text
stringlengths
31
243k
type
stringclasses
1 value
start
int64
36
275k
end
int64
286
280k
depth
int64
0
1
filepath
stringlengths
85
188
parent_class
stringclasses
3 values
class_index
int64
0
10.8k
class TFSegformerForSemanticSegmentation(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
55,415
55,584
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,400
class TFSegformerModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
55,587
55,738
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,401
class TFSegformerPreTrainedModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
55,741
55,902
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,402
class TFSpeech2TextForConditionalGeneration(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
55,905
56,077
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,403
class TFSpeech2TextModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
56,080
56,233
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,404
class TFSpeech2TextPreTrainedModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
56,236
56,399
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,405
class TFSwiftFormerForImageClassification(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
56,402
56,572
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,406
class TFSwiftFormerModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
56,575
56,728
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,407
class TFSwiftFormerPreTrainedModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
56,731
56,894
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,408
class TFSwinForImageClassification(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
56,897
57,060
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,409
class TFSwinForMaskedImageModeling(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
57,063
57,226
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,410
class TFSwinModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
57,229
57,375
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,411
class TFSwinPreTrainedModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
57,378
57,534
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,412
class TFT5EncoderModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
57,537
57,688
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,413
class TFT5ForConditionalGeneration(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
57,691
57,854
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,414
class TFT5Model(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
57,857
58,001
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,415
class TFT5PreTrainedModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
58,004
58,158
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,416
class TFTapasForMaskedLM(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
58,161
58,314
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,417
class TFTapasForQuestionAnswering(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
58,317
58,479
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,418
class TFTapasForSequenceClassification(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
58,482
58,649
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,419
class TFTapasModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
58,652
58,799
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,420
class TFTapasPreTrainedModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
58,802
58,959
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,421
class TFVisionEncoderDecoderModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
58,962
59,124
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,422
class TFVisionTextDualEncoderModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
59,127
59,290
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,423
class TFViTForImageClassification(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
59,293
59,455
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,424
class TFViTModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
59,458
59,603
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,425
class TFViTPreTrainedModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
59,606
59,761
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,426
class TFViTMAEForPreTraining(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
59,764
59,921
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,427
class TFViTMAEModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
59,924
60,072
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,428
class TFViTMAEPreTrainedModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
60,075
60,233
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,429
class TFWav2Vec2ForCTC(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
60,236
60,387
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,430
class TFWav2Vec2ForSequenceClassification(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
60,390
60,560
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,431
class TFWav2Vec2Model(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
60,563
60,713
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,432
class TFWav2Vec2PreTrainedModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
60,716
60,876
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,433
class TFWhisperForConditionalGeneration(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
