_file
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
text = " " + text
return (text, kwargs)
|
class_definition
| 2,375 | 17,050 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/deberta/tokenization_deberta.py
| null | 3,969 |
class GraniteAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: GraniteConfig, layer_idx: Optional[int] = None):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = config.attention_multiplier
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
|
class_definition
| 5,616 | 9,212 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modeling_granite.py
| null | 3,970 |
class GraniteRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
GraniteRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
class_definition
| 9,215 | 9,939 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modeling_granite.py
| null | 3,971 |
class GraniteMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
|
class_definition
| 9,942 | 10,642 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modeling_granite.py
| null | 3,972 |
class GraniteDecoderLayer(nn.Module):
def __init__(self, config: GraniteConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = GraniteAttention(config=config, layer_idx=layer_idx)
self.mlp = GraniteMLP(config)
self.input_layernorm = GraniteRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = GraniteRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.residual_multiplier = config.residual_multiplier
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states * self.residual_multiplier
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states * self.residual_multiplier # main diff with Llama
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
|
class_definition
| 10,645 | 14,434 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modeling_granite.py
| null | 3,973 |
class GraniteRotaryEmbedding(nn.Module):
def __init__(self, config: GraniteConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
class_definition
| 14,437 | 17,636 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modeling_granite.py
| null | 3,974 |
class GranitePreTrainedModel(PreTrainedModel):
config_class = GraniteConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["GraniteDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
|
class_definition
| 18,666 | 19,595 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modeling_granite.py
| null | 3,975 |
class GraniteModel(GranitePreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`GraniteDecoderLayer`]
Args:
config: GraniteConfig
"""
def __init__(self, config: GraniteConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[GraniteDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = GraniteRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = GraniteRotaryEmbedding(config=config)
self.gradient_checkpointing = False
self.embedding_multiplier = config.embedding_multiplier
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(GRANITE_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
inputs_embeds = inputs_embeds * self.embedding_multiplier # main diff with Llama
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
return output if return_dict else output.to_tuple()
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
|
class_definition
| 24,405 | 35,803 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modeling_granite.py
| null | 3,976 |
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
class_definition
| 35,806 | 35,868 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modeling_granite.py
| null | 3,977 |
class GraniteForCausalLM(GranitePreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
def __init__(self, config):
super().__init__(config)
self.model = GraniteModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(GRANITE_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
num_logits_to_keep (`int`, *optional*):
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, GraniteForCausalLM
>>> model = GraniteForCausalLM.from_pretrained("meta-granite/Granite-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-granite/Granite-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
logits = logits / self.config.logits_scaling # main diff with Llama
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 35,871 | 41,095 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modeling_granite.py
| null | 3,978 |
class GraniteConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GraniteModel`]. It is used to instantiate an Granite
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Granite-3B.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the Granite model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GraniteModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
embedding_multiplier (`float`, *optional*, defaults to 1.0): embedding multiplier
logits_scaling (`float`, *optional*, defaults to 1.0): divisor for output logits
residual_multiplier (`float`, *optional*, defaults to 1.0): residual multiplier
attention_multiplier (`float`, *optional*, defaults to 1.0): attention multiplier
```python
>>> from transformers import GraniteModel, GraniteConfig
>>> # Initializing a Granite granite-3b style configuration
>>> configuration = GraniteConfig()
>>> # Initializing a model from the granite-7b style configuration
>>> model = GraniteModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "granite"
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `GraniteModel`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=False,
embedding_multiplier=1.0,
logits_scaling=1.0,
residual_multiplier=1.0,
attention_multiplier=1.0,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.mlp_bias = mlp_bias
self.embedding_multiplier = embedding_multiplier
self.logits_scaling = logits_scaling
self.residual_multiplier = residual_multiplier
self.attention_multiplier = attention_multiplier
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
rope_config_validation(self)
|
class_definition
| 1,147 | 9,086 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/configuration_granite.py
| null | 3,979 |
class GraniteAttention(LlamaAttention):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: GraniteConfig, layer_idx: Optional[int] = None):
super().__init__(config, layer_idx)
self.scaling = config.attention_multiplier
|
class_definition
| 1,214 | 1,501 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modular_granite.py
| null | 3,980 |
class GraniteDecoderLayer(LlamaDecoderLayer):
def __init__(self, config: GraniteConfig, layer_idx: int):
super().__init__(config, layer_idx)
self.residual_multiplier = config.residual_multiplier
self.self_attn = GraniteAttention(config=config, layer_idx=layer_idx)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states * self.residual_multiplier
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states * self.residual_multiplier # main diff with Llama
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
|
class_definition
| 1,504 | 5,042 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modular_granite.py
| null | 3,981 |
class GraniteModel(LlamaModel):
def __init__(self, config: GraniteConfig):
super().__init__(config)
self.embedding_multiplier = config.embedding_multiplier
self.layers = nn.ModuleList(
[GraniteDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
inputs_embeds = inputs_embeds * self.embedding_multiplier # main diff with Llama
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
return output if return_dict else output.to_tuple()
|
class_definition
| 5,045 | 9,829 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modular_granite.py
| null | 3,982 |
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs): ...
