text
stringlengths 41
89.8k
| type
stringclasses 1
value | start
int64 79
258k
| end
int64 342
260k
| depth
int64 0
0
| filepath
stringlengths 81
164
| parent_class
null | class_index
int64 0
1.38k
|
---|---|---|---|---|---|---|---|
class OobleckDecoder(nn.Module):
"""Oobleck Decoder"""
def __init__(self, channels, input_channels, audio_channels, upsampling_ratios, channel_multiples):
super().__init__()
strides = upsampling_ratios
channel_multiples = [1] + channel_multiples
# Add first conv layer
self.conv1 = weight_norm(nn.Conv1d(input_channels, channels * channel_multiples[-1], kernel_size=7, padding=3))
# Add upsampling + MRF blocks
block = []
for stride_index, stride in enumerate(strides):
block += [
OobleckDecoderBlock(
input_dim=channels * channel_multiples[len(strides) - stride_index],
output_dim=channels * channel_multiples[len(strides) - stride_index - 1],
stride=stride,
)
]
self.block = nn.ModuleList(block)
output_dim = channels
self.snake1 = Snake1d(output_dim)
self.conv2 = weight_norm(nn.Conv1d(channels, audio_channels, kernel_size=7, padding=3, bias=False))
def forward(self, hidden_state):
hidden_state = self.conv1(hidden_state)
for layer in self.block:
hidden_state = layer(hidden_state)
hidden_state = self.snake1(hidden_state)
hidden_state = self.conv2(hidden_state)
return hidden_state | class_definition | 8,983 | 10,355 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_oobleck.py | null | 1,200 |
class AutoencoderOobleck(ModelMixin, ConfigMixin):
r"""
An autoencoder for encoding waveforms into latents and decoding latent representations into waveforms. First
introduced in Stable Audio.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
encoder_hidden_size (`int`, *optional*, defaults to 128):
Intermediate representation dimension for the encoder.
downsampling_ratios (`List[int]`, *optional*, defaults to `[2, 4, 4, 8, 8]`):
Ratios for downsampling in the encoder. These are used in reverse order for upsampling in the decoder.
channel_multiples (`List[int]`, *optional*, defaults to `[1, 2, 4, 8, 16]`):
Multiples used to determine the hidden sizes of the hidden layers.
decoder_channels (`int`, *optional*, defaults to 128):
Intermediate representation dimension for the decoder.
decoder_input_channels (`int`, *optional*, defaults to 64):
Input dimension for the decoder. Corresponds to the latent dimension.
audio_channels (`int`, *optional*, defaults to 2):
Number of channels in the audio data. Either 1 for mono or 2 for stereo.
sampling_rate (`int`, *optional*, defaults to 44100):
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
"""
_supports_gradient_checkpointing = False
@register_to_config
def __init__(
self,
encoder_hidden_size=128,
downsampling_ratios=[2, 4, 4, 8, 8],
channel_multiples=[1, 2, 4, 8, 16],
decoder_channels=128,
decoder_input_channels=64,
audio_channels=2,
sampling_rate=44100,
):
super().__init__()
self.encoder_hidden_size = encoder_hidden_size
self.downsampling_ratios = downsampling_ratios
self.decoder_channels = decoder_channels
self.upsampling_ratios = downsampling_ratios[::-1]
self.hop_length = int(np.prod(downsampling_ratios))
self.sampling_rate = sampling_rate
self.encoder = OobleckEncoder(
encoder_hidden_size=encoder_hidden_size,
audio_channels=audio_channels,
downsampling_ratios=downsampling_ratios,
channel_multiples=channel_multiples,
)
self.decoder = OobleckDecoder(
channels=decoder_channels,
input_channels=decoder_input_channels,
audio_channels=audio_channels,
upsampling_ratios=self.upsampling_ratios,
channel_multiples=channel_multiples,
)
self.use_slicing = False
def enable_slicing(self):
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self):
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
@apply_forward_hook
def encode(
self, x: torch.Tensor, return_dict: bool = True
) -> Union[AutoencoderOobleckOutput, Tuple[OobleckDiagonalGaussianDistribution]]:
"""
Encode a batch of images into latents.
Args:
x (`torch.Tensor`): Input batch of images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Returns:
The latent representations of the encoded images. If `return_dict` is True, a
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
"""
if self.use_slicing and x.shape[0] > 1:
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
h = torch.cat(encoded_slices)
else:
h = self.encoder(x)
posterior = OobleckDiagonalGaussianDistribution(h)
if not return_dict:
return (posterior,)
return AutoencoderOobleckOutput(latent_dist=posterior)
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[OobleckDecoderOutput, torch.Tensor]:
dec = self.decoder(z)
if not return_dict:
return (dec,)
return OobleckDecoderOutput(sample=dec)
@apply_forward_hook
def decode(
self, z: torch.FloatTensor, return_dict: bool = True, generator=None
) -> Union[OobleckDecoderOutput, torch.FloatTensor]:
"""
Decode a batch of images.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.vae.OobleckDecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.OobleckDecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.OobleckDecoderOutput`] is returned, otherwise a plain `tuple`
is returned.
"""
if self.use_slicing and z.shape[0] > 1:
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
decoded = torch.cat(decoded_slices)
else:
decoded = self._decode(z).sample
if not return_dict:
return (decoded,)
return OobleckDecoderOutput(sample=decoded)
def forward(
self,
sample: torch.Tensor,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
) -> Union[OobleckDecoderOutput, torch.Tensor]:
r"""
Args:
sample (`torch.Tensor`): Input sample.
sample_posterior (`bool`, *optional*, defaults to `False`):
Whether to sample from the posterior.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`OobleckDecoderOutput`] instead of a plain tuple.
"""
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z).sample
if not return_dict:
return (dec,)
return OobleckDecoderOutput(sample=dec) | class_definition | 10,358 | 17,045 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_oobleck.py | null | 1,201 |
class LTXVideoCausalConv3d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int, int]] = 3,
stride: Union[int, Tuple[int, int, int]] = 1,
dilation: Union[int, Tuple[int, int, int]] = 1,
groups: int = 1,
padding_mode: str = "zeros",
is_causal: bool = True,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.is_causal = is_causal
self.kernel_size = kernel_size if isinstance(kernel_size, tuple) else (kernel_size, kernel_size, kernel_size)
dilation = dilation if isinstance(dilation, tuple) else (dilation, 1, 1)
stride = stride if isinstance(stride, tuple) else (stride, stride, stride)
height_pad = self.kernel_size[1] // 2
width_pad = self.kernel_size[2] // 2
padding = (0, height_pad, width_pad)
self.conv = nn.Conv3d(
in_channels,
out_channels,
self.kernel_size,
stride=stride,
dilation=dilation,
groups=groups,
padding=padding,
padding_mode=padding_mode,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
time_kernel_size = self.kernel_size[0]
if self.is_causal:
pad_left = hidden_states[:, :, :1, :, :].repeat((1, 1, time_kernel_size - 1, 1, 1))
hidden_states = torch.concatenate([pad_left, hidden_states], dim=2)
else:
pad_left = hidden_states[:, :, :1, :, :].repeat((1, 1, (time_kernel_size - 1) // 2, 1, 1))
pad_right = hidden_states[:, :, -1:, :, :].repeat((1, 1, (time_kernel_size - 1) // 2, 1, 1))
hidden_states = torch.concatenate([pad_left, hidden_states, pad_right], dim=2)
hidden_states = self.conv(hidden_states)
return hidden_states | class_definition | 1,180 | 3,123 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py | null | 1,202 |
class LTXVideoResnetBlock3d(nn.Module):
r"""
A 3D ResNet block used in the LTXVideo model.
Args:
in_channels (`int`):
Number of input channels.
out_channels (`int`, *optional*):
Number of output channels. If None, defaults to `in_channels`.
dropout (`float`, defaults to `0.0`):
Dropout rate.
eps (`float`, defaults to `1e-6`):
Epsilon value for normalization layers.
elementwise_affine (`bool`, defaults to `False`):
Whether to enable elementwise affinity in the normalization layers.
non_linearity (`str`, defaults to `"swish"`):
Activation function to use.
conv_shortcut (bool, defaults to `False`):
Whether or not to use a convolution shortcut.
"""
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
dropout: float = 0.0,
eps: float = 1e-6,
elementwise_affine: bool = False,
non_linearity: str = "swish",
is_causal: bool = True,
inject_noise: bool = False,
timestep_conditioning: bool = False,
) -> None:
super().__init__()
out_channels = out_channels or in_channels
self.nonlinearity = get_activation(non_linearity)
self.norm1 = RMSNorm(in_channels, eps=1e-8, elementwise_affine=elementwise_affine)
self.conv1 = LTXVideoCausalConv3d(
in_channels=in_channels, out_channels=out_channels, kernel_size=3, is_causal=is_causal
)
self.norm2 = RMSNorm(out_channels, eps=1e-8, elementwise_affine=elementwise_affine)
self.dropout = nn.Dropout(dropout)
self.conv2 = LTXVideoCausalConv3d(
in_channels=out_channels, out_channels=out_channels, kernel_size=3, is_causal=is_causal
)
self.norm3 = None
self.conv_shortcut = None
if in_channels != out_channels:
self.norm3 = nn.LayerNorm(in_channels, eps=eps, elementwise_affine=True, bias=True)
self.conv_shortcut = LTXVideoCausalConv3d(
in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, is_causal=is_causal
)
self.per_channel_scale1 = None
self.per_channel_scale2 = None
if inject_noise:
self.per_channel_scale1 = nn.Parameter(torch.zeros(in_channels, 1, 1))
self.per_channel_scale2 = nn.Parameter(torch.zeros(in_channels, 1, 1))
self.scale_shift_table = None
if timestep_conditioning:
self.scale_shift_table = nn.Parameter(torch.randn(4, in_channels) / in_channels**0.5)
def forward(
self, inputs: torch.Tensor, temb: Optional[torch.Tensor] = None, generator: Optional[torch.Generator] = None
) -> torch.Tensor:
hidden_states = inputs
hidden_states = self.norm1(hidden_states.movedim(1, -1)).movedim(-1, 1)
if self.scale_shift_table is not None:
temb = temb.unflatten(1, (4, -1)) + self.scale_shift_table[None, ..., None, None, None]
shift_1, scale_1, shift_2, scale_2 = temb.unbind(dim=1)
hidden_states = hidden_states * (1 + scale_1) + shift_1
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv1(hidden_states)
if self.per_channel_scale1 is not None:
spatial_shape = hidden_states.shape[-2:]
spatial_noise = torch.randn(
spatial_shape, generator=generator, device=hidden_states.device, dtype=hidden_states.dtype
)[None]
hidden_states = hidden_states + (spatial_noise * self.per_channel_scale1)[None, :, None, ...]
hidden_states = self.norm2(hidden_states.movedim(1, -1)).movedim(-1, 1)
if self.scale_shift_table is not None:
hidden_states = hidden_states * (1 + scale_2) + shift_2
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.per_channel_scale2 is not None:
spatial_shape = hidden_states.shape[-2:]
spatial_noise = torch.randn(
spatial_shape, generator=generator, device=hidden_states.device, dtype=hidden_states.dtype
)[None]
hidden_states = hidden_states + (spatial_noise * self.per_channel_scale2)[None, :, None, ...]
if self.norm3 is not None:
inputs = self.norm3(inputs.movedim(1, -1)).movedim(-1, 1)
if self.conv_shortcut is not None:
inputs = self.conv_shortcut(inputs)
hidden_states = hidden_states + inputs
return hidden_states | class_definition | 3,126 | 7,840 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py | null | 1,203 |
class LTXVideoUpsampler3d(nn.Module):
def __init__(
self,
in_channels: int,
stride: Union[int, Tuple[int, int, int]] = 1,
is_causal: bool = True,
residual: bool = False,
upscale_factor: int = 1,
) -> None:
super().__init__()
self.stride = stride if isinstance(stride, tuple) else (stride, stride, stride)
self.residual = residual
self.upscale_factor = upscale_factor
out_channels = (in_channels * stride[0] * stride[1] * stride[2]) // upscale_factor
self.conv = LTXVideoCausalConv3d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=1,
is_causal=is_causal,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, num_channels, num_frames, height, width = hidden_states.shape
if self.residual:
residual = hidden_states.reshape(
batch_size, -1, self.stride[0], self.stride[1], self.stride[2], num_frames, height, width
)
residual = residual.permute(0, 1, 5, 2, 6, 3, 7, 4).flatten(6, 7).flatten(4, 5).flatten(2, 3)
repeats = (self.stride[0] * self.stride[1] * self.stride[2]) // self.upscale_factor
residual = residual.repeat(1, repeats, 1, 1, 1)
residual = residual[:, :, self.stride[0] - 1 :]
hidden_states = self.conv(hidden_states)
hidden_states = hidden_states.reshape(
batch_size, -1, self.stride[0], self.stride[1], self.stride[2], num_frames, height, width
)
hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 3, 7, 4).flatten(6, 7).flatten(4, 5).flatten(2, 3)
hidden_states = hidden_states[:, :, self.stride[0] - 1 :]
if self.residual:
hidden_states = hidden_states + residual
return hidden_states | class_definition | 7,843 | 9,764 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py | null | 1,204 |
class LTXVideoDownBlock3D(nn.Module):
r"""
Down block used in the LTXVideo model.
Args:
in_channels (`int`):
Number of input channels.
out_channels (`int`, *optional*):
Number of output channels. If None, defaults to `in_channels`.
num_layers (`int`, defaults to `1`):
Number of resnet layers.
dropout (`float`, defaults to `0.0`):
Dropout rate.
resnet_eps (`float`, defaults to `1e-6`):
Epsilon value for normalization layers.
resnet_act_fn (`str`, defaults to `"swish"`):
Activation function to use.
spatio_temporal_scale (`bool`, defaults to `True`):
Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension.
Whether or not to downsample across temporal dimension.
is_causal (`bool`, defaults to `True`):
Whether this layer behaves causally (future frames depend only on past frames) or not.
"""
_supports_gradient_checkpointing = True
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
resnet_eps: float = 1e-6,
resnet_act_fn: str = "swish",
spatio_temporal_scale: bool = True,
is_causal: bool = True,
):
super().__init__()
out_channels = out_channels or in_channels
resnets = []
for _ in range(num_layers):
resnets.append(
LTXVideoResnetBlock3d(
in_channels=in_channels,
out_channels=in_channels,
dropout=dropout,
eps=resnet_eps,
non_linearity=resnet_act_fn,
is_causal=is_causal,
)
)
self.resnets = nn.ModuleList(resnets)
self.downsamplers = None
if spatio_temporal_scale:
self.downsamplers = nn.ModuleList(
[
LTXVideoCausalConv3d(
in_channels=in_channels,
out_channels=in_channels,
kernel_size=3,
stride=(2, 2, 2),
is_causal=is_causal,
)
]
)
self.conv_out = None
if in_channels != out_channels:
self.conv_out = LTXVideoResnetBlock3d(
in_channels=in_channels,
out_channels=out_channels,
dropout=dropout,
eps=resnet_eps,
non_linearity=resnet_act_fn,
is_causal=is_causal,
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
generator: Optional[torch.Generator] = None,
) -> torch.Tensor:
r"""Forward method of the `LTXDownBlock3D` class."""
for i, resnet in enumerate(self.resnets):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb, generator
)
else:
hidden_states = resnet(hidden_states, temb, generator)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
if self.conv_out is not None:
hidden_states = self.conv_out(hidden_states, temb, generator)
return hidden_states | class_definition | 9,767 | 13,684 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py | null | 1,205 |
class LTXVideoMidBlock3d(nn.Module):
r"""
A middle block used in the LTXVideo model.
Args:
in_channels (`int`):
Number of input channels.
num_layers (`int`, defaults to `1`):
Number of resnet layers.
dropout (`float`, defaults to `0.0`):
Dropout rate.
resnet_eps (`float`, defaults to `1e-6`):
Epsilon value for normalization layers.
resnet_act_fn (`str`, defaults to `"swish"`):
Activation function to use.
is_causal (`bool`, defaults to `True`):
Whether this layer behaves causally (future frames depend only on past frames) or not.
"""
_supports_gradient_checkpointing = True
def __init__(
self,
in_channels: int,
num_layers: int = 1,
dropout: float = 0.0,
resnet_eps: float = 1e-6,
resnet_act_fn: str = "swish",
is_causal: bool = True,
inject_noise: bool = False,
timestep_conditioning: bool = False,
) -> None:
super().__init__()
self.time_embedder = None
if timestep_conditioning:
self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(in_channels * 4, 0)
resnets = []
for _ in range(num_layers):
resnets.append(
LTXVideoResnetBlock3d(
in_channels=in_channels,
out_channels=in_channels,
dropout=dropout,
eps=resnet_eps,
non_linearity=resnet_act_fn,
is_causal=is_causal,
inject_noise=inject_noise,
timestep_conditioning=timestep_conditioning,
)
)
self.resnets = nn.ModuleList(resnets)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
generator: Optional[torch.Generator] = None,
) -> torch.Tensor:
r"""Forward method of the `LTXMidBlock3D` class."""
if self.time_embedder is not None:
temb = self.time_embedder(
timestep=temb.flatten(),
resolution=None,
aspect_ratio=None,
batch_size=hidden_states.size(0),
hidden_dtype=hidden_states.dtype,
)
temb = temb.view(hidden_states.size(0), -1, 1, 1, 1)
for i, resnet in enumerate(self.resnets):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb, generator
)
else:
hidden_states = resnet(hidden_states, temb, generator)
return hidden_states | class_definition | 13,776 | 16,841 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py | null | 1,206 |
class LTXVideoUpBlock3d(nn.Module):
r"""
Up block used in the LTXVideo model.
Args:
in_channels (`int`):
Number of input channels.
out_channels (`int`, *optional*):
Number of output channels. If None, defaults to `in_channels`.
num_layers (`int`, defaults to `1`):
Number of resnet layers.
dropout (`float`, defaults to `0.0`):
Dropout rate.
resnet_eps (`float`, defaults to `1e-6`):
Epsilon value for normalization layers.
resnet_act_fn (`str`, defaults to `"swish"`):
Activation function to use.
spatio_temporal_scale (`bool`, defaults to `True`):
Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension.
Whether or not to downsample across temporal dimension.
is_causal (`bool`, defaults to `True`):
Whether this layer behaves causally (future frames depend only on past frames) or not.
"""
_supports_gradient_checkpointing = True
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
num_layers: int = 1,
dropout: float = 0.0,
resnet_eps: float = 1e-6,
resnet_act_fn: str = "swish",
spatio_temporal_scale: bool = True,
is_causal: bool = True,
inject_noise: bool = False,
timestep_conditioning: bool = False,
upsample_residual: bool = False,
upscale_factor: int = 1,
):
super().__init__()
out_channels = out_channels or in_channels
self.time_embedder = None
if timestep_conditioning:
self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(in_channels * 4, 0)
self.conv_in = None
if in_channels != out_channels:
self.conv_in = LTXVideoResnetBlock3d(
in_channels=in_channels,
out_channels=out_channels,
dropout=dropout,
eps=resnet_eps,
non_linearity=resnet_act_fn,
is_causal=is_causal,
inject_noise=inject_noise,
timestep_conditioning=timestep_conditioning,
)
self.upsamplers = None
if spatio_temporal_scale:
self.upsamplers = nn.ModuleList(
[
LTXVideoUpsampler3d(
out_channels * upscale_factor,
stride=(2, 2, 2),
is_causal=is_causal,
residual=upsample_residual,
upscale_factor=upscale_factor,
)
]
)
resnets = []
for _ in range(num_layers):
resnets.append(
LTXVideoResnetBlock3d(
in_channels=out_channels,
out_channels=out_channels,
dropout=dropout,
eps=resnet_eps,
non_linearity=resnet_act_fn,
is_causal=is_causal,
inject_noise=inject_noise,
timestep_conditioning=timestep_conditioning,
)
)
self.resnets = nn.ModuleList(resnets)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
temb: Optional[torch.Tensor] = None,
generator: Optional[torch.Generator] = None,
) -> torch.Tensor:
if self.conv_in is not None:
hidden_states = self.conv_in(hidden_states, temb, generator)
if self.time_embedder is not None:
temb = self.time_embedder(
timestep=temb.flatten(),
resolution=None,
aspect_ratio=None,
batch_size=hidden_states.size(0),
hidden_dtype=hidden_states.dtype,
)
temb = temb.view(hidden_states.size(0), -1, 1, 1, 1)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states)
for i, resnet in enumerate(self.resnets):
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, temb, generator
)
else:
hidden_states = resnet(hidden_states, temb, generator)
return hidden_states | class_definition | 16,844 | 21,610 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py | null | 1,207 |
class LTXVideoEncoder3d(nn.Module):
r"""
The `LTXVideoEncoder3d` layer of a variational autoencoder that encodes input video samples to its latent
representation.
Args:
in_channels (`int`, defaults to 3):
Number of input channels.
out_channels (`int`, defaults to 128):
Number of latent channels.
block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
The number of output channels for each block.
spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
Whether a block should contain spatio-temporal downscaling layers or not.
layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
The number of layers per block.
patch_size (`int`, defaults to `4`):
The size of spatial patches.
patch_size_t (`int`, defaults to `1`):
The size of temporal patches.
resnet_norm_eps (`float`, defaults to `1e-6`):
Epsilon value for ResNet normalization layers.
is_causal (`bool`, defaults to `True`):
Whether this layer behaves causally (future frames depend only on past frames) or not.
"""
def __init__(
self,
in_channels: int = 3,
out_channels: int = 128,
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
patch_size: int = 4,
patch_size_t: int = 1,
resnet_norm_eps: float = 1e-6,
is_causal: bool = True,
):
super().__init__()
self.patch_size = patch_size
self.patch_size_t = patch_size_t
self.in_channels = in_channels * patch_size**2
output_channel = block_out_channels[0]
self.conv_in = LTXVideoCausalConv3d(
in_channels=self.in_channels,
out_channels=output_channel,
kernel_size=3,
stride=1,
is_causal=is_causal,
)
# down blocks
num_block_out_channels = len(block_out_channels)
self.down_blocks = nn.ModuleList([])
for i in range(num_block_out_channels):
input_channel = output_channel
output_channel = block_out_channels[i + 1] if i + 1 < num_block_out_channels else block_out_channels[i]
down_block = LTXVideoDownBlock3D(
in_channels=input_channel,
out_channels=output_channel,
num_layers=layers_per_block[i],
resnet_eps=resnet_norm_eps,
spatio_temporal_scale=spatio_temporal_scaling[i],
is_causal=is_causal,
)
self.down_blocks.append(down_block)
# mid block
self.mid_block = LTXVideoMidBlock3d(
in_channels=output_channel,
num_layers=layers_per_block[-1],
resnet_eps=resnet_norm_eps,
is_causal=is_causal,
)
# out
self.norm_out = RMSNorm(out_channels, eps=1e-8, elementwise_affine=False)
self.conv_act = nn.SiLU()
self.conv_out = LTXVideoCausalConv3d(
in_channels=output_channel, out_channels=out_channels + 1, kernel_size=3, stride=1, is_causal=is_causal
)
self.gradient_checkpointing = False
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
r"""The forward method of the `LTXVideoEncoder3d` class."""
p = self.patch_size
p_t = self.patch_size_t
batch_size, num_channels, num_frames, height, width = hidden_states.shape
post_patch_num_frames = num_frames // p_t
post_patch_height = height // p
post_patch_width = width // p
hidden_states = hidden_states.reshape(
batch_size, num_channels, post_patch_num_frames, p_t, post_patch_height, p, post_patch_width, p
)
# Thanks for driving me insane with the weird patching order :(
hidden_states = hidden_states.permute(0, 1, 3, 7, 5, 2, 4, 6).flatten(1, 4)
hidden_states = self.conv_in(hidden_states)
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
for down_block in self.down_blocks:
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), hidden_states)
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), hidden_states)
else:
for down_block in self.down_blocks:
hidden_states = down_block(hidden_states)
hidden_states = self.mid_block(hidden_states)
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
hidden_states = self.conv_act(hidden_states)
hidden_states = self.conv_out(hidden_states)
last_channel = hidden_states[:, -1:]
last_channel = last_channel.repeat(1, hidden_states.size(1) - 2, 1, 1, 1)
hidden_states = torch.cat([hidden_states, last_channel], dim=1)
return hidden_states | class_definition | 21,613 | 26,939 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py | null | 1,208 |
class LTXVideoDecoder3d(nn.Module):
r"""
The `LTXVideoDecoder3d` layer of a variational autoencoder that decodes its latent representation into an output
sample.
Args:
in_channels (`int`, defaults to 128):
Number of latent channels.
out_channels (`int`, defaults to 3):
Number of output channels.
block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
The number of output channels for each block.
spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
Whether a block should contain spatio-temporal upscaling layers or not.
layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
The number of layers per block.
patch_size (`int`, defaults to `4`):
The size of spatial patches.
patch_size_t (`int`, defaults to `1`):
The size of temporal patches.
resnet_norm_eps (`float`, defaults to `1e-6`):
Epsilon value for ResNet normalization layers.
is_causal (`bool`, defaults to `False`):
Whether this layer behaves causally (future frames depend only on past frames) or not.
timestep_conditioning (`bool`, defaults to `False`):
Whether to condition the model on timesteps.
"""
def __init__(
self,
in_channels: int = 128,
out_channels: int = 3,
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
patch_size: int = 4,
patch_size_t: int = 1,
resnet_norm_eps: float = 1e-6,
is_causal: bool = False,
inject_noise: Tuple[bool, ...] = (False, False, False, False),
timestep_conditioning: bool = False,
upsample_residual: Tuple[bool, ...] = (False, False, False, False),
upsample_factor: Tuple[bool, ...] = (1, 1, 1, 1),
) -> None:
super().__init__()
self.patch_size = patch_size
self.patch_size_t = patch_size_t
self.out_channels = out_channels * patch_size**2
block_out_channels = tuple(reversed(block_out_channels))
spatio_temporal_scaling = tuple(reversed(spatio_temporal_scaling))
layers_per_block = tuple(reversed(layers_per_block))
inject_noise = tuple(reversed(inject_noise))
upsample_residual = tuple(reversed(upsample_residual))
upsample_factor = tuple(reversed(upsample_factor))
output_channel = block_out_channels[0]
self.conv_in = LTXVideoCausalConv3d(
in_channels=in_channels, out_channels=output_channel, kernel_size=3, stride=1, is_causal=is_causal
)
self.mid_block = LTXVideoMidBlock3d(
in_channels=output_channel,
num_layers=layers_per_block[0],
resnet_eps=resnet_norm_eps,
is_causal=is_causal,
inject_noise=inject_noise[0],
timestep_conditioning=timestep_conditioning,
)
# up blocks
num_block_out_channels = len(block_out_channels)
self.up_blocks = nn.ModuleList([])
for i in range(num_block_out_channels):
input_channel = output_channel // upsample_factor[i]
output_channel = block_out_channels[i] // upsample_factor[i]
up_block = LTXVideoUpBlock3d(
in_channels=input_channel,
out_channels=output_channel,
num_layers=layers_per_block[i + 1],
resnet_eps=resnet_norm_eps,
spatio_temporal_scale=spatio_temporal_scaling[i],
is_causal=is_causal,
inject_noise=inject_noise[i + 1],
timestep_conditioning=timestep_conditioning,
upsample_residual=upsample_residual[i],
upscale_factor=upsample_factor[i],
)
self.up_blocks.append(up_block)
# out
self.norm_out = RMSNorm(out_channels, eps=1e-8, elementwise_affine=False)
self.conv_act = nn.SiLU()
self.conv_out = LTXVideoCausalConv3d(
in_channels=output_channel, out_channels=self.out_channels, kernel_size=3, stride=1, is_causal=is_causal
)
# timestep embedding
self.time_embedder = None
self.scale_shift_table = None
if timestep_conditioning:
self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(output_channel * 2, 0)
self.scale_shift_table = nn.Parameter(torch.randn(2, output_channel) / output_channel**0.5)
self.gradient_checkpointing = False
def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor:
hidden_states = self.conv_in(hidden_states)
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def create_forward(*inputs):
return module(*inputs)
return create_forward
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block), hidden_states, temb
)
for up_block in self.up_blocks:
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), hidden_states, temb)
else:
hidden_states = self.mid_block(hidden_states, temb)
for up_block in self.up_blocks:
hidden_states = up_block(hidden_states, temb)
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
if self.time_embedder is not None:
temb = self.time_embedder(
timestep=temb.flatten(),
resolution=None,
aspect_ratio=None,
batch_size=hidden_states.size(0),
hidden_dtype=hidden_states.dtype,
)
temb = temb.view(hidden_states.size(0), -1, 1, 1, 1).unflatten(1, (2, -1))
temb = temb + self.scale_shift_table[None, ..., None, None, None]
shift, scale = temb.unbind(dim=1)
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.conv_act(hidden_states)
hidden_states = self.conv_out(hidden_states)
p = self.patch_size
p_t = self.patch_size_t
batch_size, num_channels, num_frames, height, width = hidden_states.shape
hidden_states = hidden_states.reshape(batch_size, -1, p_t, p, p, num_frames, height, width)
hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 4, 7, 3).flatten(6, 7).flatten(4, 5).flatten(2, 3)
return hidden_states | class_definition | 26,942 | 33,729 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py | null | 1,209 |
class AutoencoderKLLTXVideo(ModelMixin, ConfigMixin, FromOriginalModelMixin):
r"""
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in
[LTX](https://huggingface.co/Lightricks/LTX-Video).
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Args:
in_channels (`int`, defaults to `3`):
Number of input channels.
out_channels (`int`, defaults to `3`):
Number of output channels.
latent_channels (`int`, defaults to `128`):
Number of latent channels.
block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
The number of output channels for each block.
spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
Whether a block should contain spatio-temporal downscaling or not.
layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
The number of layers per block.
patch_size (`int`, defaults to `4`):
The size of spatial patches.
patch_size_t (`int`, defaults to `1`):
The size of temporal patches.
resnet_norm_eps (`float`, defaults to `1e-6`):
Epsilon value for ResNet normalization layers.
scaling_factor (`float`, *optional*, defaults to `1.0`):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
encoder_causal (`bool`, defaults to `True`):
Whether the encoder should behave causally (future frames depend only on past frames) or not.
decoder_causal (`bool`, defaults to `False`):
Whether the decoder should behave causally (future frames depend only on past frames) or not.
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
latent_channels: int = 128,
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
decoder_layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
decoder_spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
decoder_inject_noise: Tuple[bool, ...] = (False, False, False, False, False),
upsample_residual: Tuple[bool, ...] = (False, False, False, False),
upsample_factor: Tuple[int, ...] = (1, 1, 1, 1),
timestep_conditioning: bool = False,
patch_size: int = 4,
patch_size_t: int = 1,
resnet_norm_eps: float = 1e-6,
scaling_factor: float = 1.0,
encoder_causal: bool = True,
decoder_causal: bool = False,
) -> None:
super().__init__()
self.encoder = LTXVideoEncoder3d(
in_channels=in_channels,
out_channels=latent_channels,
block_out_channels=block_out_channels,
spatio_temporal_scaling=spatio_temporal_scaling,
layers_per_block=layers_per_block,
patch_size=patch_size,
patch_size_t=patch_size_t,
resnet_norm_eps=resnet_norm_eps,
is_causal=encoder_causal,
)
self.decoder = LTXVideoDecoder3d(
in_channels=latent_channels,
out_channels=out_channels,
block_out_channels=decoder_block_out_channels,
spatio_temporal_scaling=decoder_spatio_temporal_scaling,
layers_per_block=decoder_layers_per_block,
patch_size=patch_size,
patch_size_t=patch_size_t,
resnet_norm_eps=resnet_norm_eps,
is_causal=decoder_causal,
timestep_conditioning=timestep_conditioning,
inject_noise=decoder_inject_noise,
upsample_residual=upsample_residual,
upsample_factor=upsample_factor,
)
latents_mean = torch.zeros((latent_channels,), requires_grad=False)
latents_std = torch.ones((latent_channels,), requires_grad=False)
self.register_buffer("latents_mean", latents_mean, persistent=True)
self.register_buffer("latents_std", latents_std, persistent=True)
self.spatial_compression_ratio = patch_size * 2 ** sum(spatio_temporal_scaling)
self.temporal_compression_ratio = patch_size_t * 2 ** sum(spatio_temporal_scaling)
# When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
# to perform decoding of a single video latent at a time.
self.use_slicing = False
# When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
# frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
# intermediate tiles together, the memory requirement can be lowered.
self.use_tiling = False
# When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames
# at a fixed frame batch size (based on `self.num_latent_frames_batch_sizes`), the memory requirement can be lowered.
self.use_framewise_encoding = False
self.use_framewise_decoding = False
# This can be configured based on the amount of GPU memory available.
# `16` for sample frames and `2` for latent frames are sensible defaults for consumer GPUs.
# Setting it to higher values results in higher memory usage.
self.num_sample_frames_batch_size = 16
self.num_latent_frames_batch_size = 2
# The minimal tile height and width for spatial tiling to be used
self.tile_sample_min_height = 512
self.tile_sample_min_width = 512
self.tile_sample_min_num_frames = 16
# The minimal distance between two spatial tiles
self.tile_sample_stride_height = 448
self.tile_sample_stride_width = 448
self.tile_sample_stride_num_frames = 8
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (LTXVideoEncoder3d, LTXVideoDecoder3d)):
module.gradient_checkpointing = value
def enable_tiling(
self,
tile_sample_min_height: Optional[int] = None,
tile_sample_min_width: Optional[int] = None,
tile_sample_min_num_frames: Optional[int] = None,
tile_sample_stride_height: Optional[float] = None,
tile_sample_stride_width: Optional[float] = None,
tile_sample_stride_num_frames: Optional[float] = None,
) -> None:
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
Args:
tile_sample_min_height (`int`, *optional*):
The minimum height required for a sample to be separated into tiles across the height dimension.
tile_sample_min_width (`int`, *optional*):
The minimum width required for a sample to be separated into tiles across the width dimension.
tile_sample_stride_height (`int`, *optional*):
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
no tiling artifacts produced across the height dimension.
tile_sample_stride_width (`int`, *optional*):
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
artifacts produced across the width dimension.
"""
self.use_tiling = True
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
self.tile_sample_min_num_frames = tile_sample_min_num_frames or self.tile_sample_min_num_frames
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
self.tile_sample_stride_num_frames = tile_sample_stride_num_frames or self.tile_sample_stride_num_frames
def disable_tiling(self) -> None:
r"""
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_tiling = False
def enable_slicing(self) -> None:
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self) -> None:
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
def _encode(self, x: torch.Tensor) -> torch.Tensor:
batch_size, num_channels, num_frames, height, width = x.shape
if self.use_framewise_decoding and num_frames > self.tile_sample_min_num_frames:
return self._temporal_tiled_encode(x)
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
return self.tiled_encode(x)
enc = self.encoder(x)
return enc
@apply_forward_hook
def encode(
self, x: torch.Tensor, return_dict: bool = True
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
"""
Encode a batch of images into latents.
Args:
x (`torch.Tensor`): Input batch of images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Returns:
The latent representations of the encoded videos. If `return_dict` is True, a
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
"""
if self.use_slicing and x.shape[0] > 1:
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
h = torch.cat(encoded_slices)
else:
h = self._encode(x)
posterior = DiagonalGaussianDistribution(h)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def _decode(
self, z: torch.Tensor, temb: Optional[torch.Tensor] = None, return_dict: bool = True
) -> Union[DecoderOutput, torch.Tensor]:
batch_size, num_channels, num_frames, height, width = z.shape
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
tile_latent_min_width = self.tile_sample_stride_width // self.spatial_compression_ratio
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
if self.use_framewise_decoding and num_frames > tile_latent_min_num_frames:
return self._temporal_tiled_decode(z, temb, return_dict=return_dict)
if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height):
return self.tiled_decode(z, temb, return_dict=return_dict)
dec = self.decoder(z, temb)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
@apply_forward_hook
def decode(
self, z: torch.Tensor, temb: Optional[torch.Tensor] = None, return_dict: bool = True
) -> Union[DecoderOutput, torch.Tensor]:
"""
Decode a batch of images.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
if self.use_slicing and z.shape[0] > 1:
if temb is not None:
decoded_slices = [
self._decode(z_slice, t_slice).sample for z_slice, t_slice in (z.split(1), temb.split(1))
]
else:
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
decoded = torch.cat(decoded_slices)
else:
decoded = self._decode(z, temb).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
for y in range(blend_extent):
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
y / blend_extent
)
return b
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
for x in range(blend_extent):
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
x / blend_extent
)
return b
def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[-3], b.shape[-3], blend_extent)
for x in range(blend_extent):
b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * (
x / blend_extent
)
return b
def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
r"""Encode a batch of images using a tiled encoder.
Args:
x (`torch.Tensor`): Input batch of videos.
Returns:
`torch.Tensor`:
The latent representation of the encoded videos.
"""
batch_size, num_channels, num_frames, height, width = x.shape
latent_height = height // self.spatial_compression_ratio
latent_width = width // self.spatial_compression_ratio
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
blend_height = tile_latent_min_height - tile_latent_stride_height
blend_width = tile_latent_min_width - tile_latent_stride_width
# Split x into overlapping tiles and encode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, height, self.tile_sample_stride_height):
row = []
for j in range(0, width, self.tile_sample_stride_width):
time = self.encoder(
x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
)
row.append(time)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_width)
result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
result_rows.append(torch.cat(result_row, dim=4))
enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
return enc
def tiled_decode(
self, z: torch.Tensor, temb: Optional[torch.Tensor], return_dict: bool = True
) -> Union[DecoderOutput, torch.Tensor]:
r"""
Decode a batch of images using a tiled decoder.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
batch_size, num_channels, num_frames, height, width = z.shape
sample_height = height * self.spatial_compression_ratio
sample_width = width * self.spatial_compression_ratio
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
blend_width = self.tile_sample_min_width - self.tile_sample_stride_width
# Split z into overlapping tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, height, tile_latent_stride_height):
row = []
for j in range(0, width, tile_latent_stride_width):
time = self.decoder(z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width], temb)
row.append(time)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_width)
result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
result_rows.append(torch.cat(result_row, dim=4))
dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def _temporal_tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput:
batch_size, num_channels, num_frames, height, width = x.shape
latent_num_frames = (num_frames - 1) // self.temporal_compression_ratio + 1
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio
blend_num_frames = tile_latent_min_num_frames - tile_latent_stride_num_frames
row = []
for i in range(0, num_frames, self.tile_sample_stride_num_frames):
tile = x[:, :, i : i + self.tile_sample_min_num_frames + 1, :, :]
if self.use_tiling and (height > self.tile_sample_min_height or width > self.tile_sample_min_width):
tile = self.tiled_encode(tile)
else:
tile = self.encoder(tile)
if i > 0:
tile = tile[:, :, 1:, :, :]
row.append(tile)
result_row = []
for i, tile in enumerate(row):
if i > 0:
tile = self.blend_t(row[i - 1], tile, blend_num_frames)
result_row.append(tile[:, :, :tile_latent_stride_num_frames, :, :])
else:
result_row.append(tile[:, :, : tile_latent_stride_num_frames + 1, :, :])
enc = torch.cat(result_row, dim=2)[:, :, :latent_num_frames]
return enc
def _temporal_tiled_decode(
self, z: torch.Tensor, temb: Optional[torch.Tensor], return_dict: bool = True
) -> Union[DecoderOutput, torch.Tensor]:
batch_size, num_channels, num_frames, height, width = z.shape
num_sample_frames = (num_frames - 1) * self.temporal_compression_ratio + 1
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio
blend_num_frames = self.tile_sample_min_num_frames - self.tile_sample_stride_num_frames
row = []
for i in range(0, num_frames, tile_latent_stride_num_frames):
tile = z[:, :, i : i + tile_latent_min_num_frames + 1, :, :]
if self.use_tiling and (tile.shape[-1] > tile_latent_min_width or tile.shape[-2] > tile_latent_min_height):
decoded = self.tiled_decode(tile, temb, return_dict=True).sample
else:
decoded = self.decoder(tile, temb)
if i > 0:
decoded = decoded[:, :, :-1, :, :]
row.append(decoded)
result_row = []
for i, tile in enumerate(row):
if i > 0:
tile = self.blend_t(row[i - 1], tile, blend_num_frames)
tile = tile[:, :, : self.tile_sample_stride_num_frames, :, :]
result_row.append(tile)
else:
result_row.append(tile[:, :, : self.tile_sample_stride_num_frames + 1, :, :])
dec = torch.cat(result_row, dim=2)[:, :, :num_sample_frames]
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def forward(
self,
sample: torch.Tensor,
temb: Optional[torch.Tensor] = None,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
) -> Union[torch.Tensor, torch.Tensor]:
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z, temb)
if not return_dict:
return (dec.sample,)
return dec | class_definition | 33,732 | 57,730 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_ltx.py | null | 1,210 |
class AsymmetricAutoencoderKL(ModelMixin, ConfigMixin):
r"""
Designing a Better Asymmetric VQGAN for StableDiffusion https://arxiv.org/abs/2306.04632 . A VAE model with KL loss
for encoding images into latents and decoding latent representations into images.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
Tuple of downsample block types.
down_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
Tuple of down block output channels.
layers_per_down_block (`int`, *optional*, defaults to `1`):
Number layers for down block.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
Tuple of upsample block types.
up_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
Tuple of up block output channels.
layers_per_up_block (`int`, *optional*, defaults to `1`):
Number layers for up block.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
sample_size (`int`, *optional*, defaults to `32`): Sample input size.
norm_num_groups (`int`, *optional*, defaults to `32`):
Number of groups to use for the first normalization layer in ResNet blocks.
scaling_factor (`float`, *optional*, defaults to 0.18215):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
"""
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
down_block_out_channels: Tuple[int, ...] = (64,),
layers_per_down_block: int = 1,
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
up_block_out_channels: Tuple[int, ...] = (64,),
layers_per_up_block: int = 1,
act_fn: str = "silu",
latent_channels: int = 4,
norm_num_groups: int = 32,
sample_size: int = 32,
scaling_factor: float = 0.18215,
) -> None:
super().__init__()
# pass init params to Encoder
self.encoder = Encoder(
in_channels=in_channels,
out_channels=latent_channels,
down_block_types=down_block_types,
block_out_channels=down_block_out_channels,
layers_per_block=layers_per_down_block,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
double_z=True,
)
# pass init params to Decoder
self.decoder = MaskConditionDecoder(
in_channels=latent_channels,
out_channels=out_channels,
up_block_types=up_block_types,
block_out_channels=up_block_out_channels,
layers_per_block=layers_per_up_block,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
)
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1)
self.use_slicing = False
self.use_tiling = False
self.register_to_config(block_out_channels=up_block_out_channels)
self.register_to_config(force_upcast=False)
@apply_forward_hook
def encode(self, x: torch.Tensor, return_dict: bool = True) -> Union[AutoencoderKLOutput, Tuple[torch.Tensor]]:
h = self.encoder(x)
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def _decode(
self,
z: torch.Tensor,
image: Optional[torch.Tensor] = None,
mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
z = self.post_quant_conv(z)
dec = self.decoder(z, image, mask)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
@apply_forward_hook
def decode(
self,
z: torch.Tensor,
generator: Optional[torch.Generator] = None,
image: Optional[torch.Tensor] = None,
mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
decoded = self._decode(z, image, mask).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
def forward(
self,
sample: torch.Tensor,
mask: Optional[torch.Tensor] = None,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
r"""
Args:
sample (`torch.Tensor`): Input sample.
mask (`torch.Tensor`, *optional*, defaults to `None`): Optional inpainting mask.
sample_posterior (`bool`, *optional*, defaults to `False`):
Whether to sample from the posterior.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
"""
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z, generator, sample, mask).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec) | class_definition | 994 | 7,719 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_asym_kl.py | null | 1,211 |
class VQEncoderOutput(BaseOutput):
"""
Output of VQModel encoding method.