60,879
61,047
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,434
class TFWhisperModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
61,050
61,199
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,435
class TFWhisperPreTrainedModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
61,202
61,361
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,436
class TFXGLMForCausalLM(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
61,364
61,516
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,437
class TFXGLMModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
61,519
61,665
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,438
class TFXGLMPreTrainedModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
61,668
61,824
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,439
class TFXLMForMultipleChoice(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
61,827
61,984
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,440
class TFXLMForQuestionAnsweringSimple(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
61,987
62,153
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,441
class TFXLMForSequenceClassification(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
62,156
62,321
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,442
class TFXLMForTokenClassification(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
62,324
62,486
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,443
class TFXLMMainLayer(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
62,489
62,638
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,444
class TFXLMModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
62,641
62,786
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,445
class TFXLMPreTrainedModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
62,789
62,944
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,446
class TFXLMWithLMHeadModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
62,947
63,102
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,447
class TFXLMRobertaForCausalLM(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
63,105
63,263
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,448
class TFXLMRobertaForMaskedLM(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
63,266
63,424
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,449
class TFXLMRobertaForMultipleChoice(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
63,427
63,591
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,450
class TFXLMRobertaForQuestionAnswering(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
63,594
63,761
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,451
class TFXLMRobertaForSequenceClassification(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
63,764
63,936
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,452
class TFXLMRobertaForTokenClassification(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
63,939
64,108
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,453
class TFXLMRobertaModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
64,111
64,263
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,454
class TFXLMRobertaPreTrainedModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
64,266
64,428
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,455
class TFXLNetForMultipleChoice(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
64,431
64,590
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,456
class TFXLNetForQuestionAnsweringSimple(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
64,593
64,761
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,457
class TFXLNetForSequenceClassification(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
64,764
64,931
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,458
class TFXLNetForTokenClassification(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
64,934
65,098
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,459
class TFXLNetLMHeadModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
65,101
65,254
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,460
class TFXLNetMainLayer(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
65,257
65,408
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,461
class TFXLNetModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
65,411
65,558
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,462
class TFXLNetPreTrainedModel(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
65,561
65,718
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,463
class AdamWeightDecay(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
65,721
65,871
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,464
class GradientAccumulator(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
65,874
66,028
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,465
class WarmUp(metaclass=DummyObject): _backends = ["tf"] def __init__(self, *args, **kwargs): requires_backends(self, ["tf"])
class_definition
66,031
66,172
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tf_objects.py
null
2,466
class TypeHintParsingException(Exception): """Exception raised for errors in parsing type hints to generate JSON schemas""" pass
class_definition
2,256
2,393
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/chat_template_utils.py
null
2,467
class DocstringParsingException(Exception): """Exception raised for errors in parsing docstrings to generate JSON schemas""" pass
