text
stringlengths 31
243k
| type
stringclasses 1
value | start
int64 36
275k
| end
int64 286
280k
| depth
int64 0
1
| filepath
stringlengths 85
188
| parent_class
stringclasses 3
values | class_index
int64 0
10.8k
|
---|---|---|---|---|---|---|---|
class RealmTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 3,088 | 3,257 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,500 |
class RetriBertTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 3,260 | 3,433 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,501 |
class DistilBertTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 3,436 | 3,610 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,502 |
class DPRContextEncoderTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 3,613 | 3,794 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,503 |
class DPRQuestionEncoderTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 3,797 | 3,979 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,504 |
class DPRReaderTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 3,982 | 4,155 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,505 |
class ElectraTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 4,158 | 4,329 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,506 |
class FNetTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 4,332 | 4,500 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,507 |
class FunnelTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 4,503 | 4,673 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,508 |
class GemmaTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 4,676 | 4,845 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,509 |
class GPT2TokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 4,848 | 5,016 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,510 |
class GPTNeoXTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 5,019 | 5,190 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,511 |
class GPTNeoXJapaneseTokenizer(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 5,193 | 5,368 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,512 |
class HerbertTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 5,371 | 5,542 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,513 |
class LayoutLMTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 5,545 | 5,717 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,514 |
class LayoutLMv2TokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 5,720 | 5,894 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,515 |
class LayoutLMv3TokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 5,897 | 6,071 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,516 |
class LayoutXLMTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 6,074 | 6,247 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,517 |
class LEDTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 6,250 | 6,417 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,518 |
class LlamaTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 6,420 | 6,589 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,519 |
class LongformerTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 6,592 | 6,766 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,520 |
class LxmertTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 6,769 | 6,939 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,521 |
class MarkupLMTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 6,942 | 7,114 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,522 |
class MBartTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 7,117 | 7,286 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,523 |
class MBart50TokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 7,289 | 7,460 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,524 |
class MobileBertTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 7,463 | 7,637 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,525 |
class MPNetTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 7,640 | 7,809 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,526 |
class MT5TokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 7,812 | 7,979 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,527 |
class MvpTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 7,982 | 8,149 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,528 |
class NllbTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 8,152 | 8,320 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,529 |
class NougatTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 8,323 | 8,493 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,530 |
class OpenAIGPTTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 8,496 | 8,669 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,531 |
class PegasusTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 8,672 | 8,843 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,532 |
class Qwen2TokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 8,846 | 9,015 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,533 |
class ReformerTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 9,018 | 9,190 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,534 |
class RemBertTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 9,193 | 9,364 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,535 |
class RobertaTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 9,367 | 9,538 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,536 |
class RoFormerTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 9,541 | 9,713 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,537 |
class SeamlessM4TTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 9,716 | 9,891 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,538 |
class SplinterTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 9,894 | 10,066 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,539 |
class SqueezeBertTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 10,069 | 10,244 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,540 |
class T5TokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 10,247 | 10,413 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,541 |
class UdopTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 10,416 | 10,584 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,542 |
class WhisperTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 10,587 | 10,758 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,543 |
class XGLMTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 10,761 | 10,929 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,544 |
class XLMRobertaTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 10,932 | 11,106 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,545 |
class XLNetTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 11,109 | 11,278 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,546 |
class PreTrainedTokenizerFast(metaclass=DummyObject):
_backends = ["tokenizers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tokenizers"])
|
class_definition
| 11,281 | 11,455 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
| null | 2,547 |
class AlbertTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 129 | 301 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,548 |
class BarthezTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 304 | 477 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,549 |
class BartphoTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 480 | 653 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,550 |
class BertGenerationTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 656 | 836 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,551 |
class BigBirdTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 839 | 1,012 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,552 |
class CamembertTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 1,015 | 1,190 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,553 |
class CodeLlamaTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 1,193 | 1,368 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,554 |
class CpmTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 1,371 | 1,540 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,555 |
class DebertaV2Tokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 1,543 | 1,718 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,556 |
class ErnieMTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 1,721 | 1,893 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,557 |
class XLMProphetNetTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 1,896 | 2,075 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,558 |
class FNetTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 2,078 | 2,248 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,559 |
class GemmaTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 2,251 | 2,422 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,560 |
class GPTSw3Tokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 2,425 | 2,597 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,561 |
class LayoutXLMTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 2,600 | 2,775 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,562 |
class LlamaTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 2,778 | 2,949 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,563 |
class M2M100Tokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 2,952 | 3,124 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,564 |
class MarianTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 3,127 | 3,299 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,565 |
class MBartTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 3,302 | 3,473 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,566 |
class MBart50Tokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 3,476 | 3,649 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,567 |
class MLukeTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 3,652 | 3,823 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,568 |
class MT5Tokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 3,826 | 3,995 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,569 |
class NllbTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 3,998 | 4,168 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,570 |
class PegasusTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 4,171 | 4,344 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,571 |
class PLBartTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 4,347 | 4,519 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,572 |
class ReformerTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 4,522 | 4,696 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,573 |
class RemBertTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 4,699 | 4,872 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,574 |
class SeamlessM4TTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 4,875 | 5,052 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,575 |
class SiglipTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 5,055 | 5,227 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,576 |
class Speech2TextTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 5,230 | 5,407 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,577 |
class SpeechT5Tokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 5,410 | 5,584 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,578 |
class T5Tokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 5,587 | 5,755 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,579 |
class UdopTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 5,758 | 5,928 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,580 |
class XGLMTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 5,931 | 6,101 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,581 |
class XLMRobertaTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 6,104 | 6,280 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,582 |
class XLNetTokenizer(metaclass=DummyObject):
_backends = ["sentencepiece"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["sentencepiece"])
|
class_definition
| 6,283 | 6,454 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_sentencepiece_objects.py
| null | 2,583 |
class TFBertTokenizer(metaclass=DummyObject):
_backends = ["tensorflow_text"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["tensorflow_text"])
|
class_definition
| 129 | 305 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tensorflow_text_objects.py
| null | 2,584 |
class Pop2PianoFeatureExtractor(metaclass=DummyObject):
_backends = ["music"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["music"])
|
class_definition
| 129 | 295 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_music_objects.py
| null | 2,585 |
class Pop2PianoTokenizer(metaclass=DummyObject):
_backends = ["music"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["music"])
|
class_definition
| 298 | 457 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_music_objects.py
| null | 2,586 |
class HFProxy(Proxy):
"""
Proxy that uses metadata to handle data-dependent control-flow.