Args:
latents (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
The encoded output sample from the last layer of the model.
"""
latents: torch.Tensor | class_definition | 1,008 | 1,294 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/vq_model.py | null | 1,212 |
class VQModel(ModelMixin, ConfigMixin):
r"""
A VQ-VAE model for decoding latent representations.
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
Tuple of downsample block types.
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
Tuple of upsample block types.
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
Tuple of block output channels.
layers_per_block (`int`, *optional*, defaults to `1`): Number of layers per block.
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
latent_channels (`int`, *optional*, defaults to `3`): Number of channels in the latent space.
sample_size (`int`, *optional*, defaults to `32`): Sample input size.
num_vq_embeddings (`int`, *optional*, defaults to `256`): Number of codebook vectors in the VQ-VAE.
norm_num_groups (`int`, *optional*, defaults to `32`): Number of groups for normalization layers.
vq_embed_dim (`int`, *optional*): Hidden dim of codebook vectors in the VQ-VAE.
scaling_factor (`float`, *optional*, defaults to `0.18215`):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
norm_type (`str`, *optional*, defaults to `"group"`):
Type of normalization layer to use. Can be one of `"group"` or `"spatial"`.
"""
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
block_out_channels: Tuple[int, ...] = (64,),
layers_per_block: int = 1,
act_fn: str = "silu",
latent_channels: int = 3,
sample_size: int = 32,
num_vq_embeddings: int = 256,
norm_num_groups: int = 32,
vq_embed_dim: Optional[int] = None,
scaling_factor: float = 0.18215,
norm_type: str = "group", # group, spatial
mid_block_add_attention=True,
lookup_from_codebook=False,
force_upcast=False,
):
super().__init__()
# pass init params to Encoder
self.encoder = Encoder(
in_channels=in_channels,
out_channels=latent_channels,
down_block_types=down_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
double_z=False,
mid_block_add_attention=mid_block_add_attention,
)
vq_embed_dim = vq_embed_dim if vq_embed_dim is not None else latent_channels
self.quant_conv = nn.Conv2d(latent_channels, vq_embed_dim, 1)
self.quantize = VectorQuantizer(num_vq_embeddings, vq_embed_dim, beta=0.25, remap=None, sane_index_shape=False)
self.post_quant_conv = nn.Conv2d(vq_embed_dim, latent_channels, 1)
# pass init params to Decoder
self.decoder = Decoder(
in_channels=latent_channels,
out_channels=out_channels,
up_block_types=up_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
norm_type=norm_type,
mid_block_add_attention=mid_block_add_attention,
)
@apply_forward_hook
def encode(self, x: torch.Tensor, return_dict: bool = True) -> VQEncoderOutput:
h = self.encoder(x)
h = self.quant_conv(h)
if not return_dict:
return (h,)
return VQEncoderOutput(latents=h)
@apply_forward_hook
def decode(
self, h: torch.Tensor, force_not_quantize: bool = False, return_dict: bool = True, shape=None
) -> Union[DecoderOutput, torch.Tensor]:
# also go through quantization layer
if not force_not_quantize:
quant, commit_loss, _ = self.quantize(h)
elif self.config.lookup_from_codebook:
quant = self.quantize.get_codebook_entry(h, shape)
commit_loss = torch.zeros((h.shape[0])).to(h.device, dtype=h.dtype)
else:
quant = h
commit_loss = torch.zeros((h.shape[0])).to(h.device, dtype=h.dtype)
quant2 = self.post_quant_conv(quant)
dec = self.decoder(quant2, quant if self.config.norm_type == "spatial" else None)
if not return_dict:
return dec, commit_loss
return DecoderOutput(sample=dec, commit_loss=commit_loss)
def forward(
self, sample: torch.Tensor, return_dict: bool = True
) -> Union[DecoderOutput, Tuple[torch.Tensor, ...]]:
r"""
The [`VQModel`] forward method.
Args:
sample (`torch.Tensor`): Input sample.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`models.autoencoders.vq_model.VQEncoderOutput`] instead of a plain tuple.
Returns:
[`~models.autoencoders.vq_model.VQEncoderOutput`] or `tuple`:
If return_dict is True, a [`~models.autoencoders.vq_model.VQEncoderOutput`] is returned, otherwise a
plain `tuple` is returned.
"""
h = self.encode(sample).latents
dec = self.decode(h)
if not return_dict:
return dec.sample, dec.commit_loss
return dec | class_definition | 1,297 | 7,811 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/vq_model.py | null | 1,213 |
class ResBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
norm_type: str = "batch_norm",
act_fn: str = "relu6",
) -> None:
super().__init__()
self.norm_type = norm_type
self.nonlinearity = get_activation(act_fn) if act_fn is not None else nn.Identity()
self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False)
self.norm = get_normalization(norm_type, out_channels)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
residual = hidden_states
hidden_states = self.conv1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.norm_type == "rms_norm":
# move channel to the last dimension so we apply RMSnorm across channel dimension
hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1)
else:
hidden_states = self.norm(hidden_states)
return hidden_states + residual | class_definition | 1,241 | 2,387 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_dc.py | null | 1,214 |
class EfficientViTBlock(nn.Module):
def __init__(
self,
in_channels: int,
mult: float = 1.0,
attention_head_dim: int = 32,
qkv_multiscales: Tuple[int, ...] = (5,),
norm_type: str = "batch_norm",
) -> None:
super().__init__()
self.attn = SanaMultiscaleLinearAttention(
in_channels=in_channels,
out_channels=in_channels,
mult=mult,
attention_head_dim=attention_head_dim,
norm_type=norm_type,
kernel_sizes=qkv_multiscales,
residual_connection=True,
)
self.conv_out = GLUMBConv(
in_channels=in_channels,
out_channels=in_channels,
norm_type="rms_norm",
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.attn(x)
x = self.conv_out(x)
return x | class_definition | 2,390 | 3,285 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_dc.py | null | 1,215 |
class DCDownBlock2d(nn.Module):
def __init__(self, in_channels: int, out_channels: int, downsample: bool = False, shortcut: bool = True) -> None:
super().__init__()
self.downsample = downsample
self.factor = 2
self.stride = 1 if downsample else 2
self.group_size = in_channels * self.factor**2 // out_channels
self.shortcut = shortcut
out_ratio = self.factor**2
if downsample:
assert out_channels % out_ratio == 0
out_channels = out_channels // out_ratio
self.conv = nn.Conv2d(
in_channels,
out_channels,
kernel_size=3,
stride=self.stride,
padding=1,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
x = self.conv(hidden_states)
if self.downsample:
x = F.pixel_unshuffle(x, self.factor)
if self.shortcut:
y = F.pixel_unshuffle(hidden_states, self.factor)
y = y.unflatten(1, (-1, self.group_size))
y = y.mean(dim=2)
hidden_states = x + y
else:
hidden_states = x
return hidden_states | class_definition | 3,890 | 5,078 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_dc.py | null | 1,216 |
class DCUpBlock2d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
interpolate: bool = False,
shortcut: bool = True,
interpolation_mode: str = "nearest",
) -> None:
super().__init__()
self.interpolate = interpolate
self.interpolation_mode = interpolation_mode
self.shortcut = shortcut
self.factor = 2
self.repeats = out_channels * self.factor**2 // in_channels
out_ratio = self.factor**2
if not interpolate:
out_channels = out_channels * out_ratio
self.conv = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.interpolate:
x = F.interpolate(hidden_states, scale_factor=self.factor, mode=self.interpolation_mode)
x = self.conv(x)
else:
x = self.conv(hidden_states)
x = F.pixel_shuffle(x, self.factor)
if self.shortcut:
y = hidden_states.repeat_interleave(self.repeats, dim=1)
y = F.pixel_shuffle(y, self.factor)
hidden_states = x + y
else:
hidden_states = x
return hidden_states | class_definition | 5,081 | 6,333 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_dc.py | null | 1,217 |
class Encoder(nn.Module):
def __init__(
self,
in_channels: int,
latent_channels: int,
attention_head_dim: int = 32,
block_type: Union[str, Tuple[str]] = "ResBlock",
block_out_channels: Tuple[int] = (128, 256, 512, 512, 1024, 1024),
layers_per_block: Tuple[int] = (2, 2, 2, 2, 2, 2),
qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (), (5,), (5,), (5,)),
downsample_block_type: str = "pixel_unshuffle",
out_shortcut: bool = True,
):
super().__init__()
num_blocks = len(block_out_channels)
if isinstance(block_type, str):
block_type = (block_type,) * num_blocks
if layers_per_block[0] > 0:
self.conv_in = nn.Conv2d(
in_channels,
block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1],
kernel_size=3,
stride=1,
padding=1,
)
else:
self.conv_in = DCDownBlock2d(
in_channels=in_channels,
out_channels=block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1],
downsample=downsample_block_type == "pixel_unshuffle",
shortcut=False,
)
down_blocks = []
for i, (out_channel, num_layers) in enumerate(zip(block_out_channels, layers_per_block)):
down_block_list = []
for _ in range(num_layers):
block = get_block(
block_type[i],
out_channel,
out_channel,
attention_head_dim=attention_head_dim,
norm_type="rms_norm",
act_fn="silu",
qkv_mutliscales=qkv_multiscales[i],
)
down_block_list.append(block)
if i < num_blocks - 1 and num_layers > 0:
downsample_block = DCDownBlock2d(
in_channels=out_channel,
out_channels=block_out_channels[i + 1],
downsample=downsample_block_type == "pixel_unshuffle",
shortcut=True,
)
down_block_list.append(downsample_block)
down_blocks.append(nn.Sequential(*down_block_list))
self.down_blocks = nn.ModuleList(down_blocks)
self.conv_out = nn.Conv2d(block_out_channels[-1], latent_channels, 3, 1, 1)
self.out_shortcut = out_shortcut
if out_shortcut:
self.out_shortcut_average_group_size = block_out_channels[-1] // latent_channels
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.conv_in(hidden_states)
for down_block in self.down_blocks:
hidden_states = down_block(hidden_states)
if self.out_shortcut:
x = hidden_states.unflatten(1, (-1, self.out_shortcut_average_group_size))
x = x.mean(dim=2)
hidden_states = self.conv_out(hidden_states) + x
else:
hidden_states = self.conv_out(hidden_states)
return hidden_states | class_definition | 6,336 | 9,523 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_dc.py | null | 1,218 |
class Decoder(nn.Module):
def __init__(
self,
in_channels: int,
latent_channels: int,
attention_head_dim: int = 32,
block_type: Union[str, Tuple[str]] = "ResBlock",
block_out_channels: Tuple[int] = (128, 256, 512, 512, 1024, 1024),
layers_per_block: Tuple[int] = (2, 2, 2, 2, 2, 2),
qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (), (5,), (5,), (5,)),
norm_type: Union[str, Tuple[str]] = "rms_norm",
act_fn: Union[str, Tuple[str]] = "silu",
upsample_block_type: str = "pixel_shuffle",
in_shortcut: bool = True,
):
super().__init__()
num_blocks = len(block_out_channels)
if isinstance(block_type, str):
block_type = (block_type,) * num_blocks
if isinstance(norm_type, str):
norm_type = (norm_type,) * num_blocks
if isinstance(act_fn, str):
act_fn = (act_fn,) * num_blocks
self.conv_in = nn.Conv2d(latent_channels, block_out_channels[-1], 3, 1, 1)
self.in_shortcut = in_shortcut
if in_shortcut:
self.in_shortcut_repeats = block_out_channels[-1] // latent_channels
up_blocks = []
for i, (out_channel, num_layers) in reversed(list(enumerate(zip(block_out_channels, layers_per_block)))):
up_block_list = []
if i < num_blocks - 1 and num_layers > 0:
upsample_block = DCUpBlock2d(
block_out_channels[i + 1],
out_channel,
interpolate=upsample_block_type == "interpolate",
shortcut=True,
)
up_block_list.append(upsample_block)
for _ in range(num_layers):
block = get_block(
block_type[i],
out_channel,
out_channel,
attention_head_dim=attention_head_dim,
norm_type=norm_type[i],
act_fn=act_fn[i],
qkv_mutliscales=qkv_multiscales[i],
)
up_block_list.append(block)
up_blocks.insert(0, nn.Sequential(*up_block_list))
self.up_blocks = nn.ModuleList(up_blocks)
channels = block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1]
self.norm_out = RMSNorm(channels, 1e-5, elementwise_affine=True, bias=True)
self.conv_act = nn.ReLU()
self.conv_out = None
if layers_per_block[0] > 0:
self.conv_out = nn.Conv2d(channels, in_channels, 3, 1, 1)
else:
self.conv_out = DCUpBlock2d(
channels, in_channels, interpolate=upsample_block_type == "interpolate", shortcut=False
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.in_shortcut:
x = hidden_states.repeat_interleave(self.in_shortcut_repeats, dim=1)
hidden_states = self.conv_in(hidden_states) + x
else:
hidden_states = self.conv_in(hidden_states)
for up_block in reversed(self.up_blocks):
hidden_states = up_block(hidden_states)
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
hidden_states = self.conv_act(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states | class_definition | 9,526 | 12,949 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_dc.py | null | 1,219 |
class AutoencoderDC(ModelMixin, ConfigMixin, FromOriginalModelMixin):
r"""
An Autoencoder model introduced in [DCAE](https://arxiv.org/abs/2410.10733) and used in
[SANA](https://arxiv.org/abs/2410.10629).
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Args:
in_channels (`int`, defaults to `3`):
The number of input channels in samples.
latent_channels (`int`, defaults to `32`):
The number of channels in the latent space representation.
encoder_block_types (`Union[str, Tuple[str]]`, defaults to `"ResBlock"`):
The type(s) of block to use in the encoder.
decoder_block_types (`Union[str, Tuple[str]]`, defaults to `"ResBlock"`):
The type(s) of block to use in the decoder.
encoder_block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512, 1024, 1024)`):
The number of output channels for each block in the encoder.
decoder_block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512, 1024, 1024)`):
The number of output channels for each block in the decoder.
encoder_layers_per_block (`Tuple[int]`, defaults to `(2, 2, 2, 3, 3, 3)`):
The number of layers per block in the encoder.
decoder_layers_per_block (`Tuple[int]`, defaults to `(3, 3, 3, 3, 3, 3)`):
The number of layers per block in the decoder.
encoder_qkv_multiscales (`Tuple[Tuple[int, ...], ...]`, defaults to `((), (), (), (5,), (5,), (5,))`):
Multi-scale configurations for the encoder's QKV (query-key-value) transformations.
decoder_qkv_multiscales (`Tuple[Tuple[int, ...], ...]`, defaults to `((), (), (), (5,), (5,), (5,))`):
Multi-scale configurations for the decoder's QKV (query-key-value) transformations.
upsample_block_type (`str`, defaults to `"pixel_shuffle"`):
The type of block to use for upsampling in the decoder.
downsample_block_type (`str`, defaults to `"pixel_unshuffle"`):
The type of block to use for downsampling in the encoder.
decoder_norm_types (`Union[str, Tuple[str]]`, defaults to `"rms_norm"`):
The normalization type(s) to use in the decoder.
decoder_act_fns (`Union[str, Tuple[str]]`, defaults to `"silu"`):
The activation function(s) to use in the decoder.
scaling_factor (`float`, defaults to `1.0`):
The multiplicative inverse of the root mean square of the latent features. This is used to scale the latent
space to have unit variance when training the diffusion model. The latents are scaled with the formula `z =
z * scaling_factor` before being passed to the diffusion model. When decoding, the latents are scaled back
to the original scale with the formula: `z = 1 / scaling_factor * z`.
"""
_supports_gradient_checkpointing = False
@register_to_config
def __init__(
self,
in_channels: int = 3,
latent_channels: int = 32,
attention_head_dim: int = 32,
encoder_block_types: Union[str, Tuple[str]] = "ResBlock",
decoder_block_types: Union[str, Tuple[str]] = "ResBlock",
encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512, 1024, 1024),
decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512, 1024, 1024),
encoder_layers_per_block: Tuple[int] = (2, 2, 2, 3, 3, 3),
decoder_layers_per_block: Tuple[int] = (3, 3, 3, 3, 3, 3),
encoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (), (5,), (5,), (5,)),
decoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (), (5,), (5,), (5,)),
upsample_block_type: str = "pixel_shuffle",
downsample_block_type: str = "pixel_unshuffle",
decoder_norm_types: Union[str, Tuple[str]] = "rms_norm",
decoder_act_fns: Union[str, Tuple[str]] = "silu",
scaling_factor: float = 1.0,
) -> None:
super().__init__()
self.encoder = Encoder(
in_channels=in_channels,
latent_channels=latent_channels,
attention_head_dim=attention_head_dim,
block_type=encoder_block_types,
block_out_channels=encoder_block_out_channels,
layers_per_block=encoder_layers_per_block,
qkv_multiscales=encoder_qkv_multiscales,
downsample_block_type=downsample_block_type,
)
self.decoder = Decoder(
in_channels=in_channels,
latent_channels=latent_channels,
attention_head_dim=attention_head_dim,
block_type=decoder_block_types,
block_out_channels=decoder_block_out_channels,
layers_per_block=decoder_layers_per_block,
qkv_multiscales=decoder_qkv_multiscales,
norm_type=decoder_norm_types,
act_fn=decoder_act_fns,
upsample_block_type=upsample_block_type,
)
self.spatial_compression_ratio = 2 ** (len(encoder_block_out_channels) - 1)
self.temporal_compression_ratio = 1
# When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
# to perform decoding of a single video latent at a time.
self.use_slicing = False
# When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
# frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
# intermediate tiles together, the memory requirement can be lowered.
self.use_tiling = False
# The minimal tile height and width for spatial tiling to be used
self.tile_sample_min_height = 512
self.tile_sample_min_width = 512
# The minimal distance between two spatial tiles
self.tile_sample_stride_height = 448
self.tile_sample_stride_width = 448
self.tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
self.tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
def enable_tiling(
self,
tile_sample_min_height: Optional[int] = None,
tile_sample_min_width: Optional[int] = None,
tile_sample_stride_height: Optional[float] = None,
tile_sample_stride_width: Optional[float] = None,
) -> None:
r"""
Enable tiled AE decoding. When this option is enabled, the AE will split the input tensor into tiles to compute
decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
Args:
tile_sample_min_height (`int`, *optional*):
The minimum height required for a sample to be separated into tiles across the height dimension.
tile_sample_min_width (`int`, *optional*):
The minimum width required for a sample to be separated into tiles across the width dimension.
tile_sample_stride_height (`int`, *optional*):
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
no tiling artifacts produced across the height dimension.
tile_sample_stride_width (`int`, *optional*):
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
artifacts produced across the width dimension.
"""
self.use_tiling = True
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
self.tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
self.tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
def disable_tiling(self) -> None:
r"""
Disable tiled AE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_tiling = False
def enable_slicing(self) -> None:
r"""
Enable sliced AE decoding. When this option is enabled, the AE will split the input tensor in slices to compute
decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self) -> None:
r"""
Disable sliced AE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
def _encode(self, x: torch.Tensor) -> torch.Tensor:
batch_size, num_channels, height, width = x.shape
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
return self.tiled_encode(x, return_dict=False)[0]
encoded = self.encoder(x)
return encoded
@apply_forward_hook
def encode(self, x: torch.Tensor, return_dict: bool = True) -> Union[EncoderOutput, Tuple[torch.Tensor]]:
r"""
Encode a batch of images into latents.
Args:
x (`torch.Tensor`): Input batch of images.
return_dict (`bool`, defaults to `True`):
Whether to return a [`~models.vae.EncoderOutput`] instead of a plain tuple.
Returns:
The latent representations of the encoded videos. If `return_dict` is True, a
[`~models.vae.EncoderOutput`] is returned, otherwise a plain `tuple` is returned.
"""
if self.use_slicing and x.shape[0] > 1:
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
encoded = torch.cat(encoded_slices)
else:
encoded = self._encode(x)
if not return_dict:
return (encoded,)
return EncoderOutput(latent=encoded)
def _decode(self, z: torch.Tensor) -> torch.Tensor:
batch_size, num_channels, height, width = z.shape
if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height):
return self.tiled_decode(z, return_dict=False)[0]
decoded = self.decoder(z)
return decoded
@apply_forward_hook
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
r"""
Decode a batch of images.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, defaults to `True`):
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
if self.use_slicing and z.size(0) > 1:
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
decoded = torch.cat(decoded_slices)
else:
decoded = self._decode(z)
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[2], b.shape[2], blend_extent)
for y in range(blend_extent):
b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
return b
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
for x in range(blend_extent):
b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
return b
def tiled_encode(self, x: torch.Tensor, return_dict: bool = True) -> torch.Tensor:
batch_size, num_channels, height, width = x.shape
latent_height = height // self.spatial_compression_ratio
latent_width = width // self.spatial_compression_ratio
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
blend_height = tile_latent_min_height - tile_latent_stride_height
blend_width = tile_latent_min_width - tile_latent_stride_width
# Split x into overlapping tiles and encode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, x.shape[2], self.tile_sample_stride_height):
row = []
for j in range(0, x.shape[3], self.tile_sample_stride_width):
tile = x[:, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
if (
tile.shape[2] % self.spatial_compression_ratio != 0
or tile.shape[3] % self.spatial_compression_ratio != 0
):
pad_h = (self.spatial_compression_ratio - tile.shape[2]) % self.spatial_compression_ratio
pad_w = (self.spatial_compression_ratio - tile.shape[3]) % self.spatial_compression_ratio
tile = F.pad(tile, (0, pad_w, 0, pad_h))
tile = self.encoder(tile)
row.append(tile)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_width)
result_row.append(tile[:, :, :tile_latent_stride_height, :tile_latent_stride_width])
result_rows.append(torch.cat(result_row, dim=3))
encoded = torch.cat(result_rows, dim=2)[:, :, :latent_height, :latent_width]
if not return_dict:
return (encoded,)
return EncoderOutput(latent=encoded)
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
batch_size, num_channels, height, width = z.shape
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
blend_width = self.tile_sample_min_width - self.tile_sample_stride_width
# Split z into overlapping tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, height, tile_latent_stride_height):
row = []
for j in range(0, width, tile_latent_stride_width):
tile = z[:, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width]
decoded = self.decoder(tile)
row.append(decoded)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_width)
result_row.append(tile[:, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
result_rows.append(torch.cat(result_row, dim=3))
decoded = torch.cat(result_rows, dim=2)
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
def forward(self, sample: torch.Tensor, return_dict: bool = True) -> torch.Tensor:
encoded = self.encode(sample, return_dict=False)[0]
decoded = self.decode(encoded, return_dict=False)[0]
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded) | class_definition | 12,952 | 30,342 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_dc.py | null | 1,220 |
class EncoderOutput(BaseOutput):
r"""
Output of encoding method.
Args:
latent (`torch.Tensor` of shape `(batch_size, num_channels, latent_height, latent_width)`):
The encoded latent.
"""
latent: torch.Tensor | class_definition | 1,050 | 1,299 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/vae.py | null | 1,221 |
class DecoderOutput(BaseOutput):
r"""
Output of decoding method.
Args:
sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
The decoded output sample from the last layer of the model.
"""
sample: torch.Tensor
commit_loss: Optional[torch.FloatTensor] = None | class_definition | 1,313 | 1,640 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/vae.py | null | 1,222 |
class Encoder(nn.Module):
r"""
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
Args:
in_channels (`int`, *optional*, defaults to 3):
The number of input channels.
out_channels (`int`, *optional*, defaults to 3):
The number of output channels.
down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available
options.
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
The number of output channels for each block.
layers_per_block (`int`, *optional*, defaults to 2):
The number of layers per block.
norm_num_groups (`int`, *optional*, defaults to 32):
The number of groups for normalization.
act_fn (`str`, *optional*, defaults to `"silu"`):
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
double_z (`bool`, *optional*, defaults to `True`):
Whether to double the number of output channels for the last block.
"""
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
block_out_channels: Tuple[int, ...] = (64,),
layers_per_block: int = 2,
norm_num_groups: int = 32,
act_fn: str = "silu",
double_z: bool = True,
mid_block_add_attention=True,
):
super().__init__()
self.layers_per_block = layers_per_block
self.conv_in = nn.Conv2d(
in_channels,
block_out_channels[0],
kernel_size=3,
stride=1,
padding=1,
)
self.down_blocks = nn.ModuleList([])
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=self.layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
add_downsample=not is_final_block,
resnet_eps=1e-6,
downsample_padding=0,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attention_head_dim=output_channel,
temb_channels=None,
)
self.down_blocks.append(down_block)
# mid
self.mid_block = UNetMidBlock2D(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
output_scale_factor=1,
resnet_time_scale_shift="default",
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
temb_channels=None,
add_attention=mid_block_add_attention,
)
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
self.conv_act = nn.SiLU()
conv_out_channels = 2 * out_channels if double_z else out_channels
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
self.gradient_checkpointing = False
def forward(self, sample: torch.Tensor) -> torch.Tensor:
r"""The forward method of the `Encoder` class."""
sample = self.conv_in(sample)
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
# down
if is_torch_version(">=", "1.11.0"):
for down_block in self.down_blocks:
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(down_block), sample, use_reentrant=False
)
# middle
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block), sample, use_reentrant=False
)
else:
for down_block in self.down_blocks:
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample)
# middle
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample)
else:
# down
for down_block in self.down_blocks:
sample = down_block(sample)
# middle
sample = self.mid_block(sample)
# post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return sample | class_definition | 1,643 | 6,818 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/vae.py | null | 1,223 |
class Decoder(nn.Module):
r"""
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
Args:
in_channels (`int`, *optional*, defaults to 3):
The number of input channels.
out_channels (`int`, *optional*, defaults to 3):
The number of output channels.
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
The number of output channels for each block.
layers_per_block (`int`, *optional*, defaults to 2):
The number of layers per block.
norm_num_groups (`int`, *optional*, defaults to 32):
The number of groups for normalization.
act_fn (`str`, *optional*, defaults to `"silu"`):
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
norm_type (`str`, *optional*, defaults to `"group"`):
The normalization type to use. Can be either `"group"` or `"spatial"`.
"""
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
block_out_channels: Tuple[int, ...] = (64,),
layers_per_block: int = 2,
norm_num_groups: int = 32,
act_fn: str = "silu",
norm_type: str = "group", # group, spatial
mid_block_add_attention=True,
):
super().__init__()
self.layers_per_block = layers_per_block
self.conv_in = nn.Conv2d(
in_channels,
block_out_channels[-1],
kernel_size=3,
stride=1,
padding=1,
)
self.up_blocks = nn.ModuleList([])
temb_channels = in_channels if norm_type == "spatial" else None
# mid
self.mid_block = UNetMidBlock2D(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
output_scale_factor=1,
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
temb_channels=temb_channels,
add_attention=mid_block_add_attention,
)
# up
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
up_block = get_up_block(
up_block_type,
num_layers=self.layers_per_block + 1,
in_channels=prev_output_channel,
out_channels=output_channel,
prev_output_channel=None,
add_upsample=not is_final_block,
resnet_eps=1e-6,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attention_head_dim=output_channel,
temb_channels=temb_channels,
resnet_time_scale_shift=norm_type,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
if norm_type == "spatial":
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
else:
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
self.conv_act = nn.SiLU()
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
self.gradient_checkpointing = False
def forward(
self,
sample: torch.Tensor,
latent_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
r"""The forward method of the `Decoder` class."""
sample = self.conv_in(sample)
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
# middle
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block),
sample,
latent_embeds,
use_reentrant=False,
)
sample = sample.to(upscale_dtype)
# up
for up_block in self.up_blocks:
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(up_block),
sample,
latent_embeds,
use_reentrant=False,
)
else:
# middle
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block), sample, latent_embeds
)
sample = sample.to(upscale_dtype)
# up
for up_block in self.up_blocks:
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
else:
# middle
sample = self.mid_block(sample, latent_embeds)
sample = sample.to(upscale_dtype)
# up
for up_block in self.up_blocks:
sample = up_block(sample, latent_embeds)
# post-process
if latent_embeds is None:
sample = self.conv_norm_out(sample)
else:
sample = self.conv_norm_out(sample, latent_embeds)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return sample | class_definition | 6,821 | 13,058 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/vae.py | null | 1,224 |
class UpSample(nn.Module):
r"""
The `UpSample` layer of a variational autoencoder that upsamples its input.
Args:
in_channels (`int`, *optional*, defaults to 3):
The number of input channels.
out_channels (`int`, *optional*, defaults to 3):
The number of output channels.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
) -> None:
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1)
def forward(self, x: torch.Tensor) -> torch.Tensor:
r"""The forward method of the `UpSample` class."""
x = torch.relu(x)
x = self.deconv(x)
return x | class_definition | 13,061 | 13,891 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/vae.py | null | 1,225 |
class MaskConditionEncoder(nn.Module):
"""
used in AsymmetricAutoencoderKL
"""
def __init__(
self,
in_ch: int,
out_ch: int = 192,
res_ch: int = 768,
stride: int = 16,
) -> None:
super().__init__()
channels = []
while stride > 1:
stride = stride // 2
in_ch_ = out_ch * 2
if out_ch > res_ch:
out_ch = res_ch
if stride == 1:
in_ch_ = res_ch
channels.append((in_ch_, out_ch))
out_ch *= 2
out_channels = []
for _in_ch, _out_ch in channels:
out_channels.append(_out_ch)
out_channels.append(channels[-1][0])
layers = []
in_ch_ = in_ch
for l in range(len(out_channels)):
out_ch_ = out_channels[l]
if l == 0 or l == 1:
layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=3, stride=1, padding=1))
else:
layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=4, stride=2, padding=1))
in_ch_ = out_ch_
self.layers = nn.Sequential(*layers)
def forward(self, x: torch.Tensor, mask=None) -> torch.Tensor:
r"""The forward method of the `MaskConditionEncoder` class."""
out = {}
for l in range(len(self.layers)):
layer = self.layers[l]
x = layer(x)
out[str(tuple(x.shape))] = x
x = torch.relu(x)
return out | class_definition | 13,894 | 15,408 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/vae.py | null | 1,226 |
class MaskConditionDecoder(nn.Module):
r"""The `MaskConditionDecoder` should be used in combination with [`AsymmetricAutoencoderKL`] to enhance the model's
decoder with a conditioner on the mask and masked image.
Args:
in_channels (`int`, *optional*, defaults to 3):
The number of input channels.
out_channels (`int`, *optional*, defaults to 3):
The number of output channels.
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
The number of output channels for each block.
layers_per_block (`int`, *optional*, defaults to 2):
The number of layers per block.
norm_num_groups (`int`, *optional*, defaults to 32):
The number of groups for normalization.
act_fn (`str`, *optional*, defaults to `"silu"`):
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
norm_type (`str`, *optional*, defaults to `"group"`):
The normalization type to use. Can be either `"group"` or `"spatial"`.
"""
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
block_out_channels: Tuple[int, ...] = (64,),
layers_per_block: int = 2,
norm_num_groups: int = 32,
act_fn: str = "silu",
norm_type: str = "group", # group, spatial
):
super().__init__()
self.layers_per_block = layers_per_block
self.conv_in = nn.Conv2d(
in_channels,
block_out_channels[-1],
kernel_size=3,
stride=1,
padding=1,
)
self.up_blocks = nn.ModuleList([])
temb_channels = in_channels if norm_type == "spatial" else None
# mid
self.mid_block = UNetMidBlock2D(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
output_scale_factor=1,
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
temb_channels=temb_channels,
)
# up
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
up_block = get_up_block(
up_block_type,
num_layers=self.layers_per_block + 1,
in_channels=prev_output_channel,
out_channels=output_channel,
prev_output_channel=None,
add_upsample=not is_final_block,
resnet_eps=1e-6,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attention_head_dim=output_channel,
temb_channels=temb_channels,
resnet_time_scale_shift=norm_type,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# condition encoder
self.condition_encoder = MaskConditionEncoder(
in_ch=out_channels,
out_ch=block_out_channels[0],
res_ch=block_out_channels[-1],
)
# out
if norm_type == "spatial":
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
else:
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
self.conv_act = nn.SiLU()
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
self.gradient_checkpointing = False
def forward(
self,
z: torch.Tensor,
image: Optional[torch.Tensor] = None,
mask: Optional[torch.Tensor] = None,
latent_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
r"""The forward method of the `MaskConditionDecoder` class."""
sample = z
sample = self.conv_in(sample)
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
# middle
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block),
sample,
latent_embeds,
use_reentrant=False,
)
sample = sample.to(upscale_dtype)
# condition encoder
if image is not None and mask is not None:
masked_image = (1 - mask) * image
im_x = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.condition_encoder),
masked_image,
mask,
use_reentrant=False,
)
# up
for up_block in self.up_blocks:
if image is not None and mask is not None:
sample_ = im_x[str(tuple(sample.shape))]
mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
sample = sample * mask_ + sample_ * (1 - mask_)
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(up_block),
sample,
latent_embeds,
use_reentrant=False,
)
if image is not None and mask is not None:
sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
else:
# middle
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block), sample, latent_embeds
)
sample = sample.to(upscale_dtype)
# condition encoder
if image is not None and mask is not None:
masked_image = (1 - mask) * image
im_x = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.condition_encoder),
masked_image,
mask,
)
# up
for up_block in self.up_blocks:
if image is not None and mask is not None:
sample_ = im_x[str(tuple(sample.shape))]
mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
sample = sample * mask_ + sample_ * (1 - mask_)
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
if image is not None and mask is not None:
sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
else:
# middle
sample = self.mid_block(sample, latent_embeds)
sample = sample.to(upscale_dtype)
# condition encoder
if image is not None and mask is not None:
masked_image = (1 - mask) * image
im_x = self.condition_encoder(masked_image, mask)
# up
for up_block in self.up_blocks:
if image is not None and mask is not None:
sample_ = im_x[str(tuple(sample.shape))]
mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
sample = sample * mask_ + sample_ * (1 - mask_)
sample = up_block(sample, latent_embeds)
if image is not None and mask is not None:
sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
# post-process
if latent_embeds is None:
sample = self.conv_norm_out(sample)
else:
sample = self.conv_norm_out(sample, latent_embeds)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return sample | class_definition | 15,411 | 24,285 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/vae.py | null | 1,227 |
class VectorQuantizer(nn.Module):
"""
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix
multiplications and allows for post-hoc remapping of indices.
"""
# NOTE: due to a bug the beta term was applied to the wrong term. for
# backwards compatibility we use the buggy version by default, but you can
# specify legacy=False to fix it.
def __init__(
self,
n_e: int,
vq_embed_dim: int,
beta: float,
remap=None,
unknown_index: str = "random",
sane_index_shape: bool = False,
legacy: bool = True,
):
super().__init__()
self.n_e = n_e
self.vq_embed_dim = vq_embed_dim
self.beta = beta
self.legacy = legacy
self.embedding = nn.Embedding(self.n_e, self.vq_embed_dim)
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
self.remap = remap
if self.remap is not None:
self.register_buffer("used", torch.tensor(np.load(self.remap)))
self.used: torch.Tensor
self.re_embed = self.used.shape[0]
self.unknown_index = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
self.unknown_index = self.re_embed
self.re_embed = self.re_embed + 1
print(
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices."
)
else:
self.re_embed = n_e
self.sane_index_shape = sane_index_shape
def remap_to_used(self, inds: torch.LongTensor) -> torch.LongTensor:
ishape = inds.shape
assert len(ishape) > 1
inds = inds.reshape(ishape[0], -1)
used = self.used.to(inds)
match = (inds[:, :, None] == used[None, None, ...]).long()
new = match.argmax(-1)
unknown = match.sum(2) < 1
if self.unknown_index == "random":
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
else:
new[unknown] = self.unknown_index
return new.reshape(ishape)
def unmap_to_all(self, inds: torch.LongTensor) -> torch.LongTensor:
ishape = inds.shape
assert len(ishape) > 1
inds = inds.reshape(ishape[0], -1)
used = self.used.to(inds)
if self.re_embed > self.used.shape[0]: # extra token
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
return back.reshape(ishape)
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, Tuple]:
# reshape z -> (batch, height, width, channel) and flatten
z = z.permute(0, 2, 3, 1).contiguous()
z_flattened = z.view(-1, self.vq_embed_dim)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
min_encoding_indices = torch.argmin(torch.cdist(z_flattened, self.embedding.weight), dim=1)
z_q = self.embedding(min_encoding_indices).view(z.shape)
perplexity = None
min_encodings = None
# compute loss for embedding
if not self.legacy:
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
else:
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
# preserve gradients
z_q: torch.Tensor = z + (z_q - z).detach()
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
if self.remap is not None:
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
min_encoding_indices = self.remap_to_used(min_encoding_indices)
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
if self.sane_index_shape:
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def get_codebook_entry(self, indices: torch.LongTensor, shape: Tuple[int, ...]) -> torch.Tensor:
# shape specifying (batch, height, width, channel)
if self.remap is not None:
indices = indices.reshape(shape[0], -1) # add batch axis
indices = self.unmap_to_all(indices)
indices = indices.reshape(-1) # flatten again
# get quantized latent vectors
z_q: torch.Tensor = self.embedding(indices)
if shape is not None:
z_q = z_q.view(shape)
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q | class_definition | 24,288 | 29,190 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/vae.py | null | 1,228 |
class DiagonalGaussianDistribution(object):
def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
self.parameters = parameters
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
if self.deterministic:
self.var = self.std = torch.zeros_like(
self.mean, device=self.parameters.device, dtype=self.parameters.dtype
)
def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor:
# make sure sample is on the same device as the parameters and has same dtype
sample = randn_tensor(
self.mean.shape,
generator=generator,
device=self.parameters.device,
dtype=self.parameters.dtype,
)
x = self.mean + self.std * sample
return x
def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
if self.deterministic:
return torch.Tensor([0.0])
else:
if other is None:
return 0.5 * torch.sum(
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
dim=[1, 2, 3],
)
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean, 2) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar,
dim=[1, 2, 3],
)
def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
if self.deterministic:
return torch.Tensor([0.0])
logtwopi = np.log(2.0 * np.pi)
return 0.5 * torch.sum(
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
dim=dims,
)
def mode(self) -> torch.Tensor:
return self.mean | class_definition | 29,193 | 31,304 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/vae.py | null | 1,229 |
class EncoderTiny(nn.Module):
r"""
The `EncoderTiny` layer is a simpler version of the `Encoder` layer.
Args:
in_channels (`int`):
The number of input channels.
out_channels (`int`):
The number of output channels.
num_blocks (`Tuple[int, ...]`):
Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
use.
block_out_channels (`Tuple[int, ...]`):
The number of output channels for each block.
act_fn (`str`):
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
num_blocks: Tuple[int, ...],
block_out_channels: Tuple[int, ...],
act_fn: str,
):
super().__init__()
layers = []
for i, num_block in enumerate(num_blocks):
num_channels = block_out_channels[i]
if i == 0:
layers.append(nn.Conv2d(in_channels, num_channels, kernel_size=3, padding=1))
else:
layers.append(
nn.Conv2d(
num_channels,
num_channels,
kernel_size=3,
padding=1,
stride=2,
bias=False,
)
)
for _ in range(num_block):
layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))
layers.append(nn.Conv2d(block_out_channels[-1], out_channels, kernel_size=3, padding=1))
self.layers = nn.Sequential(*layers)
self.gradient_checkpointing = False
def forward(self, x: torch.Tensor) -> torch.Tensor:
r"""The forward method of the `EncoderTiny` class."""
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False)
else:
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x)
else:
# scale image from [-1, 1] to [0, 1] to match TAESD convention
x = self.layers(x.add(1).div(2))
return x | class_definition | 31,307 | 33,914 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/vae.py | null | 1,230 |
class DecoderTiny(nn.Module):
r"""
The `DecoderTiny` layer is a simpler version of the `Decoder` layer.
Args:
in_channels (`int`):
The number of input channels.
out_channels (`int`):
The number of output channels.
num_blocks (`Tuple[int, ...]`):
Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
use.
block_out_channels (`Tuple[int, ...]`):
The number of output channels for each block.
upsampling_scaling_factor (`int`):
The scaling factor to use for upsampling.
act_fn (`str`):
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
num_blocks: Tuple[int, ...],
block_out_channels: Tuple[int, ...],
upsampling_scaling_factor: int,
act_fn: str,
upsample_fn: str,
):
super().__init__()
layers = [
nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=1),
get_activation(act_fn),
]
for i, num_block in enumerate(num_blocks):
is_final_block = i == (len(num_blocks) - 1)
num_channels = block_out_channels[i]
for _ in range(num_block):
layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))
if not is_final_block:
layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor, mode=upsample_fn))
conv_out_channel = num_channels if not is_final_block else out_channels
layers.append(
nn.Conv2d(
num_channels,
conv_out_channel,
kernel_size=3,
padding=1,
bias=is_final_block,
)
)
self.layers = nn.Sequential(*layers)
self.gradient_checkpointing = False
def forward(self, x: torch.Tensor) -> torch.Tensor:
r"""The forward method of the `DecoderTiny` class."""
# Clamp.
x = torch.tanh(x / 3) * 3
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False)
else:
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x)
else:
x = self.layers(x)
# scale image from [0, 1] to [-1, 1] to match diffusers convention
return x.mul(2).sub(1) | class_definition | 33,917 | 36,857 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/vae.py | null | 1,231 |
class AutoencoderTinyOutput(BaseOutput):
"""
Output of AutoencoderTiny encoding method.
Args:
latents (`torch.Tensor`): Encoded outputs of the `Encoder`.
"""
latents: torch.Tensor | class_definition | 986 | 1,196 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_tiny.py | null | 1,232 |
class AutoencoderTiny(ModelMixin, ConfigMixin):
r"""
A tiny distilled VAE model for encoding images into latents and decoding latent representations into images.
[`AutoencoderTiny`] is a wrapper around the original implementation of `TAESD`.
This model inherits from [`ModelMixin`]. Check the superclass documentation for its generic methods implemented for
all models (such as downloading or saving).