class_definition
2,396
2,534
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/chat_template_utils.py
null
2,468
class AssistantTracker(Extension): # This extension is used to track the indices of assistant-generated tokens in the rendered chat tags = {"generation"} def __init__(self, environment: ImmutableSandboxedEnvironment): # The class is only initiated by jinja. super().__init__(environment) environment.extend(activate_tracker=self.activate_tracker) self._rendered_blocks = None self._generation_indices = None def parse(self, parser: jinja2.parser.Parser) -> jinja2.nodes.CallBlock: lineno = next(parser.stream).lineno body = parser.parse_statements(["name:endgeneration"], drop_needle=True) return jinja2.nodes.CallBlock(self.call_method("_generation_support"), [], [], body).set_lineno(lineno) @jinja2.pass_eval_context def _generation_support(self, context: jinja2.nodes.EvalContext, caller: jinja2.runtime.Macro) -> str: rv = caller() if self.is_active(): # Only track generation indices if the tracker is active start_index = len("".join(self._rendered_blocks)) end_index = start_index + len(rv) self._generation_indices.append((start_index, end_index)) return rv def is_active(self) -> bool: return self._rendered_blocks or self._generation_indices @contextmanager def activate_tracker(self, rendered_blocks: List[int], generation_indices: List[int]): try: if self.is_active(): raise ValueError("AssistantTracker should not be reused before closed") self._rendered_blocks = rendered_blocks self._generation_indices = generation_indices yield finally: self._rendered_blocks = None self._generation_indices = None
class_definition
14,166
16,107
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/chat_template_utils.py
null
2,469
class PushToHubMixin: """ A Mixin containing the functionality to push a model or tokenizer to the hub. """ def _create_repo( self, repo_id: str, private: Optional[bool] = None, token: Optional[Union[bool, str]] = None, repo_url: Optional[str] = None, organization: Optional[str] = None, ) -> str: """ Create the repo if needed, cleans up repo_id with deprecated kwargs `repo_url` and `organization`, retrieves the token. """ if repo_url is not None: warnings.warn( "The `repo_url` argument is deprecated and will be removed in v5 of Transformers. Use `repo_id` " "instead." ) if repo_id is not None: raise ValueError( "`repo_id` and `repo_url` are both specified. Please set only the argument `repo_id`." ) repo_id = repo_url.replace(f"{HUGGINGFACE_CO_RESOLVE_ENDPOINT}/", "") if organization is not None: warnings.warn( "The `organization` argument is deprecated and will be removed in v5 of Transformers. Set your " "organization directly in the `repo_id` passed instead (`repo_id={organization}/{model_id}`)." ) if not repo_id.startswith(organization): if "/" in repo_id: repo_id = repo_id.split("/")[-1] repo_id = f"{organization}/{repo_id}" url = create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True) return url.repo_id def _get_files_timestamps(self, working_dir: Union[str, os.PathLike]): """ Returns the list of files with their last modification timestamp. """ return {f: os.path.getmtime(os.path.join(working_dir, f)) for f in os.listdir(working_dir)} def _upload_modified_files( self, working_dir: Union[str, os.PathLike], repo_id: str, files_timestamps: Dict[str, float], commit_message: Optional[str] = None, token: Optional[Union[bool, str]] = None, create_pr: bool = False, revision: str = None, commit_description: str = None, ): """ Uploads all modified files in `working_dir` to `repo_id`, based on `files_timestamps`. """ if commit_message is None: if "Model" in self.__class__.__name__: commit_message = "Upload model" elif "Config" in self.__class__.__name__: commit_message = "Upload config" elif "Tokenizer" in self.__class__.__name__: commit_message = "Upload tokenizer" elif "FeatureExtractor" in self.__class__.__name__: commit_message = "Upload feature extractor" elif "Processor" in self.__class__.__name__: commit_message = "Upload processor" else: commit_message = f"Upload {self.__class__.__name__}" modified_files = [ f for f in os.listdir(working_dir) if f not in files_timestamps or os.path.getmtime(os.path.join(working_dir, f)) > files_timestamps[f] ] # filter for actual files + folders at the root level modified_files = [ f for f in modified_files if os.path.isfile(os.path.join(working_dir, f)) or os.path.isdir(os.path.join(working_dir, f)) ] operations = [] # upload standalone files for file in modified_files: if os.path.isdir(os.path.join(working_dir, file)): # go over individual files of folder for f in os.listdir(os.path.join(working_dir, file)): operations.append( CommitOperationAdd( path_or_fileobj=os.path.join(working_dir, file, f), path_in_repo=os.path.join(file, f) ) ) else: operations.append( CommitOperationAdd(path_or_fileobj=os.path.join(working_dir, file), path_in_repo=file) ) if revision is not None and not revision.startswith("refs/pr"): try: create_branch(repo_id=repo_id, branch=revision, token=token, exist_ok=True) except HfHubHTTPError as e: if e.response.status_code == 403 and create_pr: # If we are creating a PR on a repo we don't have access to, we can't create the branch. # so let's assume the branch already exists. If it's not the case, an error will be raised when # calling `create_commit` below. pass else: raise logger.info(f"Uploading the following files to {repo_id}: {','.join(modified_files)}") return