|
class_definition
| 9,832 | 9,894 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modular_granite.py
| null | 3,983 |
class GraniteForCausalLM(LlamaForCausalLM):
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
**kwargs: Unpack[KwargsForCausalLM],
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
logits = logits / self.config.logits_scaling # main diff with Llama
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 9,897 | 12,466 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/granite/modular_granite.py
| null | 3,984 |
class Gemma2RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.zeros(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float())
# Llama does x.to(float16) * w whilst Gemma2 is (x * w).to(float16)
# See https://github.com/huggingface/transformers/pull/29402
output = output * (1.0 + self.weight.float())
return output.type_as(x)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.eps}"
|
class_definition
| 2,395 | 3,068 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modeling_gemma2.py
| null | 3,985 |
class Gemma2MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_activation]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
|
class_definition
| 3,071 | 3,747 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modeling_gemma2.py
| null | 3,986 |
class Gemma2Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: Gemma2Config, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = config.query_pre_attn_scalar**-0.5
self.attention_dropout = self.config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
self.attn_logit_softcapping = self.config.attn_logit_softcapping
self.sliding_window = config.sliding_window if not bool(layer_idx % 2) else None
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=self.attention_dropout if self.training else 0.0,
scaling=self.scaling,
sliding_window=self.sliding_window,
softcap=self.attn_logit_softcapping,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
|
class_definition
| 7,423 | 11,267 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modeling_gemma2.py
| null | 3,987 |
class Gemma2DecoderLayer(nn.Module):
def __init__(self, config: Gemma2Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.config = config
self.is_sliding = not bool(layer_idx % 2)
self.self_attn = Gemma2Attention(config=config, layer_idx=layer_idx)
self.mlp = Gemma2MLP(config)
self.input_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.pre_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.sliding_window = config.sliding_window
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if self.is_sliding and attention_mask is not None: # efficient SDPA and no padding
# Flash-attn is a 2D tensor
if self.config._attn_implementation == "flash_attention_2":
if past_key_value is not None: # when decoding
attention_mask = attention_mask[:, -self.sliding_window :]
else:
min_dtype = torch.finfo(hidden_states.dtype).min
sliding_window_mask = torch.tril(
torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-self.sliding_window
)
attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask)
if attention_mask.shape[-1] <= 1: # when decoding
attention_mask = attention_mask[:, :, :, -self.sliding_window :]
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.pre_feedforward_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
|
class_definition
| 11,270 | 14,516 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modeling_gemma2.py
| null | 3,988 |
class Gemma2RotaryEmbedding(nn.Module):
def __init__(self, config: Gemma2Config, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
class_definition
| 14,519 | 17,716 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modeling_gemma2.py
| null | 3,989 |
class Gemma2PreTrainedModel(PreTrainedModel):
config_class = Gemma2Config
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["Gemma2DecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
|
class_definition
| 18,742 | 19,668 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modeling_gemma2.py
| null | 3,990 |
class Gemma2Model(Gemma2PreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Gemma2DecoderLayer`]
Args:
config: Gemma2Config
"""
def __init__(self, config: Gemma2Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Gemma2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = Gemma2RotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None and not self.training:
batch_size, seq_len, _ = inputs_embeds.shape
past_key_values = HybridCache(
self.config,
max_batch_size=batch_size,
max_cache_len=seq_len,
device=self.device,
dtype=inputs_embeds.dtype,
)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# embed positions
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# normalized
# Gemma2 downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
# See https://github.com/huggingface/transformers/pull/29402
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
hidden_states = hidden_states * normalizer
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
position_embeddings,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
position_embeddings=position_embeddings,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
return output if return_dict else output.to_tuple()
@torch.no_grad()
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: HybridCache,
output_attentions: bool,
):