"""
def install_metadata(self, metadata):
self._metadata = metadata
@property
def shape(self):
return self.tracer.create_proxy("call_method", "size", (self,), {})
@property
def device(self):
# Hack so we can track when devices are used. During meta-tensor propagation,
# replace these values with a constant 'meta'
return MetaDeviceAttribute(self, "device")
def __len__(self):
if hasattr(self, "_metadata") and self._metadata is not None:
return len(self._metadata)
return super().__len__()
def __bool__(self):
if hasattr(self, "_metadata") and self._metadata is not None:
return self._metadata
return super().__bool__()
def __getattr__(self, k):
if k == "_metadata":
return self.__getattribute__(k)
# note: not added to the graph yet, if this is a method call
# we peephole optimize to the method invocation
return HFAttribute(self, k)
def __setitem__(self, indices, values):
return self.tracer.create_proxy("call_function", operator.setitem, (self, indices, values), {})
def __contains__(self, key):
if hasattr(self, "_metadata") and self._metadata is not None:
return key in self._metadata
return super().__contains__(key)
|
class_definition
| 19,690 | 21,141 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/fx.py
| null | 2,587 |
class HFAttribute(HFProxy):
def __init__(self, root, attr: str):
self.root = root
self.attr = attr
self.tracer = root.tracer
self._node = None
if hasattr(self.root, "_metadata"):
self.install_metadata(getattr(self.root._metadata, attr))
@property
def node(self):
# the node for attributes is added lazily, since most will just be method calls
# which do not rely on the getitem call
if self._node is None:
self._node = self.tracer.create_proxy("call_function", builtins.getattr, (self.root, self.attr), {}).node
return self._node
def __call__(self, *args, **kwargs):
return self.tracer.create_proxy("call_method", self.attr, (self.root,) + args, kwargs)
|
class_definition
| 21,144 | 21,920 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/fx.py
| null | 2,588 |
class MetaDeviceAttribute(HFAttribute):
pass
|
class_definition
| 21,923 | 21,971 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/fx.py
| null | 2,589 |
class HFCacheProxy(HFProxy):
"""
Proxy that represents an instance of `transformers.cache_utils.Cache`.
"""
def install_orig_cache_cls(self, orig_cache_cls: Type[Cache]):
self._orig_cache_cls = orig_cache_cls
@property
def __class__(self):
if not hasattr(self, "_orig_cache_cls"):
raise RuntimeError("The original Cache class must be installed to the HFCacheProxy.")
return self.tracer._CLASSES_TO_PATCH[self._orig_cache_cls]
|
class_definition
| 21,974 | 22,461 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/fx.py
| null | 2,590 |
class HFProxyableClassMeta(type):
"""
Metaclass that creates a class with its main methods wrapped to be proxyable.
"""
def __new__(
cls,
name: str,
bases: Tuple[Type, ...],
attrs: Dict[str, Any],
proxy_factory_fn: Optional[Callable[[Node], Proxy]] = None,
):
cls = super().__new__(cls, name, bases, attrs)
for attr_name in dir(cls):
attr = getattr(cls, attr_name, None)
if attr is None:
continue
if attr_name == "__init__":
op_type = "call_function"
elif attr_name.startswith("__"):
op_type = None
elif inspect.ismethod(attr):
op_type = "call_function"
elif inspect.isfunction(attr):
op_type = "call_method"
else:
op_type = None
if op_type is not None:
setattr(cls, attr_name, create_wrapper(attr, op_type, proxy_factory_fn=proxy_factory_fn))
return cls
|
class_definition
| 23,668 | 24,715 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/fx.py
| null | 2,591 |
class HFTracer(Tracer):
"""
Tracer that is able to symbolically trace models from the library. To do that, it uses the HFProxy instead of the
regular PyTorch torch.fx.Proxy.
"""
# Feature flag for proxying accesses to buffer values
proxy_buffer_attributes: bool = True
allow_insert_stateless_mods: bool = True
_TORCH_METHODS_TO_PATCH = [
"arange",
"zeros",
"ones",
"full",
"full_like",
"eye",
"empty",
"tensor",
"clamp",
"finfo",
"tril",
]
_CLASSES_TO_PATCH = {
Cache: ProxyableCache,
DynamicCache: ProxyableDynamicCache,
SinkCache: ProxyableSinkCache,
StaticCache: ProxyableStaticCache,
}
supported_archs = (PreTrainedModel,) if not is_peft_available() else (PreTrainedModel, PeftModel)
def __init__(self, autowrap_modules=(math,), autowrap_functions=()):
super().__init__(autowrap_modules=autowrap_modules, autowrap_functions=autowrap_functions)
if not is_torch_fx_available():
raise ImportError(
f"Found an incompatible version of torch. Found version {get_torch_version()}, but only version "
f"{TORCH_FX_REQUIRED_VERSION} is supported."
)
def _generate_dummy_input(
self, model: "PreTrainedModel", input_name: str, shape: List[int], input_names: List[str]
) -> Dict[str, torch.Tensor]:
"""Generates dummy input for model inference recording."""