create_commit( repo_id=repo_id, operations=operations, commit_message=commit_message, commit_description=commit_description, token=token, create_pr=create_pr, revision=revision, ) def push_to_hub( self, repo_id: str, use_temp_dir: Optional[bool] = None, commit_message: Optional[str] = None, private: Optional[bool] = None, token: Optional[Union[bool, str]] = None, max_shard_size: Optional[Union[int, str]] = "5GB", create_pr: bool = False, safe_serialization: bool = True, revision: str = None, commit_description: str = None, tags: Optional[List[str]] = None, **deprecated_kwargs, ) -> str: """ Upload the {object_files} to the 🤗 Model Hub. Parameters: repo_id (`str`): The name of the repository you want to push your {object} to. It should contain your organization name when pushing to a given organization. use_temp_dir (`bool`, *optional*): Whether or not to use a temporary directory to store the files saved before they are pushed to the Hub. Will default to `True` if there is no directory named like `repo_id`, `False` otherwise. commit_message (`str`, *optional*): Message to commit while pushing. Will default to `"Upload {object}"`. private (`bool`, *optional*): Whether to make the repo private. If `None` (default), the repo will be public unless the organization's default is private. This value is ignored if the repo already exists. token (`bool` or `str`, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). Will default to `True` if `repo_url` is not specified. max_shard_size (`int` or `str`, *optional*, defaults to `"5GB"`): Only applicable for models. The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5MB"`). We default it to `"5GB"` so that users can easily load models on free-tier Google Colab instances without any CPU OOM issues. create_pr (`bool`, *optional*, defaults to `False`): Whether or not to create a PR with the uploaded files or directly commit. safe_serialization (`bool`, *optional*, defaults to `True`): Whether or not to convert the model weights in safetensors format for safer serialization. revision (`str`, *optional*): Branch to push the uploaded files to. commit_description (`str`, *optional*): The description of the commit that will be created tags (`List[str]`, *optional*): List of tags to push on the Hub. Examples: ```python from transformers import {object_class} {object} = {object_class}.from_pretrained("google-bert/bert-base-cased") # Push the {object} to your namespace with the name "my-finetuned-bert". {object}.push_to_hub("my-finetuned-bert") # Push the {object} to an organization with the name "my-finetuned-bert". {object}.push_to_hub("huggingface/my-finetuned-bert") ``` """ use_auth_token = deprecated_kwargs.pop("use_auth_token", None) ignore_metadata_errors = deprecated_kwargs.pop("ignore_metadata_errors", False) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token repo_path_or_name = deprecated_kwargs.pop("repo_path_or_name", None) if repo_path_or_name is not None: # Should use `repo_id` instead of `repo_path_or_name`. When using `repo_path_or_name`, we try to infer # repo_id from the folder path, if it exists. warnings.warn( "The `repo_path_or_name` argument is deprecated and will be removed in v5 of Transformers. Use " "`repo_id` instead.", FutureWarning, ) if repo_id is not None: raise ValueError( "`repo_id` and `repo_path_or_name` are both specified. Please set only the argument `repo_id`." ) if os.path.isdir(repo_path_or_name): # repo_path: infer repo_id from the path repo_id = repo_id.split(os.path.sep)[-1] working_dir = repo_id else: # repo_name: use it as repo_id repo_id = repo_path_or_name working_dir = repo_id.split("/")[-1] else: # Repo_id is passed correctly: infer working_dir from it working_dir = repo_id.split("/")[-1] # Deprecation warning will be sent after for repo_url and organization repo_url = deprecated_kwargs.pop("repo_url", None) organization = deprecated_kwargs.pop("organization", None) repo_id = self._create_repo( repo_id, private=private, token=token, repo_url=repo_url, organization=organization ) # Create a new empty model card and eventually tag it model_card = create_and_tag_model_card( repo_id, tags, token=token, ignore_metadata_errors=ignore_metadata_errors ) if use_temp_dir is None: use_temp_dir = not os.path.isdir(working_dir) with working_or_temp_dir(working_dir=working_dir, use_temp_dir=use_temp_dir) as work_dir: files_timestamps = self._get_files_timestamps(work_dir) # Save all files. self.save_pretrained(work_dir, max_shard_size=max_shard_size, safe_serialization=safe_serialization) # Update model card if needed: model_card.save(os.path.join(work_dir, "README.md")) return self._upload_modified_files( work_dir, repo_id, files_timestamps, commit_message=commit_message, token=token, create_pr=create_pr, revision=revision, commit_description=commit_description, )
class_definition
30,571
42,477
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/hub.py
null
2,470
class PushInProgress: """ Internal class to keep track of a push in progress (which might contain multiple `Future` jobs). """ def __init__(self, jobs: Optional[futures.Future] = None) -> None: self.jobs = [] if jobs is None else jobs def is_done(self): return all(job.done() for job in self.jobs) def wait_until_done(self): futures.wait(self.jobs) def cancel(self) -> None: self.jobs = [ job for job in self.jobs # Cancel the job if it wasn't started yet and remove cancelled/done jobs from the list if not (job.cancel() or job.done()) ]
class_definition