Parameters:
in_channels (`int`, *optional*, defaults to 3): Number of channels in the input image.
out_channels (`int`, *optional*, defaults to 3): Number of channels in the output.
encoder_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64, 64, 64, 64)`):
Tuple of integers representing the number of output channels for each encoder block. The length of the
tuple should be equal to the number of encoder blocks.
decoder_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64, 64, 64, 64)`):
Tuple of integers representing the number of output channels for each decoder block. The length of the
tuple should be equal to the number of decoder blocks.
act_fn (`str`, *optional*, defaults to `"relu"`):
Activation function to be used throughout the model.
latent_channels (`int`, *optional*, defaults to 4):
Number of channels in the latent representation. The latent space acts as a compressed representation of
the input image.
upsampling_scaling_factor (`int`, *optional*, defaults to 2):
Scaling factor for upsampling in the decoder. It determines the size of the output image during the
upsampling process.
num_encoder_blocks (`Tuple[int]`, *optional*, defaults to `(1, 3, 3, 3)`):
Tuple of integers representing the number of encoder blocks at each stage of the encoding process. The
length of the tuple should be equal to the number of stages in the encoder. Each stage has a different
number of encoder blocks.
num_decoder_blocks (`Tuple[int]`, *optional*, defaults to `(3, 3, 3, 1)`):
Tuple of integers representing the number of decoder blocks at each stage of the decoding process. The
length of the tuple should be equal to the number of stages in the decoder. Each stage has a different
number of decoder blocks.
latent_magnitude (`float`, *optional*, defaults to 3.0):
Magnitude of the latent representation. This parameter scales the latent representation values to control
the extent of information preservation.
latent_shift (float, *optional*, defaults to 0.5):
Shift applied to the latent representation. This parameter controls the center of the latent space.
scaling_factor (`float`, *optional*, defaults to 1.0):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. For this Autoencoder,
however, no such scaling factor was used, hence the value of 1.0 as the default.
force_upcast (`bool`, *optional*, default to `False`):
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
can be fine-tuned / trained to a lower range without losing too much precision, in which case
`force_upcast` can be set to `False` (see this fp16-friendly
[AutoEncoder](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix)).
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
encoder_block_out_channels: Tuple[int, ...] = (64, 64, 64, 64),
decoder_block_out_channels: Tuple[int, ...] = (64, 64, 64, 64),
act_fn: str = "relu",
upsample_fn: str = "nearest",
latent_channels: int = 4,
upsampling_scaling_factor: int = 2,
num_encoder_blocks: Tuple[int, ...] = (1, 3, 3, 3),
num_decoder_blocks: Tuple[int, ...] = (3, 3, 3, 1),
latent_magnitude: int = 3,
latent_shift: float = 0.5,
force_upcast: bool = False,
scaling_factor: float = 1.0,
shift_factor: float = 0.0,
):
super().__init__()
if len(encoder_block_out_channels) != len(num_encoder_blocks):
raise ValueError("`encoder_block_out_channels` should have the same length as `num_encoder_blocks`.")
if len(decoder_block_out_channels) != len(num_decoder_blocks):
raise ValueError("`decoder_block_out_channels` should have the same length as `num_decoder_blocks`.")
self.encoder = EncoderTiny(
in_channels=in_channels,
out_channels=latent_channels,
num_blocks=num_encoder_blocks,
block_out_channels=encoder_block_out_channels,
act_fn=act_fn,
)
self.decoder = DecoderTiny(
in_channels=latent_channels,
out_channels=out_channels,
num_blocks=num_decoder_blocks,
block_out_channels=decoder_block_out_channels,
upsampling_scaling_factor=upsampling_scaling_factor,
act_fn=act_fn,
upsample_fn=upsample_fn,
)
self.latent_magnitude = latent_magnitude
self.latent_shift = latent_shift
self.scaling_factor = scaling_factor
self.use_slicing = False
self.use_tiling = False
# only relevant if vae tiling is enabled
self.spatial_scale_factor = 2**out_channels
self.tile_overlap_factor = 0.125
self.tile_sample_min_size = 512
self.tile_latent_min_size = self.tile_sample_min_size // self.spatial_scale_factor
self.register_to_config(block_out_channels=decoder_block_out_channels)
self.register_to_config(force_upcast=False)
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
if isinstance(module, (EncoderTiny, DecoderTiny)):
module.gradient_checkpointing = value
def scale_latents(self, x: torch.Tensor) -> torch.Tensor:
"""raw latents -> [0, 1]"""
return x.div(2 * self.latent_magnitude).add(self.latent_shift).clamp(0, 1)
def unscale_latents(self, x: torch.Tensor) -> torch.Tensor:
"""[0, 1] -> raw latents"""
return x.sub(self.latent_shift).mul(2 * self.latent_magnitude)
def enable_slicing(self) -> None:
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self) -> None:
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
def enable_tiling(self, use_tiling: bool = True) -> None:
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.use_tiling = use_tiling
def disable_tiling(self) -> None:
r"""
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.enable_tiling(False)
def _tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
r"""Encode a batch of images using a tiled encoder.
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
steps. This is useful to keep memory use constant regardless of image size. To avoid tiling artifacts, the
tiles overlap and are blended together to form a smooth output.
Args:
x (`torch.Tensor`): Input batch of images.
Returns:
`torch.Tensor`: Encoded batch of images.
"""
# scale of encoder output relative to input
sf = self.spatial_scale_factor
tile_size = self.tile_sample_min_size
# number of pixels to blend and to traverse between tile
blend_size = int(tile_size * self.tile_overlap_factor)
traverse_size = tile_size - blend_size
# tiles index (up/left)
ti = range(0, x.shape[-2], traverse_size)
tj = range(0, x.shape[-1], traverse_size)
# mask for blending
blend_masks = torch.stack(
torch.meshgrid([torch.arange(tile_size / sf) / (blend_size / sf - 1)] * 2, indexing="ij")
)
blend_masks = blend_masks.clamp(0, 1).to(x.device)
# output array
out = torch.zeros(x.shape[0], 4, x.shape[-2] // sf, x.shape[-1] // sf, device=x.device)
for i in ti:
for j in tj:
tile_in = x[..., i : i + tile_size, j : j + tile_size]
# tile result
tile_out = out[..., i // sf : (i + tile_size) // sf, j // sf : (j + tile_size) // sf]
tile = self.encoder(tile_in)
h, w = tile.shape[-2], tile.shape[-1]
# blend tile result into output
blend_mask_i = torch.ones_like(blend_masks[0]) if i == 0 else blend_masks[0]
blend_mask_j = torch.ones_like(blend_masks[1]) if j == 0 else blend_masks[1]
blend_mask = blend_mask_i * blend_mask_j
tile, blend_mask = tile[..., :h, :w], blend_mask[..., :h, :w]
tile_out.copy_(blend_mask * tile + (1 - blend_mask) * tile_out)
return out
def _tiled_decode(self, x: torch.Tensor) -> torch.Tensor:
r"""Encode a batch of images using a tiled encoder.
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
steps. This is useful to keep memory use constant regardless of image size. To avoid tiling artifacts, the
tiles overlap and are blended together to form a smooth output.
Args:
x (`torch.Tensor`): Input batch of images.
Returns:
`torch.Tensor`: Encoded batch of images.
"""
# scale of decoder output relative to input
sf = self.spatial_scale_factor
tile_size = self.tile_latent_min_size
# number of pixels to blend and to traverse between tiles
blend_size = int(tile_size * self.tile_overlap_factor)
traverse_size = tile_size - blend_size
# tiles index (up/left)
ti = range(0, x.shape[-2], traverse_size)
tj = range(0, x.shape[-1], traverse_size)
# mask for blending
blend_masks = torch.stack(
torch.meshgrid([torch.arange(tile_size * sf) / (blend_size * sf - 1)] * 2, indexing="ij")
)
blend_masks = blend_masks.clamp(0, 1).to(x.device)
# output array
out = torch.zeros(x.shape[0], 3, x.shape[-2] * sf, x.shape[-1] * sf, device=x.device)
for i in ti:
for j in tj:
tile_in = x[..., i : i + tile_size, j : j + tile_size]
# tile result
tile_out = out[..., i * sf : (i + tile_size) * sf, j * sf : (j + tile_size) * sf]
tile = self.decoder(tile_in)
h, w = tile.shape[-2], tile.shape[-1]
# blend tile result into output
blend_mask_i = torch.ones_like(blend_masks[0]) if i == 0 else blend_masks[0]
blend_mask_j = torch.ones_like(blend_masks[1]) if j == 0 else blend_masks[1]
blend_mask = (blend_mask_i * blend_mask_j)[..., :h, :w]
tile_out.copy_(blend_mask * tile + (1 - blend_mask) * tile_out)
return out
@apply_forward_hook
def encode(self, x: torch.Tensor, return_dict: bool = True) -> Union[AutoencoderTinyOutput, Tuple[torch.Tensor]]:
if self.use_slicing and x.shape[0] > 1:
output = [
self._tiled_encode(x_slice) if self.use_tiling else self.encoder(x_slice) for x_slice in x.split(1)
]
output = torch.cat(output)
else:
output = self._tiled_encode(x) if self.use_tiling else self.encoder(x)
if not return_dict:
return (output,)
return AutoencoderTinyOutput(latents=output)
@apply_forward_hook
def decode(
self, x: torch.Tensor, generator: Optional[torch.Generator] = None, return_dict: bool = True
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
if self.use_slicing and x.shape[0] > 1:
output = [
self._tiled_decode(x_slice) if self.use_tiling else self.decoder(x_slice) for x_slice in x.split(1)
]
output = torch.cat(output)
else:
output = self._tiled_decode(x) if self.use_tiling else self.decoder(x)
if not return_dict:
return (output,)
return DecoderOutput(sample=output)
def forward(
self,
sample: torch.Tensor,
return_dict: bool = True,
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
r"""
Args:
sample (`torch.Tensor`): Input sample.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
"""
enc = self.encode(sample).latents
# scale latents to be in [0, 1], then quantize latents to a byte tensor,
# as if we were storing the latents in an RGBA uint8 image.
scaled_enc = self.scale_latents(enc).mul_(255).round_().byte()
# unquantize latents back into [0, 1], then unscale latents back to their original range,
# as if we were loading the latents from an RGBA uint8 image.
unscaled_enc = self.unscale_latents(scaled_enc / 255.0)
dec = self.decode(unscaled_enc).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec) | class_definition | 1,199 | 16,034 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_tiny.py | null | 1,233 |
class AllegroTemporalConvLayer(nn.Module):
r"""
Temporal convolutional layer that can be used for video (sequence of images) input. Code adapted from:
https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016
"""
def __init__(
self,
in_dim: int,
out_dim: Optional[int] = None,
dropout: float = 0.0,
norm_num_groups: int = 32,
up_sample: bool = False,
down_sample: bool = False,
stride: int = 1,
) -> None:
super().__init__()
out_dim = out_dim or in_dim
pad_h = pad_w = int((stride - 1) * 0.5)
pad_t = 0
self.down_sample = down_sample
self.up_sample = up_sample
if down_sample:
self.conv1 = nn.Sequential(
nn.GroupNorm(norm_num_groups, in_dim),
nn.SiLU(),
nn.Conv3d(in_dim, out_dim, (2, stride, stride), stride=(2, 1, 1), padding=(0, pad_h, pad_w)),
)
elif up_sample:
self.conv1 = nn.Sequential(
nn.GroupNorm(norm_num_groups, in_dim),
nn.SiLU(),
nn.Conv3d(in_dim, out_dim * 2, (1, stride, stride), padding=(0, pad_h, pad_w)),
)
else:
self.conv1 = nn.Sequential(
nn.GroupNorm(norm_num_groups, in_dim),
nn.SiLU(),
nn.Conv3d(in_dim, out_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_w)),
)
self.conv2 = nn.Sequential(
nn.GroupNorm(norm_num_groups, out_dim),
nn.SiLU(),
nn.Dropout(dropout),
nn.Conv3d(out_dim, in_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_w)),
)
self.conv3 = nn.Sequential(
nn.GroupNorm(norm_num_groups, out_dim),
nn.SiLU(),
nn.Dropout(dropout),
nn.Conv3d(out_dim, in_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_h)),
)
self.conv4 = nn.Sequential(
nn.GroupNorm(norm_num_groups, out_dim),
nn.SiLU(),
nn.Conv3d(out_dim, in_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_h)),
)
@staticmethod
def _pad_temporal_dim(hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = torch.cat((hidden_states[:, :, 0:1], hidden_states), dim=2)
hidden_states = torch.cat((hidden_states, hidden_states[:, :, -1:]), dim=2)
return hidden_states
def forward(self, hidden_states: torch.Tensor, batch_size: int) -> torch.Tensor:
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
if self.down_sample:
identity = hidden_states[:, :, ::2]
elif self.up_sample:
identity = hidden_states.repeat_interleave(2, dim=2)
else:
identity = hidden_states
if self.down_sample or self.up_sample:
hidden_states = self.conv1(hidden_states)
else:
hidden_states = self._pad_temporal_dim(hidden_states)
hidden_states = self.conv1(hidden_states)
if self.up_sample:
hidden_states = hidden_states.unflatten(1, (2, -1)).permute(0, 2, 3, 1, 4, 5).flatten(2, 3)
hidden_states = self._pad_temporal_dim(hidden_states)
hidden_states = self.conv2(hidden_states)
hidden_states = self._pad_temporal_dim(hidden_states)
hidden_states = self.conv3(hidden_states)
hidden_states = self._pad_temporal_dim(hidden_states)
hidden_states = self.conv4(hidden_states)
hidden_states = identity + hidden_states
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
return hidden_states | class_definition | 1,177 | 4,997 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_allegro.py | null | 1,234 |
class AllegroDownBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default",
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
output_scale_factor: float = 1.0,
spatial_downsample: bool = True,
temporal_downsample: bool = False,
downsample_padding: int = 1,
):
super().__init__()
resnets = []
temp_convs = []
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=out_channels,
temb_channels=None,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
AllegroTemporalConvLayer(
out_channels,
out_channels,
dropout=0.1,
norm_num_groups=resnet_groups,
)
)
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs)
if temporal_downsample:
self.temp_convs_down = AllegroTemporalConvLayer(
out_channels, out_channels, dropout=0.1, norm_num_groups=resnet_groups, down_sample=True, stride=3
)
self.add_temp_downsample = temporal_downsample
if spatial_downsample:
self.downsamplers = nn.ModuleList(
[
Downsample2D(
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
)
]
)
else:
self.downsamplers = None
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size = hidden_states.shape[0]
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
hidden_states = resnet(hidden_states, temb=None)
hidden_states = temp_conv(hidden_states, batch_size=batch_size)
if self.add_temp_downsample:
hidden_states = self.temp_convs_down(hidden_states, batch_size=batch_size)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
return hidden_states | class_definition | 5,000 | 8,061 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_allegro.py | null | 1,235 |
class AllegroUpBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default", # default, spatial
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
output_scale_factor: float = 1.0,
spatial_upsample: bool = True,
temporal_upsample: bool = False,
temb_channels: Optional[int] = None,
):
super().__init__()
resnets = []
temp_convs = []
for i in range(num_layers):
input_channels = in_channels if i == 0 else out_channels
resnets.append(
ResnetBlock2D(
in_channels=input_channels,
out_channels=out_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
AllegroTemporalConvLayer(
out_channels,
out_channels,
dropout=0.1,
norm_num_groups=resnet_groups,
)
)
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs)
self.add_temp_upsample = temporal_upsample
if temporal_upsample:
self.temp_conv_up = AllegroTemporalConvLayer(
out_channels, out_channels, dropout=0.1, norm_num_groups=resnet_groups, up_sample=True, stride=3
)
if spatial_upsample:
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
else:
self.upsamplers = None
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size = hidden_states.shape[0]
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
hidden_states = resnet(hidden_states, temb=None)
hidden_states = temp_conv(hidden_states, batch_size=batch_size)
if self.add_temp_upsample:
hidden_states = self.temp_conv_up(hidden_states, batch_size=batch_size)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states)
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
return hidden_states | class_definition | 8,064 | 10,978 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_allegro.py | null | 1,236 |
class AllegroMidBlock3DConv(nn.Module):
def __init__(
self,
in_channels: int,
temb_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_time_scale_shift: str = "default", # default, spatial
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
resnet_pre_norm: bool = True,
add_attention: bool = True,
attention_head_dim: int = 1,
output_scale_factor: float = 1.0,
):
super().__init__()
# there is always at least one resnet
resnets = [
ResnetBlock2D(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
]
temp_convs = [
AllegroTemporalConvLayer(
in_channels,
in_channels,
dropout=0.1,
norm_num_groups=resnet_groups,
)
]
attentions = []
if attention_head_dim is None:
attention_head_dim = in_channels
for _ in range(num_layers):
if add_attention:
attentions.append(
Attention(
in_channels,
heads=in_channels // attention_head_dim,
dim_head=attention_head_dim,
rescale_output_factor=output_scale_factor,
eps=resnet_eps,
norm_num_groups=resnet_groups if resnet_time_scale_shift == "default" else None,
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
residual_connection=True,
bias=True,
upcast_softmax=True,
_from_deprecated_attn_block=True,
)
)
else:
attentions.append(None)
resnets.append(
ResnetBlock2D(
in_channels=in_channels,
out_channels=in_channels,
temb_channels=temb_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
time_embedding_norm=resnet_time_scale_shift,
non_linearity=resnet_act_fn,
output_scale_factor=output_scale_factor,
pre_norm=resnet_pre_norm,
)
)
temp_convs.append(
AllegroTemporalConvLayer(
in_channels,
in_channels,
dropout=0.1,
norm_num_groups=resnet_groups,
)
)
self.resnets = nn.ModuleList(resnets)
self.temp_convs = nn.ModuleList(temp_convs)
self.attentions = nn.ModuleList(attentions)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size = hidden_states.shape[0]
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
hidden_states = self.resnets[0](hidden_states, temb=None)
hidden_states = self.temp_convs[0](hidden_states, batch_size=batch_size)
for attn, resnet, temp_conv in zip(self.attentions, self.resnets[1:], self.temp_convs[1:]):
hidden_states = attn(hidden_states)
hidden_states = resnet(hidden_states, temb=None)
hidden_states = temp_conv(hidden_states, batch_size=batch_size)
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
return hidden_states | class_definition | 10,981 | 15,021 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_allegro.py | null | 1,237 |
class AllegroEncoder3D(nn.Module):
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str, ...] = (
"AllegroDownBlock3D",
"AllegroDownBlock3D",
"AllegroDownBlock3D",
"AllegroDownBlock3D",
),
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
temporal_downsample_blocks: Tuple[bool, ...] = [True, True, False, False],
layers_per_block: int = 2,
norm_num_groups: int = 32,
act_fn: str = "silu",
double_z: bool = True,
):
super().__init__()
self.conv_in = nn.Conv2d(
in_channels,
block_out_channels[0],
kernel_size=3,
stride=1,
padding=1,
)
self.temp_conv_in = nn.Conv3d(
in_channels=block_out_channels[0],
out_channels=block_out_channels[0],
kernel_size=(3, 1, 1),
padding=(1, 0, 0),
)
self.down_blocks = nn.ModuleList([])
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
if down_block_type == "AllegroDownBlock3D":
down_block = AllegroDownBlock3D(
num_layers=layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
spatial_downsample=not is_final_block,
temporal_downsample=temporal_downsample_blocks[i],
resnet_eps=1e-6,
downsample_padding=0,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
)
else:
raise ValueError("Invalid `down_block_type` encountered. Must be `AllegroDownBlock3D`")
self.down_blocks.append(down_block)
# mid
self.mid_block = AllegroMidBlock3DConv(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
output_scale_factor=1,
resnet_time_scale_shift="default",
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
temb_channels=None,
)
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
self.conv_act = nn.SiLU()
conv_out_channels = 2 * out_channels if double_z else out_channels
self.temp_conv_out = nn.Conv3d(block_out_channels[-1], block_out_channels[-1], (3, 1, 1), padding=(1, 0, 0))
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
self.gradient_checkpointing = False
def forward(self, sample: torch.Tensor) -> torch.Tensor:
batch_size = sample.shape[0]
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
sample = self.conv_in(sample)
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
residual = sample
sample = self.temp_conv_in(sample)
sample = sample + residual
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
# Down blocks
for down_block in self.down_blocks:
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample)
# Mid block
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample)
else:
# Down blocks
for down_block in self.down_blocks:
sample = down_block(sample)
# Mid block
sample = self.mid_block(sample)
# Post process
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
residual = sample
sample = self.temp_conv_out(sample)
sample = sample + residual
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
sample = self.conv_out(sample)
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
return sample | class_definition | 15,024 | 19,695 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_allegro.py | null | 1,238 |
class AllegroDecoder3D(nn.Module):
def __init__(
self,
in_channels: int = 4,
out_channels: int = 3,
up_block_types: Tuple[str, ...] = (
"AllegroUpBlock3D",
"AllegroUpBlock3D",
"AllegroUpBlock3D",
"AllegroUpBlock3D",
),
temporal_upsample_blocks: Tuple[bool, ...] = [False, True, True, False],
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
layers_per_block: int = 2,
norm_num_groups: int = 32,
act_fn: str = "silu",
norm_type: str = "group", # group, spatial
):
super().__init__()
self.conv_in = nn.Conv2d(
in_channels,
block_out_channels[-1],
kernel_size=3,
stride=1,
padding=1,
)
self.temp_conv_in = nn.Conv3d(block_out_channels[-1], block_out_channels[-1], (3, 1, 1), padding=(1, 0, 0))
self.mid_block = None
self.up_blocks = nn.ModuleList([])
temb_channels = in_channels if norm_type == "spatial" else None
# mid
self.mid_block = AllegroMidBlock3DConv(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
output_scale_factor=1,
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
temb_channels=temb_channels,
)
# up
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
if up_block_type == "AllegroUpBlock3D":
up_block = AllegroUpBlock3D(
num_layers=layers_per_block + 1,
in_channels=prev_output_channel,
out_channels=output_channel,
spatial_upsample=not is_final_block,
temporal_upsample=temporal_upsample_blocks[i],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
temb_channels=temb_channels,
resnet_time_scale_shift=norm_type,
)
else:
raise ValueError("Invalid `UP_block_type` encountered. Must be `AllegroUpBlock3D`")
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
if norm_type == "spatial":
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
else:
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
self.conv_act = nn.SiLU()
self.temp_conv_out = nn.Conv3d(block_out_channels[0], block_out_channels[0], (3, 1, 1), padding=(1, 0, 0))
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
self.gradient_checkpointing = False
def forward(self, sample: torch.Tensor) -> torch.Tensor:
batch_size = sample.shape[0]
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
sample = self.conv_in(sample)
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
residual = sample
sample = self.temp_conv_in(sample)
sample = sample + residual
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
# Mid block
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample)
# Up blocks
for up_block in self.up_blocks:
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample)
else:
# Mid block
sample = self.mid_block(sample)
sample = sample.to(upscale_dtype)
# Up blocks
for up_block in self.up_blocks:
sample = up_block(sample)
# Post process
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
residual = sample
sample = self.temp_conv_out(sample)
sample = sample + residual
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
sample = self.conv_out(sample)
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
return sample | class_definition | 19,698 | 24,779 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_allegro.py | null | 1,239 |
class AutoencoderKLAllegro(ModelMixin, ConfigMixin):
r"""
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos. Used in
[Allegro](https://github.com/rhymes-ai/Allegro).
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
Parameters:
in_channels (int, defaults to `3`):
Number of channels in the input image.
out_channels (int, defaults to `3`):
Number of channels in the output.
down_block_types (`Tuple[str, ...]`, defaults to `("AllegroDownBlock3D", "AllegroDownBlock3D", "AllegroDownBlock3D", "AllegroDownBlock3D")`):
Tuple of strings denoting which types of down blocks to use.
up_block_types (`Tuple[str, ...]`, defaults to `("AllegroUpBlock3D", "AllegroUpBlock3D", "AllegroUpBlock3D", "AllegroUpBlock3D")`):
Tuple of strings denoting which types of up blocks to use.
block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
Tuple of integers denoting number of output channels in each block.
temporal_downsample_blocks (`Tuple[bool, ...]`, defaults to `(True, True, False, False)`):
Tuple of booleans denoting which blocks to enable temporal downsampling in.
latent_channels (`int`, defaults to `4`):
Number of channels in latents.
layers_per_block (`int`, defaults to `2`):
Number of resnet or attention or temporal convolution layers per down/up block.
act_fn (`str`, defaults to `"silu"`):
The activation function to use.
norm_num_groups (`int`, defaults to `32`):
Number of groups to use in normalization layers.
temporal_compression_ratio (`int`, defaults to `4`):
Ratio by which temporal dimension of samples are compressed.
sample_size (`int`, defaults to `320`):
Default latent size.
scaling_factor (`float`, defaults to `0.13235`):
The component-wise standard deviation of the trained latent space computed using the first batch of the
training set. This is used to scale the latent space to have unit variance when training the diffusion
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
force_upcast (`bool`, default to `True`):
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
can be fine-tuned / trained to a lower range without loosing too much precision in which case
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str, ...] = (
"AllegroDownBlock3D",
"AllegroDownBlock3D",
"AllegroDownBlock3D",
"AllegroDownBlock3D",
),
up_block_types: Tuple[str, ...] = (
"AllegroUpBlock3D",
"AllegroUpBlock3D",
"AllegroUpBlock3D",
"AllegroUpBlock3D",
),
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
temporal_downsample_blocks: Tuple[bool, ...] = (True, True, False, False),
temporal_upsample_blocks: Tuple[bool, ...] = (False, True, True, False),
latent_channels: int = 4,
layers_per_block: int = 2,
act_fn: str = "silu",
norm_num_groups: int = 32,
temporal_compression_ratio: float = 4,
sample_size: int = 320,
scaling_factor: float = 0.13,
force_upcast: bool = True,
) -> None:
super().__init__()
self.encoder = AllegroEncoder3D(
in_channels=in_channels,
out_channels=latent_channels,
down_block_types=down_block_types,
temporal_downsample_blocks=temporal_downsample_blocks,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
act_fn=act_fn,
norm_num_groups=norm_num_groups,
double_z=True,
)
self.decoder = AllegroDecoder3D(
in_channels=latent_channels,
out_channels=out_channels,
up_block_types=up_block_types,
temporal_upsample_blocks=temporal_upsample_blocks,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
norm_num_groups=norm_num_groups,
act_fn=act_fn,
)
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1)
# TODO(aryan): For the 1.0.0 refactor, `temporal_compression_ratio` can be inferred directly and we don't need
# to use a specific parameter here or in other VAEs.
self.use_slicing = False
self.use_tiling = False
self.spatial_compression_ratio = 2 ** (len(block_out_channels) - 1)
self.tile_overlap_t = 8
self.tile_overlap_h = 120
self.tile_overlap_w = 80
sample_frames = 24
self.kernel = (sample_frames, sample_size, sample_size)
self.stride = (
sample_frames - self.tile_overlap_t,
sample_size - self.tile_overlap_h,
sample_size - self.tile_overlap_w,
)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (AllegroEncoder3D, AllegroDecoder3D)):
module.gradient_checkpointing = value
def enable_tiling(self) -> None:
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
"""
self.use_tiling = True
def disable_tiling(self) -> None:
r"""
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_tiling = False
def enable_slicing(self) -> None:
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self) -> None:
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
def _encode(self, x: torch.Tensor) -> torch.Tensor:
# TODO(aryan)
# if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
if self.use_tiling:
return self.tiled_encode(x)
raise NotImplementedError("Encoding without tiling has not been implemented yet.")
@apply_forward_hook
def encode(
self, x: torch.Tensor, return_dict: bool = True
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
r"""
Encode a batch of videos into latents.
Args:
x (`torch.Tensor`):
Input batch of videos.
return_dict (`bool`, defaults to `True`):
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Returns:
The latent representations of the encoded videos. If `return_dict` is True, a
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
"""
if self.use_slicing and x.shape[0] > 1:
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
h = torch.cat(encoded_slices)
else:
h = self._encode(x)
posterior = DiagonalGaussianDistribution(h)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def _decode(self, z: torch.Tensor) -> torch.Tensor:
# TODO(aryan): refactor tiling implementation
# if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height):
if self.use_tiling:
return self.tiled_decode(z)
raise NotImplementedError("Decoding without tiling has not been implemented yet.")
@apply_forward_hook
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
"""
Decode a batch of videos.
Args:
z (`torch.Tensor`):
Input batch of latent vectors.
return_dict (`bool`, defaults to `True`):
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
if self.use_slicing and z.shape[0] > 1:
decoded_slices = [self._decode(z_slice) for z_slice in z.split(1)]
decoded = torch.cat(decoded_slices)
else:
decoded = self._decode(z)
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
local_batch_size = 1
rs = self.spatial_compression_ratio
rt = self.config.temporal_compression_ratio
batch_size, num_channels, num_frames, height, width = x.shape
output_num_frames = math.floor((num_frames - self.kernel[0]) / self.stride[0]) + 1
output_height = math.floor((height - self.kernel[1]) / self.stride[1]) + 1
output_width = math.floor((width - self.kernel[2]) / self.stride[2]) + 1
count = 0
output_latent = x.new_zeros(
(
output_num_frames * output_height * output_width,
2 * self.config.latent_channels,
self.kernel[0] // rt,
self.kernel[1] // rs,
self.kernel[2] // rs,
)
)
vae_batch_input = x.new_zeros((local_batch_size, num_channels, self.kernel[0], self.kernel[1], self.kernel[2]))
for i in range(output_num_frames):
for j in range(output_height):
for k in range(output_width):
n_start, n_end = i * self.stride[0], i * self.stride[0] + self.kernel[0]
h_start, h_end = j * self.stride[1], j * self.stride[1] + self.kernel[1]
w_start, w_end = k * self.stride[2], k * self.stride[2] + self.kernel[2]
video_cube = x[:, :, n_start:n_end, h_start:h_end, w_start:w_end]
vae_batch_input[count % local_batch_size] = video_cube
if (
count % local_batch_size == local_batch_size - 1
or count == output_num_frames * output_height * output_width - 1
):
latent = self.encoder(vae_batch_input)
if (
count == output_num_frames * output_height * output_width - 1
and count % local_batch_size != local_batch_size - 1
):
output_latent[count - count % local_batch_size :] = latent[: count % local_batch_size + 1]
else:
output_latent[count - local_batch_size + 1 : count + 1] = latent
vae_batch_input = x.new_zeros(
(local_batch_size, num_channels, self.kernel[0], self.kernel[1], self.kernel[2])
)
count += 1
latent = x.new_zeros(
(batch_size, 2 * self.config.latent_channels, num_frames // rt, height // rs, width // rs)
)
output_kernel = self.kernel[0] // rt, self.kernel[1] // rs, self.kernel[2] // rs
output_stride = self.stride[0] // rt, self.stride[1] // rs, self.stride[2] // rs
output_overlap = (
output_kernel[0] - output_stride[0],
output_kernel[1] - output_stride[1],
output_kernel[2] - output_stride[2],
)
for i in range(output_num_frames):
n_start, n_end = i * output_stride[0], i * output_stride[0] + output_kernel[0]
for j in range(output_height):
h_start, h_end = j * output_stride[1], j * output_stride[1] + output_kernel[1]
for k in range(output_width):
w_start, w_end = k * output_stride[2], k * output_stride[2] + output_kernel[2]
latent_mean = _prepare_for_blend(
(i, output_num_frames, output_overlap[0]),
(j, output_height, output_overlap[1]),
(k, output_width, output_overlap[2]),
output_latent[i * output_height * output_width + j * output_width + k].unsqueeze(0),
)
latent[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += latent_mean
latent = latent.permute(0, 2, 1, 3, 4).flatten(0, 1)
latent = self.quant_conv(latent)
latent = latent.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
return latent
def tiled_decode(self, z: torch.Tensor) -> torch.Tensor:
local_batch_size = 1
rs = self.spatial_compression_ratio
rt = self.config.temporal_compression_ratio
latent_kernel = self.kernel[0] // rt, self.kernel[1] // rs, self.kernel[2] // rs
latent_stride = self.stride[0] // rt, self.stride[1] // rs, self.stride[2] // rs
batch_size, num_channels, num_frames, height, width = z.shape
## post quant conv (a mapping)
z = z.permute(0, 2, 1, 3, 4).flatten(0, 1)
z = self.post_quant_conv(z)
z = z.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
output_num_frames = math.floor((num_frames - latent_kernel[0]) / latent_stride[0]) + 1
output_height = math.floor((height - latent_kernel[1]) / latent_stride[1]) + 1
output_width = math.floor((width - latent_kernel[2]) / latent_stride[2]) + 1
count = 0
decoded_videos = z.new_zeros(
(
output_num_frames * output_height * output_width,
self.config.out_channels,
self.kernel[0],
self.kernel[1],
self.kernel[2],
)
)
vae_batch_input = z.new_zeros(
(local_batch_size, num_channels, latent_kernel[0], latent_kernel[1], latent_kernel[2])
)
for i in range(output_num_frames):
for j in range(output_height):
for k in range(output_width):
n_start, n_end = i * latent_stride[0], i * latent_stride[0] + latent_kernel[0]
h_start, h_end = j * latent_stride[1], j * latent_stride[1] + latent_kernel[1]
w_start, w_end = k * latent_stride[2], k * latent_stride[2] + latent_kernel[2]
current_latent = z[:, :, n_start:n_end, h_start:h_end, w_start:w_end]
vae_batch_input[count % local_batch_size] = current_latent
if (
count % local_batch_size == local_batch_size - 1
or count == output_num_frames * output_height * output_width - 1
):
current_video = self.decoder(vae_batch_input)
if (
count == output_num_frames * output_height * output_width - 1
and count % local_batch_size != local_batch_size - 1
):
decoded_videos[count - count % local_batch_size :] = current_video[
: count % local_batch_size + 1
]
else:
decoded_videos[count - local_batch_size + 1 : count + 1] = current_video
vae_batch_input = z.new_zeros(
(local_batch_size, num_channels, latent_kernel[0], latent_kernel[1], latent_kernel[2])
)
count += 1
video = z.new_zeros((batch_size, self.config.out_channels, num_frames * rt, height * rs, width * rs))
video_overlap = (
self.kernel[0] - self.stride[0],
self.kernel[1] - self.stride[1],
self.kernel[2] - self.stride[2],
)
for i in range(output_num_frames):
n_start, n_end = i * self.stride[0], i * self.stride[0] + self.kernel[0]
for j in range(output_height):
h_start, h_end = j * self.stride[1], j * self.stride[1] + self.kernel[1]
for k in range(output_width):
w_start, w_end = k * self.stride[2], k * self.stride[2] + self.kernel[2]
out_video_blend = _prepare_for_blend(
(i, output_num_frames, video_overlap[0]),
(j, output_height, video_overlap[1]),
(k, output_width, video_overlap[2]),
decoded_videos[i * output_height * output_width + j * output_width + k].unsqueeze(0),
)
video[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += out_video_blend
video = video.permute(0, 2, 1, 3, 4).contiguous()
return video
def forward(
self,
sample: torch.Tensor,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
) -> Union[DecoderOutput, torch.Tensor]:
r"""
Args:
sample (`torch.Tensor`): Input sample.
sample_posterior (`bool`, *optional*, defaults to `False`):
Whether to sample from the posterior.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
generator (`torch.Generator`, *optional*):
PyTorch random number generator.
"""
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec) | class_definition | 24,782 | 44,277 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_allegro.py | null | 1,240 |
class HunyuanVideoCausalConv3d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int, int]] = 3,
stride: Union[int, Tuple[int, int, int]] = 1,
padding: Union[int, Tuple[int, int, int]] = 0,
dilation: Union[int, Tuple[int, int, int]] = 1,
bias: bool = True,
pad_mode: str = "replicate",
) -> None:
super().__init__()
kernel_size = (kernel_size, kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size
self.pad_mode = pad_mode
self.time_causal_padding = (
kernel_size[0] // 2,
kernel_size[0] // 2,
kernel_size[1] // 2,
kernel_size[1] // 2,
kernel_size[2] - 1,
0,
)
self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = F.pad(hidden_states, self.time_causal_padding, mode=self.pad_mode)
return self.conv(hidden_states) | class_definition | 1,791 | 2,929 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py | null | 1,241 |
class HunyuanVideoUpsampleCausal3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
kernel_size: int = 3,
stride: int = 1,
bias: bool = True,
upsample_factor: Tuple[float, float, float] = (2, 2, 2),
) -> None:
super().__init__()
out_channels = out_channels or in_channels
self.upsample_factor = upsample_factor
self.conv = HunyuanVideoCausalConv3d(in_channels, out_channels, kernel_size, stride, bias=bias)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
num_frames = hidden_states.size(2)
first_frame, other_frames = hidden_states.split((1, num_frames - 1), dim=2)
first_frame = F.interpolate(
first_frame.squeeze(2), scale_factor=self.upsample_factor[1:], mode="nearest"
).unsqueeze(2)
if num_frames > 1:
# See: https://github.com/pytorch/pytorch/issues/81665
# Unless you have a version of pytorch where non-contiguous implementation of F.interpolate
# is fixed, this will raise either a runtime error, or fail silently with bad outputs.
# If you are encountering an error here, make sure to try running encoding/decoding with
# `vae.enable_tiling()` first. If that doesn't work, open an issue at:
# https://github.com/huggingface/diffusers/issues
other_frames = other_frames.contiguous()
other_frames = F.interpolate(other_frames, scale_factor=self.upsample_factor, mode="nearest")
hidden_states = torch.cat((first_frame, other_frames), dim=2)
else:
hidden_states = first_frame
hidden_states = self.conv(hidden_states)
return hidden_states | class_definition | 2,932 | 4,730 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py | null | 1,242 |
class HunyuanVideoDownsampleCausal3D(nn.Module):
def __init__(
self,
channels: int,
out_channels: Optional[int] = None,
padding: int = 1,
kernel_size: int = 3,
bias: bool = True,
stride=2,
) -> None:
super().__init__()
out_channels = out_channels or channels
self.conv = HunyuanVideoCausalConv3d(channels, out_channels, kernel_size, stride, padding, bias=bias)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.conv(hidden_states)
return hidden_states | class_definition | 4,733 | 5,329 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py | null | 1,243 |
class HunyuanVideoResnetBlockCausal3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: Optional[int] = None,
dropout: float = 0.0,
groups: int = 32,
eps: float = 1e-6,
non_linearity: str = "swish",
) -> None:
super().__init__()
out_channels = out_channels or in_channels
self.nonlinearity = get_activation(non_linearity)
self.norm1 = nn.GroupNorm(groups, in_channels, eps=eps, affine=True)
self.conv1 = HunyuanVideoCausalConv3d(in_channels, out_channels, 3, 1, 0)
self.norm2 = nn.GroupNorm(groups, out_channels, eps=eps, affine=True)
self.dropout = nn.Dropout(dropout)
self.conv2 = HunyuanVideoCausalConv3d(out_channels, out_channels, 3, 1, 0)
self.conv_shortcut = None
if in_channels != out_channels:
self.conv_shortcut = HunyuanVideoCausalConv3d(in_channels, out_channels, 1, 1, 0)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = hidden_states.contiguous()
residual = hidden_states
hidden_states = self.norm1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv1(hidden_states)
hidden_states = self.norm2(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.conv_shortcut is not None:
residual = self.conv_shortcut(residual)
hidden_states = hidden_states + residual
return hidden_states | class_definition | 5,332 | 6,986 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py | null | 1,244 |
class HunyuanVideoMidBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
add_attention: bool = True,
attention_head_dim: int = 1,
) -> None:
super().__init__()
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
self.add_attention = add_attention
# There is always at least one resnet
resnets = [
HunyuanVideoResnetBlockCausal3D(
in_channels=in_channels,
out_channels=in_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
non_linearity=resnet_act_fn,
)
]
attentions = []
for _ in range(num_layers):
if self.add_attention:
attentions.append(
Attention(
in_channels,
heads=in_channels // attention_head_dim,
dim_head=attention_head_dim,
eps=resnet_eps,
norm_num_groups=resnet_groups,
residual_connection=True,
bias=True,
upcast_softmax=True,
_from_deprecated_attn_block=True,
)
)
else:
attentions.append(None)
resnets.append(
HunyuanVideoResnetBlockCausal3D(
in_channels=in_channels,
out_channels=in_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
non_linearity=resnet_act_fn,
)
)
self.attentions = nn.ModuleList(attentions)
self.resnets = nn.ModuleList(resnets)
self.gradient_checkpointing = False
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.resnets[0]), hidden_states, **ckpt_kwargs
)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
if attn is not None:
batch_size, num_channels, num_frames, height, width = hidden_states.shape
hidden_states = hidden_states.permute(0, 2, 3, 4, 1).flatten(1, 3)
attention_mask = prepare_causal_attention_mask(
num_frames, height * width, hidden_states.dtype, hidden_states.device, batch_size=batch_size
)
hidden_states = attn(hidden_states, attention_mask=attention_mask)
hidden_states = hidden_states.unflatten(1, (num_frames, height, width)).permute(0, 4, 1, 2, 3)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, **ckpt_kwargs
)
else:
hidden_states = self.resnets[0](hidden_states)
for attn, resnet in zip(self.attentions, self.resnets[1:]):
if attn is not None:
batch_size, num_channels, num_frames, height, width = hidden_states.shape
hidden_states = hidden_states.permute(0, 2, 3, 4, 1).flatten(1, 3)
attention_mask = prepare_causal_attention_mask(
num_frames, height * width, hidden_states.dtype, hidden_states.device, batch_size=batch_size
)
hidden_states = attn(hidden_states, attention_mask=attention_mask)
hidden_states = hidden_states.unflatten(1, (num_frames, height, width)).permute(0, 4, 1, 2, 3)
hidden_states = resnet(hidden_states)
return hidden_states | class_definition | 6,989 | 11,561 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py | null | 1,245 |
class HunyuanVideoDownBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
add_downsample: bool = True,
downsample_stride: int = 2,
downsample_padding: int = 1,
) -> None:
super().__init__()
resnets = []
for i in range(num_layers):
in_channels = in_channels if i == 0 else out_channels
resnets.append(
HunyuanVideoResnetBlockCausal3D(
in_channels=in_channels,
out_channels=out_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
non_linearity=resnet_act_fn,
)
)
self.resnets = nn.ModuleList(resnets)
if add_downsample:
self.downsamplers = nn.ModuleList(
[
HunyuanVideoDownsampleCausal3D(
out_channels,
out_channels=out_channels,
padding=downsample_padding,
stride=downsample_stride,
)
]
)
else:
self.downsamplers = None
self.gradient_checkpointing = False
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
for resnet in self.resnets:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, **ckpt_kwargs
)
else:
for resnet in self.resnets:
hidden_states = resnet(hidden_states)
if self.downsamplers is not None:
for downsampler in self.downsamplers:
hidden_states = downsampler(hidden_states)
return hidden_states | class_definition | 11,564 | 14,116 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py | null | 1,246 |
class HunyuanVideoUpBlock3D(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
dropout: float = 0.0,
num_layers: int = 1,
resnet_eps: float = 1e-6,
resnet_act_fn: str = "swish",
resnet_groups: int = 32,
add_upsample: bool = True,
upsample_scale_factor: Tuple[int, int, int] = (2, 2, 2),
) -> None:
super().__init__()
resnets = []
for i in range(num_layers):
input_channels = in_channels if i == 0 else out_channels
resnets.append(
HunyuanVideoResnetBlockCausal3D(
in_channels=input_channels,
out_channels=out_channels,
eps=resnet_eps,
groups=resnet_groups,
dropout=dropout,
non_linearity=resnet_act_fn,
)
)
self.resnets = nn.ModuleList(resnets)
if add_upsample:
self.upsamplers = nn.ModuleList(
[
HunyuanVideoUpsampleCausal3D(
out_channels,
out_channels=out_channels,
upsample_factor=upsample_scale_factor,
)
]
)
else:
self.upsamplers = None
self.gradient_checkpointing = False
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
for resnet in self.resnets:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(resnet), hidden_states, **ckpt_kwargs
)
else:
for resnet in self.resnets:
hidden_states = resnet(hidden_states)
if self.upsamplers is not None:
for upsampler in self.upsamplers:
hidden_states = upsampler(hidden_states)
return hidden_states | class_definition | 14,119 | 16,612 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py | null | 1,247 |
class HunyuanVideoEncoder3D(nn.Module):
r"""
Causal encoder for 3D video-like data introduced in [Hunyuan Video](https://huggingface.co/papers/2412.03603).