# Flash Attention currently doesn't support static cache but Gemma2 work only with static cache.
# So we will pass in attention mask as is in any case, not only when ther's padding. Then we'll use its shape
# to cut out keys/values trailing 0 used in static cache. This workaround should be compile compatible
# as it doesn't cause dynamic control issues.
if self.config._attn_implementation == "flash_attention_2":
return attention_mask
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if isinstance(past_key_values, HybridCache):
target_length = past_key_values.get_max_cache_shape()
else:
target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1]
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
|
class_definition
| 24,475 | 34,889 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modeling_gemma2.py
| null | 3,991 |
class Gemma2ForCausalLM(Gemma2PreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
def __init__(self, config):
super().__init__(config)
self.model = Gemma2Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
**loss_kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
num_logits_to_keep (`int`, *optional*):
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, GemmaForCausalLM
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
```"""
if self.training and self.config._attn_implementation != "eager":
logger.warning_once(
"It is strongly recommended to train Gemma2 models with the `eager` attention implementation "
f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
logits = self.lm_head(hidden_states[:, -num_logits_to_keep:, :])
if self.config.final_logit_softcapping is not None:
logits = logits / self.config.final_logit_softcapping
logits = torch.tanh(logits)
logits = logits * self.config.final_logit_softcapping
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
num_logits_to_keep=None,
**kwargs,
):
# Overwritten: has a special cache type, `HybridCache`
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
if past_key_values is not None:
if inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s
# `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride
# during the decoding. Here, simply using `.contiguous()` is not sufficient as in the
# batch size = 1 case, `position_ids` is already contiguous but with varying stride
# which retriggers a capture.
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
else:
# The clone here is for the same reason as for `position_ids`.
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
if (
isinstance(past_key_values, HybridCache)
and attention_mask.ndim == 2
and not self.config._attn_implementation == "flash_attention_2"
):
if model_inputs["inputs_embeds"] is not None:
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
device = model_inputs["inputs_embeds"].device
else:
batch_size, sequence_length = model_inputs["input_ids"].shape
device = model_inputs["input_ids"].device
attention_mask = self.model._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=past_key_values.get_max_cache_shape(),
dtype=self.lm_head.weight.dtype,
device=device,
cache_position=cache_position,
batch_size=batch_size,
)
if num_logits_to_keep is not None:
model_inputs["num_logits_to_keep"] = num_logits_to_keep
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
}
)
return model_inputs
|
class_definition
| 34,892 | 44,277 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modeling_gemma2.py
| null | 3,992 |
class Gemma2ForSequenceClassification(Gemma2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = Gemma2Model(config)
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
|
class_definition
| 45,073 | 48,889 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modeling_gemma2.py
| null | 3,993 |
class Gemma2ForTokenClassification(Gemma2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = Gemma2Model(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.score = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(GEMMA2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.score(sequence_output)
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.config)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
|
class_definition
| 49,138 | 52,354 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modeling_gemma2.py
| null | 3,994 |
class Gemma2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Gemma2Model`]. It is used to instantiate an Gemma2
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Gemma2-7B.
e.g. [google/gemma2-7b](https://huggingface.co/google/gemma2-7b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 256000):
Vocabulary size of the Gemma2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Gemma2Model`]
hidden_size (`int`, *optional*, defaults to 2304):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 9216):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 26):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 4):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
head_dim (`int`, *optional*, defaults to 256):
The attention head dimension.
hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
max_position_embeddings (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
query_pre_attn_scalar (`float`, *optional*, defaults to 256): scaling factor used on the attention scores
sliding_window (`int`, *optional*, defaults to 4096): in Gemma2, every other layer uses sliding window attention. This is the
size of the sliding window.
final_logit_softcapping (`float`, *optional*, defaults to 30.0): scaling factor when applying tanh softcapping on the logits.
attn_logit_softcapping (`float`, *optional*, defaults to 50.0): scaling factor when applying tanh softcapping on the attention scores.
cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`.