55,171
55,829
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/hub.py
null
2,471
class ASTFeatureExtractor(metaclass=DummyObject): _backends = ["speech"] def __init__(self, *args, **kwargs): requires_backends(self, ["speech"])
class_definition
129
291
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_speech_objects.py
null
2,472
class Speech2TextFeatureExtractor(metaclass=DummyObject): _backends = ["speech"] def __init__(self, *args, **kwargs): requires_backends(self, ["speech"])
class_definition
294
464
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_speech_objects.py
null
2,473
class BaseImageProcessorFast(metaclass=DummyObject): _backends = ["torchvision"] def __init__(self, *args, **kwargs): requires_backends(self, ["torchvision"])
class_definition
129
304
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_torchvision_objects.py
null
2,474
class DeformableDetrImageProcessorFast(metaclass=DummyObject): _backends = ["torchvision"] def __init__(self, *args, **kwargs): requires_backends(self, ["torchvision"])
class_definition
307
492
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_torchvision_objects.py
null
2,475
class DetrImageProcessorFast(metaclass=DummyObject): _backends = ["torchvision"] def __init__(self, *args, **kwargs): requires_backends(self, ["torchvision"])
class_definition
495
670
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_torchvision_objects.py
null
2,476
class PixtralImageProcessorFast(metaclass=DummyObject): _backends = ["torchvision"] def __init__(self, *args, **kwargs): requires_backends(self, ["torchvision"])
class_definition
673
851
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_torchvision_objects.py
null
2,477
class RTDetrImageProcessorFast(metaclass=DummyObject): _backends = ["torchvision"] def __init__(self, *args, **kwargs): requires_backends(self, ["torchvision"])
class_definition
854
1,031
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_torchvision_objects.py
null
2,478
class ViTImageProcessorFast(metaclass=DummyObject): _backends = ["torchvision"] def __init__(self, *args, **kwargs): requires_backends(self, ["torchvision"])
class_definition
1,034
1,208
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_torchvision_objects.py
null
2,479
class BackboneType(enum.Enum): TIMM = "timm" TRANSFORMERS = "transformers"
class_definition
856
938
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/backbone_utils.py
null
2,480
class BackboneMixin: backbone_type: Optional[BackboneType] = None def _init_timm_backbone(self, config) -> None: """ Initialize the backbone model from timm The backbone must already be loaded to self._backbone """ if getattr(self, "_backbone", None) is None: raise ValueError("self._backbone must be set before calling _init_timm_backbone") # These will diagree with the defaults for the transformers models e.g. for resnet50 # the transformer model has out_features = ['stem', 'stage1', 'stage2', 'stage3', 'stage4'] # the timm model has out_features = ['act', 'layer1', 'layer2', 'layer3', 'layer4'] self.stage_names = [stage["module"] for stage in self._backbone.feature_info.info] self.num_features = [stage["num_chs"] for stage in self._backbone.feature_info.info] # In some timm versions, out_indices reflects the input type of out_indices on the `create_model` call, # in later versions >= 1, it is always a tuple out_indices = list(self._backbone.feature_info.out_indices) out_features = self._backbone.feature_info.module_name() # We verify the out indices and out features are valid verify_out_features_out_indices( out_features=out_features, out_indices=out_indices, stage_names=self.stage_names ) self._out_features, self._out_indices = out_features, out_indices def _init_transformers_backbone(self, config) -> None: stage_names = getattr(config, "stage_names") out_features = getattr(config, "out_features", None) out_indices = getattr(config, "out_indices", None) self.stage_names = stage_names self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=out_indices, stage_names=stage_names ) # Number of channels for each stage. This is set in the transformer backbone model init self.num_features = None def _init_backbone(self, config) -> None: """ Method to initialize the backbone. This method is called by the constructor of the base class after the pretrained model weights have been loaded. """ self.config = config self.use_timm_backbone = getattr(config, "use_timm_backbone", False) self.backbone_type = BackboneType.TIMM if self.use_timm_backbone else BackboneType.TRANSFORMERS if self.backbone_type == BackboneType.TIMM: self._init_timm_backbone(config) elif self.backbone_type == BackboneType.TRANSFORMERS: self._init_transformers_backbone(config) else: raise ValueError(f"backbone_type {self.backbone_type} not supported.") @property def out_features(self): return self._out_features @out_features.setter def out_features(self, out_features: List[str]): """ Set the out_features attribute. This will also update the out_indices attribute to match the new out_features. """ self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=None, stage_names=self.stage_names ) @property def out_indices(self): return self._out_indices @out_indices.setter def out_indices(self, out_indices: Union[Tuple[int], List[int]]): """ Set the out_indices attribute. This will also update the out_features attribute to match the new out_indices. """ self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=None, out_indices=out_indices, stage_names=self.stage_names ) @property def out_feature_channels(self): # the current backbones will output the number of channels for each stage # even if that stage is not in the out_features list. return {stage: self.num_features[i] for i, stage in enumerate(self.stage_names)} @property def channels(self): return [self.out_feature_channels[name] for name in self.out_features] def forward_with_filtered_kwargs(self, *args, **kwargs): signature = dict(inspect.signature(self.forward).parameters) filtered_kwargs = {k: v for k, v in kwargs.items() if k in signature} return self(*args, **filtered_kwargs) def forward( self, pixel_values, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, ): raise NotImplementedError("This method should be implemented by the derived class.") def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default `to_dict()` from `PretrainedConfig` to include the `out_features` and `out_indices` attributes. """ output = super().to_dict() output["out_features"] = output.pop("_out_features") output["out_indices"] = output.pop("_out_indices") return output
class_definition
6,912
12,057
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/backbone_utils.py
null
2,481
class BackboneConfigMixin: """ A Mixin to support handling the `out_features` and `out_indices` attributes for the backbone configurations. """ @property def out_features(self): return self._out_features @out_features.setter def out_features(self, out_features: List[str]): """ Set the out_features attribute. This will also update the out_indices attribute to match the new out_features. """ self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=out_features, out_indices=None, stage_names=self.stage_names ) @property def out_indices(self): return self._out_indices @out_indices.setter def out_indices(self, out_indices: Union[Tuple[int], List[int]]): """ Set the out_indices attribute. This will also update the out_features attribute to match the new out_indices. """ self._out_features, self._out_indices = get_aligned_output_features_output_indices( out_features=None, out_indices=out_indices, stage_names=self.stage_names ) def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default `to_dict()` from `PretrainedConfig` to include the `out_features` and `out_indices` attributes. """ output = super().to_dict() output["out_features"] = output.pop("_out_features") output["out_indices"] = output.pop("_out_indices") return output
class_definition
12,060
13,608
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/backbone_utils.py
null
2,482
class AlbertTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"])
class_definition
129
299
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
null
2,483
class BartTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"])
class_definition
302
470
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
null
2,484
class BarthezTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"])
class_definition
473
644
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
null
2,485
class BertTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"])
class_definition
647
815
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
null
2,486
class BigBirdTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"])
class_definition
818
989
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
null
2,487
class BlenderbotTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"])
class_definition
992
1,166
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
null
2,488
class BlenderbotSmallTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"])
class_definition
1,169
1,348
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
null
2,489
class BloomTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"])
class_definition
1,351
1,520
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
null
2,490
class CamembertTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"])
class_definition
1,523
1,696
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
null
2,491
class CLIPTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"])
class_definition
1,699
1,867
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
null
2,492
class CodeLlamaTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"])
class_definition
1,870
2,043
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
null
2,493
class CodeGenTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"])
class_definition
2,046
2,217
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
null
2,494
class CohereTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"])
class_definition
2,220
2,390
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
null
2,495
class ConvBertTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"])
class_definition
2,393
2,565
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
null
2,496
class CpmTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"])
class_definition
2,568
2,735
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
null
2,497
class DebertaTokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"])
class_definition
2,738
2,909
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
null
2,498
class DebertaV2TokenizerFast(metaclass=DummyObject): _backends = ["tokenizers"] def __init__(self, *args, **kwargs): requires_backends(self, ["tokenizers"])
class_definition
2,912
3,085
0
/Users/nielsrogge/Documents/python_projecten/transformers/src/transformers/utils/dummy_tokenizers_objects.py
null
2,499