"""
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str, ...] = (
"HunyuanVideoDownBlock3D",
"HunyuanVideoDownBlock3D",
"HunyuanVideoDownBlock3D",
"HunyuanVideoDownBlock3D",
),
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
layers_per_block: int = 2,
norm_num_groups: int = 32,
act_fn: str = "silu",
double_z: bool = True,
mid_block_add_attention=True,
temporal_compression_ratio: int = 4,
spatial_compression_ratio: int = 8,
) -> None:
super().__init__()
self.conv_in = HunyuanVideoCausalConv3d(in_channels, block_out_channels[0], kernel_size=3, stride=1)
self.mid_block = None
self.down_blocks = nn.ModuleList([])
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
if down_block_type != "HunyuanVideoDownBlock3D":
raise ValueError(f"Unsupported down_block_type: {down_block_type}")
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
num_spatial_downsample_layers = int(np.log2(spatial_compression_ratio))
num_time_downsample_layers = int(np.log2(temporal_compression_ratio))
if temporal_compression_ratio == 4:
add_spatial_downsample = bool(i < num_spatial_downsample_layers)
add_time_downsample = bool(
i >= (len(block_out_channels) - 1 - num_time_downsample_layers) and not is_final_block
)
elif temporal_compression_ratio == 8:
add_spatial_downsample = bool(i < num_spatial_downsample_layers)
add_time_downsample = bool(i < num_time_downsample_layers)
else:
raise ValueError(f"Unsupported time_compression_ratio: {temporal_compression_ratio}")
downsample_stride_HW = (2, 2) if add_spatial_downsample else (1, 1)
downsample_stride_T = (2,) if add_time_downsample else (1,)
downsample_stride = tuple(downsample_stride_T + downsample_stride_HW)
down_block = HunyuanVideoDownBlock3D(
num_layers=layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
add_downsample=bool(add_spatial_downsample or add_time_downsample),
resnet_eps=1e-6,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
downsample_stride=downsample_stride,
downsample_padding=0,
)
self.down_blocks.append(down_block)
self.mid_block = HunyuanVideoMidBlock3D(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
add_attention=mid_block_add_attention,
)
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
self.conv_act = nn.SiLU()
conv_out_channels = 2 * out_channels if double_z else out_channels
self.conv_out = HunyuanVideoCausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3)
self.gradient_checkpointing = False
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.conv_in(hidden_states)
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
for down_block in self.down_blocks:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(down_block), hidden_states, **ckpt_kwargs
)
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block), hidden_states, **ckpt_kwargs
)
else:
for down_block in self.down_blocks:
hidden_states = down_block(hidden_states)
hidden_states = self.mid_block(hidden_states)
hidden_states = self.conv_norm_out(hidden_states)
hidden_states = self.conv_act(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states | class_definition | 16,615 | 21,724 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py | null | 1,248 |
class HunyuanVideoDecoder3D(nn.Module):
r"""
Causal decoder for 3D video-like data introduced in [Hunyuan Video](https://huggingface.co/papers/2412.03603).
"""
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
up_block_types: Tuple[str, ...] = (
"HunyuanVideoUpBlock3D",
"HunyuanVideoUpBlock3D",
"HunyuanVideoUpBlock3D",
"HunyuanVideoUpBlock3D",
),
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
layers_per_block: int = 2,
norm_num_groups: int = 32,
act_fn: str = "silu",
mid_block_add_attention=True,
time_compression_ratio: int = 4,
spatial_compression_ratio: int = 8,
):
super().__init__()
self.layers_per_block = layers_per_block
self.conv_in = HunyuanVideoCausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1)
self.up_blocks = nn.ModuleList([])
# mid
self.mid_block = HunyuanVideoMidBlock3D(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
add_attention=mid_block_add_attention,
)
# up
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
if up_block_type != "HunyuanVideoUpBlock3D":
raise ValueError(f"Unsupported up_block_type: {up_block_type}")
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio))
num_time_upsample_layers = int(np.log2(time_compression_ratio))
if time_compression_ratio == 4:
add_spatial_upsample = bool(i < num_spatial_upsample_layers)
add_time_upsample = bool(
i >= len(block_out_channels) - 1 - num_time_upsample_layers and not is_final_block
)
else:
raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}")
upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1)
upsample_scale_factor_T = (2,) if add_time_upsample else (1,)
upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW)
up_block = HunyuanVideoUpBlock3D(
num_layers=self.layers_per_block + 1,
in_channels=prev_output_channel,
out_channels=output_channel,
add_upsample=bool(add_spatial_upsample or add_time_upsample),
upsample_scale_factor=upsample_scale_factor,
resnet_eps=1e-6,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
self.conv_act = nn.SiLU()
self.conv_out = HunyuanVideoCausalConv3d(block_out_channels[0], out_channels, kernel_size=3)
self.gradient_checkpointing = False
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.conv_in(hidden_states)
if torch.is_grad_enabled() and self.gradient_checkpointing:
def create_custom_forward(module, return_dict=None):
def custom_forward(*inputs):
if return_dict is not None:
return module(*inputs, return_dict=return_dict)
else:
return module(*inputs)
return custom_forward
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block), hidden_states, **ckpt_kwargs
)
for up_block in self.up_blocks:
hidden_states = torch.utils.checkpoint.checkpoint(
create_custom_forward(up_block), hidden_states, **ckpt_kwargs
)
else:
hidden_states = self.mid_block(hidden_states)
for up_block in self.up_blocks:
hidden_states = up_block(hidden_states)
# post-process
hidden_states = self.conv_norm_out(hidden_states)
hidden_states = self.conv_act(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states | class_definition | 21,727 | 26,659 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py | null | 1,249 |
class AutoencoderKLHunyuanVideo(ModelMixin, ConfigMixin):
r"""
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos.
Introduced in [HunyuanVideo](https://huggingface.co/papers/2412.03603).
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
for all models (such as downloading or saving).
"""
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
latent_channels: int = 16,
down_block_types: Tuple[str, ...] = (
"HunyuanVideoDownBlock3D",
"HunyuanVideoDownBlock3D",
"HunyuanVideoDownBlock3D",
"HunyuanVideoDownBlock3D",
),
up_block_types: Tuple[str, ...] = (
"HunyuanVideoUpBlock3D",
"HunyuanVideoUpBlock3D",
"HunyuanVideoUpBlock3D",
"HunyuanVideoUpBlock3D",
),
block_out_channels: Tuple[int] = (128, 256, 512, 512),
layers_per_block: int = 2,
act_fn: str = "silu",
norm_num_groups: int = 32,
scaling_factor: float = 0.476986,
spatial_compression_ratio: int = 8,
temporal_compression_ratio: int = 4,
mid_block_add_attention: bool = True,
) -> None:
super().__init__()
self.time_compression_ratio = temporal_compression_ratio
self.encoder = HunyuanVideoEncoder3D(
in_channels=in_channels,
out_channels=latent_channels,
down_block_types=down_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
norm_num_groups=norm_num_groups,
act_fn=act_fn,
double_z=True,
mid_block_add_attention=mid_block_add_attention,
temporal_compression_ratio=temporal_compression_ratio,
spatial_compression_ratio=spatial_compression_ratio,
)
self.decoder = HunyuanVideoDecoder3D(
in_channels=latent_channels,
out_channels=out_channels,
up_block_types=up_block_types,
block_out_channels=block_out_channels,
layers_per_block=layers_per_block,
norm_num_groups=norm_num_groups,
act_fn=act_fn,
time_compression_ratio=temporal_compression_ratio,
spatial_compression_ratio=spatial_compression_ratio,
mid_block_add_attention=mid_block_add_attention,
)
self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1)
self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1)
self.spatial_compression_ratio = spatial_compression_ratio
self.temporal_compression_ratio = temporal_compression_ratio
# When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
# to perform decoding of a single video latent at a time.
self.use_slicing = False
# When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
# frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
# intermediate tiles together, the memory requirement can be lowered.
self.use_tiling = False
# When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames
# at a fixed frame batch size (based on `self.num_latent_frames_batch_sizes`), the memory requirement can be lowered.
self.use_framewise_encoding = True
self.use_framewise_decoding = True
# The minimal tile height and width for spatial tiling to be used
self.tile_sample_min_height = 256
self.tile_sample_min_width = 256
self.tile_sample_min_num_frames = 16
# The minimal distance between two spatial tiles
self.tile_sample_stride_height = 192
self.tile_sample_stride_width = 192
self.tile_sample_stride_num_frames = 12
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (HunyuanVideoEncoder3D, HunyuanVideoDecoder3D)):
module.gradient_checkpointing = value
def enable_tiling(
self,
tile_sample_min_height: Optional[int] = None,
tile_sample_min_width: Optional[int] = None,
tile_sample_min_num_frames: Optional[int] = None,
tile_sample_stride_height: Optional[float] = None,
tile_sample_stride_width: Optional[float] = None,
tile_sample_stride_num_frames: Optional[float] = None,
) -> None:
r"""
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
processing larger images.
Args:
tile_sample_min_height (`int`, *optional*):
The minimum height required for a sample to be separated into tiles across the height dimension.
tile_sample_min_width (`int`, *optional*):
The minimum width required for a sample to be separated into tiles across the width dimension.
tile_sample_min_num_frames (`int`, *optional*):
The minimum number of frames required for a sample to be separated into tiles across the frame
dimension.
tile_sample_stride_height (`int`, *optional*):
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
no tiling artifacts produced across the height dimension.
tile_sample_stride_width (`int`, *optional*):
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
artifacts produced across the width dimension.
tile_sample_stride_num_frames (`int`, *optional*):
The stride between two consecutive frame tiles. This is to ensure that there are no tiling artifacts
produced across the frame dimension.
"""
self.use_tiling = True
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
self.tile_sample_min_num_frames = tile_sample_min_num_frames or self.tile_sample_min_num_frames
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
self.tile_sample_stride_num_frames = tile_sample_stride_num_frames or self.tile_sample_stride_num_frames
def disable_tiling(self) -> None:
r"""
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_tiling = False
def enable_slicing(self) -> None:
r"""
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
"""
self.use_slicing = True
def disable_slicing(self) -> None:
r"""
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
decoding in one step.
"""
self.use_slicing = False
def _encode(self, x: torch.Tensor) -> torch.Tensor:
batch_size, num_channels, num_frames, height, width = x.shape
if self.use_framewise_decoding and num_frames > self.tile_sample_min_num_frames:
return self._temporal_tiled_encode(x)
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
return self.tiled_encode(x)
x = self.encoder(x)
enc = self.quant_conv(x)
return enc
@apply_forward_hook
def encode(
self, x: torch.Tensor, return_dict: bool = True
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
r"""
Encode a batch of images into latents.
Args:
x (`torch.Tensor`): Input batch of images.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
Returns:
The latent representations of the encoded videos. If `return_dict` is True, a
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
"""
if self.use_slicing and x.shape[0] > 1:
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
h = torch.cat(encoded_slices)
else:
h = self._encode(x)
posterior = DiagonalGaussianDistribution(h)
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=posterior)
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
batch_size, num_channels, num_frames, height, width = z.shape
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
tile_latent_min_width = self.tile_sample_stride_width // self.spatial_compression_ratio
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
if self.use_framewise_decoding and num_frames > tile_latent_min_num_frames:
return self._temporal_tiled_decode(z, return_dict=return_dict)
if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height):
return self.tiled_decode(z, return_dict=return_dict)
z = self.post_quant_conv(z)
dec = self.decoder(z)
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
@apply_forward_hook
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
r"""
Decode a batch of images.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
if self.use_slicing and z.shape[0] > 1:
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
decoded = torch.cat(decoded_slices)
else:
decoded = self._decode(z).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=decoded)
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
for y in range(blend_extent):
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
y / blend_extent
)
return b
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
for x in range(blend_extent):
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
x / blend_extent
)
return b
def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
blend_extent = min(a.shape[-3], b.shape[-3], blend_extent)
for x in range(blend_extent):
b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * (
x / blend_extent
)
return b
def tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput:
r"""Encode a batch of images using a tiled encoder.
Args:
x (`torch.Tensor`): Input batch of videos.
Returns:
`torch.Tensor`:
The latent representation of the encoded videos.
"""
batch_size, num_channels, num_frames, height, width = x.shape
latent_height = height // self.spatial_compression_ratio
latent_width = width // self.spatial_compression_ratio
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
blend_height = tile_latent_min_height - tile_latent_stride_height
blend_width = tile_latent_min_width - tile_latent_stride_width
# Split x into overlapping tiles and encode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, height, self.tile_sample_stride_height):
row = []
for j in range(0, width, self.tile_sample_stride_width):
tile = x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
tile = self.encoder(tile)
tile = self.quant_conv(tile)
row.append(tile)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_width)
result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
result_rows.append(torch.cat(result_row, dim=4))
enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
return enc
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
r"""
Decode a batch of images using a tiled decoder.
Args:
z (`torch.Tensor`): Input batch of latent vectors.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
Returns:
[`~models.vae.DecoderOutput`] or `tuple`:
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
returned.
"""
batch_size, num_channels, num_frames, height, width = z.shape
sample_height = height * self.spatial_compression_ratio
sample_width = width * self.spatial_compression_ratio
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
blend_width = self.tile_sample_min_width - self.tile_sample_stride_width
# Split z into overlapping tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
rows = []
for i in range(0, height, tile_latent_stride_height):
row = []
for j in range(0, width, tile_latent_stride_width):
tile = z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width]
tile = self.post_quant_conv(tile)
decoded = self.decoder(tile)
row.append(decoded)
rows.append(row)
result_rows = []
for i, row in enumerate(rows):
result_row = []
for j, tile in enumerate(row):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
if j > 0:
tile = self.blend_h(row[j - 1], tile, blend_width)
result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
result_rows.append(torch.cat(result_row, dim=-1))
dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def _temporal_tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput:
batch_size, num_channels, num_frames, height, width = x.shape
latent_num_frames = (num_frames - 1) // self.temporal_compression_ratio + 1
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio
blend_num_frames = tile_latent_min_num_frames - tile_latent_stride_num_frames
row = []
for i in range(0, num_frames, self.tile_sample_stride_num_frames):
tile = x[:, :, i : i + self.tile_sample_min_num_frames + 1, :, :]
if self.use_tiling and (height > self.tile_sample_min_height or width > self.tile_sample_min_width):
tile = self.tiled_encode(tile)
else:
tile = self.encoder(tile)
tile = self.quant_conv(tile)
if i > 0:
tile = tile[:, :, 1:, :, :]
row.append(tile)
result_row = []
for i, tile in enumerate(row):
if i > 0:
tile = self.blend_t(row[i - 1], tile, blend_num_frames)
result_row.append(tile[:, :, :tile_latent_stride_num_frames, :, :])
else:
result_row.append(tile[:, :, : tile_latent_stride_num_frames + 1, :, :])
enc = torch.cat(result_row, dim=2)[:, :, :latent_num_frames]
return enc
def _temporal_tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
batch_size, num_channels, num_frames, height, width = z.shape
num_sample_frames = (num_frames - 1) * self.temporal_compression_ratio + 1
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio
blend_num_frames = self.tile_sample_min_num_frames - self.tile_sample_stride_num_frames
row = []
for i in range(0, num_frames, tile_latent_stride_num_frames):
tile = z[:, :, i : i + tile_latent_min_num_frames + 1, :, :]
if self.use_tiling and (tile.shape[-1] > tile_latent_min_width or tile.shape[-2] > tile_latent_min_height):
decoded = self.tiled_decode(tile, return_dict=True).sample
else:
tile = self.post_quant_conv(tile)
decoded = self.decoder(tile)
if i > 0:
decoded = decoded[:, :, 1:, :, :]
row.append(decoded)
result_row = []
for i, tile in enumerate(row):
if i > 0:
tile = self.blend_t(row[i - 1], tile, blend_num_frames)
result_row.append(tile[:, :, : self.tile_sample_stride_num_frames, :, :])
else:
result_row.append(tile[:, :, : self.tile_sample_stride_num_frames + 1, :, :])
dec = torch.cat(result_row, dim=2)[:, :, :num_sample_frames]
if not return_dict:
return (dec,)
return DecoderOutput(sample=dec)
def forward(
self,
sample: torch.Tensor,
sample_posterior: bool = False,
return_dict: bool = True,
generator: Optional[torch.Generator] = None,
) -> Union[DecoderOutput, torch.Tensor]:
r"""
Args:
sample (`torch.Tensor`): Input sample.
sample_posterior (`bool`, *optional*, defaults to `False`):
Whether to sample from the posterior.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
"""
x = sample
posterior = self.encode(x).latent_dist
if sample_posterior:
z = posterior.sample(generator=generator)
else:
z = posterior.mode()
dec = self.decode(z, return_dict=return_dict)
return dec | class_definition | 26,662 | 48,535 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py | null | 1,250 |
class EnvironmentCommand(BaseDiffusersCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser) -> None:
download_parser = parser.add_parser("env")
download_parser.set_defaults(func=info_command_factory)
def run(self) -> dict:
hub_version = huggingface_hub.__version__
safetensors_version = "not installed"
if is_safetensors_available():
import safetensors
safetensors_version = safetensors.__version__
pt_version = "not installed"
pt_cuda_available = "NA"
if is_torch_available():
import torch
pt_version = torch.__version__
pt_cuda_available = torch.cuda.is_available()
flax_version = "not installed"
jax_version = "not installed"
jaxlib_version = "not installed"
jax_backend = "NA"
if is_flax_available():
import flax
import jax
import jaxlib
flax_version = flax.__version__
jax_version = jax.__version__
jaxlib_version = jaxlib.__version__
jax_backend = jax.lib.xla_bridge.get_backend().platform
transformers_version = "not installed"
if is_transformers_available():
import transformers
transformers_version = transformers.__version__
accelerate_version = "not installed"
if is_accelerate_available():
import accelerate
accelerate_version = accelerate.__version__
peft_version = "not installed"
if is_peft_available():
import peft
peft_version = peft.__version__
bitsandbytes_version = "not installed"
if is_bitsandbytes_available():
import bitsandbytes
bitsandbytes_version = bitsandbytes.__version__
xformers_version = "not installed"
if is_xformers_available():
import xformers
xformers_version = xformers.__version__
platform_info = platform.platform()
is_google_colab_str = "Yes" if is_google_colab() else "No"
accelerator = "NA"
if platform.system() in {"Linux", "Windows"}:
try:
sp = subprocess.Popen(
["nvidia-smi", "--query-gpu=gpu_name,memory.total", "--format=csv,noheader"],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
out_str, _ = sp.communicate()
out_str = out_str.decode("utf-8")
if len(out_str) > 0:
accelerator = out_str.strip()
except FileNotFoundError:
pass
elif platform.system() == "Darwin": # Mac OS
try:
sp = subprocess.Popen(
["system_profiler", "SPDisplaysDataType"],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
out_str, _ = sp.communicate()
out_str = out_str.decode("utf-8")
start = out_str.find("Chipset Model:")
if start != -1:
start += len("Chipset Model:")
end = out_str.find("\n", start)
accelerator = out_str[start:end].strip()
start = out_str.find("VRAM (Total):")
if start != -1:
start += len("VRAM (Total):")
end = out_str.find("\n", start)
accelerator += " VRAM: " + out_str[start:end].strip()
except FileNotFoundError:
pass
else:
print("It seems you are running an unusual OS. Could you fill in the accelerator manually?")
info = {
"🤗 Diffusers version": version,
"Platform": platform_info,
"Running on Google Colab?": is_google_colab_str,
"Python version": platform.python_version(),
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
"Flax version (CPU?/GPU?/TPU?)": f"{flax_version} ({jax_backend})",
"Jax version": jax_version,
"JaxLib version": jaxlib_version,
"Huggingface_hub version": hub_version,
"Transformers version": transformers_version,
"Accelerate version": accelerate_version,
"PEFT version": peft_version,
"Bitsandbytes version": bitsandbytes_version,
"Safetensors version": safetensors_version,
"xFormers version": xformers_version,
"Accelerator": accelerator,
"Using GPU in script?": "<fill in>",
"Using distributed or parallel set-up in script?": "<fill in>",
}
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n")
print(self.format_dict(info))
return info
@staticmethod
def format_dict(d: dict) -> str:
return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n" | class_definition | 1,106 | 6,223 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/commands/env.py | null | 1,251 |
class BaseDiffusersCLICommand(ABC):
@staticmethod
@abstractmethod
def register_subcommand(parser: ArgumentParser):
raise NotImplementedError()
@abstractmethod
def run(self):
raise NotImplementedError() | class_definition | 681 | 919 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/commands/__init__.py | null | 1,252 |
class FP16SafetensorsCommand(BaseDiffusersCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
conversion_parser = parser.add_parser("fp16_safetensors")
conversion_parser.add_argument(
"--ckpt_id",
type=str,
help="Repo id of the checkpoints on which to run the conversion. Example: 'openai/shap-e'.",
)
conversion_parser.add_argument(
"--fp16", action="store_true", help="If serializing the variables in FP16 precision."
)
conversion_parser.add_argument(
"--use_safetensors", action="store_true", help="If serializing in the safetensors format."
)
conversion_parser.add_argument(
"--use_auth_token",
action="store_true",
help="When working with checkpoints having private visibility. When used `huggingface-cli login` needs to be run beforehand.",
)
conversion_parser.set_defaults(func=conversion_command_factory)
def __init__(self, ckpt_id: str, fp16: bool, use_safetensors: bool):
self.logger = logging.get_logger("diffusers-cli/fp16_safetensors")
self.ckpt_id = ckpt_id
self.local_ckpt_dir = f"/tmp/{ckpt_id}"
self.fp16 = fp16
self.use_safetensors = use_safetensors
if not self.use_safetensors and not self.fp16:
raise NotImplementedError(
"When `use_safetensors` and `fp16` both are False, then this command is of no use."
)
def run(self):
if version.parse(huggingface_hub.__version__) < version.parse("0.9.0"):
raise ImportError(
"The huggingface_hub version must be >= 0.9.0 to use this command. Please update your huggingface_hub"
" installation."
)
else:
from huggingface_hub import create_commit
from huggingface_hub._commit_api import CommitOperationAdd
model_index = hf_hub_download(repo_id=self.ckpt_id, filename="model_index.json")
with open(model_index, "r") as f:
pipeline_class_name = json.load(f)["_class_name"]
pipeline_class = getattr(import_module("diffusers"), pipeline_class_name)
self.logger.info(f"Pipeline class imported: {pipeline_class_name}.")
# Load the appropriate pipeline. We could have use `DiffusionPipeline`
# here, but just to avoid any rough edge cases.
pipeline = pipeline_class.from_pretrained(
self.ckpt_id, torch_dtype=torch.float16 if self.fp16 else torch.float32
)
pipeline.save_pretrained(
self.local_ckpt_dir,
safe_serialization=True if self.use_safetensors else False,
variant="fp16" if self.fp16 else None,
)
self.logger.info(f"Pipeline locally saved to {self.local_ckpt_dir}.")
# Fetch all the paths.
if self.fp16:
modified_paths = glob.glob(f"{self.local_ckpt_dir}/*/*.fp16.*")
elif self.use_safetensors:
modified_paths = glob.glob(f"{self.local_ckpt_dir}/*/*.safetensors")
# Prepare for the PR.
commit_message = f"Serialize variables with FP16: {self.fp16} and safetensors: {self.use_safetensors}."
operations = []
for path in modified_paths:
operations.append(CommitOperationAdd(path_in_repo="/".join(path.split("/")[4:]), path_or_fileobj=path))
# Open the PR.
commit_description = (
"Variables converted by the [`diffusers`' `fp16_safetensors`"
" CLI](https://github.com/huggingface/diffusers/blob/main/src/diffusers/commands/fp16_safetensors.py)."
)
hub_pr_url = create_commit(
repo_id=self.ckpt_id,
operations=operations,
commit_message=commit_message,
commit_description=commit_description,
repo_type="model",
create_pr=True,
).pr_url
self.logger.info(f"PR created here: {hub_pr_url}.") | class_definition | 1,389 | 5,422 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/commands/fp16_safetensors.py | null | 1,253 |
class SD3Transformer2DLoadersMixin:
"""Load IP-Adapters and LoRA layers into a `[SD3Transformer2DModel]`."""
def _load_ip_adapter_weights(self, state_dict: Dict, low_cpu_mem_usage: bool = _LOW_CPU_MEM_USAGE_DEFAULT) -> None:
"""Sets IP-Adapter attention processors, image projection, and loads state_dict.
Args:
state_dict (`Dict`):
State dict with keys "ip_adapter", which contains parameters for attention processors, and
"image_proj", which contains parameters for image projection net.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
"""
# IP-Adapter cross attention parameters
hidden_size = self.config.attention_head_dim * self.config.num_attention_heads
ip_hidden_states_dim = self.config.attention_head_dim * self.config.num_attention_heads
timesteps_emb_dim = state_dict["ip_adapter"]["0.norm_ip.linear.weight"].shape[1]
# Dict where key is transformer layer index, value is attention processor's state dict
# ip_adapter state dict keys example: "0.norm_ip.linear.weight"
layer_state_dict = {idx: {} for idx in range(len(self.attn_processors))}
for key, weights in state_dict["ip_adapter"].items():
idx, name = key.split(".", maxsplit=1)
layer_state_dict[int(idx)][name] = weights
# Create IP-Adapter attention processor
attn_procs = {}
for idx, name in enumerate(self.attn_processors.keys()):
attn_procs[name] = SD3IPAdapterJointAttnProcessor2_0(
hidden_size=hidden_size,
ip_hidden_states_dim=ip_hidden_states_dim,
head_dim=self.config.attention_head_dim,
timesteps_emb_dim=timesteps_emb_dim,
).to(self.device, dtype=self.dtype)
if not low_cpu_mem_usage:
attn_procs[name].load_state_dict(layer_state_dict[idx], strict=True)
else:
load_model_dict_into_meta(
attn_procs[name], layer_state_dict[idx], device=self.device, dtype=self.dtype
)
self.set_attn_processor(attn_procs)
# Image projetion parameters
embed_dim = state_dict["image_proj"]["proj_in.weight"].shape[1]
output_dim = state_dict["image_proj"]["proj_out.weight"].shape[0]
hidden_dim = state_dict["image_proj"]["proj_in.weight"].shape[0]
heads = state_dict["image_proj"]["layers.0.attn.to_q.weight"].shape[0] // 64
num_queries = state_dict["image_proj"]["latents"].shape[1]
timestep_in_dim = state_dict["image_proj"]["time_embedding.linear_1.weight"].shape[1]
# Image projection
self.image_proj = IPAdapterTimeImageProjection(
embed_dim=embed_dim,
output_dim=output_dim,
hidden_dim=hidden_dim,
heads=heads,
num_queries=num_queries,
timestep_in_dim=timestep_in_dim,
).to(device=self.device, dtype=self.dtype)
if not low_cpu_mem_usage:
self.image_proj.load_state_dict(state_dict["image_proj"], strict=True)
else:
load_model_dict_into_meta(self.image_proj, state_dict["image_proj"], device=self.device, dtype=self.dtype) | class_definition | 859 | 4,592 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/transformer_sd3.py | null | 1,254 |
class FromSingleFileMixin:
"""
Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
"""
@classmethod
@validate_hf_hub_args
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
r"""
Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors`
format. The pipeline is set in evaluation mode (`model.eval()`) by default.
Parameters:
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
Can be either:
- A link to the `.ckpt` file (for example
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
- A path to a *file* containing all pipeline weights.
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
original_config_file (`str`, *optional*):
The path to the original config file that was used to train the model. If not provided, the config file
will be inferred from the checkpoint file.
config (`str`, *optional*):
Can be either:
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
hosted on the Hub.
- A path to a *directory* (for example `./my_pipeline_directory/`) containing the pipeline
component configs in Diffusers format.
disable_mmap ('bool', *optional*, defaults to 'False'):
Whether to disable mmap when loading a Safetensors model. This option can perform better when the model
is on a network mount or hard drive.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
class). The overwritten components are passed directly to the pipelines `__init__` method. See example
below for more information.
Examples:
```py
>>> from diffusers import StableDiffusionPipeline
>>> # Download pipeline from huggingface.co and cache.
>>> pipeline = StableDiffusionPipeline.from_single_file(
... "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
... )
>>> # Download pipeline from local file
>>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
>>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly.ckpt")
>>> # Enable float16 and move to GPU
>>> pipeline = StableDiffusionPipeline.from_single_file(
... "https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
... torch_dtype=torch.float16,
... )
>>> pipeline.to("cuda")
```
"""
original_config_file = kwargs.pop("original_config_file", None)
config = kwargs.pop("config", None)
original_config = kwargs.pop("original_config", None)
if original_config_file is not None:
deprecation_message = (
"`original_config_file` argument is deprecated and will be removed in future versions."
"please use the `original_config` argument instead."
)
deprecate("original_config_file", "1.0.0", deprecation_message)
original_config = original_config_file
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
token = kwargs.pop("token", None)
cache_dir = kwargs.pop("cache_dir", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
torch_dtype = kwargs.pop("torch_dtype", None)
disable_mmap = kwargs.pop("disable_mmap", False)
is_legacy_loading = False
# We shouldn't allow configuring individual models components through a Pipeline creation method
# These model kwargs should be deprecated
scaling_factor = kwargs.get("scaling_factor", None)
if scaling_factor is not None:
deprecation_message = (
"Passing the `scaling_factor` argument to `from_single_file is deprecated "
"and will be ignored in future versions."
)
deprecate("scaling_factor", "1.0.0", deprecation_message)
if original_config is not None:
original_config = fetch_original_config(original_config, local_files_only=local_files_only)
from ..pipelines.pipeline_utils import _get_pipeline_class
pipeline_class = _get_pipeline_class(cls, config=None)
checkpoint = load_single_file_checkpoint(
pretrained_model_link_or_path,
force_download=force_download,
proxies=proxies,
token=token,
cache_dir=cache_dir,
local_files_only=local_files_only,
revision=revision,
disable_mmap=disable_mmap,
)
if config is None:
config = fetch_diffusers_config(checkpoint)
default_pretrained_model_config_name = config["pretrained_model_name_or_path"]
else:
default_pretrained_model_config_name = config
if not os.path.isdir(default_pretrained_model_config_name):
# Provided config is a repo_id
if default_pretrained_model_config_name.count("/") > 1:
raise ValueError(
f'The provided config "{config}"'
" is neither a valid local path nor a valid repo id. Please check the parameter."
)
try:
# Attempt to download the config files for the pipeline
cached_model_config_path = _download_diffusers_model_config_from_hub(
default_pretrained_model_config_name,
cache_dir=cache_dir,
revision=revision,
proxies=proxies,
force_download=force_download,
local_files_only=local_files_only,
token=token,
)
config_dict = pipeline_class.load_config(cached_model_config_path)
except LocalEntryNotFoundError:
# `local_files_only=True` but a local diffusers format model config is not available in the cache
# If `original_config` is not provided, we need override `local_files_only` to False
# to fetch the config files from the hub so that we have a way
# to configure the pipeline components.
if original_config is None:
logger.warning(
"`local_files_only` is True but no local configs were found for this checkpoint.\n"
"Attempting to download the necessary config files for this pipeline.\n"
)
cached_model_config_path = _download_diffusers_model_config_from_hub(
default_pretrained_model_config_name,
cache_dir=cache_dir,
revision=revision,
proxies=proxies,
force_download=force_download,
local_files_only=False,
token=token,
)
config_dict = pipeline_class.load_config(cached_model_config_path)
else:
# For backwards compatibility
# If `original_config` is provided, then we need to assume we are using legacy loading for pipeline components
logger.warning(
"Detected legacy `from_single_file` loading behavior. Attempting to create the pipeline based on inferred components.\n"
"This may lead to errors if the model components are not correctly inferred. \n"
"To avoid this warning, please explicity pass the `config` argument to `from_single_file` with a path to a local diffusers model repo \n"
"e.g. `from_single_file(<my model checkpoint path>, config=<path to local diffusers model repo>) \n"
"or run `from_single_file` with `local_files_only=False` first to update the local cache directory with "
"the necessary config files.\n"
)
is_legacy_loading = True
cached_model_config_path = None
config_dict = _infer_pipeline_config_dict(pipeline_class)
config_dict["_class_name"] = pipeline_class.__name__
else:
# Provided config is a path to a local directory attempt to load directly.
cached_model_config_path = default_pretrained_model_config_name
config_dict = pipeline_class.load_config(cached_model_config_path)
# pop out "_ignore_files" as it is only needed for download
config_dict.pop("_ignore_files", None)
expected_modules, optional_kwargs = pipeline_class._get_signature_keys(cls)
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict}
init_kwargs = {**init_kwargs, **passed_pipe_kwargs}
from diffusers import pipelines
# remove `null` components
def load_module(name, value):
if value[0] is None:
return False
if name in passed_class_obj and passed_class_obj[name] is None:
return False
if name in SINGLE_FILE_OPTIONAL_COMPONENTS:
return False
return True
init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}
for name, (library_name, class_name) in logging.tqdm(
sorted(init_dict.items()), desc="Loading pipeline components..."
):
loaded_sub_model = None
is_pipeline_module = hasattr(pipelines, library_name)
if name in passed_class_obj:
loaded_sub_model = passed_class_obj[name]
else:
try:
loaded_sub_model = load_single_file_sub_model(
library_name=library_name,
class_name=class_name,
name=name,
checkpoint=checkpoint,
is_pipeline_module=is_pipeline_module,
cached_model_config_path=cached_model_config_path,
pipelines=pipelines,
torch_dtype=torch_dtype,
original_config=original_config,
local_files_only=local_files_only,
is_legacy_loading=is_legacy_loading,
disable_mmap=disable_mmap,
**kwargs,
)
except SingleFileComponentError as e:
raise SingleFileComponentError(
(
f"{e.message}\n"
f"Please load the component before passing it in as an argument to `from_single_file`.\n"
f"\n"
f"{name} = {class_name}.from_pretrained('...')\n"
f"pipe = {pipeline_class.__name__}.from_single_file(<checkpoint path>, {name}={name})\n"
f"\n"
)
)
init_kwargs[name] = loaded_sub_model
missing_modules = set(expected_modules) - set(init_kwargs.keys())
passed_modules = list(passed_class_obj.keys())
optional_modules = pipeline_class._optional_components
if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
for module in missing_modules:
init_kwargs[module] = passed_class_obj.get(module, None)
elif len(missing_modules) > 0:
passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
raise ValueError(
f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
)
# deprecated kwargs
load_safety_checker = kwargs.pop("load_safety_checker", None)
if load_safety_checker is not None:
deprecation_message = (
"Please pass instances of `StableDiffusionSafetyChecker` and `AutoImageProcessor`"
"using the `safety_checker` and `feature_extractor` arguments in `from_single_file`"
)
deprecate("load_safety_checker", "1.0.0", deprecation_message)
safety_checker_components = _legacy_load_safety_checker(local_files_only, torch_dtype)
init_kwargs.update(safety_checker_components)
pipe = pipeline_class(**init_kwargs)
return pipe | class_definition | 9,715 | 24,685 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/single_file.py | null | 1,255 |
class PeftAdapterMixin:
"""
A class containing all functions for loading and using adapters weights that are supported in PEFT library. For
more details about adapters and injecting them in a base model, check out the PEFT
[documentation](https://huggingface.co/docs/peft/index).
Install the latest version of PEFT, and use this mixin to:
- Attach new adapters in the model.
- Attach multiple adapters and iteratively activate/deactivate them.
- Activate/deactivate all adapters from the model.
- Get a list of the active adapters.
"""
_hf_peft_config_loaded = False
@classmethod
# Copied from diffusers.loaders.lora_base.LoraBaseMixin._optionally_disable_offloading
def _optionally_disable_offloading(cls, _pipeline):
"""
Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU.
Args:
_pipeline (`DiffusionPipeline`):
The pipeline to disable offloading for.
Returns:
tuple:
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
"""
return _func_optionally_disable_offloading(_pipeline=_pipeline)
def load_lora_adapter(self, pretrained_model_name_or_path_or_dict, prefix="transformer", **kwargs):
r"""
Loads a LoRA adapter into the underlying model.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
prefix (`str`, *optional*): Prefix to filter the state dict.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
network_alphas (`Dict[str, float]`):
The value of the network alpha used for stable learning and preventing underflow. This value has the
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
"""
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
from peft.tuners.tuners_utils import BaseTunerLayer
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", None)
use_safetensors = kwargs.pop("use_safetensors", None)
adapter_name = kwargs.pop("adapter_name", None)
network_alphas = kwargs.pop("network_alphas", None)
_pipeline = kwargs.pop("_pipeline", None)
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", False)
allow_pickle = False
if low_cpu_mem_usage and is_peft_version("<=", "0.13.0"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
state_dict = _fetch_state_dict(
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
weight_name=weight_name,
use_safetensors=use_safetensors,
local_files_only=local_files_only,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
allow_pickle=allow_pickle,
)
if network_alphas is not None and prefix is None:
raise ValueError("`network_alphas` cannot be None when `prefix` is None.")
if prefix is not None:
keys = list(state_dict.keys())
model_keys = [k for k in keys if k.startswith(f"{prefix}.")]
if len(model_keys) > 0:
state_dict = {k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in model_keys}
if len(state_dict) > 0:
if adapter_name in getattr(self, "peft_config", {}):
raise ValueError(
f"Adapter name {adapter_name} already in use in the model - please select a new adapter name."
)
# check with first key if is not in peft format
first_key = next(iter(state_dict.keys()))
if "lora_A" not in first_key:
state_dict = convert_unet_state_dict_to_peft(state_dict)
rank = {}
for key, val in state_dict.items():
# Cannot figure out rank from lora layers that don't have atleast 2 dimensions.
# Bias layers in LoRA only have a single dimension
if "lora_B" in key and val.ndim > 1:
rank[key] = val.shape[1]
if network_alphas is not None and len(network_alphas) >= 1:
alpha_keys = [k for k in network_alphas.keys() if k.startswith(f"{prefix}.")]
network_alphas = {k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys}
lora_config_kwargs = get_peft_kwargs(rank, network_alpha_dict=network_alphas, peft_state_dict=state_dict)
lora_config_kwargs = _maybe_adjust_config(lora_config_kwargs)
if "use_dora" in lora_config_kwargs:
if lora_config_kwargs["use_dora"]:
if is_peft_version("<", "0.9.0"):
raise ValueError(
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
)
else:
if is_peft_version("<", "0.9.0"):
lora_config_kwargs.pop("use_dora")
if "lora_bias" in lora_config_kwargs:
if lora_config_kwargs["lora_bias"]:
if is_peft_version("<=", "0.13.2"):
raise ValueError(
"You need `peft` 0.14.0 at least to use `lora_bias` in LoRAs. Please upgrade your installation of `peft`."
)
else:
if is_peft_version("<=", "0.13.2"):
lora_config_kwargs.pop("lora_bias")
lora_config = LoraConfig(**lora_config_kwargs)
# adapter_name
if adapter_name is None:
adapter_name = get_adapter_name(self)
# <Unsafe code
# We can be sure that the following works as it just sets attention processors, lora layers and puts all in the same dtype
# Now we remove any existing hooks to `_pipeline`.
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
# otherwise loading LoRA weights will lead to an error
is_model_cpu_offload, is_sequential_cpu_offload = self._optionally_disable_offloading(_pipeline)
peft_kwargs = {}
if is_peft_version(">=", "0.13.1"):
peft_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
# To handle scenarios where we cannot successfully set state dict. If it's unsucessful,
# we should also delete the `peft_config` associated to the `adapter_name`.
try:
inject_adapter_in_model(lora_config, self, adapter_name=adapter_name, **peft_kwargs)
incompatible_keys = set_peft_model_state_dict(self, state_dict, adapter_name, **peft_kwargs)
except Exception as e:
# In case `inject_adapter_in_model()` was unsuccessful even before injecting the `peft_config`.
if hasattr(self, "peft_config"):
for module in self.modules():
if isinstance(module, BaseTunerLayer):
active_adapters = module.active_adapters
for active_adapter in active_adapters:
if adapter_name in active_adapter:
module.delete_adapter(adapter_name)
self.peft_config.pop(adapter_name)
logger.error(f"Loading {adapter_name} was unsucessful with the following error: \n{e}")
raise
warn_msg = ""
if incompatible_keys is not None:
# Check only for unexpected keys.
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
if unexpected_keys:
lora_unexpected_keys = [k for k in unexpected_keys if "lora_" in k and adapter_name in k]
if lora_unexpected_keys:
warn_msg = (
f"Loading adapter weights from state_dict led to unexpected keys found in the model:"
f" {', '.join(lora_unexpected_keys)}. "
)
# Filter missing keys specific to the current adapter.
missing_keys = getattr(incompatible_keys, "missing_keys", None)
if missing_keys:
lora_missing_keys = [k for k in missing_keys if "lora_" in k and adapter_name in k]
if lora_missing_keys:
warn_msg += (
f"Loading adapter weights from state_dict led to missing keys in the model:"
f" {', '.join(lora_missing_keys)}."
)
if warn_msg:
logger.warning(warn_msg)
# Offload back.
if is_model_cpu_offload:
_pipeline.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
_pipeline.enable_sequential_cpu_offload()
# Unsafe code />
def save_lora_adapter(
self,
save_directory,
adapter_name: str = "default",
upcast_before_saving: bool = False,
safe_serialization: bool = True,
weight_name: Optional[str] = None,
):
"""
Save the LoRA parameters corresponding to the underlying model.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save LoRA parameters to. Will be created if it doesn't exist.
adapter_name: (`str`, defaults to "default"): The name of the adapter to serialize. Useful when the
underlying model has multiple adapters loaded.
upcast_before_saving (`bool`, defaults to `False`):
Whether to cast the underlying model to `torch.float32` before serialization.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
weight_name: (`str`, *optional*, defaults to `None`): Name of the file to serialize the state dict with.