# Retrieving the model class, either from the "class_for_deserialization" attribute if the model was restored
# from pickle, or from the "__class__" attribute in the general case.
model_class_name = getattr(model, "class_for_deserialization", model.__class__).__name__
device = model.device
inputs_dict = {}
# when tracing a model with KV cache, we simply need to unsure that the KV cache length is larger than one to
# rightfully pass certain controlflows (Example: https://github.com/huggingface/transformers/blob/5c8d941d66734811d2ef6f57f15b44f7fb7a98c4/src/transformers/modeling_attn_mask_utils.py#L162).
# After tracing, the model can then still be used with arbitrary lengths different than the one used during tracing.
kv_cache_length = 5
if input_name in ["labels", "start_positions", "end_positions"]:
batch_size = shape[0]
if model_class_name in [
*get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
*get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES),
*get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
*get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
*get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
]:
inputs_dict["labels"] = torch.zeros(batch_size, dtype=torch.long, device=device)
elif model_class_name in [
*get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
*get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
"XLNetForQuestionAnswering",
]:
inputs_dict["start_positions"] = torch.zeros(batch_size, dtype=torch.long, device=device)
inputs_dict["end_positions"] = torch.zeros(batch_size, dtype=torch.long, device=device)
elif model_class_name in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
if not hasattr(model.config, "problem_type") or model.config.problem_type is None:
raise ValueError(
"Could not retrieve the problem type for the sequence classification task, please set "
'model.config.problem_type to one of the following values: "regression", '
'"single_label_classification", or "multi_label_classification".'
)
if model.config.problem_type == "regression":
labels_shape = (batch_size, model.config.num_labels)
labels_dtype = torch.float32
elif model.config.problem_type == "single_label_classification":
labels_shape = (batch_size,)
labels_dtype = torch.long
elif model.config.problem_type == "multi_label_classification":
labels_shape = (batch_size, model.config.num_labels)
labels_dtype = torch.float32
else:
raise ValueError(
'Expected model.config.problem_type to be either: "regression", "single_label_classification"'
f', or "multi_label_classification", but "{model.config.problem_type}" was provided.'
)
inputs_dict["labels"] = torch.zeros(*labels_shape, dtype=labels_dtype, device=device)
elif model_class_name in [
*get_values(MODEL_FOR_PRETRAINING_MAPPING_NAMES),
*get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
*get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
*get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
*get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
*get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES),
"GPT2DoubleHeadsModel",
"PeftModelForCausalLM",
"PeftModelForSeq2SeqLM",
]:
inputs_dict["labels"] = torch.zeros(shape, dtype=torch.long, device=device)
elif model_class_name in [*get_values(MODEL_FOR_CTC_MAPPING_NAMES)]:
inputs_dict["labels"] = torch.zeros(shape, dtype=torch.float32, device=device)
else:
raise NotImplementedError(
f"Generating the dummy input named {input_name} for {model_class_name} is not supported yet."
)
elif "pixel_values" in input_name:
batch_size = shape[0]
image_size = getattr(model.config, "image_size", None)
if image_size is None:
if hasattr(model.config, "vision_config"):
image_size = model.config.vision_config.image_size
elif hasattr(model.config, "encoder"):
image_size = model.config.encoder.image_size
else:
image_size = (_generate_random_int(), _generate_random_int())
# If no num_channels is in the config, use some arbitrary value.
num_channels = getattr(model.config, "num_channels", 3)
if not isinstance(image_size, collections.abc.Iterable):
image_size = (image_size, image_size)
height, width = image_size
inputs_dict[input_name] = torch.zeros(
batch_size, num_channels, height, width, dtype=torch.float32, device=device
)
elif "bbox" in input_name:
inputs_dict[input_name] = torch.zeros(*shape, 4, dtype=torch.float, device=device)
elif "input_features" in input_name:
inputs_dict[input_name] = torch.zeros(
*shape, model.config.input_feat_per_channel, dtype=torch.float, device=device
)
elif "inputs_embeds" in input_name:
batch_size = shape[0]
if (
getattr(model.config, "embedding_size", None) is not None
and model.config.model_type != "megatron-bert"
):
embedding_size = model.config.embedding_size
else:
embedding_size = model.config.hidden_size
if len(shape) == 3:
# (batch_size, num_choices, sequence_length, embedding_size)
embedding_shape = (batch_size, shape[1], shape[2], embedding_size)
else:
# (batch_size, sequence_length, embedding_size)
embedding_shape = (batch_size, shape[1], embedding_size)
inputs_dict[input_name] = torch.zeros(embedding_shape, dtype=torch.float, device=device)
elif "visual_feats" in input_name:
inputs_dict[input_name] = torch.zeros(
shape
+ [
model.config.visual_feat_dim,
],
dtype=torch.float,
device=device,
)
elif "visual_pos" in input_name:
inputs_dict[input_name] = torch.zeros(
shape
+ [
model.config.visual_pos_dim,
],
dtype=torch.float,
device=device,
)
elif "inputs" in input_name:
inputs_dict[input_name] = torch.zeros(*shape, dtype=torch.float, device=device)
elif "input_values" in input_name:
batch_size, _ = shape
# Generating big sequence length for audio inputs.
seq_length = _generate_random_int(low=10000, high=20000)
inputs_dict[input_name] = torch.zeros(batch_size, seq_length, dtype=torch.float, device=device)
elif "mask" in input_name:
if "past_key_values" in input_names:
mask_shape = [shape[0], shape[1] + kv_cache_length]
else:
mask_shape = shape
inputs_dict[input_name] = torch.zeros(mask_shape, dtype=torch.long, device=device)
elif "ids" in input_name:
inputs_dict[input_name] = torch.zeros(shape, dtype=torch.long, device=device)
elif "past_key_values" in input_name:
if model.config.model_type not in _FX_SUPPORTED_MODELS_WITH_KV_CACHE:
raise NotImplementedError(
f"Symbolic trace with past_key_values input is not supported yet for the model {model.config.model_type}. Please open an issue or a PR in Transformers repository if you would like to see the support added."