```python
>>> from transformers import Gemma2Model, Gemma2Config
>>> # Initializing a Gemma2 gemma2-7b style configuration
>>> configuration = Gemma2Config()
>>> # Initializing a model from the gemma2-7b style configuration
>>> model = Gemma2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gemma2"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=256000,
hidden_size=2304,
intermediate_size=9216,
num_hidden_layers=26,
num_attention_heads=8,
num_key_value_heads=4,
head_dim=256,
hidden_activation="gelu_pytorch_tanh",
max_position_embeddings=8192,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
bos_token_id=2,
tie_word_embeddings=True,
rope_theta=10000.0,
attention_bias=False,
attention_dropout=0.0,
query_pre_attn_scalar=256,
sliding_window=4096,
final_logit_softcapping=30.0,
attn_logit_softcapping=50.0,
cache_implementation="hybrid",
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim
self.num_key_value_heads = num_key_value_heads
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.hidden_activation = hidden_activation
self.query_pre_attn_scalar = query_pre_attn_scalar
self.sliding_window = sliding_window
self.final_logit_softcapping = final_logit_softcapping
self.attn_logit_softcapping = attn_logit_softcapping
self.cache_implementation = cache_implementation
|
class_definition
| 1,507 | 8,709 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/configuration_gemma2.py
| null | 3,995 |
class Gemma2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Gemma2Model`]. It is used to instantiate an Gemma2
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Gemma2-7B.
e.g. [google/gemma2-7b](https://huggingface.co/google/gemma2-7b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 256000):
Vocabulary size of the Gemma2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Gemma2Model`]
hidden_size (`int`, *optional*, defaults to 2304):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 9216):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 26):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 4):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
head_dim (`int`, *optional*, defaults to 256):
The attention head dimension.
hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
max_position_embeddings (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
query_pre_attn_scalar (`float`, *optional*, defaults to 256): scaling factor used on the attention scores
sliding_window (`int`, *optional*, defaults to 4096): in Gemma2, every other layer uses sliding window attention. This is the
size of the sliding window.
final_logit_softcapping (`float`, *optional*, defaults to 30.0): scaling factor when applying tanh softcapping on the logits.
attn_logit_softcapping (`float`, *optional*, defaults to 50.0): scaling factor when applying tanh softcapping on the attention scores.
cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`.
```python
>>> from transformers import Gemma2Model, Gemma2Config
>>> # Initializing a Gemma2 gemma2-7b style configuration
>>> configuration = Gemma2Config()
>>> # Initializing a model from the gemma2-7b style configuration
>>> model = Gemma2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gemma2"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=256000,
hidden_size=2304,
intermediate_size=9216,
num_hidden_layers=26,
num_attention_heads=8,
num_key_value_heads=4,
head_dim=256,
hidden_activation="gelu_pytorch_tanh",
max_position_embeddings=8192,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
bos_token_id=2,
tie_word_embeddings=True,
rope_theta=10000.0,
attention_bias=False,
attention_dropout=0.0,
query_pre_attn_scalar=256,
sliding_window=4096,
final_logit_softcapping=30.0,
attn_logit_softcapping=50.0,
cache_implementation="hybrid",
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim
self.num_key_value_heads = num_key_value_heads
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.hidden_activation = hidden_activation
self.query_pre_attn_scalar = query_pre_attn_scalar
self.sliding_window = sliding_window
self.final_logit_softcapping = final_logit_softcapping
self.attn_logit_softcapping = attn_logit_softcapping
self.cache_implementation = cache_implementation
|
class_definition
| 1,492 | 8,694 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modular_gemma2.py
| null | 3,996 |
class Gemma2RMSNorm(GemmaRMSNorm):
pass
|
class_definition
| 8,697 | 8,740 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modular_gemma2.py
| null | 3,997 |
class Gemma2MLP(GemmaMLP):
def __init__(self, config):
super().__init__()
self.act_fn = ACT2FN[config.hidden_activation]
|
class_definition
| 8,743 | 8,883 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modular_gemma2.py
| null | 3,998 |
class Gemma2Attention(GemmaAttention):
def __init__(self, config: Gemma2Config, layer_idx: int):
super().__init__(config, layer_idx)
self.attn_logit_softcapping = self.config.attn_logit_softcapping
self.attention_dropout = self.config.attention_dropout
self.is_causal = True
self.scaling = config.query_pre_attn_scalar**-0.5
self.sliding_window = config.sliding_window if not bool(layer_idx % 2) else None
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=self.attention_dropout if self.training else 0.0,
scaling=self.scaling,
sliding_window=self.sliding_window,
softcap=self.attn_logit_softcapping,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
|
class_definition
| 10,225 | 13,174 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/models/gemma2/modular_gemma2.py
| null | 3,999 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.