"""
from peft.utils import get_peft_model_state_dict
from .lora_base import LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE
if adapter_name is None:
adapter_name = get_adapter_name(self)
if adapter_name not in getattr(self, "peft_config", {}):
raise ValueError(f"Adapter name {adapter_name} not found in the model.")
lora_layers_to_save = get_peft_model_state_dict(
self.to(dtype=torch.float32 if upcast_before_saving else None), adapter_name=adapter_name
)
if os.path.isfile(save_directory):
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")
if safe_serialization:
def save_function(weights, filename):
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})
else:
save_function = torch.save
os.makedirs(save_directory, exist_ok=True)
if weight_name is None:
if safe_serialization:
weight_name = LORA_WEIGHT_NAME_SAFE
else:
weight_name = LORA_WEIGHT_NAME
# TODO: we could consider saving the `peft_config` as well.
save_path = Path(save_directory, weight_name).as_posix()
save_function(lora_layers_to_save, save_path)
logger.info(f"Model weights saved in {save_path}")
def set_adapters(
self,
adapter_names: Union[List[str], str],
weights: Optional[Union[float, Dict, List[float], List[Dict], List[None]]] = None,
):
"""
Set the currently active adapters for use in the UNet.
Args:
adapter_names (`List[str]` or `str`):
The names of the adapters to use.
adapter_weights (`Union[List[float], float]`, *optional*):
The adapter(s) weights to use with the UNet. If `None`, the weights are set to `1.0` for all the
adapters.
Example:
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
).to("cuda")
pipeline.load_lora_weights(
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
)
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipeline.set_adapters(["cinematic", "pixel"], adapter_weights=[0.5, 0.5])
```
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for `set_adapters()`.")
adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names
# Expand weights into a list, one entry per adapter
# examples for e.g. 2 adapters: [{...}, 7] -> [7,7] ; None -> [None, None]
if not isinstance(weights, list):
weights = [weights] * len(adapter_names)
if len(adapter_names) != len(weights):
raise ValueError(
f"Length of adapter names {len(adapter_names)} is not equal to the length of their weights {len(weights)}."
)
# Set None values to default of 1.0
# e.g. [{...}, 7] -> [{...}, 7] ; [None, None] -> [1.0, 1.0]
weights = [w if w is not None else 1.0 for w in weights]
# e.g. [{...}, 7] -> [{expanded dict...}, 7]
scale_expansion_fn = _SET_ADAPTER_SCALE_FN_MAPPING[self.__class__.__name__]
weights = scale_expansion_fn(self, weights)
set_weights_and_activate_adapters(self, adapter_names, weights)
def add_adapter(self, adapter_config, adapter_name: str = "default") -> None:
r"""
Adds a new adapter to the current model for training. If no adapter name is passed, a default name is assigned
to the adapter to follow the convention of the PEFT library.
If you are not familiar with adapters and PEFT methods, we invite you to read more about them in the PEFT
[documentation](https://huggingface.co/docs/peft).
Args:
adapter_config (`[~peft.PeftConfig]`):
The configuration of the adapter to add; supported adapters are non-prefix tuning and adaption prompt
methods.
adapter_name (`str`, *optional*, defaults to `"default"`):
The name of the adapter to add. If no name is passed, a default name is assigned to the adapter.
"""
check_peft_version(min_version=MIN_PEFT_VERSION)
if not is_peft_available():
raise ImportError("PEFT is not available. Please install PEFT to use this function: `pip install peft`.")
from peft import PeftConfig, inject_adapter_in_model
if not self._hf_peft_config_loaded:
self._hf_peft_config_loaded = True
elif adapter_name in self.peft_config:
raise ValueError(f"Adapter with name {adapter_name} already exists. Please use a different name.")
if not isinstance(adapter_config, PeftConfig):
raise ValueError(
f"adapter_config should be an instance of PeftConfig. Got {type(adapter_config)} instead."
)
# Unlike transformers, here we don't need to retrieve the name_or_path of the unet as the loading logic is
# handled by the `load_lora_layers` or `StableDiffusionLoraLoaderMixin`. Therefore we set it to `None` here.
adapter_config.base_model_name_or_path = None
inject_adapter_in_model(adapter_config, self, adapter_name)
self.set_adapter(adapter_name)
def set_adapter(self, adapter_name: Union[str, List[str]]) -> None:
"""
Sets a specific adapter by forcing the model to only use that adapter and disables the other adapters.
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
[documentation](https://huggingface.co/docs/peft).
Args:
adapter_name (Union[str, List[str]])):
The list of adapters to set or the adapter name in the case of a single adapter.
"""
check_peft_version(min_version=MIN_PEFT_VERSION)
if not self._hf_peft_config_loaded:
raise ValueError("No adapter loaded. Please load an adapter first.")
if isinstance(adapter_name, str):
adapter_name = [adapter_name]
missing = set(adapter_name) - set(self.peft_config)
if len(missing) > 0:
raise ValueError(
f"Following adapter(s) could not be found: {', '.join(missing)}. Make sure you are passing the correct adapter name(s)."
f" current loaded adapters are: {list(self.peft_config.keys())}"
)
from peft.tuners.tuners_utils import BaseTunerLayer
_adapters_has_been_set = False
for _, module in self.named_modules():
if isinstance(module, BaseTunerLayer):
if hasattr(module, "set_adapter"):
module.set_adapter(adapter_name)
# Previous versions of PEFT does not support multi-adapter inference
elif not hasattr(module, "set_adapter") and len(adapter_name) != 1:
raise ValueError(
"You are trying to set multiple adapters and you have a PEFT version that does not support multi-adapter inference. Please upgrade to the latest version of PEFT."
" `pip install -U peft` or `pip install -U git+https://github.com/huggingface/peft.git`"
)
else:
module.active_adapter = adapter_name
_adapters_has_been_set = True
if not _adapters_has_been_set:
raise ValueError(
"Did not succeeded in setting the adapter. Please make sure you are using a model that supports adapters."
)
def disable_adapters(self) -> None:
r"""
Disable all adapters attached to the model and fallback to inference with the base model only.
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
[documentation](https://huggingface.co/docs/peft).
"""
check_peft_version(min_version=MIN_PEFT_VERSION)
if not self._hf_peft_config_loaded:
raise ValueError("No adapter loaded. Please load an adapter first.")
from peft.tuners.tuners_utils import BaseTunerLayer
for _, module in self.named_modules():
if isinstance(module, BaseTunerLayer):
if hasattr(module, "enable_adapters"):
module.enable_adapters(enabled=False)
else:
# support for older PEFT versions
module.disable_adapters = True
def enable_adapters(self) -> None:
"""
Enable adapters that are attached to the model. The model uses `self.active_adapters()` to retrieve the list of
adapters to enable.
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
[documentation](https://huggingface.co/docs/peft).
"""
check_peft_version(min_version=MIN_PEFT_VERSION)
if not self._hf_peft_config_loaded:
raise ValueError("No adapter loaded. Please load an adapter first.")
from peft.tuners.tuners_utils import BaseTunerLayer
for _, module in self.named_modules():
if isinstance(module, BaseTunerLayer):
if hasattr(module, "enable_adapters"):
module.enable_adapters(enabled=True)
else:
# support for older PEFT versions
module.disable_adapters = False
def active_adapters(self) -> List[str]:
"""
Gets the current list of active adapters of the model.
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
[documentation](https://huggingface.co/docs/peft).
"""
check_peft_version(min_version=MIN_PEFT_VERSION)
if not is_peft_available():
raise ImportError("PEFT is not available. Please install PEFT to use this function: `pip install peft`.")
if not self._hf_peft_config_loaded:
raise ValueError("No adapter loaded. Please load an adapter first.")
from peft.tuners.tuners_utils import BaseTunerLayer
for _, module in self.named_modules():
if isinstance(module, BaseTunerLayer):
return module.active_adapter
def fuse_lora(self, lora_scale=1.0, safe_fusing=False, adapter_names=None):
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for `fuse_lora()`.")
self.lora_scale = lora_scale
self._safe_fusing = safe_fusing
self.apply(partial(self._fuse_lora_apply, adapter_names=adapter_names))
def _fuse_lora_apply(self, module, adapter_names=None):
from peft.tuners.tuners_utils import BaseTunerLayer
merge_kwargs = {"safe_merge": self._safe_fusing}
if isinstance(module, BaseTunerLayer):
if self.lora_scale != 1.0:
module.scale_layer(self.lora_scale)
# For BC with prevous PEFT versions, we need to check the signature
# of the `merge` method to see if it supports the `adapter_names` argument.
supported_merge_kwargs = list(inspect.signature(module.merge).parameters)
if "adapter_names" in supported_merge_kwargs:
merge_kwargs["adapter_names"] = adapter_names
elif "adapter_names" not in supported_merge_kwargs and adapter_names is not None:
raise ValueError(
"The `adapter_names` argument is not supported with your PEFT version. Please upgrade"
" to the latest version of PEFT. `pip install -U peft`"
)
module.merge(**merge_kwargs)
def unfuse_lora(self):
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for `unfuse_lora()`.")
self.apply(self._unfuse_lora_apply)
def _unfuse_lora_apply(self, module):
from peft.tuners.tuners_utils import BaseTunerLayer
if isinstance(module, BaseTunerLayer):
module.unmerge()
def unload_lora(self):
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for `unload_lora()`.")
from ..utils import recurse_remove_peft_layers
recurse_remove_peft_layers(self)
if hasattr(self, "peft_config"):
del self.peft_config
def disable_lora(self):
"""
Disables the active LoRA layers of the underlying model.
Example:
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
).to("cuda")
pipeline.load_lora_weights(
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
)
pipeline.disable_lora()
```
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
set_adapter_layers(self, enabled=False)
def enable_lora(self):
"""
Enables the active LoRA layers of the underlying model.
Example:
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
).to("cuda")
pipeline.load_lora_weights(
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
)
pipeline.enable_lora()
```
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
set_adapter_layers(self, enabled=True)
def delete_adapters(self, adapter_names: Union[List[str], str]):
"""
Delete an adapter's LoRA layers from the underlying model.
Args:
adapter_names (`Union[List[str], str]`):
The names (single string or list of strings) of the adapter to delete.
Example:
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
).to("cuda")
pipeline.load_lora_weights(
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_names="cinematic"
)
pipeline.delete_adapters("cinematic")
```
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
if isinstance(adapter_names, str):
adapter_names = [adapter_names]
for adapter_name in adapter_names:
delete_adapter_layers(self, adapter_name)
# Pop also the corresponding adapter from the config
if hasattr(self, "peft_config"):
self.peft_config.pop(adapter_name, None) | class_definition | 4,417 | 33,865 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/peft.py | null | 1,256 |
class UNet2DConditionLoadersMixin:
"""
Load LoRA layers into a [`UNet2DCondtionModel`].
"""
text_encoder_name = TEXT_ENCODER_NAME
unet_name = UNET_NAME
@validate_hf_hub_args
def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
r"""
Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
defined in
[`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py)
and be a `torch.nn.Module` class. Currently supported: LoRA, Custom Diffusion. For LoRA, one must install
`peft`: `pip install -U peft`.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
Can be either:
- A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a directory (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
network_alphas (`Dict[str, float]`):
The value of the network alpha used for stable learning and preventing underflow. This value has the
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
adapter_name (`str`, *optional*, defaults to None):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
weight_name (`str`, *optional*, defaults to None):
Name of the serialized state dict file.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
Example:
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
).to("cuda")
pipeline.unet.load_attn_procs(
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
)
```
"""
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", None)
use_safetensors = kwargs.pop("use_safetensors", None)
adapter_name = kwargs.pop("adapter_name", None)
_pipeline = kwargs.pop("_pipeline", None)
network_alphas = kwargs.pop("network_alphas", None)
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", False)
allow_pickle = False
if low_cpu_mem_usage and is_peft_version("<=", "0.13.0"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
model_file = None
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
# Let's first try to load .safetensors weights
if (use_safetensors and weight_name is None) or (
weight_name is not None and weight_name.endswith(".safetensors")
):
try:
model_file = _get_model_file(
pretrained_model_name_or_path_or_dict,
weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
state_dict = safetensors.torch.load_file(model_file, device="cpu")
except IOError as e:
if not allow_pickle:
raise e
# try loading non-safetensors weights
pass
if model_file is None:
model_file = _get_model_file(
pretrained_model_name_or_path_or_dict,
weights_name=weight_name or LORA_WEIGHT_NAME,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
state_dict = load_state_dict(model_file)
else:
state_dict = pretrained_model_name_or_path_or_dict
is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys())
is_model_cpu_offload = False
is_sequential_cpu_offload = False
if is_lora:
deprecation_message = "Using the `load_attn_procs()` method has been deprecated and will be removed in a future version. Please use `load_lora_adapter()`."
deprecate("load_attn_procs", "0.40.0", deprecation_message)
if is_custom_diffusion:
attn_processors = self._process_custom_diffusion(state_dict=state_dict)
elif is_lora:
is_model_cpu_offload, is_sequential_cpu_offload = self._process_lora(
state_dict=state_dict,
unet_identifier_key=self.unet_name,
network_alphas=network_alphas,
adapter_name=adapter_name,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
)
else:
raise ValueError(
f"{model_file} does not seem to be in the correct format expected by Custom Diffusion training."
)
# <Unsafe code
# We can be sure that the following works as it just sets attention processors, lora layers and puts all in the same dtype
# Now we remove any existing hooks to `_pipeline`.
# For LoRA, the UNet is already offloaded at this stage as it is handled inside `_process_lora`.
if is_custom_diffusion and _pipeline is not None:
is_model_cpu_offload, is_sequential_cpu_offload = self._optionally_disable_offloading(_pipeline=_pipeline)
# only custom diffusion needs to set attn processors
self.set_attn_processor(attn_processors)
self.to(dtype=self.dtype, device=self.device)
# Offload back.
if is_model_cpu_offload:
_pipeline.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
_pipeline.enable_sequential_cpu_offload()
# Unsafe code />
def _process_custom_diffusion(self, state_dict):
from ..models.attention_processor import CustomDiffusionAttnProcessor
attn_processors = {}
custom_diffusion_grouped_dict = defaultdict(dict)
for key, value in state_dict.items():
if len(value) == 0:
custom_diffusion_grouped_dict[key] = {}
else:
if "to_out" in key:
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
else:
attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value
for key, value_dict in custom_diffusion_grouped_dict.items():
if len(value_dict) == 0:
attn_processors[key] = CustomDiffusionAttnProcessor(
train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
)
else:
cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
attn_processors[key] = CustomDiffusionAttnProcessor(
train_kv=True,
train_q_out=train_q_out,
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
)
attn_processors[key].load_state_dict(value_dict)
return attn_processors
def _process_lora(
self, state_dict, unet_identifier_key, network_alphas, adapter_name, _pipeline, low_cpu_mem_usage
):
# This method does the following things:
# 1. Filters the `state_dict` with keys matching `unet_identifier_key` when using the non-legacy
# format. For legacy format no filtering is applied.
# 2. Converts the `state_dict` to the `peft` compatible format.
# 3. Creates a `LoraConfig` and then injects the converted `state_dict` into the UNet per the
# `LoraConfig` specs.
# 4. It also reports if the underlying `_pipeline` has any kind of offloading inside of it.
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
keys = list(state_dict.keys())
unet_keys = [k for k in keys if k.startswith(unet_identifier_key)]
unet_state_dict = {
k.replace(f"{unet_identifier_key}.", ""): v for k, v in state_dict.items() if k in unet_keys
}
if network_alphas is not None:
alpha_keys = [k for k in network_alphas.keys() if k.startswith(unet_identifier_key)]
network_alphas = {
k.replace(f"{unet_identifier_key}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
}
is_model_cpu_offload = False
is_sequential_cpu_offload = False
state_dict_to_be_used = unet_state_dict if len(unet_state_dict) > 0 else state_dict
if len(state_dict_to_be_used) > 0:
if adapter_name in getattr(self, "peft_config", {}):
raise ValueError(
f"Adapter name {adapter_name} already in use in the Unet - please select a new adapter name."
)
state_dict = convert_unet_state_dict_to_peft(state_dict_to_be_used)
if network_alphas is not None:
# The alphas state dict have the same structure as Unet, thus we convert it to peft format using
# `convert_unet_state_dict_to_peft` method.
network_alphas = convert_unet_state_dict_to_peft(network_alphas)
rank = {}
for key, val in state_dict.items():
if "lora_B" in key:
rank[key] = val.shape[1]
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict, is_unet=True)
if "use_dora" in lora_config_kwargs:
if lora_config_kwargs["use_dora"]:
if is_peft_version("<", "0.9.0"):
raise ValueError(
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
)
else:
if is_peft_version("<", "0.9.0"):
lora_config_kwargs.pop("use_dora")
if "lora_bias" in lora_config_kwargs:
if lora_config_kwargs["lora_bias"]:
if is_peft_version("<=", "0.13.2"):
raise ValueError(
"You need `peft` 0.14.0 at least to use `bias` in LoRAs. Please upgrade your installation of `peft`."
)
else:
if is_peft_version("<=", "0.13.2"):
lora_config_kwargs.pop("lora_bias")
lora_config = LoraConfig(**lora_config_kwargs)
# adapter_name
if adapter_name is None:
adapter_name = get_adapter_name(self)
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
# otherwise loading LoRA weights will lead to an error
is_model_cpu_offload, is_sequential_cpu_offload = self._optionally_disable_offloading(_pipeline)
peft_kwargs = {}
if is_peft_version(">=", "0.13.1"):
peft_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
inject_adapter_in_model(lora_config, self, adapter_name=adapter_name, **peft_kwargs)
incompatible_keys = set_peft_model_state_dict(self, state_dict, adapter_name, **peft_kwargs)
warn_msg = ""
if incompatible_keys is not None:
# Check only for unexpected keys.
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
if unexpected_keys:
lora_unexpected_keys = [k for k in unexpected_keys if "lora_" in k and adapter_name in k]
if lora_unexpected_keys:
warn_msg = (
f"Loading adapter weights from state_dict led to unexpected keys found in the model:"
f" {', '.join(lora_unexpected_keys)}. "
)
# Filter missing keys specific to the current adapter.
missing_keys = getattr(incompatible_keys, "missing_keys", None)
if missing_keys:
lora_missing_keys = [k for k in missing_keys if "lora_" in k and adapter_name in k]
if lora_missing_keys:
warn_msg += (
f"Loading adapter weights from state_dict led to missing keys in the model:"
f" {', '.join(lora_missing_keys)}."
)
if warn_msg:
logger.warning(warn_msg)
return is_model_cpu_offload, is_sequential_cpu_offload
@classmethod
# Copied from diffusers.loaders.lora_base.LoraBaseMixin._optionally_disable_offloading
def _optionally_disable_offloading(cls, _pipeline):
"""
Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU.
Args:
_pipeline (`DiffusionPipeline`):
The pipeline to disable offloading for.
Returns:
tuple:
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
"""
return _func_optionally_disable_offloading(_pipeline=_pipeline)
def save_attn_procs(
self,
save_directory: Union[str, os.PathLike],
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
**kwargs,
):
r"""
Save attention processor layers to a directory so that it can be reloaded with the
[`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save an attention processor to (will be created if it doesn't exist).
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or with `pickle`.
Example:
```py
import torch
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float16,
).to("cuda")
pipeline.unet.load_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin")
pipeline.unet.save_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin")
```
"""
from ..models.attention_processor import (
CustomDiffusionAttnProcessor,
CustomDiffusionAttnProcessor2_0,
CustomDiffusionXFormersAttnProcessor,
)
if os.path.isfile(save_directory):
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
return
is_custom_diffusion = any(
isinstance(
x,
(CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor),
)
for (_, x) in self.attn_processors.items()
)
if is_custom_diffusion:
state_dict = self._get_custom_diffusion_state_dict()
if save_function is None and safe_serialization:
# safetensors does not support saving dicts with non-tensor values
empty_state_dict = {k: v for k, v in state_dict.items() if not isinstance(v, torch.Tensor)}
if len(empty_state_dict) > 0:
logger.warning(
f"Safetensors does not support saving dicts with non-tensor values. "
f"The following keys will be ignored: {empty_state_dict.keys()}"
)
state_dict = {k: v for k, v in state_dict.items() if isinstance(v, torch.Tensor)}
else:
deprecation_message = "Using the `save_attn_procs()` method has been deprecated and will be removed in a future version. Please use `save_lora_adapter()`."
deprecate("save_attn_procs", "0.40.0", deprecation_message)
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for saving LoRAs using the `save_attn_procs()` method.")
from peft.utils import get_peft_model_state_dict
state_dict = get_peft_model_state_dict(self)
if save_function is None:
if safe_serialization:
def save_function(weights, filename):
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})
else:
save_function = torch.save
os.makedirs(save_directory, exist_ok=True)
if weight_name is None:
if safe_serialization:
weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
else:
weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME
# Save the model
save_path = Path(save_directory, weight_name).as_posix()
save_function(state_dict, save_path)
logger.info(f"Model weights saved in {save_path}")
def _get_custom_diffusion_state_dict(self):
from ..models.attention_processor import (
CustomDiffusionAttnProcessor,
CustomDiffusionAttnProcessor2_0,
CustomDiffusionXFormersAttnProcessor,
)
model_to_save = AttnProcsLayers(
{
y: x
for (y, x) in self.attn_processors.items()
if isinstance(
x,
(
CustomDiffusionAttnProcessor,
CustomDiffusionAttnProcessor2_0,
CustomDiffusionXFormersAttnProcessor,
),
)
}
)
state_dict = model_to_save.state_dict()
for name, attn in self.attn_processors.items():
if len(attn.state_dict()) == 0:
state_dict[name] = {}
return state_dict
def _convert_ip_adapter_image_proj_to_diffusers(self, state_dict, low_cpu_mem_usage=False):
if low_cpu_mem_usage:
if is_accelerate_available():
from accelerate import init_empty_weights
else:
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
updated_state_dict = {}
image_projection = None
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
if "proj.weight" in state_dict:
# IP-Adapter
num_image_text_embeds = 4
clip_embeddings_dim = state_dict["proj.weight"].shape[-1]
cross_attention_dim = state_dict["proj.weight"].shape[0] // 4
with init_context():
image_projection = ImageProjection(
cross_attention_dim=cross_attention_dim,
image_embed_dim=clip_embeddings_dim,
num_image_text_embeds=num_image_text_embeds,
)
for key, value in state_dict.items():
diffusers_name = key.replace("proj", "image_embeds")
updated_state_dict[diffusers_name] = value
elif "proj.3.weight" in state_dict:
# IP-Adapter Full
clip_embeddings_dim = state_dict["proj.0.weight"].shape[0]
cross_attention_dim = state_dict["proj.3.weight"].shape[0]
with init_context():
image_projection = IPAdapterFullImageProjection(
cross_attention_dim=cross_attention_dim, image_embed_dim=clip_embeddings_dim
)
for key, value in state_dict.items():
diffusers_name = key.replace("proj.0", "ff.net.0.proj")
diffusers_name = diffusers_name.replace("proj.2", "ff.net.2")
diffusers_name = diffusers_name.replace("proj.3", "norm")
updated_state_dict[diffusers_name] = value
elif "perceiver_resampler.proj_in.weight" in state_dict:
# IP-Adapter Face ID Plus
id_embeddings_dim = state_dict["proj.0.weight"].shape[1]
embed_dims = state_dict["perceiver_resampler.proj_in.weight"].shape[0]
hidden_dims = state_dict["perceiver_resampler.proj_in.weight"].shape[1]
output_dims = state_dict["perceiver_resampler.proj_out.weight"].shape[0]
heads = state_dict["perceiver_resampler.layers.0.0.to_q.weight"].shape[0] // 64
with init_context():
image_projection = IPAdapterFaceIDPlusImageProjection(
embed_dims=embed_dims,
output_dims=output_dims,
hidden_dims=hidden_dims,
heads=heads,
id_embeddings_dim=id_embeddings_dim,
)
for key, value in state_dict.items():
diffusers_name = key.replace("perceiver_resampler.", "")
diffusers_name = diffusers_name.replace("0.to", "attn.to")
diffusers_name = diffusers_name.replace("0.1.0.", "0.ff.0.")
diffusers_name = diffusers_name.replace("0.1.1.weight", "0.ff.1.net.0.proj.weight")
diffusers_name = diffusers_name.replace("0.1.3.weight", "0.ff.1.net.2.weight")
diffusers_name = diffusers_name.replace("1.1.0.", "1.ff.0.")
diffusers_name = diffusers_name.replace("1.1.1.weight", "1.ff.1.net.0.proj.weight")
diffusers_name = diffusers_name.replace("1.1.3.weight", "1.ff.1.net.2.weight")
diffusers_name = diffusers_name.replace("2.1.0.", "2.ff.0.")
diffusers_name = diffusers_name.replace("2.1.1.weight", "2.ff.1.net.0.proj.weight")
diffusers_name = diffusers_name.replace("2.1.3.weight", "2.ff.1.net.2.weight")
diffusers_name = diffusers_name.replace("3.1.0.", "3.ff.0.")
diffusers_name = diffusers_name.replace("3.1.1.weight", "3.ff.1.net.0.proj.weight")
diffusers_name = diffusers_name.replace("3.1.3.weight", "3.ff.1.net.2.weight")
diffusers_name = diffusers_name.replace("layers.0.0", "layers.0.ln0")
diffusers_name = diffusers_name.replace("layers.0.1", "layers.0.ln1")
diffusers_name = diffusers_name.replace("layers.1.0", "layers.1.ln0")
diffusers_name = diffusers_name.replace("layers.1.1", "layers.1.ln1")
diffusers_name = diffusers_name.replace("layers.2.0", "layers.2.ln0")
diffusers_name = diffusers_name.replace("layers.2.1", "layers.2.ln1")
diffusers_name = diffusers_name.replace("layers.3.0", "layers.3.ln0")
diffusers_name = diffusers_name.replace("layers.3.1", "layers.3.ln1")
if "norm1" in diffusers_name:
updated_state_dict[diffusers_name.replace("0.norm1", "0")] = value
elif "norm2" in diffusers_name:
updated_state_dict[diffusers_name.replace("0.norm2", "1")] = value
elif "to_kv" in diffusers_name:
v_chunk = value.chunk(2, dim=0)
updated_state_dict[diffusers_name.replace("to_kv", "to_k")] = v_chunk[0]
updated_state_dict[diffusers_name.replace("to_kv", "to_v")] = v_chunk[1]
elif "to_out" in diffusers_name:
updated_state_dict[diffusers_name.replace("to_out", "to_out.0")] = value
elif "proj.0.weight" == diffusers_name:
updated_state_dict["proj.net.0.proj.weight"] = value
elif "proj.0.bias" == diffusers_name:
updated_state_dict["proj.net.0.proj.bias"] = value
elif "proj.2.weight" == diffusers_name:
updated_state_dict["proj.net.2.weight"] = value
elif "proj.2.bias" == diffusers_name:
updated_state_dict["proj.net.2.bias"] = value
else:
updated_state_dict[diffusers_name] = value
elif "norm.weight" in state_dict:
# IP-Adapter Face ID
id_embeddings_dim_in = state_dict["proj.0.weight"].shape[1]
id_embeddings_dim_out = state_dict["proj.0.weight"].shape[0]
multiplier = id_embeddings_dim_out // id_embeddings_dim_in
norm_layer = "norm.weight"
cross_attention_dim = state_dict[norm_layer].shape[0]
num_tokens = state_dict["proj.2.weight"].shape[0] // cross_attention_dim
with init_context():
image_projection = IPAdapterFaceIDImageProjection(
cross_attention_dim=cross_attention_dim,
image_embed_dim=id_embeddings_dim_in,
mult=multiplier,
num_tokens=num_tokens,
)
for key, value in state_dict.items():
diffusers_name = key.replace("proj.0", "ff.net.0.proj")
diffusers_name = diffusers_name.replace("proj.2", "ff.net.2")
updated_state_dict[diffusers_name] = value
else:
# IP-Adapter Plus
num_image_text_embeds = state_dict["latents"].shape[1]
embed_dims = state_dict["proj_in.weight"].shape[1]
output_dims = state_dict["proj_out.weight"].shape[0]
hidden_dims = state_dict["latents"].shape[2]
attn_key_present = any("attn" in k for k in state_dict)
heads = (
state_dict["layers.0.attn.to_q.weight"].shape[0] // 64
if attn_key_present
else state_dict["layers.0.0.to_q.weight"].shape[0] // 64
)
with init_context():
image_projection = IPAdapterPlusImageProjection(
embed_dims=embed_dims,
output_dims=output_dims,
hidden_dims=hidden_dims,
heads=heads,
num_queries=num_image_text_embeds,
)
for key, value in state_dict.items():
diffusers_name = key.replace("0.to", "2.to")
diffusers_name = diffusers_name.replace("0.0.norm1", "0.ln0")
diffusers_name = diffusers_name.replace("0.0.norm2", "0.ln1")
diffusers_name = diffusers_name.replace("1.0.norm1", "1.ln0")
diffusers_name = diffusers_name.replace("1.0.norm2", "1.ln1")
diffusers_name = diffusers_name.replace("2.0.norm1", "2.ln0")
diffusers_name = diffusers_name.replace("2.0.norm2", "2.ln1")
diffusers_name = diffusers_name.replace("3.0.norm1", "3.ln0")
diffusers_name = diffusers_name.replace("3.0.norm2", "3.ln1")
if "to_kv" in diffusers_name:
parts = diffusers_name.split(".")
parts[2] = "attn"
diffusers_name = ".".join(parts)
v_chunk = value.chunk(2, dim=0)
updated_state_dict[diffusers_name.replace("to_kv", "to_k")] = v_chunk[0]
updated_state_dict[diffusers_name.replace("to_kv", "to_v")] = v_chunk[1]
elif "to_q" in diffusers_name:
parts = diffusers_name.split(".")
parts[2] = "attn"
diffusers_name = ".".join(parts)
updated_state_dict[diffusers_name] = value
elif "to_out" in diffusers_name:
parts = diffusers_name.split(".")
parts[2] = "attn"
diffusers_name = ".".join(parts)
updated_state_dict[diffusers_name.replace("to_out", "to_out.0")] = value
else:
diffusers_name = diffusers_name.replace("0.1.0", "0.ff.0")
diffusers_name = diffusers_name.replace("0.1.1", "0.ff.1.net.0.proj")
diffusers_name = diffusers_name.replace("0.1.3", "0.ff.1.net.2")
diffusers_name = diffusers_name.replace("1.1.0", "1.ff.0")
diffusers_name = diffusers_name.replace("1.1.1", "1.ff.1.net.0.proj")
diffusers_name = diffusers_name.replace("1.1.3", "1.ff.1.net.2")
diffusers_name = diffusers_name.replace("2.1.0", "2.ff.0")
diffusers_name = diffusers_name.replace("2.1.1", "2.ff.1.net.0.proj")
diffusers_name = diffusers_name.replace("2.1.3", "2.ff.1.net.2")
diffusers_name = diffusers_name.replace("3.1.0", "3.ff.0")
diffusers_name = diffusers_name.replace("3.1.1", "3.ff.1.net.0.proj")
diffusers_name = diffusers_name.replace("3.1.3", "3.ff.1.net.2")
updated_state_dict[diffusers_name] = value
if not low_cpu_mem_usage:
image_projection.load_state_dict(updated_state_dict, strict=True)
else:
load_model_dict_into_meta(image_projection, updated_state_dict, device=self.device, dtype=self.dtype)
return image_projection
def _convert_ip_adapter_attn_to_diffusers(self, state_dicts, low_cpu_mem_usage=False):
from ..models.attention_processor import (
IPAdapterAttnProcessor,
IPAdapterAttnProcessor2_0,
IPAdapterXFormersAttnProcessor,
)
if low_cpu_mem_usage:
if is_accelerate_available():
from accelerate import init_empty_weights
else:
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
# set ip-adapter cross-attention processors & load state_dict
attn_procs = {}
key_id = 1
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
for name in self.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else self.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = self.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(self.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = self.config.block_out_channels[block_id]
if cross_attention_dim is None or "motion_modules" in name:
attn_processor_class = self.attn_processors[name].__class__
attn_procs[name] = attn_processor_class()
else:
if "XFormers" in str(self.attn_processors[name].__class__):
attn_processor_class = IPAdapterXFormersAttnProcessor
else:
attn_processor_class = (
IPAdapterAttnProcessor2_0
if hasattr(F, "scaled_dot_product_attention")
else IPAdapterAttnProcessor
)
num_image_text_embeds = []
for state_dict in state_dicts:
if "proj.weight" in state_dict["image_proj"]:
# IP-Adapter
num_image_text_embeds += [4]
elif "proj.3.weight" in state_dict["image_proj"]:
# IP-Adapter Full Face
num_image_text_embeds += [257] # 256 CLIP tokens + 1 CLS token
elif "perceiver_resampler.proj_in.weight" in state_dict["image_proj"]:
# IP-Adapter Face ID Plus
num_image_text_embeds += [4]
elif "norm.weight" in state_dict["image_proj"]:
# IP-Adapter Face ID
num_image_text_embeds += [4]
else:
# IP-Adapter Plus
num_image_text_embeds += [state_dict["image_proj"]["latents"].shape[1]]
with init_context():
attn_procs[name] = attn_processor_class(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1.0,
num_tokens=num_image_text_embeds,
)
value_dict = {}
for i, state_dict in enumerate(state_dicts):
value_dict.update({f"to_k_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_k_ip.weight"]})
value_dict.update({f"to_v_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_v_ip.weight"]})
if not low_cpu_mem_usage:
attn_procs[name].load_state_dict(value_dict)
else:
device = next(iter(value_dict.values())).device
dtype = next(iter(value_dict.values())).dtype
load_model_dict_into_meta(attn_procs[name], value_dict, device=device, dtype=dtype)
key_id += 2
return attn_procs
def _load_ip_adapter_weights(self, state_dicts, low_cpu_mem_usage=False):
if not isinstance(state_dicts, list):
state_dicts = [state_dicts]
# Kolors Unet already has a `encoder_hid_proj`
if (
self.encoder_hid_proj is not None
and self.config.encoder_hid_dim_type == "text_proj"
and not hasattr(self, "text_encoder_hid_proj")
):
self.text_encoder_hid_proj = self.encoder_hid_proj
# Set encoder_hid_proj after loading ip_adapter weights,
# because `IPAdapterPlusImageProjection` also has `attn_processors`.
self.encoder_hid_proj = None
attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
self.set_attn_processor(attn_procs)
# convert IP-Adapter Image Projection layers to diffusers
image_projection_layers = []
for state_dict in state_dicts:
image_projection_layer = self._convert_ip_adapter_image_proj_to_diffusers(
state_dict["image_proj"], low_cpu_mem_usage=low_cpu_mem_usage
)
image_projection_layers.append(image_projection_layer)
self.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers)
self.config.encoder_hid_dim_type = "ip_image_proj"
self.to(dtype=self.dtype, device=self.device)
def _load_ip_adapter_loras(self, state_dicts):
lora_dicts = {}
for key_id, name in enumerate(self.attn_processors.keys()):
for i, state_dict in enumerate(state_dicts):
if f"{key_id}.to_k_lora.down.weight" in state_dict["ip_adapter"]:
if i not in lora_dicts:
lora_dicts[i] = {}
lora_dicts[i].update(
{
f"unet.{name}.to_k_lora.down.weight": state_dict["ip_adapter"][
f"{key_id}.to_k_lora.down.weight"
]
}
)
lora_dicts[i].update(
{
f"unet.{name}.to_q_lora.down.weight": state_dict["ip_adapter"][
f"{key_id}.to_q_lora.down.weight"
]
}
)
lora_dicts[i].update(
{
f"unet.{name}.to_v_lora.down.weight": state_dict["ip_adapter"][
f"{key_id}.to_v_lora.down.weight"
]
}
)
lora_dicts[i].update(
{
f"unet.{name}.to_out_lora.down.weight": state_dict["ip_adapter"][
f"{key_id}.to_out_lora.down.weight"
]
}
)
lora_dicts[i].update(
{f"unet.{name}.to_k_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_k_lora.up.weight"]}
)
lora_dicts[i].update(
{f"unet.{name}.to_q_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_q_lora.up.weight"]}
)
lora_dicts[i].update(
{f"unet.{name}.to_v_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_v_lora.up.weight"]}
)
lora_dicts[i].update(
{
f"unet.{name}.to_out_lora.up.weight": state_dict["ip_adapter"][
f"{key_id}.to_out_lora.up.weight"
]
}
)
return lora_dicts | class_definition | 1,824 | 45,352 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/unet.py | null | 1,257 |
class TextualInversionLoaderMixin:
r"""
Load Textual Inversion tokens and embeddings to the tokenizer and text encoder.
"""
def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"): # noqa: F821
r"""
Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to
be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
inversion token or if the textual inversion token is a single vector, the input prompt is returned.
Parameters:
prompt (`str` or list of `str`):
The prompt or prompts to guide the image generation.
tokenizer (`PreTrainedTokenizer`):
The tokenizer responsible for encoding the prompt into input tokens.
Returns:
`str` or list of `str`: The converted prompt
"""
if not isinstance(prompt, List):
prompts = [prompt]
else:
prompts = prompt
prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]
if not isinstance(prompt, List):
return prompts[0]
return prompts
def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"): # noqa: F821
r"""
Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.
Parameters:
prompt (`str`):
The prompt to guide the image generation.
tokenizer (`PreTrainedTokenizer`):
The tokenizer responsible for encoding the prompt into input tokens.
Returns:
`str`: The converted prompt
"""
tokens = tokenizer.tokenize(prompt)
unique_tokens = set(tokens)
for token in unique_tokens:
if token in tokenizer.added_tokens_encoder:
replacement = token
i = 1
while f"{token}_{i}" in tokenizer.added_tokens_encoder:
replacement += f" {token}_{i}"
i += 1
prompt = prompt.replace(token, replacement)
return prompt
def _check_text_inv_inputs(self, tokenizer, text_encoder, pretrained_model_name_or_paths, tokens):
if tokenizer is None:
raise ValueError(
f"{self.__class__.__name__} requires `self.tokenizer` or passing a `tokenizer` of type `PreTrainedTokenizer` for calling"
f" `{self.load_textual_inversion.__name__}`"
)
if text_encoder is None:
raise ValueError(
f"{self.__class__.__name__} requires `self.text_encoder` or passing a `text_encoder` of type `PreTrainedModel` for calling"
f" `{self.load_textual_inversion.__name__}`"
)
if len(pretrained_model_name_or_paths) > 1 and len(pretrained_model_name_or_paths) != len(tokens):
raise ValueError(
f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)} "
f"Make sure both lists have the same length."
)
valid_tokens = [t for t in tokens if t is not None]
if len(set(valid_tokens)) < len(valid_tokens):
raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}")
@staticmethod
def _retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer):
all_tokens = []
all_embeddings = []
for state_dict, token in zip(state_dicts, tokens):
if isinstance(state_dict, torch.Tensor):
if token is None:
raise ValueError(
"You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`."
)
loaded_token = token
embedding = state_dict
elif len(state_dict) == 1:
# diffusers
loaded_token, embedding = next(iter(state_dict.items()))
elif "string_to_param" in state_dict:
# A1111
loaded_token = state_dict["name"]
embedding = state_dict["string_to_param"]["*"]
else:
raise ValueError(
f"Loaded state dictionary is incorrect: {state_dict}. \n\n"
"Please verify that the loaded state dictionary of the textual embedding either only has a single key or includes the `string_to_param`"
" input key."
)
if token is not None and loaded_token != token:
logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.")
else:
token = loaded_token
if token in tokenizer.get_vocab():
raise ValueError(
f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder."
)
all_tokens.append(token)
all_embeddings.append(embedding)
return all_tokens, all_embeddings
@staticmethod
def _extend_tokens_and_embeddings(tokens, embeddings, tokenizer):
all_tokens = []
all_embeddings = []
for embedding, token in zip(embeddings, tokens):
if f"{token}_1" in tokenizer.get_vocab():
multi_vector_tokens = [token]
i = 1
while f"{token}_{i}" in tokenizer.added_tokens_encoder:
multi_vector_tokens.append(f"{token}_{i}")
i += 1
raise ValueError(
f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder."
)
is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1
if is_multi_vector:
all_tokens += [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])]
all_embeddings += [e for e in embedding] # noqa: C416
else:
all_tokens += [token]
all_embeddings += [embedding[0]] if len(embedding.shape) > 1 else [embedding]
return all_tokens, all_embeddings
@validate_hf_hub_args
def load_textual_inversion(
self,
pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]],
token: Optional[Union[str, List[str]]] = None,
tokenizer: Optional["PreTrainedTokenizer"] = None, # noqa: F821
text_encoder: Optional["PreTrainedModel"] = None, # noqa: F821
**kwargs,
):
r"""
Load Textual Inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and
Automatic1111 formats are supported).
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`):
Can be either one of the following or a list of them:
- A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a
pretrained model hosted on the Hub.
- A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual
inversion weights.
- A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights.
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
token (`str` or `List[str]`, *optional*):
Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a
list, then `token` must also be a list of equal length.
text_encoder ([`~transformers.CLIPTextModel`], *optional*):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
If not specified, function will take self.tokenizer.
tokenizer ([`~transformers.CLIPTokenizer`], *optional*):
A `CLIPTokenizer` to tokenize text. If not specified, function will take self.tokenizer.
weight_name (`str`, *optional*):
Name of a custom weight file. This should be used when:
- The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
name such as `text_inv.bin`.
- The saved textual inversion file is in the Automatic1111 format.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
hf_token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
mirror (`str`, *optional*):
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
information.
Example:
To load a Textual Inversion embedding vector in 🤗 Diffusers format:
```py
from diffusers import StableDiffusionPipeline
import torch
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.load_textual_inversion("sd-concepts-library/cat-toy")
prompt = "A <cat-toy> backpack"
image = pipe(prompt, num_inference_steps=50).images[0]
image.save("cat-backpack.png")
```
To load a Textual Inversion embedding vector in Automatic1111 format, make sure to download the vector first
(for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector
locally:
```py
from diffusers import StableDiffusionPipeline
import torch
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."
image = pipe(prompt, num_inference_steps=50).images[0]
image.save("character.png")
```
"""
# 1. Set correct tokenizer and text encoder
tokenizer = tokenizer or getattr(self, "tokenizer", None)
text_encoder = text_encoder or getattr(self, "text_encoder", None)
# 2. Normalize inputs
pretrained_model_name_or_paths = (
[pretrained_model_name_or_path]
if not isinstance(pretrained_model_name_or_path, list)
else pretrained_model_name_or_path
)
tokens = [token] if not isinstance(token, list) else token
if tokens[0] is None:
tokens = tokens * len(pretrained_model_name_or_paths)
# 3. Check inputs
self._check_text_inv_inputs(tokenizer, text_encoder, pretrained_model_name_or_paths, tokens)
# 4. Load state dicts of textual embeddings
state_dicts = load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs)
# 4.1 Handle the special case when state_dict is a tensor that contains n embeddings for n tokens
if len(tokens) > 1 and len(state_dicts) == 1:
if isinstance(state_dicts[0], torch.Tensor):
state_dicts = list(state_dicts[0])
if len(tokens) != len(state_dicts):
raise ValueError(
f"You have passed a state_dict contains {len(state_dicts)} embeddings, and list of tokens of length {len(tokens)} "
f"Make sure both have the same length."