)
num_heads = model.config.num_attention_heads
head_dim = model.config.hidden_size // model.config.num_attention_heads
cache_shape = (shape[0], num_heads, kv_cache_length, head_dim)
pkv = tuple(
(
torch.rand(cache_shape, dtype=torch.float, device=device),
torch.rand(cache_shape, dtype=torch.float, device=device),
)
for i in range(model.config.num_hidden_layers)
)
inputs_dict[input_name] = pkv
else:
shape_with_hidden_size = shape + [model.config.hidden_size]
inputs_dict[input_name] = torch.zeros(shape_with_hidden_size, dtype=torch.float, device=device)
return inputs_dict
def create_proxy(self, kind, target, args, kwargs, name=None, type_expr=None, proxy_factory_fn=None):
rv = super().create_proxy(kind, target, args, kwargs, name, type_expr, proxy_factory_fn)
if kind == "placeholder" and target in self.meta_args:
rv.install_metadata(self.meta_args[target])
return rv
if target in self.orig_fns:
# NOTE: tensor constructors in PyTorch define the `device` argument as
# *kwargs-only*. That is why this works. If you add methods to
# _TORCH_METHODS_TO_PATCH that do not define `device` as kwarg-only,
# this will break and you will likely see issues where we cannot infer
# the size of the output.
if "device" in kwargs:
kwargs["device"] = "meta"
try:
args_metas = torch.fx.node.map_aggregate(args, _proxies_to_metas)
kwargs_metas = torch.fx.node.map_aggregate(kwargs, _proxies_to_metas)
should_install_metadata = True
self._disable_module_getattr = True
self._disable_call_module = True
if kind == "call_function":
meta_target = _MANUAL_META_OVERRIDES.get(target, target)
meta_out = meta_target(*args_metas, **kwargs_metas)
if isinstance(meta_out, torch.Tensor):
meta_out = meta_out.to(device="meta")
elif kind == "call_method":
method = getattr(args_metas[0].__class__, target)
meta_target = _MANUAL_META_OVERRIDES.get(method, method)
meta_out = meta_target(*args_metas, **kwargs_metas)
elif kind == "call_module":
if not hasattr(self, "orig_forward"):
raise AttributeError(f"{self} does not have an attribute called orig_forward")
mod = self.root.get_submodule(target)
mod_type = type(mod)
if mod_type in _MANUAL_META_OVERRIDES:
meta_out = _MANUAL_META_OVERRIDES[mod_type](mod, *args_metas, **kwargs_metas)
else:
meta_out = self.orig_forward(*args_metas, **kwargs_metas)
elif kind == "get_attr":
attr_itr = self.root
atoms = target.split(".")
for atom in atoms:
attr_itr = getattr(attr_itr, atom)
if isinstance(attr_itr, torch.Tensor):
meta_out = attr_itr.to(device="meta")
else:
meta_out = attr_itr
else:
should_install_metadata = False
if should_install_metadata:
if not isinstance(rv, Proxy):
raise ValueError("Don't support composite output yet")
rv.install_metadata(meta_out)
except Exception as e:
if _IS_IN_DEBUG_MODE:
warnings.warn(f"Could not compute metadata for {kind} target {target}: {e}")
self._disable_module_getattr = False
self._disable_call_module = False
return rv
# Replaced by .getattr from PyTorch 1.13
def _module_getattr(self, attr, attr_val, parameter_proxy_cache):
if getattr(self, "_disable_module_getattr", False):
return attr_val
else:
def maybe_get_proxy_for_attr(attr_val, collection_to_search, parameter_proxy_cache):
for n, p in collection_to_search:
if attr_val is p:
if n not in parameter_proxy_cache:
kwargs = {}
if "proxy_factory_fn" in inspect.signature(self.create_proxy).parameters:
kwargs["proxy_factory_fn"] = (
None
if not self.param_shapes_constant
else lambda node: ParameterProxy(self, node, n, attr_val)
)
val_proxy = self.create_proxy("get_attr", n, (), {}, **kwargs) # type: ignore[arg-type]
parameter_proxy_cache[n] = val_proxy
return parameter_proxy_cache[n]
return None
if isinstance(attr_val, torch.nn.Parameter):
maybe_parameter_proxy = maybe_get_proxy_for_attr(
attr_val, self.root.named_parameters(), parameter_proxy_cache
)
if maybe_parameter_proxy is not None:
return maybe_parameter_proxy
if self.proxy_buffer_attributes and isinstance(attr_val, torch.Tensor):
maybe_buffer_proxy = maybe_get_proxy_for_attr(
attr_val, self.root.named_buffers(), parameter_proxy_cache
)
if maybe_buffer_proxy is not None:
return maybe_buffer_proxy
return attr_val
# Needed for PyTorch 1.13+
def getattr(self, attr: str, attr_val: Any, parameter_proxy_cache: Dict[str, Any]):
return self._module_getattr(attr, attr_val, parameter_proxy_cache)
def call_module(self, m, forward, args, kwargs):
if getattr(self, "_disable_call_module", False):
return forward(*args, **kwargs)
self.orig_forward = forward
return super().call_module(m, forward, args, kwargs)
def proxy(self, node):
return HFProxy(node, self)
@contextlib.contextmanager
def patch_for_tracing(self, root: Union[torch.nn.Module, Callable[..., Any]]):
# Patching torch functions
self.patched_torch_methods = {
target: gen_constructor_wrapper(getattr(torch, target)) for target in self._TORCH_METHODS_TO_PATCH
}
self.orig_fns = set()
for name, (wrapper, orig) in self.patched_torch_methods.items():
setattr(torch, name, wrapper)
self.orig_fns.add(orig)
# Patching classes
patched = []
module_of_model = inspect.getmodule(root)
for name, mod in sys.modules.items():
if module_of_model is not None and mod is not module_of_model:
continue
if not name.startswith("transformers"):
continue
for orig_cls, patched_cls in self._CLASSES_TO_PATCH.items():
for attr_name, attr in mod.__dict__.items():
if attr is orig_cls:
patched.append((mod, attr_name, orig_cls))
setattr(mod, attr_name, patched_cls)