)
# 4. Retrieve tokens and embeddings
tokens, embeddings = self._retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer)
# 5. Extend tokens and embeddings for multi vector
tokens, embeddings = self._extend_tokens_and_embeddings(tokens, embeddings, tokenizer)
# 6. Make sure all embeddings have the correct size
expected_emb_dim = text_encoder.get_input_embeddings().weight.shape[-1]
if any(expected_emb_dim != emb.shape[-1] for emb in embeddings):
raise ValueError(
"Loaded embeddings are of incorrect shape. Expected each textual inversion embedding "
"to be of shape {input_embeddings.shape[-1]}, but are {embeddings.shape[-1]} "
)
# 7. Now we can be sure that loading the embedding matrix works
# < Unsafe code:
# 7.1 Offload all hooks in case the pipeline was cpu offloaded before make sure, we offload and onload again
is_model_cpu_offload = False
is_sequential_cpu_offload = False
if self.hf_device_map is None:
for _, component in self.components.items():
if isinstance(component, nn.Module):
if hasattr(component, "_hf_hook"):
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
is_sequential_cpu_offload = (
isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
or hasattr(component._hf_hook, "hooks")
and isinstance(component._hf_hook.hooks[0], AlignDevicesHook)
)
logger.info(
"Accelerate hooks detected. Since you have called `load_textual_inversion()`, the previous hooks will be first removed. Then the textual inversion parameters will be loaded and the hooks will be applied again."
)
remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
# 7.2 save expected device and dtype
device = text_encoder.device
dtype = text_encoder.dtype
# 7.3 Increase token embedding matrix
text_encoder.resize_token_embeddings(len(tokenizer) + len(tokens))
input_embeddings = text_encoder.get_input_embeddings().weight
# 7.4 Load token and embedding
for token, embedding in zip(tokens, embeddings):
# add tokens and get ids
tokenizer.add_tokens(token)
token_id = tokenizer.convert_tokens_to_ids(token)
input_embeddings.data[token_id] = embedding
logger.info(f"Loaded textual inversion embedding for {token}.")
input_embeddings.to(dtype=dtype, device=device)
# 7.5 Offload the model again
if is_model_cpu_offload:
self.enable_model_cpu_offload()
elif is_sequential_cpu_offload:
self.enable_sequential_cpu_offload()
# / Unsafe Code >
def unload_textual_inversion(
self,
tokens: Optional[Union[str, List[str]]] = None,
tokenizer: Optional["PreTrainedTokenizer"] = None,
text_encoder: Optional["PreTrainedModel"] = None,
):
r"""
Unload Textual Inversion embeddings from the text encoder of [`StableDiffusionPipeline`]
Example:
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
# Example 1
pipeline.load_textual_inversion("sd-concepts-library/gta5-artwork")
pipeline.load_textual_inversion("sd-concepts-library/moeb-style")
# Remove all token embeddings
pipeline.unload_textual_inversion()
# Example 2
pipeline.load_textual_inversion("sd-concepts-library/moeb-style")
pipeline.load_textual_inversion("sd-concepts-library/gta5-artwork")
# Remove just one token
pipeline.unload_textual_inversion("<moe-bius>")
# Example 3: unload from SDXL
pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
embedding_path = hf_hub_download(
repo_id="linoyts/web_y2k", filename="web_y2k_emb.safetensors", repo_type="model"
)
# load embeddings to the text encoders
state_dict = load_file(embedding_path)
# load embeddings of text_encoder 1 (CLIP ViT-L/14)
pipeline.load_textual_inversion(
state_dict["clip_l"],
tokens=["<s0>", "<s1>"],
text_encoder=pipeline.text_encoder,
tokenizer=pipeline.tokenizer,
)
# load embeddings of text_encoder 2 (CLIP ViT-G/14)
pipeline.load_textual_inversion(
state_dict["clip_g"],
tokens=["<s0>", "<s1>"],
text_encoder=pipeline.text_encoder_2,
tokenizer=pipeline.tokenizer_2,
)
# Unload explicitly from both text encoders and tokenizers
pipeline.unload_textual_inversion(
tokens=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer
)
pipeline.unload_textual_inversion(
tokens=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2
)
```
"""
tokenizer = tokenizer or getattr(self, "tokenizer", None)
text_encoder = text_encoder or getattr(self, "text_encoder", None)
# Get textual inversion tokens and ids
token_ids = []
last_special_token_id = None
if tokens:
if isinstance(tokens, str):
tokens = [tokens]
for added_token_id, added_token in tokenizer.added_tokens_decoder.items():
if not added_token.special:
if added_token.content in tokens:
token_ids.append(added_token_id)
else:
last_special_token_id = added_token_id
if len(token_ids) == 0:
raise ValueError("No tokens to remove found")
else:
tokens = []
for added_token_id, added_token in tokenizer.added_tokens_decoder.items():
if not added_token.special:
token_ids.append(added_token_id)
tokens.append(added_token.content)
else:
last_special_token_id = added_token_id
# Delete from tokenizer
for token_id, token_to_remove in zip(token_ids, tokens):
del tokenizer._added_tokens_decoder[token_id]
del tokenizer._added_tokens_encoder[token_to_remove]
# Make all token ids sequential in tokenizer
key_id = 1
for token_id in tokenizer.added_tokens_decoder:
if token_id > last_special_token_id and token_id > last_special_token_id + key_id:
token = tokenizer._added_tokens_decoder[token_id]
tokenizer._added_tokens_decoder[last_special_token_id + key_id] = token
del tokenizer._added_tokens_decoder[token_id]
tokenizer._added_tokens_encoder[token.content] = last_special_token_id + key_id
key_id += 1
tokenizer._update_trie()
# set correct total vocab size after removing tokens
tokenizer._update_total_vocab_size()
# Delete from text encoder
text_embedding_dim = text_encoder.get_input_embeddings().embedding_dim
temp_text_embedding_weights = text_encoder.get_input_embeddings().weight
text_embedding_weights = temp_text_embedding_weights[: last_special_token_id + 1]
to_append = []
for i in range(last_special_token_id + 1, temp_text_embedding_weights.shape[0]):
if i not in token_ids:
to_append.append(temp_text_embedding_weights[i].unsqueeze(0))
if len(to_append) > 0:
to_append = torch.cat(to_append, dim=0)
text_embedding_weights = torch.cat([text_embedding_weights, to_append], dim=0)
text_embeddings_filtered = nn.Embedding(text_embedding_weights.shape[0], text_embedding_dim)
text_embeddings_filtered.weight.data = text_embedding_weights
text_encoder.set_input_embeddings(text_embeddings_filtered) | class_definition | 4,099 | 26,816 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/textual_inversion.py | null | 1,258 |
class FromOriginalModelMixin:
"""
Load pretrained weights saved in the `.ckpt` or `.safetensors` format into a model.
"""
@classmethod
@validate_hf_hub_args
def from_single_file(cls, pretrained_model_link_or_path_or_dict: Optional[str] = None, **kwargs):
r"""
Instantiate a model from pretrained weights saved in the original `.ckpt` or `.safetensors` format. The model
is set in evaluation mode (`model.eval()`) by default.
Parameters:
pretrained_model_link_or_path_or_dict (`str`, *optional*):
Can be either:
- A link to the `.safetensors` or `.ckpt` file (for example
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.safetensors"`) on the Hub.
- A path to a local *file* containing the weights of the component model.
- A state dict containing the component model weights.
config (`str`, *optional*):
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline hosted
on the Hub.
- A path to a *directory* (for example `./my_pipeline_directory/`) containing the pipeline component
configs in Diffusers format.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
original_config (`str`, *optional*):
Dict or path to a yaml file containing the configuration for the model in its original format.
If a dict is provided, it will be used to initialize the model configuration.
torch_dtype (`str` or `torch.dtype`, *optional*):
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
dtype is automatically derived from the model's weights.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to True, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
disable_mmap ('bool', *optional*, defaults to 'False'):
Whether to disable mmap when loading a Safetensors model. This option can perform better when the model
is on a network mount or hard drive, which may not handle the seeky-ness of mmap very well.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to overwrite load and saveable variables (for example the pipeline components of the
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
method. See example below for more information.
```py
>>> from diffusers import StableCascadeUNet
>>> ckpt_path = "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_lite.safetensors"
>>> model = StableCascadeUNet.from_single_file(ckpt_path)
```
"""
mapping_class_name = _get_single_file_loadable_mapping_class(cls)
# if class_name not in SINGLE_FILE_LOADABLE_CLASSES:
if mapping_class_name is None:
raise ValueError(
f"FromOriginalModelMixin is currently only compatible with {', '.join(SINGLE_FILE_LOADABLE_CLASSES.keys())}"
)
pretrained_model_link_or_path = kwargs.get("pretrained_model_link_or_path", None)
if pretrained_model_link_or_path is not None:
deprecation_message = (
"Please use `pretrained_model_link_or_path_or_dict` argument instead for model classes"
)
deprecate("pretrained_model_link_or_path", "1.0.0", deprecation_message)
pretrained_model_link_or_path_or_dict = pretrained_model_link_or_path
config = kwargs.pop("config", None)
original_config = kwargs.pop("original_config", None)
if config is not None and original_config is not None:
raise ValueError(
"`from_single_file` cannot accept both `config` and `original_config` arguments. Please provide only one of these arguments"
)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
token = kwargs.pop("token", None)
cache_dir = kwargs.pop("cache_dir", None)
local_files_only = kwargs.pop("local_files_only", None)
subfolder = kwargs.pop("subfolder", None)
revision = kwargs.pop("revision", None)
config_revision = kwargs.pop("config_revision", None)
torch_dtype = kwargs.pop("torch_dtype", None)
quantization_config = kwargs.pop("quantization_config", None)
device = kwargs.pop("device", None)
disable_mmap = kwargs.pop("disable_mmap", False)
if isinstance(pretrained_model_link_or_path_or_dict, dict):
checkpoint = pretrained_model_link_or_path_or_dict
else:
checkpoint = load_single_file_checkpoint(
pretrained_model_link_or_path_or_dict,
force_download=force_download,
proxies=proxies,
token=token,
cache_dir=cache_dir,
local_files_only=local_files_only,
revision=revision,
disable_mmap=disable_mmap,
)
if quantization_config is not None:
hf_quantizer = DiffusersAutoQuantizer.from_config(quantization_config)
hf_quantizer.validate_environment()
else:
hf_quantizer = None
mapping_functions = SINGLE_FILE_LOADABLE_CLASSES[mapping_class_name]
checkpoint_mapping_fn = mapping_functions["checkpoint_mapping_fn"]
if original_config is not None:
if "config_mapping_fn" in mapping_functions:
config_mapping_fn = mapping_functions["config_mapping_fn"]
else:
config_mapping_fn = None
if config_mapping_fn is None:
raise ValueError(
(
f"`original_config` has been provided for {mapping_class_name} but no mapping function"
"was found to convert the original config to a Diffusers config in"
"`diffusers.loaders.single_file_utils`"
)
)
if isinstance(original_config, str):
# If original_config is a URL or filepath fetch the original_config dict
original_config = fetch_original_config(original_config, local_files_only=local_files_only)
config_mapping_kwargs = _get_mapping_function_kwargs(config_mapping_fn, **kwargs)
diffusers_model_config = config_mapping_fn(
original_config=original_config, checkpoint=checkpoint, **config_mapping_kwargs
)
else:
if config is not None:
if isinstance(config, str):
default_pretrained_model_config_name = config
else:
raise ValueError(
(
"Invalid `config` argument. Please provide a string representing a repo id"
"or path to a local Diffusers model repo."
)
)
else:
config = fetch_diffusers_config(checkpoint)
default_pretrained_model_config_name = config["pretrained_model_name_or_path"]
if "default_subfolder" in mapping_functions:
subfolder = mapping_functions["default_subfolder"]
subfolder = subfolder or config.pop(
"subfolder", None
) # some configs contain a subfolder key, e.g. StableCascadeUNet
diffusers_model_config = cls.load_config(
pretrained_model_name_or_path=default_pretrained_model_config_name,
subfolder=subfolder,
local_files_only=local_files_only,
token=token,
revision=config_revision,
)
expected_kwargs, optional_kwargs = cls._get_signature_keys(cls)
# Map legacy kwargs to new kwargs
if "legacy_kwargs" in mapping_functions:
legacy_kwargs = mapping_functions["legacy_kwargs"]
for legacy_key, new_key in legacy_kwargs.items():
if legacy_key in kwargs:
kwargs[new_key] = kwargs.pop(legacy_key)
model_kwargs = {k: kwargs.get(k) for k in kwargs if k in expected_kwargs or k in optional_kwargs}
diffusers_model_config.update(model_kwargs)
checkpoint_mapping_kwargs = _get_mapping_function_kwargs(checkpoint_mapping_fn, **kwargs)
diffusers_format_checkpoint = checkpoint_mapping_fn(
config=diffusers_model_config, checkpoint=checkpoint, **checkpoint_mapping_kwargs
)
if not diffusers_format_checkpoint:
raise SingleFileComponentError(
f"Failed to load {mapping_class_name}. Weights for this component appear to be missing in the checkpoint."
)
ctx = init_empty_weights if is_accelerate_available() else nullcontext
with ctx():
model = cls.from_config(diffusers_model_config)
# Check if `_keep_in_fp32_modules` is not None
use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (
(torch_dtype == torch.float16) or hasattr(hf_quantizer, "use_keep_in_fp32_modules")
)
if use_keep_in_fp32_modules:
keep_in_fp32_modules = cls._keep_in_fp32_modules
if not isinstance(keep_in_fp32_modules, list):
keep_in_fp32_modules = [keep_in_fp32_modules]
else:
keep_in_fp32_modules = []
if hf_quantizer is not None:
hf_quantizer.preprocess_model(
model=model,
device_map=None,
state_dict=diffusers_format_checkpoint,
keep_in_fp32_modules=keep_in_fp32_modules,
)
if is_accelerate_available():
param_device = torch.device(device) if device else torch.device("cpu")
named_buffers = model.named_buffers()
unexpected_keys = load_model_dict_into_meta(
model,
diffusers_format_checkpoint,
dtype=torch_dtype,
device=param_device,
hf_quantizer=hf_quantizer,
keep_in_fp32_modules=keep_in_fp32_modules,
named_buffers=named_buffers,
)
else:
_, unexpected_keys = model.load_state_dict(diffusers_format_checkpoint, strict=False)
if model._keys_to_ignore_on_load_unexpected is not None:
for pat in model._keys_to_ignore_on_load_unexpected:
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
if len(unexpected_keys) > 0:
logger.warning(
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
)
if hf_quantizer is not None:
hf_quantizer.postprocess_model(model)
model.hf_quantizer = hf_quantizer
if torch_dtype is not None and hf_quantizer is None:
model.to(torch_dtype)
model.eval()
return model | class_definition | 5,000 | 17,847 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/single_file_model.py | null | 1,259 |
class LoraBaseMixin:
"""Utility class for handling LoRAs."""
_lora_loadable_modules = []
num_fused_loras = 0
def load_lora_weights(self, **kwargs):
raise NotImplementedError("`load_lora_weights()` is not implemented.")
@classmethod
def save_lora_weights(cls, **kwargs):
raise NotImplementedError("`save_lora_weights()` not implemented.")
@classmethod
def lora_state_dict(cls, **kwargs):
raise NotImplementedError("`lora_state_dict()` is not implemented.")
@classmethod
def _optionally_disable_offloading(cls, _pipeline):
"""
Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU.
Args:
_pipeline (`DiffusionPipeline`):
The pipeline to disable offloading for.
Returns:
tuple:
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
"""
return _func_optionally_disable_offloading(_pipeline=_pipeline)
@classmethod
def _fetch_state_dict(cls, *args, **kwargs):
deprecation_message = f"Using the `_fetch_state_dict()` method from {cls} has been deprecated and will be removed in a future version. Please use `from diffusers.loaders.lora_base import _fetch_state_dict`."
deprecate("_fetch_state_dict", "0.35.0", deprecation_message)
return _fetch_state_dict(*args, **kwargs)
@classmethod
def _best_guess_weight_name(cls, *args, **kwargs):
deprecation_message = f"Using the `_best_guess_weight_name()` method from {cls} has been deprecated and will be removed in a future version. Please use `from diffusers.loaders.lora_base import _best_guess_weight_name`."
deprecate("_best_guess_weight_name", "0.35.0", deprecation_message)
return _best_guess_weight_name(*args, **kwargs)
def unload_lora_weights(self):
"""
Unloads the LoRA parameters.
Examples:
```python
>>> # Assuming `pipeline` is already loaded with the LoRA parameters.
>>> pipeline.unload_lora_weights()
>>> ...
```
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
for component in self._lora_loadable_modules:
model = getattr(self, component, None)
if model is not None:
if issubclass(model.__class__, ModelMixin):
model.unload_lora()
elif issubclass(model.__class__, PreTrainedModel):
_remove_text_encoder_monkey_patch(model)
def fuse_lora(
self,
components: List[str] = [],
lora_scale: float = 1.0,
safe_fusing: bool = False,
adapter_names: Optional[List[str]] = None,
**kwargs,
):
r"""
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
lora_scale (`float`, defaults to 1.0):
Controls how much to influence the outputs with the LoRA parameters.
safe_fusing (`bool`, defaults to `False`):
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
adapter_names (`List[str]`, *optional*):
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
Example:
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
).to("cuda")
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipeline.fuse_lora(lora_scale=0.7)
```
"""
if "fuse_unet" in kwargs:
depr_message = "Passing `fuse_unet` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_unet` will be removed in a future version."
deprecate(
"fuse_unet",
"1.0.0",
depr_message,
)
if "fuse_transformer" in kwargs:
depr_message = "Passing `fuse_transformer` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_transformer` will be removed in a future version."
deprecate(
"fuse_transformer",
"1.0.0",
depr_message,
)
if "fuse_text_encoder" in kwargs:
depr_message = "Passing `fuse_text_encoder` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_text_encoder` will be removed in a future version."
deprecate(
"fuse_text_encoder",
"1.0.0",
depr_message,
)
if len(components) == 0:
raise ValueError("`components` cannot be an empty list.")
for fuse_component in components:
if fuse_component not in self._lora_loadable_modules:
raise ValueError(f"{fuse_component} is not found in {self._lora_loadable_modules=}.")
model = getattr(self, fuse_component, None)
if model is not None:
# check if diffusers model
if issubclass(model.__class__, ModelMixin):
model.fuse_lora(lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names)
# handle transformers models.
if issubclass(model.__class__, PreTrainedModel):
fuse_text_encoder_lora(
model, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
)
self.num_fused_loras += 1
def unfuse_lora(self, components: List[str] = [], **kwargs):
r"""
Reverses the effect of
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
unfuse_text_encoder (`bool`, defaults to `True`):
Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
LoRA parameters then it won't have any effect.
"""
if "unfuse_unet" in kwargs:
depr_message = "Passing `unfuse_unet` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_unet` will be removed in a future version."
deprecate(
"unfuse_unet",
"1.0.0",
depr_message,
)
if "unfuse_transformer" in kwargs:
depr_message = "Passing `unfuse_transformer` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_transformer` will be removed in a future version."
deprecate(
"unfuse_transformer",
"1.0.0",
depr_message,
)
if "unfuse_text_encoder" in kwargs:
depr_message = "Passing `unfuse_text_encoder` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_text_encoder` will be removed in a future version."
deprecate(
"unfuse_text_encoder",
"1.0.0",
depr_message,
)
if len(components) == 0:
raise ValueError("`components` cannot be an empty list.")
for fuse_component in components:
if fuse_component not in self._lora_loadable_modules:
raise ValueError(f"{fuse_component} is not found in {self._lora_loadable_modules=}.")
model = getattr(self, fuse_component, None)
if model is not None:
if issubclass(model.__class__, (ModelMixin, PreTrainedModel)):
for module in model.modules():
if isinstance(module, BaseTunerLayer):
module.unmerge()
self.num_fused_loras -= 1
def set_adapters(
self,
adapter_names: Union[List[str], str],
adapter_weights: Optional[Union[float, Dict, List[float], List[Dict]]] = None,
):
adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names
adapter_weights = copy.deepcopy(adapter_weights)
# Expand weights into a list, one entry per adapter
if not isinstance(adapter_weights, list):
adapter_weights = [adapter_weights] * len(adapter_names)
if len(adapter_names) != len(adapter_weights):
raise ValueError(
f"Length of adapter names {len(adapter_names)} is not equal to the length of the weights {len(adapter_weights)}"
)
list_adapters = self.get_list_adapters() # eg {"unet": ["adapter1", "adapter2"], "text_encoder": ["adapter2"]}
# eg ["adapter1", "adapter2"]
all_adapters = {adapter for adapters in list_adapters.values() for adapter in adapters}
missing_adapters = set(adapter_names) - all_adapters
if len(missing_adapters) > 0:
raise ValueError(
f"Adapter name(s) {missing_adapters} not in the list of present adapters: {all_adapters}."
)
# eg {"adapter1": ["unet"], "adapter2": ["unet", "text_encoder"]}
invert_list_adapters = {
adapter: [part for part, adapters in list_adapters.items() if adapter in adapters]
for adapter in all_adapters
}
# Decompose weights into weights for denoiser and text encoders.
_component_adapter_weights = {}
for component in self._lora_loadable_modules:
model = getattr(self, component)
for adapter_name, weights in zip(adapter_names, adapter_weights):
if isinstance(weights, dict):
component_adapter_weights = weights.pop(component, None)
if component_adapter_weights is not None and not hasattr(self, component):
logger.warning(
f"Lora weight dict contains {component} weights but will be ignored because pipeline does not have {component}."
)
if component_adapter_weights is not None and component not in invert_list_adapters[adapter_name]:
logger.warning(
(
f"Lora weight dict for adapter '{adapter_name}' contains {component},"
f"but this will be ignored because {adapter_name} does not contain weights for {component}."
f"Valid parts for {adapter_name} are: {invert_list_adapters[adapter_name]}."
)
)
else:
component_adapter_weights = weights
_component_adapter_weights.setdefault(component, [])
_component_adapter_weights[component].append(component_adapter_weights)
if issubclass(model.__class__, ModelMixin):
model.set_adapters(adapter_names, _component_adapter_weights[component])
elif issubclass(model.__class__, PreTrainedModel):
set_adapters_for_text_encoder(adapter_names, model, _component_adapter_weights[component])
def disable_lora(self):
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
for component in self._lora_loadable_modules:
model = getattr(self, component, None)
if model is not None:
if issubclass(model.__class__, ModelMixin):
model.disable_lora()
elif issubclass(model.__class__, PreTrainedModel):
disable_lora_for_text_encoder(model)
def enable_lora(self):
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
for component in self._lora_loadable_modules:
model = getattr(self, component, None)
if model is not None:
if issubclass(model.__class__, ModelMixin):
model.enable_lora()
elif issubclass(model.__class__, PreTrainedModel):
enable_lora_for_text_encoder(model)
def delete_adapters(self, adapter_names: Union[List[str], str]):
"""
Args:
Deletes the LoRA layers of `adapter_name` for the unet and text-encoder(s).
adapter_names (`Union[List[str], str]`):
The names of the adapter to delete. Can be a single string or a list of strings
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
if isinstance(adapter_names, str):
adapter_names = [adapter_names]
for component in self._lora_loadable_modules:
model = getattr(self, component, None)
if model is not None:
if issubclass(model.__class__, ModelMixin):
model.delete_adapters(adapter_names)
elif issubclass(model.__class__, PreTrainedModel):
for adapter_name in adapter_names:
delete_adapter_layers(model, adapter_name)
def get_active_adapters(self) -> List[str]:
"""
Gets the list of the current active adapters.
Example:
```python
from diffusers import DiffusionPipeline
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
).to("cuda")
pipeline.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
pipeline.get_active_adapters()
```
"""
if not USE_PEFT_BACKEND:
raise ValueError(
"PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`"
)
active_adapters = []
for component in self._lora_loadable_modules:
model = getattr(self, component, None)
if model is not None and issubclass(model.__class__, ModelMixin):
for module in model.modules():
if isinstance(module, BaseTunerLayer):
active_adapters = module.active_adapters
break
return active_adapters
def get_list_adapters(self) -> Dict[str, List[str]]:
"""
Gets the current list of all available adapters in the pipeline.
"""
if not USE_PEFT_BACKEND:
raise ValueError(
"PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`"
)
set_adapters = {}
for component in self._lora_loadable_modules:
model = getattr(self, component, None)
if (
model is not None
and issubclass(model.__class__, (ModelMixin, PreTrainedModel))
and hasattr(model, "peft_config")
):
set_adapters[component] = list(model.peft_config.keys())
return set_adapters
def set_lora_device(self, adapter_names: List[str], device: Union[torch.device, str, int]) -> None:
"""
Moves the LoRAs listed in `adapter_names` to a target device. Useful for offloading the LoRA to the CPU in case
you want to load multiple adapters and free some GPU memory.
Args:
adapter_names (`List[str]`):
List of adapters to send device to.
device (`Union[torch.device, str, int]`):
Device to send the adapters to. Can be either a torch device, a str or an integer.
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
for component in self._lora_loadable_modules:
model = getattr(self, component, None)
if model is not None:
for module in model.modules():
if isinstance(module, BaseTunerLayer):
for adapter_name in adapter_names:
module.lora_A[adapter_name].to(device)
module.lora_B[adapter_name].to(device)
# this is a param, not a module, so device placement is not in-place -> re-assign
if hasattr(module, "lora_magnitude_vector") and module.lora_magnitude_vector is not None:
if adapter_name in module.lora_magnitude_vector:
module.lora_magnitude_vector[adapter_name] = module.lora_magnitude_vector[
adapter_name
].to(device)
@staticmethod
def pack_weights(layers, prefix):
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
return layers_state_dict
@staticmethod
def write_lora_layers(
state_dict: Dict[str, torch.Tensor],
save_directory: str,
is_main_process: bool,
weight_name: str,
save_function: Callable,
safe_serialization: bool,
):
if os.path.isfile(save_directory):
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
return
if save_function is None:
if safe_serialization:
def save_function(weights, filename):
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})
else:
save_function = torch.save
os.makedirs(save_directory, exist_ok=True)
if weight_name is None:
if safe_serialization:
weight_name = LORA_WEIGHT_NAME_SAFE
else:
weight_name = LORA_WEIGHT_NAME
save_path = Path(save_directory, weight_name).as_posix()
save_function(state_dict, save_path)
logger.info(f"Model weights saved in {save_path}")
@property
def lora_scale(self) -> float:
# property function that returns the lora scale which can be set at run time by the pipeline.
# if _lora_scale has not been set, return 1
return self._lora_scale if hasattr(self, "_lora_scale") else 1.0 | class_definition | 18,593 | 38,068 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_base.py | null | 1,260 |
class SingleFileComponentError(Exception):
def __init__(self, message=None):
self.message = message
super().__init__(self.message) | class_definition | 16,023 | 16,173 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/single_file_utils.py | null | 1,261 |
class StableDiffusionLoraLoaderMixin(LoraBaseMixin):
r"""
Load LoRA layers into Stable Diffusion [`UNet2DConditionModel`] and
[`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
"""
_lora_loadable_modules = ["unet", "text_encoder"]
unet_name = UNET_NAME
text_encoder_name = TEXT_ENCODER_NAME
def load_lora_weights(
self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
):
"""
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
`self.text_encoder`.
All kwargs are forwarded to `self.lora_state_dict`.
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
loaded.
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is
loaded into `self.unet`.
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state
dict is loaded into `self.text_encoder`.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
kwargs (`dict`, *optional*):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# if a dict is passed, copy it instead of modifying it inplace
if isinstance(pretrained_model_name_or_path_or_dict, dict):
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
state_dict, network_alphas = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
is_correct_format = all("lora" in key for key in state_dict.keys())
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")
self.load_lora_into_unet(
state_dict,
network_alphas=network_alphas,
unet=getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
)
self.load_lora_into_text_encoder(
state_dict,
network_alphas=network_alphas,
text_encoder=getattr(self, self.text_encoder_name)
if not hasattr(self, "text_encoder")
else self.text_encoder,
lora_scale=self.lora_scale,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
@validate_hf_hub_args
def lora_state_dict(
cls,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
**kwargs,
):
r"""
Return state dict for lora weights and the network alphas.
<Tip warning={true}>
We support loading A1111 formatted LoRA checkpoints in a limited capacity.
This function is experimental and might change in the future.
</Tip>
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
weight_name (`str`, *optional*, defaults to None):
Name of the serialized state dict file.
"""
# Load the main state dict first which has the LoRA layers for either of
# UNet and text encoder or both.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", None)
unet_config = kwargs.pop("unet_config", None)
use_safetensors = kwargs.pop("use_safetensors", None)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
state_dict = _fetch_state_dict(
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
weight_name=weight_name,
use_safetensors=use_safetensors,
local_files_only=local_files_only,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
allow_pickle=allow_pickle,
)
is_dora_scale_present = any("dora_scale" in k for k in state_dict)
if is_dora_scale_present:
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
logger.warning(warn_msg)
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
network_alphas = None
# TODO: replace it with a method from `state_dict_utils`
if all(
(
k.startswith("lora_te_")
or k.startswith("lora_unet_")
or k.startswith("lora_te1_")
or k.startswith("lora_te2_")
)
for k in state_dict.keys()
):
# Map SDXL blocks correctly.
if unet_config is not None:
# use unet config to remap block numbers
state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict)
return state_dict, network_alphas
@classmethod
def load_lora_into_unet(
cls, state_dict, network_alphas, unet, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
):
"""
This will load the LoRA layers specified in `state_dict` into `unet`.
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
encoder lora layers.
network_alphas (`Dict[str, float]`):
The value of the network alpha used for stable learning and preventing underflow. This value has the
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
unet (`UNet2DConditionModel`):
The UNet model to load the LoRA layers into.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading only loading the pretrained LoRA weights and not initializing the random
weights.
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
# then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
# their prefixes.
keys = list(state_dict.keys())
only_text_encoder = all(key.startswith(cls.text_encoder_name) for key in keys)
if not only_text_encoder:
# Load the layers corresponding to UNet.
logger.info(f"Loading {cls.unet_name}.")
unet.load_lora_adapter(
state_dict,
prefix=cls.unet_name,
network_alphas=network_alphas,
adapter_name=adapter_name,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
def load_lora_into_text_encoder(
cls,
state_dict,
network_alphas,
text_encoder,
prefix=None,
lora_scale=1.0,
adapter_name=None,
_pipeline=None,
low_cpu_mem_usage=False,
):
"""
This will load the LoRA layers specified in `state_dict` into `text_encoder`
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The key should be prefixed with an
additional `text_encoder` to distinguish between unet lora layers.
network_alphas (`Dict[str, float]`):
The value of the network alpha used for stable learning and preventing underflow. This value has the
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
text_encoder (`CLIPTextModel`):
The text encoder model to load the LoRA layers into.
prefix (`str`):
Expected prefix of the `text_encoder` in the `state_dict`.
lora_scale (`float`):
How much to scale the output of the lora linear layer before it is added with the output of the regular
lora layer.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
"""
_load_lora_into_text_encoder(
state_dict=state_dict,
network_alphas=network_alphas,
lora_scale=lora_scale,
text_encoder=text_encoder,
prefix=prefix,
text_encoder_name=cls.text_encoder_name,
adapter_name=adapter_name,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
def save_lora_weights(
cls,
save_directory: Union[str, os.PathLike],
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
r"""
Save the LoRA parameters corresponding to the UNet and text encoder.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save LoRA parameters to. Will be created if it doesn't exist.
unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `unet`.
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
encoder LoRA state dict because it comes from 🤗 Transformers.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
"""
state_dict = {}
if not (unet_lora_layers or text_encoder_lora_layers):
raise ValueError("You must pass at least one of `unet_lora_layers` and `text_encoder_lora_layers`.")
if unet_lora_layers:
state_dict.update(cls.pack_weights(unet_lora_layers, cls.unet_name))
if text_encoder_lora_layers:
state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name))
# Save the model
cls.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
def fuse_lora(
self,
components: List[str] = ["unet", "text_encoder"],
lora_scale: float = 1.0,
safe_fusing: bool = False,
adapter_names: Optional[List[str]] = None,
**kwargs,
):
r"""
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
lora_scale (`float`, defaults to 1.0):
Controls how much to influence the outputs with the LoRA parameters.
safe_fusing (`bool`, defaults to `False`):
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
adapter_names (`List[str]`, *optional*):
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
Example:
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
).to("cuda")
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipeline.fuse_lora(lora_scale=0.7)
```
"""
super().fuse_lora(
components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
)
def unfuse_lora(self, components: List[str] = ["unet", "text_encoder"], **kwargs):
r"""
Reverses the effect of
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
unfuse_text_encoder (`bool`, defaults to `True`):
Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
LoRA parameters then it won't have any effect.
"""
super().unfuse_lora(components=components) | class_definition | 1,939 | 21,337 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py | null | 1,262 |
class StableDiffusionXLLoraLoaderMixin(LoraBaseMixin):
r"""
Load LoRA layers into Stable Diffusion XL [`UNet2DConditionModel`],
[`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and
[`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection).
"""
_lora_loadable_modules = ["unet", "text_encoder", "text_encoder_2"]
unet_name = UNET_NAME
text_encoder_name = TEXT_ENCODER_NAME
def load_lora_weights(
self,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
adapter_name: Optional[str] = None,
**kwargs,
):
"""
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
`self.text_encoder`.
All kwargs are forwarded to `self.lora_state_dict`.
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
loaded.
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_unet`] for more details on how the state dict is
loaded into `self.unet`.
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder`] for more details on how the state
dict is loaded into `self.text_encoder`.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
kwargs (`dict`, *optional*):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# We could have accessed the unet config from `lora_state_dict()` too. We pass
# it here explicitly to be able to tell that it's coming from an SDXL
# pipeline.
# if a dict is passed, copy it instead of modifying it inplace
if isinstance(pretrained_model_name_or_path_or_dict, dict):
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
state_dict, network_alphas = self.lora_state_dict(
pretrained_model_name_or_path_or_dict,
unet_config=self.unet.config,
**kwargs,
)
is_correct_format = all("lora" in key for key in state_dict.keys())
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")
self.load_lora_into_unet(
state_dict,
network_alphas=network_alphas,
unet=self.unet,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
)
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
if len(text_encoder_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder,
prefix="text_encoder",
lora_scale=self.lora_scale,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
)
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
if len(text_encoder_2_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_2_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder_2,
prefix="text_encoder_2",
lora_scale=self.lora_scale,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
@validate_hf_hub_args
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.lora_state_dict
def lora_state_dict(
cls,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
**kwargs,
):
r"""
Return state dict for lora weights and the network alphas.
<Tip warning={true}>
We support loading A1111 formatted LoRA checkpoints in a limited capacity.
This function is experimental and might change in the future.
</Tip>
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
weight_name (`str`, *optional*, defaults to None):
Name of the serialized state dict file.
"""
# Load the main state dict first which has the LoRA layers for either of
# UNet and text encoder or both.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", None)
unet_config = kwargs.pop("unet_config", None)
use_safetensors = kwargs.pop("use_safetensors", None)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
state_dict = _fetch_state_dict(
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
weight_name=weight_name,
use_safetensors=use_safetensors,
local_files_only=local_files_only,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
allow_pickle=allow_pickle,
)
is_dora_scale_present = any("dora_scale" in k for k in state_dict)
if is_dora_scale_present:
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
logger.warning(warn_msg)
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
network_alphas = None
# TODO: replace it with a method from `state_dict_utils`
if all(
(
k.startswith("lora_te_")
or k.startswith("lora_unet_")
or k.startswith("lora_te1_")
or k.startswith("lora_te2_")
)
for k in state_dict.keys()
):
# Map SDXL blocks correctly.
if unet_config is not None:
# use unet config to remap block numbers
state_dict = _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config)
state_dict, network_alphas = _convert_non_diffusers_lora_to_diffusers(state_dict)
return state_dict, network_alphas
@classmethod
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_unet
def load_lora_into_unet(
cls, state_dict, network_alphas, unet, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
):
"""
This will load the LoRA layers specified in `state_dict` into `unet`.
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
encoder lora layers.
network_alphas (`Dict[str, float]`):
The value of the network alpha used for stable learning and preventing underflow. This value has the
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
unet (`UNet2DConditionModel`):
The UNet model to load the LoRA layers into.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading only loading the pretrained LoRA weights and not initializing the random
weights.
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
# then the `state_dict` keys should have `cls.unet_name` and/or `cls.text_encoder_name` as
# their prefixes.
keys = list(state_dict.keys())
only_text_encoder = all(key.startswith(cls.text_encoder_name) for key in keys)
if not only_text_encoder:
# Load the layers corresponding to UNet.
logger.info(f"Loading {cls.unet_name}.")
unet.load_lora_adapter(
state_dict,
prefix=cls.unet_name,
network_alphas=network_alphas,
adapter_name=adapter_name,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
def load_lora_into_text_encoder(
cls,
state_dict,
network_alphas,
text_encoder,
prefix=None,
lora_scale=1.0,
adapter_name=None,
_pipeline=None,
low_cpu_mem_usage=False,
):
"""
This will load the LoRA layers specified in `state_dict` into `text_encoder`
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The key should be prefixed with an
additional `text_encoder` to distinguish between unet lora layers.
network_alphas (`Dict[str, float]`):
The value of the network alpha used for stable learning and preventing underflow. This value has the
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
text_encoder (`CLIPTextModel`):
The text encoder model to load the LoRA layers into.
prefix (`str`):
Expected prefix of the `text_encoder` in the `state_dict`.
lora_scale (`float`):
How much to scale the output of the lora linear layer before it is added with the output of the regular
lora layer.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
"""
_load_lora_into_text_encoder(
state_dict=state_dict,
network_alphas=network_alphas,
lora_scale=lora_scale,
text_encoder=text_encoder,
prefix=prefix,
text_encoder_name=cls.text_encoder_name,
adapter_name=adapter_name,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
def save_lora_weights(
cls,
save_directory: Union[str, os.PathLike],
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
r"""
Save the LoRA parameters corresponding to the UNet and text encoder.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save LoRA parameters to. Will be created if it doesn't exist.
unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `unet`.
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
encoder LoRA state dict because it comes from 🤗 Transformers.
text_encoder_2_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `text_encoder_2`. Must explicitly pass the text
encoder LoRA state dict because it comes from 🤗 Transformers.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
"""
state_dict = {}
if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
raise ValueError(
"You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`."
)
if unet_lora_layers:
state_dict.update(cls.pack_weights(unet_lora_layers, "unet"))
if text_encoder_lora_layers:
state_dict.update(cls.pack_weights(text_encoder_lora_layers, "text_encoder"))
if text_encoder_2_lora_layers:
state_dict.update(cls.pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
cls.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
def fuse_lora(
self,
components: List[str] = ["unet", "text_encoder", "text_encoder_2"],
lora_scale: float = 1.0,
safe_fusing: bool = False,
adapter_names: Optional[List[str]] = None,
**kwargs,
):
r"""
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
lora_scale (`float`, defaults to 1.0):
Controls how much to influence the outputs with the LoRA parameters.
safe_fusing (`bool`, defaults to `False`):
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
adapter_names (`List[str]`, *optional*):
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
Example:
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
).to("cuda")
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipeline.fuse_lora(lora_scale=0.7)
```
"""
super().fuse_lora(
components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
)
def unfuse_lora(self, components: List[str] = ["unet", "text_encoder", "text_encoder_2"], **kwargs):
r"""
Reverses the effect of
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
unfuse_text_encoder (`bool`, defaults to `True`):
Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
LoRA parameters then it won't have any effect.
"""
super().unfuse_lora(components=components) | class_definition | 21,340 | 42,760 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py | null | 1,263 |
class SD3LoraLoaderMixin(LoraBaseMixin):
r"""
Load LoRA layers into [`SD3Transformer2DModel`],
[`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), and
[`CLIPTextModelWithProjection`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection).
Specific to [`StableDiffusion3Pipeline`].
"""
_lora_loadable_modules = ["transformer", "text_encoder", "text_encoder_2"]
transformer_name = TRANSFORMER_NAME
text_encoder_name = TEXT_ENCODER_NAME
@classmethod
@validate_hf_hub_args
def lora_state_dict(
cls,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
**kwargs,
):
r"""
Return state dict for lora weights and the network alphas.
<Tip warning={true}>
We support loading A1111 formatted LoRA checkpoints in a limited capacity.
This function is experimental and might change in the future.
</Tip>
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
"""
# Load the main state dict first which has the LoRA layers for either of
# transformer and text encoder or both.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", None)
use_safetensors = kwargs.pop("use_safetensors", None)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
state_dict = _fetch_state_dict(
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
weight_name=weight_name,
use_safetensors=use_safetensors,
local_files_only=local_files_only,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
allow_pickle=allow_pickle,
)
is_dora_scale_present = any("dora_scale" in k for k in state_dict)
if is_dora_scale_present:
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
logger.warning(warn_msg)
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
return state_dict
def load_lora_weights(
self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
):
"""
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.unet` and
`self.text_encoder`.
All kwargs are forwarded to `self.lora_state_dict`.
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
loaded.
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
dict is loaded into `self.transformer`.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
kwargs (`dict`, *optional*):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# if a dict is passed, copy it instead of modifying it inplace
if isinstance(pretrained_model_name_or_path_or_dict, dict):
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
is_correct_format = all("lora" in key for key in state_dict.keys())
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")
transformer_state_dict = {k: v for k, v in state_dict.items() if "transformer." in k}
if len(transformer_state_dict) > 0:
self.load_lora_into_transformer(
state_dict,
transformer=getattr(self, self.transformer_name)
if not hasattr(self, "transformer")
else self.transformer,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
)
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
if len(text_encoder_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_state_dict,
network_alphas=None,
text_encoder=self.text_encoder,
prefix="text_encoder",
lora_scale=self.lora_scale,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
)
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k}
if len(text_encoder_2_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_2_state_dict,
network_alphas=None,
text_encoder=self.text_encoder_2,
prefix="text_encoder_2",
lora_scale=self.lora_scale,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
def load_lora_into_transformer(
cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
):
"""
This will load the LoRA layers specified in `state_dict` into `transformer`.
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
encoder lora layers.
transformer (`SD3Transformer2DModel`):
The Transformer model to load the LoRA layers into.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
"""
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# Load the layers corresponding to transformer.
logger.info(f"Loading {cls.transformer_name}.")
transformer.load_lora_adapter(
state_dict,
network_alphas=None,
adapter_name=adapter_name,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
def load_lora_into_text_encoder(
cls,
state_dict,
network_alphas,
text_encoder,
prefix=None,
lora_scale=1.0,
adapter_name=None,
_pipeline=None,
low_cpu_mem_usage=False,
):
"""
This will load the LoRA layers specified in `state_dict` into `text_encoder`
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The key should be prefixed with an
additional `text_encoder` to distinguish between unet lora layers.
network_alphas (`Dict[str, float]`):
The value of the network alpha used for stable learning and preventing underflow. This value has the
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
text_encoder (`CLIPTextModel`):
The text encoder model to load the LoRA layers into.
prefix (`str`):
Expected prefix of the `text_encoder` in the `state_dict`.
lora_scale (`float`):
How much to scale the output of the lora linear layer before it is added with the output of the regular
lora layer.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
"""
_load_lora_into_text_encoder(
state_dict=state_dict,
network_alphas=network_alphas,
lora_scale=lora_scale,
text_encoder=text_encoder,
prefix=prefix,
text_encoder_name=cls.text_encoder_name,
adapter_name=adapter_name,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
def save_lora_weights(
cls,
save_directory: Union[str, os.PathLike],
transformer_lora_layers: Dict[str, torch.nn.Module] = None,
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
r"""
Save the LoRA parameters corresponding to the UNet and text encoder.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save LoRA parameters to. Will be created if it doesn't exist.
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `transformer`.
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
encoder LoRA state dict because it comes from 🤗 Transformers.
text_encoder_2_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `text_encoder_2`. Must explicitly pass the text
encoder LoRA state dict because it comes from 🤗 Transformers.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
"""
state_dict = {}
if not (transformer_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers):
raise ValueError(
"You must pass at least one of `transformer_lora_layers`, `text_encoder_lora_layers`, `text_encoder_2_lora_layers`."
)
if transformer_lora_layers:
state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
if text_encoder_lora_layers:
state_dict.update(cls.pack_weights(text_encoder_lora_layers, "text_encoder"))
if text_encoder_2_lora_layers:
state_dict.update(cls.pack_weights(text_encoder_2_lora_layers, "text_encoder_2"))
# Save the model
cls.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
def fuse_lora(
self,
components: List[str] = ["transformer", "text_encoder", "text_encoder_2"],
lora_scale: float = 1.0,
safe_fusing: bool = False,
adapter_names: Optional[List[str]] = None,
**kwargs,
):
r"""
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
lora_scale (`float`, defaults to 1.0):
Controls how much to influence the outputs with the LoRA parameters.
safe_fusing (`bool`, defaults to `False`):
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
adapter_names (`List[str]`, *optional*):
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
Example:
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
).to("cuda")
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipeline.fuse_lora(lora_scale=0.7)
```
"""
super().fuse_lora(
components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
)
def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder", "text_encoder_2"], **kwargs):
r"""
Reverses the effect of
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
unfuse_text_encoder (`bool`, defaults to `True`):
Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
LoRA parameters then it won't have any effect.
"""
super().unfuse_lora(components=components) | class_definition | 42,763 | 62,034 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py | null | 1,264 |
class FluxLoraLoaderMixin(LoraBaseMixin):
r"""
Load LoRA layers into [`FluxTransformer2DModel`],
[`CLIPTextModel`](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel).
Specific to [`StableDiffusion3Pipeline`].
"""
_lora_loadable_modules = ["transformer", "text_encoder"]
transformer_name = TRANSFORMER_NAME
text_encoder_name = TEXT_ENCODER_NAME
_control_lora_supported_norm_keys = ["norm_q", "norm_k", "norm_added_q", "norm_added_k"]
@classmethod
@validate_hf_hub_args
def lora_state_dict(
cls,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
return_alphas: bool = False,
**kwargs,
):
r"""
Return state dict for lora weights and the network alphas.
<Tip warning={true}>
We support loading A1111 formatted LoRA checkpoints in a limited capacity.
This function is experimental and might change in the future.
</Tip>
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
"""
# Load the main state dict first which has the LoRA layers for either of
# transformer and text encoder or both.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", None)
use_safetensors = kwargs.pop("use_safetensors", None)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
state_dict = _fetch_state_dict(
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
weight_name=weight_name,
use_safetensors=use_safetensors,
local_files_only=local_files_only,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
allow_pickle=allow_pickle,
)
is_dora_scale_present = any("dora_scale" in k for k in state_dict)
if is_dora_scale_present:
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
logger.warning(warn_msg)
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
# TODO (sayakpaul): to a follow-up to clean and try to unify the conditions.
is_kohya = any(".lora_down.weight" in k for k in state_dict)
if is_kohya:
state_dict = _convert_kohya_flux_lora_to_diffusers(state_dict)
# Kohya already takes care of scaling the LoRA parameters with alpha.
return (state_dict, None) if return_alphas else state_dict
is_xlabs = any("processor" in k for k in state_dict)
if is_xlabs:
state_dict = _convert_xlabs_flux_lora_to_diffusers(state_dict)
# xlabs doesn't use `alpha`.
return (state_dict, None) if return_alphas else state_dict
is_bfl_control = any("query_norm.scale" in k for k in state_dict)
if is_bfl_control:
state_dict = _convert_bfl_flux_control_lora_to_diffusers(state_dict)
return (state_dict, None) if return_alphas else state_dict
# For state dicts like
# https://huggingface.co/TheLastBen/Jon_Snow_Flux_LoRA
keys = list(state_dict.keys())
network_alphas = {}
for k in keys:
if "alpha" in k:
alpha_value = state_dict.get(k)
if (torch.is_tensor(alpha_value) and torch.is_floating_point(alpha_value)) or isinstance(
alpha_value, float
):
network_alphas[k] = state_dict.pop(k)
else:
raise ValueError(
f"The alpha key ({k}) seems to be incorrect. If you think this error is unexpected, please open as issue."
)
if return_alphas:
return state_dict, network_alphas
else:
return state_dict
def load_lora_weights(
self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
):
"""
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
`self.text_encoder`.
All kwargs are forwarded to `self.lora_state_dict`.
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is
loaded.
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
dict is loaded into `self.transformer`.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
kwargs (`dict`, *optional*):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
`Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# if a dict is passed, copy it instead of modifying it inplace
if isinstance(pretrained_model_name_or_path_or_dict, dict):
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
state_dict, network_alphas = self.lora_state_dict(
pretrained_model_name_or_path_or_dict, return_alphas=True, **kwargs
)
has_lora_keys = any("lora" in key for key in state_dict.keys())
# Flux Control LoRAs also have norm keys
has_norm_keys = any(
norm_key in key for key in state_dict.keys() for norm_key in self._control_lora_supported_norm_keys
)
if not (has_lora_keys or has_norm_keys):
raise ValueError("Invalid LoRA checkpoint.")
transformer_lora_state_dict = {
k: state_dict.pop(k) for k in list(state_dict.keys()) if "transformer." in k and "lora" in k
}
transformer_norm_state_dict = {
k: state_dict.pop(k)
for k in list(state_dict.keys())
if "transformer." in k and any(norm_key in k for norm_key in self._control_lora_supported_norm_keys)
}
transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
has_param_with_expanded_shape = self._maybe_expand_transformer_param_shape_or_error_(
transformer, transformer_lora_state_dict, transformer_norm_state_dict
)
if has_param_with_expanded_shape:
logger.info(
"The LoRA weights contain parameters that have different shapes that expected by the transformer. "
"As a result, the state_dict of the transformer has been expanded to match the LoRA parameter shapes. "
"To get a comprehensive list of parameter names that were modified, enable debug logging."
)
transformer_lora_state_dict = self._maybe_expand_lora_state_dict(
transformer=transformer, lora_state_dict=transformer_lora_state_dict
)
if len(transformer_lora_state_dict) > 0:
self.load_lora_into_transformer(
transformer_lora_state_dict,
network_alphas=network_alphas,
transformer=transformer,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
)
if len(transformer_norm_state_dict) > 0:
transformer._transformer_norm_layers = self._load_norm_into_transformer(
transformer_norm_state_dict,
transformer=transformer,
discard_original_layers=False,
)
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k}
if len(text_encoder_state_dict) > 0:
self.load_lora_into_text_encoder(
text_encoder_state_dict,
network_alphas=network_alphas,
text_encoder=self.text_encoder,
prefix="text_encoder",
lora_scale=self.lora_scale,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
def load_lora_into_transformer(
cls, state_dict, network_alphas, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
):
"""
This will load the LoRA layers specified in `state_dict` into `transformer`.
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
encoder lora layers.
network_alphas (`Dict[str, float]`):
The value of the network alpha used for stable learning and preventing underflow. This value has the
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
transformer (`FluxTransformer2DModel`):
The Transformer model to load the LoRA layers into.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
"""
if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# Load the layers corresponding to transformer.
keys = list(state_dict.keys())
transformer_present = any(key.startswith(cls.transformer_name) for key in keys)
if transformer_present:
logger.info(f"Loading {cls.transformer_name}.")
transformer.load_lora_adapter(
state_dict,
network_alphas=network_alphas,
adapter_name=adapter_name,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
def _load_norm_into_transformer(
cls,
state_dict,
transformer,
prefix=None,
discard_original_layers=False,
) -> Dict[str, torch.Tensor]:
# Remove prefix if present
prefix = prefix or cls.transformer_name
for key in list(state_dict.keys()):
if key.split(".")[0] == prefix:
state_dict[key[len(f"{prefix}.") :]] = state_dict.pop(key)
# Find invalid keys
transformer_state_dict = transformer.state_dict()
transformer_keys = set(transformer_state_dict.keys())
state_dict_keys = set(state_dict.keys())
extra_keys = list(state_dict_keys - transformer_keys)
if extra_keys:
logger.warning(
f"Unsupported keys found in state dict when trying to load normalization layers into the transformer. The following keys will be ignored:\n{extra_keys}."
)
for key in extra_keys:
state_dict.pop(key)
# Save the layers that are going to be overwritten so that unload_lora_weights can work as expected
overwritten_layers_state_dict = {}
if not discard_original_layers:
for key in state_dict.keys():
overwritten_layers_state_dict[key] = transformer_state_dict[key].clone()
logger.info(
"The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will directly update the state_dict of the transformer "
'as opposed to the LoRA layers that will co-exist separately until the "fuse_lora()" method is called. That is to say, the normalization layers will always be directly '
"fused into the transformer and can only be unfused if `discard_original_layers=True` is passed. This might also have implications when dealing with multiple LoRAs. "
"If you notice something unexpected, please open an issue: https://github.com/huggingface/diffusers/issues."
)
# We can't load with strict=True because the current state_dict does not contain all the transformer keys
incompatible_keys = transformer.load_state_dict(state_dict, strict=False)
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
# We shouldn't expect to see the supported norm keys here being present in the unexpected keys.
if unexpected_keys:
if any(norm_key in k for k in unexpected_keys for norm_key in cls._control_lora_supported_norm_keys):
raise ValueError(
f"Found {unexpected_keys} as unexpected keys while trying to load norm layers into the transformer."
)
return overwritten_layers_state_dict
@classmethod
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
def load_lora_into_text_encoder(
cls,
state_dict,
network_alphas,
text_encoder,
prefix=None,
lora_scale=1.0,
adapter_name=None,
_pipeline=None,
low_cpu_mem_usage=False,
):
"""
This will load the LoRA layers specified in `state_dict` into `text_encoder`
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The key should be prefixed with an
additional `text_encoder` to distinguish between unet lora layers.
network_alphas (`Dict[str, float]`):
The value of the network alpha used for stable learning and preventing underflow. This value has the
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
text_encoder (`CLIPTextModel`):
The text encoder model to load the LoRA layers into.
prefix (`str`):
Expected prefix of the `text_encoder` in the `state_dict`.
lora_scale (`float`):
How much to scale the output of the lora linear layer before it is added with the output of the regular
lora layer.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
"""
_load_lora_into_text_encoder(
state_dict=state_dict,
network_alphas=network_alphas,
lora_scale=lora_scale,
text_encoder=text_encoder,
prefix=prefix,
text_encoder_name=cls.text_encoder_name,
adapter_name=adapter_name,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights with unet->transformer
def save_lora_weights(
cls,
save_directory: Union[str, os.PathLike],
transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
r"""
Save the LoRA parameters corresponding to the UNet and text encoder.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save LoRA parameters to. Will be created if it doesn't exist.
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `transformer`.
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
encoder LoRA state dict because it comes from 🤗 Transformers.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
"""
state_dict = {}
if not (transformer_lora_layers or text_encoder_lora_layers):
raise ValueError("You must pass at least one of `transformer_lora_layers` and `text_encoder_lora_layers`.")
if transformer_lora_layers:
state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
if text_encoder_lora_layers:
state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name))
# Save the model
cls.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
def fuse_lora(
self,
components: List[str] = ["transformer"],
lora_scale: float = 1.0,
safe_fusing: bool = False,
adapter_names: Optional[List[str]] = None,
**kwargs,
):
r"""
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
lora_scale (`float`, defaults to 1.0):
Controls how much to influence the outputs with the LoRA parameters.
safe_fusing (`bool`, defaults to `False`):
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
adapter_names (`List[str]`, *optional*):
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
Example:
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
).to("cuda")
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipeline.fuse_lora(lora_scale=0.7)
```
"""
transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
if (
hasattr(transformer, "_transformer_norm_layers")
and isinstance(transformer._transformer_norm_layers, dict)
and len(transformer._transformer_norm_layers.keys()) > 0
):
logger.info(
"The provided state dict contains normalization layers in addition to LoRA layers. The normalization layers will be directly updated the state_dict of the transformer "
"as opposed to the LoRA layers that will co-exist separately until the 'fuse_lora()' method is called. That is to say, the normalization layers will always be directly "
"fused into the transformer and can only be unfused if `discard_original_layers=True` is passed."
)
super().fuse_lora(
components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
)
def unfuse_lora(self, components: List[str] = ["transformer", "text_encoder"], **kwargs):
r"""
Reverses the effect of
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
"""
transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers:
transformer.load_state_dict(transformer._transformer_norm_layers, strict=False)
super().unfuse_lora(components=components)
# We override this here account for `_transformer_norm_layers` and `_overwritten_params`.
def unload_lora_weights(self, reset_to_overwritten_params=False):
"""
Unloads the LoRA parameters.
Args:
reset_to_overwritten_params (`bool`, defaults to `False`): Whether to reset the LoRA-loaded modules
to their original params. Refer to the [Flux
documentation](https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux) to learn more.
Examples:
```python
>>> # Assuming `pipeline` is already loaded with the LoRA parameters.
>>> pipeline.unload_lora_weights()
>>> ...
```
"""
super().unload_lora_weights()
transformer = getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer
if hasattr(transformer, "_transformer_norm_layers") and transformer._transformer_norm_layers:
transformer.load_state_dict(transformer._transformer_norm_layers, strict=False)
transformer._transformer_norm_layers = None
if reset_to_overwritten_params and getattr(transformer, "_overwritten_params", None) is not None:
overwritten_params = transformer._overwritten_params
module_names = set()
for param_name in overwritten_params:
if param_name.endswith(".weight"):
module_names.add(param_name.replace(".weight", ""))
for name, module in transformer.named_modules():
if isinstance(module, torch.nn.Linear) and name in module_names:
module_weight = module.weight.data
module_bias = module.bias.data if module.bias is not None else None
bias = module_bias is not None
parent_module_name, _, current_module_name = name.rpartition(".")
parent_module = transformer.get_submodule(parent_module_name)
current_param_weight = overwritten_params[f"{name}.weight"]
in_features, out_features = current_param_weight.shape[1], current_param_weight.shape[0]
with torch.device("meta"):
original_module = torch.nn.Linear(
in_features,
out_features,
bias=bias,
dtype=module_weight.dtype,
)
tmp_state_dict = {"weight": current_param_weight}
if module_bias is not None:
tmp_state_dict.update({"bias": overwritten_params[f"{name}.bias"]})
original_module.load_state_dict(tmp_state_dict, assign=True, strict=True)
setattr(parent_module, current_module_name, original_module)
del tmp_state_dict
if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX:
attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name]
new_value = int(current_param_weight.shape[1])
old_value = getattr(transformer.config, attribute_name)
setattr(transformer.config, attribute_name, new_value)
logger.info(
f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}."
)
@classmethod
def _maybe_expand_transformer_param_shape_or_error_(
cls,
transformer: torch.nn.Module,
lora_state_dict=None,
norm_state_dict=None,
prefix=None,
) -> bool:
"""
Control LoRA expands the shape of the input layer from (3072, 64) to (3072, 128). This method handles that and
generalizes things a bit so that any parameter that needs expansion receives appropriate treatement.
"""
state_dict = {}
if lora_state_dict is not None:
state_dict.update(lora_state_dict)
if norm_state_dict is not None:
state_dict.update(norm_state_dict)
# Remove prefix if present
prefix = prefix or cls.transformer_name
for key in list(state_dict.keys()):
if key.split(".")[0] == prefix:
state_dict[key[len(f"{prefix}.") :]] = state_dict.pop(key)
# Expand transformer parameter shapes if they don't match lora
has_param_with_shape_update = False
overwritten_params = {}
is_peft_loaded = getattr(transformer, "peft_config", None) is not None
for name, module in transformer.named_modules():
if isinstance(module, torch.nn.Linear):
module_weight = module.weight.data
module_bias = module.bias.data if module.bias is not None else None
bias = module_bias is not None
lora_base_name = name.replace(".base_layer", "") if is_peft_loaded else name
lora_A_weight_name = f"{lora_base_name}.lora_A.weight"
lora_B_weight_name = f"{lora_base_name}.lora_B.weight"
if lora_A_weight_name not in state_dict:
continue
in_features = state_dict[lora_A_weight_name].shape[1]
out_features = state_dict[lora_B_weight_name].shape[0]
# Model maybe loaded with different quantization schemes which may flatten the params.
# `bitsandbytes`, for example, flatten the weights when using 4bit. 8bit bnb models
# preserve weight shape.
module_weight_shape = cls._calculate_module_shape(model=transformer, base_module=module)
# This means there's no need for an expansion in the params, so we simply skip.
if tuple(module_weight_shape) == (out_features, in_features):
continue
# TODO (sayakpaul): We still need to consider if the module we're expanding is
# quantized and handle it accordingly if that is the case.
module_out_features, module_in_features = module_weight.shape
debug_message = ""
if in_features > module_in_features:
debug_message += (
f'Expanding the nn.Linear input/output features for module="{name}" because the provided LoRA '
f"checkpoint contains higher number of features than expected. The number of input_features will be "
f"expanded from {module_in_features} to {in_features}"
)
if out_features > module_out_features:
debug_message += (
", and the number of output features will be "
f"expanded from {module_out_features} to {out_features}."
)
else:
debug_message += "."
if debug_message:
logger.debug(debug_message)
if out_features > module_out_features or in_features > module_in_features:
has_param_with_shape_update = True
parent_module_name, _, current_module_name = name.rpartition(".")
parent_module = transformer.get_submodule(parent_module_name)
with torch.device("meta"):
expanded_module = torch.nn.Linear(
in_features, out_features, bias=bias, dtype=module_weight.dtype
)
# Only weights are expanded and biases are not. This is because only the input dimensions
# are changed while the output dimensions remain the same. The shape of the weight tensor
# is (out_features, in_features), while the shape of bias tensor is (out_features,), which
# explains the reason why only weights are expanded.
new_weight = torch.zeros_like(
expanded_module.weight.data, device=module_weight.device, dtype=module_weight.dtype
)
slices = tuple(slice(0, dim) for dim in module_weight.shape)
new_weight[slices] = module_weight
tmp_state_dict = {"weight": new_weight}
if module_bias is not None:
tmp_state_dict["bias"] = module_bias
expanded_module.load_state_dict(tmp_state_dict, strict=True, assign=True)
setattr(parent_module, current_module_name, expanded_module)
del tmp_state_dict
if current_module_name in _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX:
attribute_name = _MODULE_NAME_TO_ATTRIBUTE_MAP_FLUX[current_module_name]
new_value = int(expanded_module.weight.data.shape[1])
old_value = getattr(transformer.config, attribute_name)
setattr(transformer.config, attribute_name, new_value)
logger.info(
f"Set the {attribute_name} attribute of the model to {new_value} from {old_value}."
)
# For `unload_lora_weights()`.
# TODO: this could lead to more memory overhead if the number of overwritten params
# are large. Should be revisited later and tackled through a `discard_original_layers` arg.
overwritten_params[f"{current_module_name}.weight"] = module_weight
if module_bias is not None:
overwritten_params[f"{current_module_name}.bias"] = module_bias
if len(overwritten_params) > 0:
transformer._overwritten_params = overwritten_params
return has_param_with_shape_update
@classmethod
def _maybe_expand_lora_state_dict(cls, transformer, lora_state_dict):
expanded_module_names = set()
transformer_state_dict = transformer.state_dict()
prefix = f"{cls.transformer_name}."
lora_module_names = [
key[: -len(".lora_A.weight")] for key in lora_state_dict if key.endswith(".lora_A.weight")
]
lora_module_names = [name[len(prefix) :] for name in lora_module_names if name.startswith(prefix)]
lora_module_names = sorted(set(lora_module_names))
transformer_module_names = sorted({name for name, _ in transformer.named_modules()})
unexpected_modules = set(lora_module_names) - set(transformer_module_names)
if unexpected_modules:
logger.debug(f"Found unexpected modules: {unexpected_modules}. These will be ignored.")
is_peft_loaded = getattr(transformer, "peft_config", None) is not None
for k in lora_module_names:
if k in unexpected_modules:
continue
base_param_name = (
f"{k.replace(prefix, '')}.base_layer.weight"
if is_peft_loaded and f"{k.replace(prefix, '')}.base_layer.weight" in transformer_state_dict
else f"{k.replace(prefix, '')}.weight"
)
base_weight_param = transformer_state_dict[base_param_name]
lora_A_param = lora_state_dict[f"{prefix}{k}.lora_A.weight"]
# TODO (sayakpaul): Handle the cases when we actually need to expand when using quantization.
base_module_shape = cls._calculate_module_shape(model=transformer, base_weight_param_name=base_param_name)
if base_module_shape[1] > lora_A_param.shape[1]:
shape = (lora_A_param.shape[0], base_weight_param.shape[1])
expanded_state_dict_weight = torch.zeros(shape, device=base_weight_param.device)
expanded_state_dict_weight[:, : lora_A_param.shape[1]].copy_(lora_A_param)
lora_state_dict[f"{prefix}{k}.lora_A.weight"] = expanded_state_dict_weight
expanded_module_names.add(k)
elif base_module_shape[1] < lora_A_param.shape[1]:
raise NotImplementedError(
f"This LoRA param ({k}.lora_A.weight) has an incompatible shape {lora_A_param.shape}. Please open an issue to file for a feature request - https://github.com/huggingface/diffusers/issues/new."
)
if expanded_module_names:
logger.info(
f"The following LoRA modules were zero padded to match the state dict of {cls.transformer_name}: {expanded_module_names}. Please open an issue if you think this was unexpected - https://github.com/huggingface/diffusers/issues/new."
)
return lora_state_dict
@staticmethod
def _calculate_module_shape(
model: "torch.nn.Module",
base_module: "torch.nn.Linear" = None,
base_weight_param_name: str = None,
) -> "torch.Size":
def _get_weight_shape(weight: torch.Tensor):
return weight.quant_state.shape if weight.__class__.__name__ == "Params4bit" else weight.shape
if base_module is not None:
return _get_weight_shape(base_module.weight)
elif base_weight_param_name is not None:
if not base_weight_param_name.endswith(".weight"):
raise ValueError(
f"Invalid `base_weight_param_name` passed as it does not end with '.weight' {base_weight_param_name=}."
)
module_path = base_weight_param_name.rsplit(".weight", 1)[0]
submodule = get_submodule_by_name(model, module_path)
return _get_weight_shape(submodule.weight)
raise ValueError("Either `base_module` or `base_weight_param_name` must be provided.") | class_definition | 62,037 | 101,713 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py | null | 1,265 |
class AmusedLoraLoaderMixin(StableDiffusionLoraLoaderMixin):
_lora_loadable_modules = ["transformer", "text_encoder"]
transformer_name = TRANSFORMER_NAME
text_encoder_name = TEXT_ENCODER_NAME
@classmethod
# Copied from diffusers.loaders.lora_pipeline.FluxLoraLoaderMixin.load_lora_into_transformer with FluxTransformer2DModel->UVit2DModel
def load_lora_into_transformer(
cls, state_dict, network_alphas, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
):
"""
This will load the LoRA layers specified in `state_dict` into `transformer`.
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
encoder lora layers.
network_alphas (`Dict[str, float]`):
The value of the network alpha used for stable learning and preventing underflow. This value has the
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
transformer (`UVit2DModel`):
The Transformer model to load the LoRA layers into.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
"""
if low_cpu_mem_usage and not is_peft_version(">=", "0.13.1"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# Load the layers corresponding to transformer.
keys = list(state_dict.keys())
transformer_present = any(key.startswith(cls.transformer_name) for key in keys)
if transformer_present:
logger.info(f"Loading {cls.transformer_name}.")
transformer.load_lora_adapter(
state_dict,
network_alphas=network_alphas,
adapter_name=adapter_name,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
# Copied from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder
def load_lora_into_text_encoder(
cls,
state_dict,
network_alphas,
text_encoder,
prefix=None,
lora_scale=1.0,
adapter_name=None,
_pipeline=None,
low_cpu_mem_usage=False,
):
"""
This will load the LoRA layers specified in `state_dict` into `text_encoder`
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The key should be prefixed with an
additional `text_encoder` to distinguish between unet lora layers.
network_alphas (`Dict[str, float]`):
The value of the network alpha used for stable learning and preventing underflow. This value has the
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
text_encoder (`CLIPTextModel`):
The text encoder model to load the LoRA layers into.
prefix (`str`):
Expected prefix of the `text_encoder` in the `state_dict`.
lora_scale (`float`):
How much to scale the output of the lora linear layer before it is added with the output of the regular
lora layer.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
"""
_load_lora_into_text_encoder(
state_dict=state_dict,
network_alphas=network_alphas,
lora_scale=lora_scale,
text_encoder=text_encoder,
prefix=prefix,
text_encoder_name=cls.text_encoder_name,
adapter_name=adapter_name,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
def save_lora_weights(
cls,
save_directory: Union[str, os.PathLike],
text_encoder_lora_layers: Dict[str, torch.nn.Module] = None,
transformer_lora_layers: Dict[str, torch.nn.Module] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
r"""
Save the LoRA parameters corresponding to the UNet and text encoder.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save LoRA parameters to. Will be created if it doesn't exist.
unet_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `unet`.
text_encoder_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `text_encoder`. Must explicitly pass the text
encoder LoRA state dict because it comes from 🤗 Transformers.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
"""
state_dict = {}
if not (transformer_lora_layers or text_encoder_lora_layers):
raise ValueError("You must pass at least one of `transformer_lora_layers` or `text_encoder_lora_layers`.")
if transformer_lora_layers:
state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
if text_encoder_lora_layers:
state_dict.update(cls.pack_weights(text_encoder_lora_layers, cls.text_encoder_name))
# Save the model
cls.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
) | class_definition | 101,883 | 109,698 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py | null | 1,266 |
class CogVideoXLoraLoaderMixin(LoraBaseMixin):
r"""
Load LoRA layers into [`CogVideoXTransformer3DModel`]. Specific to [`CogVideoXPipeline`].
"""
_lora_loadable_modules = ["transformer"]
transformer_name = TRANSFORMER_NAME
@classmethod
@validate_hf_hub_args
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
def lora_state_dict(
cls,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
**kwargs,
):
r"""
Return state dict for lora weights and the network alphas.
<Tip warning={true}>
We support loading A1111 formatted LoRA checkpoints in a limited capacity.
This function is experimental and might change in the future.
</Tip>
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
"""
# Load the main state dict first which has the LoRA layers for either of
# transformer and text encoder or both.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", None)
use_safetensors = kwargs.pop("use_safetensors", None)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
state_dict = _fetch_state_dict(
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
weight_name=weight_name,
use_safetensors=use_safetensors,
local_files_only=local_files_only,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
allow_pickle=allow_pickle,
)
is_dora_scale_present = any("dora_scale" in k for k in state_dict)
if is_dora_scale_present:
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
logger.warning(warn_msg)
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
return state_dict
def load_lora_weights(
self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
):
"""
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
`self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
[`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
dict is loaded into `self.transformer`.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
kwargs (`dict`, *optional*):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# if a dict is passed, copy it instead of modifying it inplace
if isinstance(pretrained_model_name_or_path_or_dict, dict):
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
is_correct_format = all("lora" in key for key in state_dict.keys())
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")
self.load_lora_into_transformer(
state_dict,
transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->CogVideoXTransformer3DModel
def load_lora_into_transformer(
cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
):
"""
This will load the LoRA layers specified in `state_dict` into `transformer`.
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
encoder lora layers.
transformer (`CogVideoXTransformer3DModel`):
The Transformer model to load the LoRA layers into.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
"""
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# Load the layers corresponding to transformer.
logger.info(f"Loading {cls.transformer_name}.")
transformer.load_lora_adapter(
state_dict,
network_alphas=None,
adapter_name=adapter_name,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
# Adapted from diffusers.loaders.lora_pipeline.StableDiffusionLoraLoaderMixin.save_lora_weights without support for text encoder
def save_lora_weights(
cls,
save_directory: Union[str, os.PathLike],
transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
r"""
Save the LoRA parameters corresponding to the UNet and text encoder.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save LoRA parameters to. Will be created if it doesn't exist.
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `transformer`.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
"""
state_dict = {}
if not transformer_lora_layers:
raise ValueError("You must pass `transformer_lora_layers`.")
if transformer_lora_layers:
state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
# Save the model
cls.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
def fuse_lora(
self,
components: List[str] = ["transformer"],
lora_scale: float = 1.0,
safe_fusing: bool = False,
adapter_names: Optional[List[str]] = None,
**kwargs,
):
r"""
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
lora_scale (`float`, defaults to 1.0):
Controls how much to influence the outputs with the LoRA parameters.
safe_fusing (`bool`, defaults to `False`):
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
adapter_names (`List[str]`, *optional*):
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
Example:
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
).to("cuda")
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipeline.fuse_lora(lora_scale=0.7)
```
"""
super().fuse_lora(
components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
)
def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
r"""
Reverses the effect of
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
"""
super().unfuse_lora(components=components) | class_definition | 109,701 | 123,876 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py | null | 1,267 |
class Mochi1LoraLoaderMixin(LoraBaseMixin):
r"""
Load LoRA layers into [`MochiTransformer3DModel`]. Specific to [`MochiPipeline`].
"""
_lora_loadable_modules = ["transformer"]
transformer_name = TRANSFORMER_NAME
@classmethod
@validate_hf_hub_args
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
def lora_state_dict(
cls,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
**kwargs,
):
r"""
Return state dict for lora weights and the network alphas.
<Tip warning={true}>
We support loading A1111 formatted LoRA checkpoints in a limited capacity.
This function is experimental and might change in the future.
</Tip>
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
"""
# Load the main state dict first which has the LoRA layers for either of
# transformer and text encoder or both.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", None)
use_safetensors = kwargs.pop("use_safetensors", None)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
state_dict = _fetch_state_dict(
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
weight_name=weight_name,
use_safetensors=use_safetensors,
local_files_only=local_files_only,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
allow_pickle=allow_pickle,
)
is_dora_scale_present = any("dora_scale" in k for k in state_dict)
if is_dora_scale_present:
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
logger.warning(warn_msg)
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
return state_dict
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
def load_lora_weights(
self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
):
"""
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
`self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
[`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
dict is loaded into `self.transformer`.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
kwargs (`dict`, *optional*):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# if a dict is passed, copy it instead of modifying it inplace
if isinstance(pretrained_model_name_or_path_or_dict, dict):
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
is_correct_format = all("lora" in key for key in state_dict.keys())
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")
self.load_lora_into_transformer(
state_dict,
transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->MochiTransformer3DModel
def load_lora_into_transformer(
cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
):
"""
This will load the LoRA layers specified in `state_dict` into `transformer`.
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
encoder lora layers.
transformer (`MochiTransformer3DModel`):
The Transformer model to load the LoRA layers into.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
"""
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# Load the layers corresponding to transformer.
logger.info(f"Loading {cls.transformer_name}.")
transformer.load_lora_adapter(
state_dict,
network_alphas=None,
adapter_name=adapter_name,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
def save_lora_weights(
cls,
save_directory: Union[str, os.PathLike],
transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
r"""
Save the LoRA parameters corresponding to the UNet and text encoder.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save LoRA parameters to. Will be created if it doesn't exist.
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `transformer`.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
"""
state_dict = {}
if not transformer_lora_layers:
raise ValueError("You must pass `transformer_lora_layers`.")
if transformer_lora_layers:
state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
# Save the model
cls.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
def fuse_lora(
self,
components: List[str] = ["transformer"],
lora_scale: float = 1.0,
safe_fusing: bool = False,
adapter_names: Optional[List[str]] = None,
**kwargs,
):
r"""
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
lora_scale (`float`, defaults to 1.0):
Controls how much to influence the outputs with the LoRA parameters.
safe_fusing (`bool`, defaults to `False`):
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
adapter_names (`List[str]`, *optional*):
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
Example:
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
).to("cuda")
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipeline.fuse_lora(lora_scale=0.7)
```
"""
super().fuse_lora(
components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
)
def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
r"""
Reverses the effect of
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
"""
super().unfuse_lora(components=components) | class_definition | 123,879 | 138,088 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py | null | 1,268 |
class LTXVideoLoraLoaderMixin(LoraBaseMixin):
r"""
Load LoRA layers into [`LTXVideoTransformer3DModel`]. Specific to [`LTXPipeline`].
"""
_lora_loadable_modules = ["transformer"]
transformer_name = TRANSFORMER_NAME
@classmethod
@validate_hf_hub_args
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.lora_state_dict
def lora_state_dict(
cls,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
**kwargs,
):
r"""
Return state dict for lora weights and the network alphas.
<Tip warning={true}>
We support loading A1111 formatted LoRA checkpoints in a limited capacity.
This function is experimental and might change in the future.
</Tip>
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
"""
# Load the main state dict first which has the LoRA layers for either of
# transformer and text encoder or both.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", None)
use_safetensors = kwargs.pop("use_safetensors", None)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
state_dict = _fetch_state_dict(
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
weight_name=weight_name,
use_safetensors=use_safetensors,
local_files_only=local_files_only,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
allow_pickle=allow_pickle,
)
is_dora_scale_present = any("dora_scale" in k for k in state_dict)
if is_dora_scale_present:
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
logger.warning(warn_msg)
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
return state_dict
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
def load_lora_weights(
self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
):
"""
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
`self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
[`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
dict is loaded into `self.transformer`.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
kwargs (`dict`, *optional*):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# if a dict is passed, copy it instead of modifying it inplace
if isinstance(pretrained_model_name_or_path_or_dict, dict):
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
is_correct_format = all("lora" in key for key in state_dict.keys())
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")
self.load_lora_into_transformer(
state_dict,
transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->LTXVideoTransformer3DModel
def load_lora_into_transformer(
cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
):
"""
This will load the LoRA layers specified in `state_dict` into `transformer`.
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
encoder lora layers.
transformer (`LTXVideoTransformer3DModel`):
The Transformer model to load the LoRA layers into.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
"""
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# Load the layers corresponding to transformer.
logger.info(f"Loading {cls.transformer_name}.")
transformer.load_lora_adapter(
state_dict,
network_alphas=None,
adapter_name=adapter_name,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
def save_lora_weights(
cls,
save_directory: Union[str, os.PathLike],
transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
r"""
Save the LoRA parameters corresponding to the UNet and text encoder.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save LoRA parameters to. Will be created if it doesn't exist.
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `transformer`.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
"""
state_dict = {}
if not transformer_lora_layers:
raise ValueError("You must pass `transformer_lora_layers`.")
if transformer_lora_layers:
state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
# Save the model
cls.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
def fuse_lora(
self,
components: List[str] = ["transformer"],
lora_scale: float = 1.0,
safe_fusing: bool = False,
adapter_names: Optional[List[str]] = None,
**kwargs,
):
r"""
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
lora_scale (`float`, defaults to 1.0):
Controls how much to influence the outputs with the LoRA parameters.
safe_fusing (`bool`, defaults to `False`):
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
adapter_names (`List[str]`, *optional*):
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
Example:
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
).to("cuda")
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipeline.fuse_lora(lora_scale=0.7)
```
"""
super().fuse_lora(
components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
)
def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
r"""
Reverses the effect of
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
"""
super().unfuse_lora(components=components) | class_definition | 138,091 | 152,315 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py | null | 1,269 |
class SanaLoraLoaderMixin(LoraBaseMixin):
r"""
Load LoRA layers into [`SanaTransformer2DModel`]. Specific to [`SanaPipeline`].
"""
_lora_loadable_modules = ["transformer"]
transformer_name = TRANSFORMER_NAME
@classmethod
@validate_hf_hub_args
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.lora_state_dict
def lora_state_dict(
cls,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
**kwargs,
):
r"""
Return state dict for lora weights and the network alphas.
<Tip warning={true}>
We support loading A1111 formatted LoRA checkpoints in a limited capacity.
This function is experimental and might change in the future.
</Tip>
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
"""
# Load the main state dict first which has the LoRA layers for either of
# transformer and text encoder or both.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", None)
use_safetensors = kwargs.pop("use_safetensors", None)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
state_dict = _fetch_state_dict(
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
weight_name=weight_name,
use_safetensors=use_safetensors,
local_files_only=local_files_only,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
allow_pickle=allow_pickle,
)
is_dora_scale_present = any("dora_scale" in k for k in state_dict)
if is_dora_scale_present:
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
logger.warning(warn_msg)
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
return state_dict
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
def load_lora_weights(
self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
):
"""
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
`self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
[`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
dict is loaded into `self.transformer`.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
kwargs (`dict`, *optional*):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# if a dict is passed, copy it instead of modifying it inplace
if isinstance(pretrained_model_name_or_path_or_dict, dict):
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
is_correct_format = all("lora" in key for key in state_dict.keys())
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")
self.load_lora_into_transformer(
state_dict,
transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->SanaTransformer2DModel
def load_lora_into_transformer(
cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
):
"""
This will load the LoRA layers specified in `state_dict` into `transformer`.
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
encoder lora layers.
transformer (`SanaTransformer2DModel`):
The Transformer model to load the LoRA layers into.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
"""
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# Load the layers corresponding to transformer.
logger.info(f"Loading {cls.transformer_name}.")
transformer.load_lora_adapter(
state_dict,
network_alphas=None,
adapter_name=adapter_name,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
def save_lora_weights(
cls,
save_directory: Union[str, os.PathLike],
transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
r"""
Save the LoRA parameters corresponding to the UNet and text encoder.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save LoRA parameters to. Will be created if it doesn't exist.
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `transformer`.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
"""
state_dict = {}
if not transformer_lora_layers:
raise ValueError("You must pass `transformer_lora_layers`.")
if transformer_lora_layers:
state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
# Save the model
cls.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
def fuse_lora(
self,
components: List[str] = ["transformer"],
lora_scale: float = 1.0,
safe_fusing: bool = False,
adapter_names: Optional[List[str]] = None,
**kwargs,
):
r"""
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
lora_scale (`float`, defaults to 1.0):
Controls how much to influence the outputs with the LoRA parameters.
safe_fusing (`bool`, defaults to `False`):
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
adapter_names (`List[str]`, *optional*):
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
Example:
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
).to("cuda")
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipeline.fuse_lora(lora_scale=0.7)
```
"""
super().fuse_lora(
components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
)
def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
r"""
Reverses the effect of
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
"""
super().unfuse_lora(components=components) | class_definition | 152,318 | 166,521 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py | null | 1,270 |
class HunyuanVideoLoraLoaderMixin(LoraBaseMixin):
r"""
Load LoRA layers into [`HunyuanVideoTransformer3DModel`]. Specific to [`HunyuanVideoPipeline`].
"""
_lora_loadable_modules = ["transformer"]
transformer_name = TRANSFORMER_NAME
@classmethod
@validate_hf_hub_args
def lora_state_dict(
cls,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
**kwargs,
):
r"""
Return state dict for lora weights and the network alphas.
<Tip warning={true}>
We support loading original format HunyuanVideo LoRA checkpoints.
This function is experimental and might change in the future.
</Tip>
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
subfolder (`str`, *optional*, defaults to `""`):
The subfolder location of a model file within a larger model repository on the Hub or locally.
"""
# Load the main state dict first which has the LoRA layers for either of
# transformer and text encoder or both.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", None)
weight_name = kwargs.pop("weight_name", None)
use_safetensors = kwargs.pop("use_safetensors", None)
allow_pickle = False
if use_safetensors is None:
use_safetensors = True
allow_pickle = True
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
state_dict = _fetch_state_dict(
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
weight_name=weight_name,
use_safetensors=use_safetensors,
local_files_only=local_files_only,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
allow_pickle=allow_pickle,
)
is_dora_scale_present = any("dora_scale" in k for k in state_dict)
if is_dora_scale_present:
warn_msg = "It seems like you are using a DoRA checkpoint that is not compatible in Diffusers at the moment. So, we are going to filter out the keys associated to 'dora_scale` from the state dict. If you think this is a mistake please open an issue https://github.com/huggingface/diffusers/issues/new."
logger.warning(warn_msg)
state_dict = {k: v for k, v in state_dict.items() if "dora_scale" not in k}
is_original_hunyuan_video = any("img_attn_qkv" in k for k in state_dict)
if is_original_hunyuan_video:
state_dict = _convert_hunyuan_video_lora_to_diffusers(state_dict)
return state_dict
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.load_lora_weights
def load_lora_weights(
self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], adapter_name=None, **kwargs
):
"""
Load LoRA weights specified in `pretrained_model_name_or_path_or_dict` into `self.transformer` and
`self.text_encoder`. All kwargs are forwarded to `self.lora_state_dict`. See
[`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`] for more details on how the state dict is loaded.
See [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_into_transformer`] for more details on how the state
dict is loaded into `self.transformer`.
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
kwargs (`dict`, *optional*):
See [`~loaders.StableDiffusionLoraLoaderMixin.lora_state_dict`].
"""
if not USE_PEFT_BACKEND:
raise ValueError("PEFT backend is required for this method.")
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT_LORA)
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# if a dict is passed, copy it instead of modifying it inplace
if isinstance(pretrained_model_name_or_path_or_dict, dict):
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict.copy()
# First, ensure that the checkpoint is a compatible one and can be successfully loaded.
state_dict = self.lora_state_dict(pretrained_model_name_or_path_or_dict, **kwargs)
is_correct_format = all("lora" in key for key in state_dict.keys())
if not is_correct_format:
raise ValueError("Invalid LoRA checkpoint.")
self.load_lora_into_transformer(
state_dict,
transformer=getattr(self, self.transformer_name) if not hasattr(self, "transformer") else self.transformer,
adapter_name=adapter_name,
_pipeline=self,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
# Copied from diffusers.loaders.lora_pipeline.SD3LoraLoaderMixin.load_lora_into_transformer with SD3Transformer2DModel->HunyuanVideoTransformer3DModel
def load_lora_into_transformer(
cls, state_dict, transformer, adapter_name=None, _pipeline=None, low_cpu_mem_usage=False
):
"""
This will load the LoRA layers specified in `state_dict` into `transformer`.