yield
# Restoring patched functions and classes.
for name, (_, orig) in self.patched_torch_methods.items():
setattr(torch, name, orig)
self.patched_torch_methods = {}
self.orig_fns = set()
for mod, attr_name, orig_cls in patched:
setattr(mod, attr_name, orig_cls)
def trace(
self,
root: Union[torch.nn.Module, Callable[..., Any]],
concrete_args: Optional[Dict[str, Any]] = None,
dummy_inputs: Optional[Dict[str, Any]] = None,
complete_concrete_args_with_inputs_not_in_dummy_inputs: bool = True,
) -> Graph:
"""
Traces `root` and returns the corresponding FX `torch.fx.Graph` representation. `root` can either be a
`torch.nn.Module` instance or a Python callable. Note that after this call, `self.root` may be different from
the `root` passed in here. For example, when a free function is passed to `trace()`, we will create a
`torch.nn.Module` instance to use as the root and add embedded constants to.
Args:
root (`torch.nn.Module` or `Callable`):
Either a `torch.nn.Module`` or a function to be traced through. If root is not a
[`~transformers.PreTrainedModel`], then `dummy_inputs` must be passed, otherwise tracing will fail.
concrete_args (`Dict[str, Any], *optional*):
Concrete arguments that should not be treated as Proxies
dummy_inputs (`Dict[str, Any]`, *optional*):
The dummy inputs needed to handle data-dependent control-flow if `root` is not a
[`~transformers.PreTrainedModel`]. It can also be used when `root` is a
[`~transformers.PreTrainedModel`] to specify custom dummy inputs for a subset or all the model inputs.
complete_concrete_args_with_inputs_not_in_dummy_inputs (`bool`, *optional*, defaults to `True`):
If `True`, and `dummy_inputs` is specified, every argument that `root` can take that is not in
`dummy_inputs` and not in `concrete_args` will be added to `concrete_args`, otherwise does nothing.
Returns:
`torch.fx.Graph`:
A FX `torch.fx.Graph` representing the semantics of the passed-in `root`.
"""
sig = inspect.signature(root.forward if isinstance(root, torch.nn.Module) else root)
if concrete_args is None:
concrete_args = {}
if dummy_inputs is not None and complete_concrete_args_with_inputs_not_in_dummy_inputs:
for param in sig.parameters.values():
if param.name in dummy_inputs:
continue
if param.default is inspect.Parameter.empty:
raise ValueError(f"You need to specify a default value for the parameter {param.name}.")
concrete_args.update(
{
p.name: p.default
for p in sig.parameters.values()
if (p.name not in dummy_inputs and p.name not in concrete_args)
}
)
input_names = sig.parameters.keys() - concrete_args.keys()
# Creating a random input shape to generate dummy inputs.
batch_size = _generate_random_int()
sequence_length = _generate_random_int()
shape = [batch_size, sequence_length]
if root.__class__.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
num_choices = _generate_random_int(low=2, high=5)
shape.insert(1, num_choices)
inputs = dict(dummy_inputs) if dummy_inputs is not None else {}
for input_name in input_names:
if input_name in inputs:
continue
# We enforce that root must either be a PreTrainedModel or deserialized from a serialized traced model to
# be able to use HFTracer._generate_dummy_input.
if isinstance(root, self.supported_archs) or type(root).__qualname__.startswith(
("_deserialize_graph_module", "_CodeOnlyModule")
):
inputs.update(self._generate_dummy_input(root, input_name, shape, input_names=input_names))
else:
raise RuntimeError(
f"Could not generate input named {input_name} for because root is not a"
" transformers.PreTrainedModel."
)
def to_meta(value):
if isinstance(value, torch.Tensor):
return value.to("meta")
return value
concrete_metas = pytree.tree_map(to_meta, inputs)
for param in sig.parameters.values():
if param.kind == inspect.Parameter.VAR_KEYWORD and param.name not in input_names:
concrete_metas[f"**{param.name}"] = {}
self.meta_args = concrete_metas
global _CURRENT_TRACER
_CURRENT_TRACER = self
with self.patch_for_tracing(root):
try:
self.graph = super().trace(root, concrete_args=concrete_args)
finally:
_CURRENT_TRACER = None
# This is necessary because concrete args are added as input to the traced module since
# https://github.com/pytorch/pytorch/pull/55888.
for node in self.graph.nodes:
if node.op == "placeholder":
# Removing default values for inputs as the forward pass will fail with them.
if node.target in input_names:
node.args = ()
# Without this, torch.jit.script fails because the inputs type is Optional[torch.Tensor].
# It cannot infer on the attributes and methods the input should have, and fails.
node.type = torch.Tensor
# It is a concrete arg so it is not used and should be removed.
else:
to_visit = [node]
to_delete = collections.OrderedDict()
while to_visit:
n = to_visit.pop(0)
to_delete[n] = None
to_visit += list(n.users.keys())
for user in reversed(to_delete.keys()):
self.graph.erase_node(user)
# TODO: solves GraphModule creation.
# Without this, return type annotation "Tuple" is causing code execution failure.
if node.op == "output":
node.type = None
return self.graph
def _stateless_mod_instanciation_depends_on_proxies(self, mod: nn.Module) -> bool:
"""
Whether the module was instantiated with Proxies. If that is the case, such module cannot be a leaf module
because its attributes are input-dependent.
"""
return any(isinstance(attr, Proxy) for attr in mod.__dict__.values())
def _insert_module_as_submodule(self, mod: nn.Module) -> str:
"""
Helper method which tries to insert a module that was not declared as submodule.
"""
# If one of the module attributes is a Proxy, it means that its instantiation is input-dependent.
# It is not possible to insert such modules, those should be traced through.
if self._stateless_mod_instanciation_depends_on_proxies(mod):
return ""
idx = 0
mod_name = mod.__class__.__name__.lower()
path = f"{mod_name}_{idx}"
already_inserted = False
while hasattr(self.root, path):
if getattr(self.root, path) is mod:
already_inserted = True
break
path = f"{mod_name}_{idx}"
idx += 1
# No need to add multiple instances of the same module.
if not already_inserted:
self.root.add_module(path, mod)
return path
def path_of_module(self, mod: nn.Module) -> str:
"""
Helper method to find the qualified name of `mod` in the Module hierarchy of `root`. For example, if `root` has
a submodule named `foo`, which has a submodule named `bar`, passing `bar` into this function will return the
string "foo.bar".
Args:
mod (str): The `Module` to retrieve the qualified name for.
"""
try:
return super().path_of_module(mod)
except NameError as e:
if self.allow_insert_stateless_mods and len(list(mod.parameters())) == 0 and len(list(mod.buffers())) == 0:
path = self._insert_module_as_submodule(mod)
return path
raise e
def is_leaf_module(self, m: torch.nn.Module, module_qualified_name: str) -> bool:
return (not self._stateless_mod_instanciation_depends_on_proxies(m)) and super().is_leaf_module(
m, module_qualified_name
)
@compatibility(is_backward_compatible=True)
def keys(self, obj: "Proxy") -> Any:
"""Called when a proxy object is has the keys() method called.
This is what happens when ** is called on a proxy. This should return an iterator if ** is supposed to work in
your custom tracer.
"""
attribute = HFAttribute(obj, "keys")()
if obj.node.target.startswith("**"):
return attribute._metadata
return attribute
|
class_definition
| 26,952 | 53,738 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/fx.py
| null | 2,592 |
class NotebookProgressBar:
"""
A progress par for display in a notebook.
Class attributes (overridden by derived classes)
- **warmup** (`int`) -- The number of iterations to do at the beginning while ignoring `update_every`.
- **update_every** (`float`) -- Since calling the time takes some time, we only do it every presumed
`update_every` seconds. The progress bar uses the average time passed up until now to guess the next value
for which it will call the update.
Args:
total (`int`):
The total number of iterations to reach.
prefix (`str`, *optional*):
A prefix to add before the progress bar.
leave (`bool`, *optional*, defaults to `True`):
Whether or not to leave the progress bar once it's completed. You can always call the
[`~utils.notebook.NotebookProgressBar.close`] method to make the bar disappear.
parent ([`~notebook.NotebookTrainingTracker`], *optional*):
A parent object (like [`~utils.notebook.NotebookTrainingTracker`]) that spawns progress bars and handle
their display. If set, the object passed must have a `display()` method.
width (`int`, *optional*, defaults to 300):
The width (in pixels) that the bar will take.
Example:
```python
import time
pbar = NotebookProgressBar(100)
for val in range(100):
pbar.update(val)
time.sleep(0.07)
pbar.update(100)
```"""
warmup = 5
update_every = 0.2
def __init__(
self,
total: int,
prefix: Optional[str] = None,
leave: bool = True,
parent: Optional["NotebookTrainingTracker"] = None,
width: int = 300,
):
self.total = total
self.prefix = "" if prefix is None else prefix
self.leave = leave
self.parent = parent
self.width = width
self.last_value = None
self.comment = None
self.output = None
self.value = None
self.label = None
if "VSCODE_PID" in os.environ:
self.update_every = 0.5 # Adjusted for smooth updated as html rending is slow on VS Code
# This is the only adjustment required to optimize training html rending
def update(self, value: int, force_update: bool = False, comment: str = None):
"""
The main method to update the progress bar to `value`.
Args:
value (`int`):
The value to use. Must be between 0 and `total`.
force_update (`bool`, *optional*, defaults to `False`):
Whether or not to force and update of the internal state and display (by default, the bar will wait for
`value` to reach the value it predicted corresponds to a time of more than the `update_every` attribute
since the last update to avoid adding boilerplate).
comment (`str`, *optional*):
A comment to add on the left of the progress bar.
"""
self.value = value
if comment is not None:
self.comment = comment
if self.last_value is None:
self.start_time = self.last_time = time.time()
self.start_value = self.last_value = value
self.elapsed_time = self.predicted_remaining = None
self.first_calls = self.warmup
self.wait_for = 1
self.update_bar(value)
elif value <= self.last_value and not force_update:
return
elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for, self.total):
if self.first_calls > 0:
self.first_calls -= 1
current_time = time.time()
self.elapsed_time = current_time - self.start_time
# We could have value = self.start_value if the update is called twixe with the same start value.
if value > self.start_value:
self.average_time_per_item = self.elapsed_time / (value - self.start_value)
else:
self.average_time_per_item = None
if value >= self.total:
value = self.total
self.predicted_remaining = None
if not self.leave:
self.close()
elif self.average_time_per_item is not None:
self.predicted_remaining = self.average_time_per_item * (self.total - value)
self.update_bar(value)
self.last_value = value
self.last_time = current_time
if (self.average_time_per_item is None) or (self.average_time_per_item == 0):
self.wait_for = 1
else:
self.wait_for = max(int(self.update_every / self.average_time_per_item), 1)
def update_bar(self, value, comment=None):
spaced_value = " " * (len(str(self.total)) - len(str(value))) + str(value)
if self.elapsed_time is None:
self.label = f"[{spaced_value}/{self.total} : < :"
elif self.predicted_remaining is None:
self.label = f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)}"
else:
self.label = (
f"[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <"
f" {format_time(self.predicted_remaining)}"
)
if self.average_time_per_item == 0:
self.label += ", +inf it/s"
else:
self.label += f", {1/self.average_time_per_item:.2f} it/s"
self.label += "]" if self.comment is None or len(self.comment) == 0 else f", {self.comment}]"
self.display()
def display(self):
self.html_code = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width)
if self.parent is not None:
# If this is a child bar, the parent will take care of the display.
self.parent.display()
return
if self.output is None:
self.output = disp.display(disp.HTML(self.html_code), display_id=True)
else:
self.output.update(disp.HTML(self.html_code))
def close(self):
"Closes the progress bar."
if self.parent is None and self.output is not None:
self.output.update(disp.HTML(""))
|
class_definition
| 1,908 | 8,262 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/notebook.py
| null | 2,593 |
class NotebookTrainingTracker(NotebookProgressBar):
"""
An object tracking the updates of an ongoing training with progress bars and a nice table reporting metrics.
Args:
num_steps (`int`): The number of steps during training. column_names (`List[str]`, *optional*):
The list of column names for the metrics table (will be inferred from the first call to
[`~utils.notebook.NotebookTrainingTracker.write_line`] if not set).
"""
def __init__(self, num_steps, column_names=None):
super().__init__(num_steps)
self.inner_table = None if column_names is None else [column_names]
self.child_bar = None
def display(self):
self.html_code = html_progress_bar(self.value, self.total, self.prefix, self.label, self.width)
if self.inner_table is not None:
self.html_code += text_to_html_table(self.inner_table)
if self.child_bar is not None:
self.html_code += self.child_bar.html_code
if self.output is None:
self.output = disp.display(disp.HTML(self.html_code), display_id=True)
else:
self.output.update(disp.HTML(self.html_code))
def write_line(self, values):
"""
Write the values in the inner table.
Args:
values (`Dict[str, float]`): The values to display.
"""
if self.inner_table is None:
self.inner_table = [list(values.keys()), list(values.values())]
else:
columns = self.inner_table[0]
for key in values.keys():
if key not in columns:
columns.append(key)
self.inner_table[0] = columns
if len(self.inner_table) > 1:
last_values = self.inner_table[-1]
first_column = self.inner_table[0][0]
if last_values[0] != values[first_column]:
# write new line
self.inner_table.append([values[c] if c in values else "No Log" for c in columns])
else:
# update last line
new_values = values
for c in columns:
if c not in new_values.keys():
new_values[c] = last_values[columns.index(c)]
self.inner_table[-1] = [new_values[c] for c in columns]
else:
self.inner_table.append([values[c] for c in columns])
def add_child(self, total, prefix=None, width=300):
"""
Add a child progress bar displayed under the table of metrics. The child progress bar is returned (so it can be
easily updated).
Args:
total (`int`): The number of iterations for the child progress bar.
prefix (`str`, *optional*): A prefix to write on the left of the progress bar.
width (`int`, *optional*, defaults to 300): The width (in pixels) of the progress bar.
"""
self.child_bar = NotebookProgressBar(total, prefix=prefix, parent=self, width=width)
return self.child_bar
def remove_child(self):
"""
Closes the child progress bar.
"""
self.child_bar = None
self.display()
|
class_definition
| 8,265 | 11,522 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/notebook.py
| null | 2,594 |
class NotebookProgressCallback(TrainerCallback):
"""
A [`TrainerCallback`] that displays the progress of training or evaluation, optimized for Jupyter Notebooks or
Google colab.
"""
def __init__(self):
self.training_tracker = None
self.prediction_bar = None
self._force_next_update = False
def on_train_begin(self, args, state, control, **kwargs):
self.first_column = "Epoch" if args.eval_strategy == IntervalStrategy.EPOCH else "Step"
self.training_loss = 0
self.last_log = 0
column_names = [self.first_column] + ["Training Loss"]
if args.eval_strategy != IntervalStrategy.NO:
column_names.append("Validation Loss")
self.training_tracker = NotebookTrainingTracker(state.max_steps, column_names)
def on_step_end(self, args, state, control, **kwargs):
epoch = int(state.epoch) if int(state.epoch) == state.epoch else f"{state.epoch:.2f}"
self.training_tracker.update(
state.global_step + 1,
comment=f"Epoch {epoch}/{state.num_train_epochs}",
force_update=self._force_next_update,
)
self._force_next_update = False
def on_prediction_step(self, args, state, control, eval_dataloader=None, **kwargs):
if not has_length(eval_dataloader):
return
if self.prediction_bar is None:
if self.training_tracker is not None:
self.prediction_bar = self.training_tracker.add_child(len(eval_dataloader))
else:
self.prediction_bar = NotebookProgressBar(len(eval_dataloader))
self.prediction_bar.update(1)
else:
self.prediction_bar.update(self.prediction_bar.value + 1)
def on_predict(self, args, state, control, **kwargs):
if self.prediction_bar is not None:
self.prediction_bar.close()
self.prediction_bar = None
def on_log(self, args, state, control, logs=None, **kwargs):
# Only for when there is no evaluation
if args.eval_strategy == IntervalStrategy.NO and "loss" in logs:
values = {"Training Loss": logs["loss"]}
# First column is necessarily Step sine we're not in epoch eval strategy
values["Step"] = state.global_step
self.training_tracker.write_line(values)
def on_evaluate(self, args, state, control, metrics=None, **kwargs):
if self.training_tracker is not None:
values = {"Training Loss": "No log", "Validation Loss": "No log"}
for log in reversed(state.log_history):
if "loss" in log:
values["Training Loss"] = log["loss"]
break
if self.first_column == "Epoch":
values["Epoch"] = int(state.epoch)
else:
values["Step"] = state.global_step
metric_key_prefix = "eval"
for k in metrics:
if k.endswith("_loss"):
metric_key_prefix = re.sub(r"\_loss$", "", k)
_ = metrics.pop("total_flos", None)
_ = metrics.pop("epoch", None)
_ = metrics.pop(f"{metric_key_prefix}_runtime", None)
_ = metrics.pop(f"{metric_key_prefix}_samples_per_second", None)
_ = metrics.pop(f"{metric_key_prefix}_steps_per_second", None)
_ = metrics.pop(f"{metric_key_prefix}_jit_compilation_time", None)
for k, v in metrics.items():
splits = k.split("_")
name = " ".join([part.capitalize() for part in splits[1:]])
if name == "Loss":
# Single dataset
name = "Validation Loss"
values[name] = v
self.training_tracker.write_line(values)
self.training_tracker.remove_child()
self.prediction_bar = None
# Evaluation takes a long time so we should force the next update.
self._force_next_update = True
def on_train_end(self, args, state, control, **kwargs):
self.training_tracker.update(
state.global_step,
comment=f"Epoch {int(state.epoch)}/{state.num_train_epochs}",
force_update=True,
)
self.training_tracker = None
|
class_definition
| 11,525 | 15,827 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/notebook.py
| null | 2,595 |
class DummyObject(type):
"""
Metaclass for the dummy objects. Any class inheriting from it will return the ImportError generated by
`requires_backend` each time a user tries to access any method of that class.
"""
def __getattribute__(cls, key):
if key.startswith("_") and key != "_from_config":
return super().__getattribute__(key)
requires_backends(cls, cls._backends)
|
class_definition
| 58,802 | 59,221 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/import_utils.py
| null | 2,596 |
class _LazyModule(ModuleType):
"""
Module class that surfaces all objects but only performs associated imports when the objects are requested.
"""
# Very heavily inspired by optuna.integration._IntegrationModule
# https://github.com/optuna/optuna/blob/master/optuna/integration/__init__.py
def __init__(
self,
name: str,
module_file: str,
import_structure: IMPORT_STRUCTURE_T,
module_spec: importlib.machinery.ModuleSpec = None,
extra_objects: Dict[str, object] = None,
):
super().__init__(name)
self._object_missing_backend = {}
if any(isinstance(key, frozenset) for key in import_structure.keys()):
self._modules = set()
self._class_to_module = {}
self.__all__ = []
_import_structure = {}
for backends, module in import_structure.items():
missing_backends = []
for backend in backends:
if backend not in BACKENDS_MAPPING:
raise ValueError(
f"Error: the following backend: '{backend}' was specified around object {module} but isn't specified in the backends mapping."
)
callable, error = BACKENDS_MAPPING[backend]
if not callable():
missing_backends.append(backend)
self._modules = self._modules.union(set(module.keys()))
for key, values in module.items():
if len(missing_backends):
self._object_missing_backend[key] = missing_backends
for value in values:
self._class_to_module[value] = key
if len(missing_backends):
self._object_missing_backend[value] = missing_backends
_import_structure.setdefault(key, []).extend(values)
# Needed for autocompletion in an IDE
self.__all__.extend(list(module.keys()) + list(chain(*module.values())))
self.__file__ = module_file
self.__spec__ = module_spec
self.__path__ = [os.path.dirname(module_file)]
self._objects = {} if extra_objects is None else extra_objects
self._name = name
self._import_structure = _import_structure
# This can be removed once every exportable object has a `export()` export.
else:
self._modules = set(import_structure.keys())
self._class_to_module = {}
for key, values in import_structure.items():
for value in values:
self._class_to_module[value] = key
# Needed for autocompletion in an IDE
self.__all__ = list(import_structure.keys()) + list(chain(*import_structure.values()))
self.__file__ = module_file
self.__spec__ = module_spec
self.__path__ = [os.path.dirname(module_file)]
self._objects = {} if extra_objects is None else extra_objects
self._name = name
self._import_structure = import_structure
# Needed for autocompletion in an IDE
def __dir__(self):
result = super().__dir__()
# The elements of self.__all__ that are submodules may or may not be in the dir already, depending on whether
# they have been accessed or not. So we only add the elements of self.__all__ that are not already in the dir.
for attr in self.__all__:
if attr not in result:
result.append(attr)
return result
def __getattr__(self, name: str) -> Any:
if name in self._objects:
return self._objects[name]
if name in self._object_missing_backend.keys():
missing_backends = self._object_missing_backend[name]
class Placeholder(metaclass=DummyObject):
_backends = missing_backends
def __init__(self, *args, **kwargs):
requires_backends(self, missing_backends)
Placeholder.__name__ = name
Placeholder.__module__ = self.__spec__
value = Placeholder
elif name in self._class_to_module.keys():
module = self._get_module(self._class_to_module[name])
value = getattr(module, name)
elif name in self._modules:
value = self._get_module(name)
else:
raise AttributeError(f"module {self.__name__} has no attribute {name}")
setattr(self, name, value)
return value
def _get_module(self, module_name: str):
try:
return importlib.import_module("." + module_name, self.__name__)
except Exception as e:
raise RuntimeError(
f"Failed to import {self.__name__}.{module_name} because of the following error (look up to see its"
f" traceback):\n{e}"
) from e
def __reduce__(self):
return (self.__class__, (self._name, self.__file__, self._import_structure))
|
class_definition
| 59,460 | 64,598 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/import_utils.py
| null | 2,597 |
class Placeholder(metaclass=DummyObject):
_backends = missing_backends
def __init__(self, *args, **kwargs):
requires_backends(self, missing_backends)
|
class_definition
| 63,391 | 63,593 | 1 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/import_utils.py
|
_LazyModule
| 2,598 |
class OptionalDependencyNotAvailable(BaseException):
"""Internally used error class for signalling an optional dependency was not found."""
|
class_definition
| 64,601 | 64,744 | 0 |
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/import_utils.py
| null | 2,599 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.