Parameters:
state_dict (`dict`):
A standard state dict containing the lora layer parameters. The keys can either be indexed directly
into the unet or prefixed with an additional `unet` which can be used to distinguish between text
encoder lora layers.
transformer (`HunyuanVideoTransformer3DModel`):
The Transformer model to load the LoRA layers into.
adapter_name (`str`, *optional*):
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
`default_{i}` where i is the total number of adapters being loaded.
low_cpu_mem_usage (`bool`, *optional*):
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
weights.
"""
if low_cpu_mem_usage and is_peft_version("<", "0.13.0"):
raise ValueError(
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
)
# Load the layers corresponding to transformer.
logger.info(f"Loading {cls.transformer_name}.")
transformer.load_lora_adapter(
state_dict,
network_alphas=None,
adapter_name=adapter_name,
_pipeline=_pipeline,
low_cpu_mem_usage=low_cpu_mem_usage,
)
@classmethod
# Copied from diffusers.loaders.lora_pipeline.CogVideoXLoraLoaderMixin.save_lora_weights
def save_lora_weights(
cls,
save_directory: Union[str, os.PathLike],
transformer_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None,
is_main_process: bool = True,
weight_name: str = None,
save_function: Callable = None,
safe_serialization: bool = True,
):
r"""
Save the LoRA parameters corresponding to the UNet and text encoder.
Arguments:
save_directory (`str` or `os.PathLike`):
Directory to save LoRA parameters to. Will be created if it doesn't exist.
transformer_lora_layers (`Dict[str, torch.nn.Module]` or `Dict[str, torch.Tensor]`):
State dict of the LoRA layers corresponding to the `transformer`.
is_main_process (`bool`, *optional*, defaults to `True`):
Whether the process calling this is the main process or not. Useful during distributed training and you
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
process to avoid race conditions.
save_function (`Callable`):
The function to use to save the state dictionary. Useful during distributed training when you need to
replace `torch.save` with another method. Can be configured with the environment variable
`DIFFUSERS_SAVE_MODE`.
safe_serialization (`bool`, *optional*, defaults to `True`):
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
"""
state_dict = {}
if not transformer_lora_layers:
raise ValueError("You must pass `transformer_lora_layers`.")
if transformer_lora_layers:
state_dict.update(cls.pack_weights(transformer_lora_layers, cls.transformer_name))
# Save the model
cls.write_lora_layers(
state_dict=state_dict,
save_directory=save_directory,
is_main_process=is_main_process,
weight_name=weight_name,
save_function=save_function,
safe_serialization=safe_serialization,
)
def fuse_lora(
self,
components: List[str] = ["transformer"],
lora_scale: float = 1.0,
safe_fusing: bool = False,
adapter_names: Optional[List[str]] = None,
**kwargs,
):
r"""
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
lora_scale (`float`, defaults to 1.0):
Controls how much to influence the outputs with the LoRA parameters.
safe_fusing (`bool`, defaults to `False`):
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
adapter_names (`List[str]`, *optional*):
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
Example:
```py
from diffusers import DiffusionPipeline
import torch
pipeline = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
).to("cuda")
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
pipeline.fuse_lora(lora_scale=0.7)
```
"""
super().fuse_lora(
components=components, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
)
def unfuse_lora(self, components: List[str] = ["transformer"], **kwargs):
r"""
Reverses the effect of
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
<Tip warning={true}>
This is an experimental API.
</Tip>
Args:
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
unfuse_transformer (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
"""
super().unfuse_lora(components=components) | class_definition | 166,524 | 180,871 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py | null | 1,271 |
class LoraLoaderMixin(StableDiffusionLoraLoaderMixin):
def __init__(self, *args, **kwargs):
deprecation_message = "LoraLoaderMixin is deprecated and this will be removed in a future version. Please use `StableDiffusionLoraLoaderMixin`, instead."
deprecate("LoraLoaderMixin", "1.0.0", deprecation_message)
super().__init__(*args, **kwargs) | class_definition | 180,874 | 181,240 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/lora_pipeline.py | null | 1,272 |
class IPAdapterMixin:
"""Mixin for handling IP Adapters."""
@validate_hf_hub_args
def load_ip_adapter(
self,
pretrained_model_name_or_path_or_dict: Union[str, List[str], Dict[str, torch.Tensor]],
subfolder: Union[str, List[str]],
weight_name: Union[str, List[str]],
image_encoder_folder: Optional[str] = "image_encoder",
**kwargs,
):
"""
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `List[str]` or `os.PathLike` or `List[os.PathLike]` or `dict` or `List[dict]`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
subfolder (`str` or `List[str]`):
The subfolder location of a model file within a larger model repository on the Hub or locally. If a
list is passed, it should have the same length as `weight_name`.
weight_name (`str` or `List[str]`):
The name of the weight file to load. If a list is passed, it should have the same length as
`subfolder`.
image_encoder_folder (`str`, *optional*, defaults to `image_encoder`):
The subfolder location of the image encoder within a larger model repository on the Hub or locally.
Pass `None` to not load the image encoder. If the image encoder is located in a folder inside
`subfolder`, you only need to pass the name of the folder that contains image encoder weights, e.g.
`image_encoder_folder="image_encoder"`. If the image encoder is located in a folder other than
`subfolder`, you should pass the path to the folder that contains image encoder weights, for example,
`image_encoder_folder="different_subfolder/image_encoder"`.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
"""
# handle the list inputs for multiple IP Adapters
if not isinstance(weight_name, list):
weight_name = [weight_name]
if not isinstance(pretrained_model_name_or_path_or_dict, list):
pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict]
if len(pretrained_model_name_or_path_or_dict) == 1:
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict * len(weight_name)
if not isinstance(subfolder, list):
subfolder = [subfolder]
if len(subfolder) == 1:
subfolder = subfolder * len(weight_name)
if len(weight_name) != len(pretrained_model_name_or_path_or_dict):
raise ValueError("`weight_name` and `pretrained_model_name_or_path_or_dict` must have the same length.")
if len(weight_name) != len(subfolder):
raise ValueError("`weight_name` and `subfolder` must have the same length.")
# Load the main state dict first.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
if low_cpu_mem_usage and not is_accelerate_available():
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
state_dicts = []
for pretrained_model_name_or_path_or_dict, weight_name, subfolder in zip(
pretrained_model_name_or_path_or_dict, weight_name, subfolder
):
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
model_file = _get_model_file(
pretrained_model_name_or_path_or_dict,
weights_name=weight_name,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
if weight_name.endswith(".safetensors"):
state_dict = {"image_proj": {}, "ip_adapter": {}}
with safe_open(model_file, framework="pt", device="cpu") as f:
for key in f.keys():
if key.startswith("image_proj."):
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
elif key.startswith("ip_adapter."):
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
else:
state_dict = load_state_dict(model_file)
else:
state_dict = pretrained_model_name_or_path_or_dict
keys = list(state_dict.keys())
if "image_proj" not in keys and "ip_adapter" not in keys:
raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")
state_dicts.append(state_dict)
# load CLIP image encoder here if it has not been registered to the pipeline yet
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
if image_encoder_folder is not None:
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}")
if image_encoder_folder.count("/") == 0:
image_encoder_subfolder = Path(subfolder, image_encoder_folder).as_posix()
else:
image_encoder_subfolder = Path(image_encoder_folder).as_posix()
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
pretrained_model_name_or_path_or_dict,
subfolder=image_encoder_subfolder,
low_cpu_mem_usage=low_cpu_mem_usage,
cache_dir=cache_dir,
local_files_only=local_files_only,
).to(self.device, dtype=self.dtype)
self.register_modules(image_encoder=image_encoder)
else:
raise ValueError(
"`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict."
)
else:
logger.warning(
"image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter."
"Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead."
)
# create feature extractor if it has not been registered to the pipeline yet
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None:
# FaceID IP adapters don't need the image encoder so it's not present, in this case we default to 224
default_clip_size = 224
clip_image_size = (
self.image_encoder.config.image_size if self.image_encoder is not None else default_clip_size
)
feature_extractor = CLIPImageProcessor(size=clip_image_size, crop_size=clip_image_size)
self.register_modules(feature_extractor=feature_extractor)
# load ip-adapter into unet
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
unet._load_ip_adapter_weights(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
extra_loras = unet._load_ip_adapter_loras(state_dicts)
if extra_loras != {}:
if not USE_PEFT_BACKEND:
logger.warning("PEFT backend is required to load these weights.")
else:
# apply the IP Adapter Face ID LoRA weights
peft_config = getattr(unet, "peft_config", {})
for k, lora in extra_loras.items():
if f"faceid_{k}" not in peft_config:
self.load_lora_weights(lora, adapter_name=f"faceid_{k}")
self.set_adapters([f"faceid_{k}"], adapter_weights=[1.0])
def set_ip_adapter_scale(self, scale):
"""
Set IP-Adapter scales per-transformer block. Input `scale` could be a single config or a list of configs for
granular control over each IP-Adapter behavior. A config can be a float or a dictionary.
Example:
```py
# To use original IP-Adapter
scale = 1.0
pipeline.set_ip_adapter_scale(scale)
# To use style block only
scale = {
"up": {"block_0": [0.0, 1.0, 0.0]},
}
pipeline.set_ip_adapter_scale(scale)
# To use style+layout blocks
scale = {
"down": {"block_2": [0.0, 1.0]},
"up": {"block_0": [0.0, 1.0, 0.0]},
}
pipeline.set_ip_adapter_scale(scale)
# To use style and layout from 2 reference images
scales = [{"down": {"block_2": [0.0, 1.0]}}, {"up": {"block_0": [0.0, 1.0, 0.0]}}]
pipeline.set_ip_adapter_scale(scales)
```
"""
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
if not isinstance(scale, list):
scale = [scale]
scale_configs = _maybe_expand_lora_scales(unet, scale, default_scale=0.0)
for attn_name, attn_processor in unet.attn_processors.items():
if isinstance(
attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, IPAdapterXFormersAttnProcessor)
):
if len(scale_configs) != len(attn_processor.scale):
raise ValueError(
f"Cannot assign {len(scale_configs)} scale_configs to "
f"{len(attn_processor.scale)} IP-Adapter."
)
elif len(scale_configs) == 1:
scale_configs = scale_configs * len(attn_processor.scale)
for i, scale_config in enumerate(scale_configs):
if isinstance(scale_config, dict):
for k, s in scale_config.items():
if attn_name.startswith(k):
attn_processor.scale[i] = s
else:
attn_processor.scale[i] = scale_config
def unload_ip_adapter(self):
"""
Unloads the IP Adapter weights
Examples:
```python
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
>>> pipeline.unload_ip_adapter()
>>> ...
```
"""
# remove CLIP image encoder
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
self.image_encoder = None
self.register_to_config(image_encoder=[None, None])
# remove feature extractor only when safety_checker is None as safety_checker uses
# the feature_extractor later
if not hasattr(self, "safety_checker"):
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
self.feature_extractor = None
self.register_to_config(feature_extractor=[None, None])
# remove hidden encoder
self.unet.encoder_hid_proj = None
self.unet.config.encoder_hid_dim_type = None
# Kolors: restore `encoder_hid_proj` with `text_encoder_hid_proj`
if hasattr(self.unet, "text_encoder_hid_proj") and self.unet.text_encoder_hid_proj is not None:
self.unet.encoder_hid_proj = self.unet.text_encoder_hid_proj
self.unet.text_encoder_hid_proj = None
self.unet.config.encoder_hid_dim_type = "text_proj"
# restore original Unet attention processors layers
attn_procs = {}
for name, value in self.unet.attn_processors.items():
attn_processor_class = (
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnProcessor()
)
attn_procs[name] = (
attn_processor_class
if isinstance(
value, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, IPAdapterXFormersAttnProcessor)
)
else value.__class__()
)
self.unet.set_attn_processor(attn_procs) | class_definition | 1,624 | 17,640 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py | null | 1,273 |
class FluxIPAdapterMixin:
"""Mixin for handling Flux IP Adapters."""
@validate_hf_hub_args
def load_ip_adapter(
self,
pretrained_model_name_or_path_or_dict: Union[str, List[str], Dict[str, torch.Tensor]],
weight_name: Union[str, List[str]],
subfolder: Optional[Union[str, List[str]]] = "",
image_encoder_pretrained_model_name_or_path: Optional[str] = "image_encoder",
image_encoder_subfolder: Optional[str] = "",
image_encoder_dtype: torch.dtype = torch.float16,
**kwargs,
):
"""
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `List[str]` or `os.PathLike` or `List[os.PathLike]` or `dict` or `List[dict]`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
subfolder (`str` or `List[str]`):
The subfolder location of a model file within a larger model repository on the Hub or locally. If a
list is passed, it should have the same length as `weight_name`.
weight_name (`str` or `List[str]`):
The name of the weight file to load. If a list is passed, it should have the same length as
`weight_name`.
image_encoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `./image_encoder`):
Can be either:
- A string, the *model id* (for example `openai/clip-vit-large-patch14`) of a pretrained model
hosted on the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
"""
# handle the list inputs for multiple IP Adapters
if not isinstance(weight_name, list):
weight_name = [weight_name]
if not isinstance(pretrained_model_name_or_path_or_dict, list):
pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict]
if len(pretrained_model_name_or_path_or_dict) == 1:
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict * len(weight_name)
if not isinstance(subfolder, list):
subfolder = [subfolder]
if len(subfolder) == 1:
subfolder = subfolder * len(weight_name)
if len(weight_name) != len(pretrained_model_name_or_path_or_dict):
raise ValueError("`weight_name` and `pretrained_model_name_or_path_or_dict` must have the same length.")
if len(weight_name) != len(subfolder):
raise ValueError("`weight_name` and `subfolder` must have the same length.")
# Load the main state dict first.
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
if low_cpu_mem_usage and not is_accelerate_available():
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
state_dicts = []
for pretrained_model_name_or_path_or_dict, weight_name, subfolder in zip(
pretrained_model_name_or_path_or_dict, weight_name, subfolder
):
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
model_file = _get_model_file(
pretrained_model_name_or_path_or_dict,
weights_name=weight_name,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
if weight_name.endswith(".safetensors"):
state_dict = {"image_proj": {}, "ip_adapter": {}}
with safe_open(model_file, framework="pt", device="cpu") as f:
image_proj_keys = ["ip_adapter_proj_model.", "image_proj."]
ip_adapter_keys = ["double_blocks.", "ip_adapter."]
for key in f.keys():
if any(key.startswith(prefix) for prefix in image_proj_keys):
diffusers_name = ".".join(key.split(".")[1:])
state_dict["image_proj"][diffusers_name] = f.get_tensor(key)
elif any(key.startswith(prefix) for prefix in ip_adapter_keys):
diffusers_name = (
".".join(key.split(".")[1:])
.replace("ip_adapter_double_stream_k_proj", "to_k_ip")
.replace("ip_adapter_double_stream_v_proj", "to_v_ip")
.replace("processor.", "")
)
state_dict["ip_adapter"][diffusers_name] = f.get_tensor(key)
else:
state_dict = load_state_dict(model_file)
else:
state_dict = pretrained_model_name_or_path_or_dict
keys = list(state_dict.keys())
if keys != ["image_proj", "ip_adapter"]:
raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")
state_dicts.append(state_dict)
# load CLIP image encoder here if it has not been registered to the pipeline yet
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
if image_encoder_pretrained_model_name_or_path is not None:
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
logger.info(f"loading image_encoder from {image_encoder_pretrained_model_name_or_path}")
image_encoder = (
CLIPVisionModelWithProjection.from_pretrained(
image_encoder_pretrained_model_name_or_path,
subfolder=image_encoder_subfolder,
low_cpu_mem_usage=low_cpu_mem_usage,
cache_dir=cache_dir,
local_files_only=local_files_only,
)
.to(self.device, dtype=image_encoder_dtype)
.eval()
)
self.register_modules(image_encoder=image_encoder)
else:
raise ValueError(
"`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict."
)
else:
logger.warning(
"image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter."
"Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead."
)
# create feature extractor if it has not been registered to the pipeline yet
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None:
# FaceID IP adapters don't need the image encoder so it's not present, in this case we default to 224
default_clip_size = 224
clip_image_size = (
self.image_encoder.config.image_size if self.image_encoder is not None else default_clip_size
)
feature_extractor = CLIPImageProcessor(size=clip_image_size, crop_size=clip_image_size)
self.register_modules(feature_extractor=feature_extractor)
# load ip-adapter into transformer
self.transformer._load_ip_adapter_weights(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
def set_ip_adapter_scale(self, scale: Union[float, List[float], List[List[float]]]):
"""
Set IP-Adapter scales per-transformer block. Input `scale` could be a single config or a list of configs for
granular control over each IP-Adapter behavior. A config can be a float or a list.
`float` is converted to list and repeated for the number of blocks and the number of IP adapters. `List[float]`
length match the number of blocks, it is repeated for each IP adapter. `List[List[float]]` must match the
number of IP adapters and each must match the number of blocks.
Example:
```py
# To use original IP-Adapter
scale = 1.0
pipeline.set_ip_adapter_scale(scale)
def LinearStrengthModel(start, finish, size):
return [(start + (finish - start) * (i / (size - 1))) for i in range(size)]
ip_strengths = LinearStrengthModel(0.3, 0.92, 19)
pipeline.set_ip_adapter_scale(ip_strengths)
```
"""
transformer = self.transformer
if not isinstance(scale, list):
scale = [[scale] * transformer.config.num_layers]
elif isinstance(scale, list) and isinstance(scale[0], int) or isinstance(scale[0], float):
if len(scale) != transformer.config.num_layers:
raise ValueError(f"Expected list of {transformer.config.num_layers} scales, got {len(scale)}.")
scale = [scale]
scale_configs = scale
key_id = 0
for attn_name, attn_processor in transformer.attn_processors.items():
if isinstance(attn_processor, (FluxIPAdapterJointAttnProcessor2_0)):
if len(scale_configs) != len(attn_processor.scale):
raise ValueError(
f"Cannot assign {len(scale_configs)} scale_configs to "
f"{len(attn_processor.scale)} IP-Adapter."
)
elif len(scale_configs) == 1:
scale_configs = scale_configs * len(attn_processor.scale)
for i, scale_config in enumerate(scale_configs):
attn_processor.scale[i] = scale_config[key_id]
key_id += 1
def unload_ip_adapter(self):
"""
Unloads the IP Adapter weights
Examples:
```python
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
>>> pipeline.unload_ip_adapter()
>>> ...
```
"""
# remove CLIP image encoder
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
self.image_encoder = None
self.register_to_config(image_encoder=[None, None])
# remove feature extractor only when safety_checker is None as safety_checker uses
# the feature_extractor later
if not hasattr(self, "safety_checker"):
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
self.feature_extractor = None
self.register_to_config(feature_extractor=[None, None])
# remove hidden encoder
self.transformer.encoder_hid_proj = None
self.transformer.config.encoder_hid_dim_type = None
# restore original Transformer attention processors layers
attn_procs = {}
for name, value in self.transformer.attn_processors.items():
attn_processor_class = FluxAttnProcessor2_0()
attn_procs[name] = (
attn_processor_class if isinstance(value, (FluxIPAdapterJointAttnProcessor2_0)) else value.__class__()
)
self.transformer.set_attn_processor(attn_procs) | class_definition | 17,643 | 32,865 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py | null | 1,274 |
class SD3IPAdapterMixin:
"""Mixin for handling StableDiffusion 3 IP Adapters."""
@property
def is_ip_adapter_active(self) -> bool:
"""Checks if IP-Adapter is loaded and scale > 0.
IP-Adapter scale controls the influence of the image prompt versus text prompt. When this value is set to 0,
the image context is irrelevant.
Returns:
`bool`: True when IP-Adapter is loaded and any layer has scale > 0.
"""
scales = [
attn_proc.scale
for attn_proc in self.transformer.attn_processors.values()
if isinstance(attn_proc, SD3IPAdapterJointAttnProcessor2_0)
]
return len(scales) > 0 and any(scale > 0 for scale in scales)
@validate_hf_hub_args
def load_ip_adapter(
self,
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
weight_name: str = "ip-adapter.safetensors",
subfolder: Optional[str] = None,
image_encoder_folder: Optional[str] = "image_encoder",
**kwargs,
) -> None:
"""
Parameters:
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
Can be either:
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
the Hub.
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
with [`ModelMixin.save_pretrained`].
- A [torch state
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
weight_name (`str`, defaults to "ip-adapter.safetensors"):
The name of the weight file to load. If a list is passed, it should have the same length as
`subfolder`.
subfolder (`str`, *optional*):
The subfolder location of a model file within a larger model repository on the Hub or locally. If a
list is passed, it should have the same length as `weight_name`.
image_encoder_folder (`str`, *optional*, defaults to `image_encoder`):
The subfolder location of the image encoder within a larger model repository on the Hub or locally.
Pass `None` to not load the image encoder. If the image encoder is located in a folder inside
`subfolder`, you only need to pass the name of the folder that contains image encoder weights, e.g.
`image_encoder_folder="image_encoder"`. If the image encoder is located in a folder other than
`subfolder`, you should pass the path to the folder that contains image encoder weights, for example,
`image_encoder_folder="different_subfolder/image_encoder"`.
cache_dir (`Union[str, os.PathLike]`, *optional*):
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
is not used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
cached versions if they exist.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
local_files_only (`bool`, *optional*, defaults to `False`):
Whether to only load local model weights and configuration files or not. If set to `True`, the model
won't be downloaded from the Hub.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
`diffusers-cli login` (stored in `~/.huggingface`) is used.
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
allowed by Git.
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
argument to `True` will raise an error.
"""
# Load the main state dict first
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", None)
token = kwargs.pop("token", None)
revision = kwargs.pop("revision", None)
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
if low_cpu_mem_usage and not is_accelerate_available():
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
user_agent = {
"file_type": "attn_procs_weights",
"framework": "pytorch",
}
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
model_file = _get_model_file(
pretrained_model_name_or_path_or_dict,
weights_name=weight_name,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
local_files_only=local_files_only,
token=token,
revision=revision,
subfolder=subfolder,
user_agent=user_agent,
)
if weight_name.endswith(".safetensors"):
state_dict = {"image_proj": {}, "ip_adapter": {}}
with safe_open(model_file, framework="pt", device="cpu") as f:
for key in f.keys():
if key.startswith("image_proj."):
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
elif key.startswith("ip_adapter."):
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
else:
state_dict = load_state_dict(model_file)
else:
state_dict = pretrained_model_name_or_path_or_dict
keys = list(state_dict.keys())
if "image_proj" not in keys and "ip_adapter" not in keys:
raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")
# Load image_encoder and feature_extractor here if they haven't been registered to the pipeline yet
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
if image_encoder_folder is not None:
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}")
if image_encoder_folder.count("/") == 0:
image_encoder_subfolder = Path(subfolder, image_encoder_folder).as_posix()
else:
image_encoder_subfolder = Path(image_encoder_folder).as_posix()
# Commons args for loading image encoder and image processor
kwargs = {
"low_cpu_mem_usage": low_cpu_mem_usage,
"cache_dir": cache_dir,
"local_files_only": local_files_only,
}
self.register_modules(
feature_extractor=SiglipImageProcessor.from_pretrained(image_encoder_subfolder, **kwargs).to(
self.device, dtype=self.dtype
),
image_encoder=SiglipVisionModel.from_pretrained(image_encoder_subfolder, **kwargs).to(
self.device, dtype=self.dtype
),
)
else:
raise ValueError(
"`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict."
)
else:
logger.warning(
"image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter."
"Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead."
)
# Load IP-Adapter into transformer
self.transformer._load_ip_adapter_weights(state_dict, low_cpu_mem_usage=low_cpu_mem_usage)
def set_ip_adapter_scale(self, scale: float) -> None:
"""
Set IP-Adapter scale, which controls image prompt conditioning. A value of 1.0 means the model is only
conditioned on the image prompt, and 0.0 only conditioned by the text prompt. Lowering this value encourages
the model to produce more diverse images, but they may not be as aligned with the image prompt.
Example:
```python
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
>>> pipeline.set_ip_adapter_scale(0.6)
>>> ...
```
Args:
scale (float):
IP-Adapter scale to be set.
"""
for attn_processor in self.transformer.attn_processors.values():
if isinstance(attn_processor, SD3IPAdapterJointAttnProcessor2_0):
attn_processor.scale = scale
def unload_ip_adapter(self) -> None:
"""
Unloads the IP Adapter weights.
Example:
```python
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
>>> pipeline.unload_ip_adapter()
>>> ...
```
"""
# Remove image encoder
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
self.image_encoder = None
self.register_to_config(image_encoder=None)
# Remove feature extractor
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
self.feature_extractor = None
self.register_to_config(feature_extractor=None)
# Remove image projection
self.transformer.image_proj = None
# Restore original attention processors layers
attn_procs = {
name: (
JointAttnProcessor2_0() if isinstance(value, SD3IPAdapterJointAttnProcessor2_0) else value.__class__()
)
for name, value in self.transformer.attn_processors.items()
}
self.transformer.set_attn_processor(attn_procs) | class_definition | 32,868 | 44,810 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/ip_adapter.py | null | 1,275 |
class AttnProcsLayers(torch.nn.Module):
def __init__(self, state_dict: Dict[str, torch.Tensor]):
super().__init__()
self.layers = torch.nn.ModuleList(state_dict.values())
self.mapping = dict(enumerate(state_dict.keys()))
self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}
# .processor for unet, .self_attn for text encoder
self.split_keys = [".processor", ".self_attn"]
# we add a hook to state_dict() and load_state_dict() so that the
# naming fits with `unet.attn_processors`
def map_to(module, state_dict, *args, **kwargs):
new_state_dict = {}
for key, value in state_dict.items():
num = int(key.split(".")[1]) # 0 is always "layers"
new_key = key.replace(f"layers.{num}", module.mapping[num])
new_state_dict[new_key] = value
return new_state_dict
def remap_key(key, state_dict):
for k in self.split_keys:
if k in key:
return key.split(k)[0] + k
raise ValueError(
f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}."
)
def map_from(module, state_dict, *args, **kwargs):
all_keys = list(state_dict.keys())
for key in all_keys:
replace_key = remap_key(key, state_dict)
new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
state_dict[new_key] = state_dict[key]
del state_dict[key]
self._register_state_dict_hook(map_to)
self._register_load_state_dict_pre_hook(map_from, with_module=True) | class_definition | 647 | 2,422 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/utils.py | null | 1,276 |
class FluxTransformer2DLoadersMixin:
"""
Load layers into a [`FluxTransformer2DModel`].
"""
def _convert_ip_adapter_image_proj_to_diffusers(self, state_dict, low_cpu_mem_usage=False):
if low_cpu_mem_usage:
if is_accelerate_available():
from accelerate import init_empty_weights
else:
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
updated_state_dict = {}
image_projection = None
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
if "proj.weight" in state_dict:
# IP-Adapter
num_image_text_embeds = 4
if state_dict["proj.weight"].shape[0] == 65536:
num_image_text_embeds = 16
clip_embeddings_dim = state_dict["proj.weight"].shape[-1]
cross_attention_dim = state_dict["proj.weight"].shape[0] // num_image_text_embeds
with init_context():
image_projection = ImageProjection(
cross_attention_dim=cross_attention_dim,
image_embed_dim=clip_embeddings_dim,
num_image_text_embeds=num_image_text_embeds,
)
for key, value in state_dict.items():
diffusers_name = key.replace("proj", "image_embeds")
updated_state_dict[diffusers_name] = value
if not low_cpu_mem_usage:
image_projection.load_state_dict(updated_state_dict, strict=True)
else:
load_model_dict_into_meta(image_projection, updated_state_dict, device=self.device, dtype=self.dtype)
return image_projection
def _convert_ip_adapter_attn_to_diffusers(self, state_dicts, low_cpu_mem_usage=False):
from ..models.attention_processor import (
FluxIPAdapterJointAttnProcessor2_0,
)
if low_cpu_mem_usage:
if is_accelerate_available():
from accelerate import init_empty_weights
else:
low_cpu_mem_usage = False
logger.warning(
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
" install accelerate\n```\n."
)
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
raise NotImplementedError(
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
" `low_cpu_mem_usage=False`."
)
# set ip-adapter cross-attention processors & load state_dict
attn_procs = {}
key_id = 0
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
for name in self.attn_processors.keys():
if name.startswith("single_transformer_blocks"):
attn_processor_class = self.attn_processors[name].__class__
attn_procs[name] = attn_processor_class()
else:
cross_attention_dim = self.config.joint_attention_dim
hidden_size = self.inner_dim
attn_processor_class = FluxIPAdapterJointAttnProcessor2_0
num_image_text_embeds = []
for state_dict in state_dicts:
if "proj.weight" in state_dict["image_proj"]:
num_image_text_embed = 4
if state_dict["image_proj"]["proj.weight"].shape[0] == 65536:
num_image_text_embed = 16
# IP-Adapter
num_image_text_embeds += [num_image_text_embed]
with init_context():
attn_procs[name] = attn_processor_class(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1.0,
num_tokens=num_image_text_embeds,
dtype=self.dtype,
device=self.device,
)
value_dict = {}
for i, state_dict in enumerate(state_dicts):
value_dict.update({f"to_k_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_k_ip.weight"]})
value_dict.update({f"to_v_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_v_ip.weight"]})
value_dict.update({f"to_k_ip.{i}.bias": state_dict["ip_adapter"][f"{key_id}.to_k_ip.bias"]})
value_dict.update({f"to_v_ip.{i}.bias": state_dict["ip_adapter"][f"{key_id}.to_v_ip.bias"]})
if not low_cpu_mem_usage:
attn_procs[name].load_state_dict(value_dict)
else:
device = self.device
dtype = self.dtype
load_model_dict_into_meta(attn_procs[name], value_dict, device=device, dtype=dtype)
key_id += 1
return attn_procs
def _load_ip_adapter_weights(self, state_dicts, low_cpu_mem_usage=False):
if not isinstance(state_dicts, list):
state_dicts = [state_dicts]
self.encoder_hid_proj = None
attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
self.set_attn_processor(attn_procs)
image_projection_layers = []
for state_dict in state_dicts:
image_projection_layer = self._convert_ip_adapter_image_proj_to_diffusers(
state_dict["image_proj"], low_cpu_mem_usage=low_cpu_mem_usage
)
image_projection_layers.append(image_projection_layer)
self.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers)
self.config.encoder_hid_dim_type = "ip_image_proj"
self.to(dtype=self.dtype, device=self.device) | class_definition | 966 | 7,814 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/loaders/transformer_flux.py | null | 1,277 |
class SASolverScheduler(SchedulerMixin, ConfigMixin):
"""
`SASolverScheduler` is a fast dedicated high-order solver for diffusion SDEs.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.0001):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, *optional*):
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
predictor_order (`int`, defaults to 2):
The predictor order which can be `1` or `2` or `3` or '4'. It is recommended to use `predictor_order=2` for
guided sampling, and `predictor_order=3` for unconditional sampling.
corrector_order (`int`, defaults to 2):
The corrector order which can be `1` or `2` or `3` or '4'. It is recommended to use `corrector_order=2` for
guided sampling, and `corrector_order=3` for unconditional sampling.
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
tau_func (`Callable`, *optional*):
Stochasticity during the sampling. Default in init is `lambda t: 1 if t >= 200 and t <= 800 else 0`.
SA-Solver will sample from vanilla diffusion ODE if tau_func is set to `lambda t: 0`. SA-Solver will sample
from vanilla diffusion SDE if tau_func is set to `lambda t: 1`. For more details, please check
https://arxiv.org/abs/2309.05019
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
dynamic_thresholding_ratio (`float`, defaults to 0.995):
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
sample_max_value (`float`, defaults to 1.0):
The threshold value for dynamic thresholding. Valid only when `thresholding=True` and
`algorithm_type="dpmsolver++"`.
algorithm_type (`str`, defaults to `data_prediction`):
Algorithm type for the solver; can be `data_prediction` or `noise_prediction`. It is recommended to use
`data_prediction` with `solver_order=2` for guided sampling like in Stable Diffusion.
lower_order_final (`bool`, defaults to `True`):
Whether to use lower-order solvers in the final steps. Default = True.
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
the sigmas are determined according to a sequence of noise levels {σi}.
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
lambda_min_clipped (`float`, defaults to `-inf`):
Clipping threshold for the minimum value of `lambda(t)` for numerical stability. This is critical for the
cosine (`squaredcos_cap_v2`) noise schedule.
variance_type (`str`, *optional*):
Set to "learned" or "learned_range" for diffusion models that predict variance. If set, the model's output
contains the predicted Gaussian variance.
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
steps_offset (`int`, defaults to 0):
An offset added to the inference steps, as required by some model families.
"""
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
predictor_order: int = 2,
corrector_order: int = 2,
prediction_type: str = "epsilon",
tau_func: Optional[Callable] = None,
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
sample_max_value: float = 1.0,
algorithm_type: str = "data_prediction",
lower_order_final: bool = True,
use_karras_sigmas: Optional[bool] = False,
use_exponential_sigmas: Optional[bool] = False,
use_beta_sigmas: Optional[bool] = False,
use_flow_sigmas: Optional[bool] = False,
flow_shift: Optional[float] = 1.0,
lambda_min_clipped: float = -float("inf"),
variance_type: Optional[str] = None,
timestep_spacing: str = "linspace",
steps_offset: int = 0,
):
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = (
torch.linspace(
beta_start**0.5,
beta_end**0.5,
num_train_timesteps,
dtype=torch.float32,
)
** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
# Currently we only support VP-type noise schedule
self.alpha_t = torch.sqrt(self.alphas_cumprod)
self.sigma_t = torch.sqrt(1 - self.alphas_cumprod)
self.lambda_t = torch.log(self.alpha_t) - torch.log(self.sigma_t)
self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
if algorithm_type not in ["data_prediction", "noise_prediction"]:
raise NotImplementedError(f"{algorithm_type} is not implemented for {self.__class__}")
# setable values
self.num_inference_steps = None
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=np.float32)[::-1].copy()
self.timesteps = torch.from_numpy(timesteps)
self.timestep_list = [None] * max(predictor_order, corrector_order - 1)
self.model_outputs = [None] * max(predictor_order, corrector_order - 1)
if tau_func is None:
self.tau_func = lambda t: 1 if t >= 200 and t <= 800 else 0
else:
self.tau_func = tau_func
self.predict_x0 = algorithm_type == "data_prediction"
self.lower_order_nums = 0
self.last_sample = None
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
@property
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
@property
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
# Clipping the minimum of all lambda(t) for numerical stability.
# This is critical for cosine (squaredcos_cap_v2) noise schedule.
clipped_idx = torch.searchsorted(torch.flip(self.lambda_t, [0]), self.config.lambda_min_clipped)
last_timestep = ((self.config.num_train_timesteps - clipped_idx).numpy()).item()
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
timesteps = (
np.linspace(0, last_timestep - 1, num_inference_steps + 1).round()[::-1][:-1].copy().astype(np.int64)
)
elif self.config.timestep_spacing == "leading":
step_ratio = last_timestep // (num_inference_steps + 1)
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1][:-1].copy().astype(np.int64)
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
step_ratio = self.config.num_train_timesteps / num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = np.arange(last_timestep, 0, -step_ratio).round().copy().astype(np.int64)
timesteps -= 1
else:
raise ValueError(
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
)
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
log_sigmas = np.log(sigmas)
if self.config.use_karras_sigmas:
sigmas = np.flip(sigmas).copy()
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
elif self.config.use_exponential_sigmas:
sigmas = np.flip(sigmas).copy()
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
elif self.config.use_beta_sigmas:
sigmas = np.flip(sigmas).copy()
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
elif self.config.use_flow_sigmas:
alphas = np.linspace(1, 1 / self.config.num_train_timesteps, num_inference_steps + 1)
sigmas = 1.0 - alphas
sigmas = np.flip(self.config.flow_shift * sigmas / (1 + (self.config.flow_shift - 1) * sigmas))[:-1].copy()
timesteps = (sigmas * self.config.num_train_timesteps).copy()
sigmas = np.concatenate([sigmas, sigmas[-1:]]).astype(np.float32)
else:
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
self.sigmas = torch.from_numpy(sigmas)
self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.int64)
self.num_inference_steps = len(timesteps)
self.model_outputs = [
None,
] * max(self.config.predictor_order, self.config.corrector_order - 1)
self.lower_order_nums = 0
self.last_sample = None
# add an index counter for schedulers that allow duplicated timesteps
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
"""
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
photorealism as well as better image-text alignment, especially when using very large guidance weights."
https://arxiv.org/abs/2205.11487
"""
dtype = sample.dtype
batch_size, channels, *remaining_dims = sample.shape
if dtype not in (torch.float32, torch.float64):
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
# Flatten sample for doing quantile calculation along each image
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
s = torch.clamp(
s, min=1, max=self.config.sample_max_value
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
sample = sample.reshape(batch_size, channels, *remaining_dims)
sample = sample.to(dtype)
return sample
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(np.maximum(sigma, 1e-10))
# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
high_idx = low_idx + 1
low = log_sigmas[low_idx]
high = log_sigmas[high_idx]
# interpolate sigmas
w = (low - log_sigma) / (low - high)
w = np.clip(w, 0, 1)
# transform interpolation to time range
t = (1 - w) * low_idx + w * high_idx
t = t.reshape(sigma.shape)
return t
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._sigma_to_alpha_sigma_t
def _sigma_to_alpha_sigma_t(self, sigma):
if self.config.use_flow_sigmas:
alpha_t = 1 - sigma
sigma_t = sigma
else:
alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
sigma_t = sigma * alpha_t
return alpha_t, sigma_t
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
"""Constructs the noise schedule of Karras et al. (2022)."""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
rho = 7.0 # 7.0 is the value used in the paper
ramp = np.linspace(0, 1, num_inference_steps)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
"""Constructs an exponential noise schedule."""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
return sigmas
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
def _convert_to_beta(
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
) -> torch.Tensor:
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
sigmas = np.array(
[
sigma_min + (ppf * (sigma_max - sigma_min))
for ppf in [
scipy.stats.beta.ppf(timestep, alpha, beta)
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
]
]
)
return sigmas
def convert_model_output(
self,
model_output: torch.Tensor,
*args,
sample: torch.Tensor = None,
**kwargs,
) -> torch.Tensor:
"""
Convert the model output to the corresponding type the data_prediction/noise_prediction algorithm needs.
Noise_prediction is designed to discretize an integral of the noise prediction model, and data_prediction is
designed to discretize an integral of the data prediction model.
<Tip>
The algorithm and model type are decoupled. You can use either data_prediction or noise_prediction for both
noise prediction and data prediction models.
</Tip>
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
Returns:
`torch.Tensor`:
The converted model output.
"""
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
if sample is None:
if len(args) > 1:
sample = args[1]
else:
raise ValueError("missing `sample` as a required keyward argument")
if timestep is not None:
deprecate(
"timesteps",
"1.0.0",
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
sigma = self.sigmas[self.step_index]
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
# SA-Solver_data_prediction needs to solve an integral of the data prediction model.
if self.config.algorithm_type in ["data_prediction"]:
if self.config.prediction_type == "epsilon":
# SA-Solver only needs the "mean" output.
if self.config.variance_type in ["learned", "learned_range"]:
model_output = model_output[:, :3]
x0_pred = (sample - sigma_t * model_output) / alpha_t
elif self.config.prediction_type == "sample":
x0_pred = model_output
elif self.config.prediction_type == "v_prediction":
x0_pred = alpha_t * sample - sigma_t * model_output
elif self.config.prediction_type == "flow_prediction":
sigma_t = self.sigmas[self.step_index]
x0_pred = sample - sigma_t * model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, "
"`v_prediction`, or `flow_prediction` for the SASolverScheduler."
)
if self.config.thresholding:
x0_pred = self._threshold_sample(x0_pred)
return x0_pred
# SA-Solver_noise_prediction needs to solve an integral of the noise prediction model.
elif self.config.algorithm_type in ["noise_prediction"]:
if self.config.prediction_type == "epsilon":
# SA-Solver only needs the "mean" output.
if self.config.variance_type in ["learned", "learned_range"]:
epsilon = model_output[:, :3]
else:
epsilon = model_output
elif self.config.prediction_type == "sample":
epsilon = (sample - alpha_t * model_output) / sigma_t
elif self.config.prediction_type == "v_prediction":
epsilon = alpha_t * model_output + sigma_t * sample
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
" `v_prediction` for the SASolverScheduler."
)
if self.config.thresholding:
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep]
x0_pred = (sample - sigma_t * epsilon) / alpha_t
x0_pred = self._threshold_sample(x0_pred)
epsilon = (sample - alpha_t * x0_pred) / sigma_t
return epsilon
def get_coefficients_exponential_negative(self, order, interval_start, interval_end):
"""
Calculate the integral of exp(-x) * x^order dx from interval_start to interval_end
"""
assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3"
if order == 0:
return torch.exp(-interval_end) * (torch.exp(interval_end - interval_start) - 1)
elif order == 1:
return torch.exp(-interval_end) * (
(interval_start + 1) * torch.exp(interval_end - interval_start) - (interval_end + 1)
)
elif order == 2:
return torch.exp(-interval_end) * (
(interval_start**2 + 2 * interval_start + 2) * torch.exp(interval_end - interval_start)
- (interval_end**2 + 2 * interval_end + 2)
)
elif order == 3:
return torch.exp(-interval_end) * (
(interval_start**3 + 3 * interval_start**2 + 6 * interval_start + 6)
* torch.exp(interval_end - interval_start)
- (interval_end**3 + 3 * interval_end**2 + 6 * interval_end + 6)
)
def get_coefficients_exponential_positive(self, order, interval_start, interval_end, tau):
"""
Calculate the integral of exp(x(1+tau^2)) * x^order dx from interval_start to interval_end
"""
assert order in [0, 1, 2, 3], "order is only supported for 0, 1, 2 and 3"
# after change of variable(cov)
interval_end_cov = (1 + tau**2) * interval_end
interval_start_cov = (1 + tau**2) * interval_start
if order == 0:
return (
torch.exp(interval_end_cov) * (1 - torch.exp(-(interval_end_cov - interval_start_cov))) / (1 + tau**2)
)
elif order == 1:
return (
torch.exp(interval_end_cov)
* (
(interval_end_cov - 1)
- (interval_start_cov - 1) * torch.exp(-(interval_end_cov - interval_start_cov))
)
/ ((1 + tau**2) ** 2)
)
elif order == 2:
return (
torch.exp(interval_end_cov)
* (
(interval_end_cov**2 - 2 * interval_end_cov + 2)
- (interval_start_cov**2 - 2 * interval_start_cov + 2)
* torch.exp(-(interval_end_cov - interval_start_cov))
)
/ ((1 + tau**2) ** 3)
)
elif order == 3:
return (
torch.exp(interval_end_cov)
* (
(interval_end_cov**3 - 3 * interval_end_cov**2 + 6 * interval_end_cov - 6)
- (interval_start_cov**3 - 3 * interval_start_cov**2 + 6 * interval_start_cov - 6)
* torch.exp(-(interval_end_cov - interval_start_cov))
)
/ ((1 + tau**2) ** 4)
)
def lagrange_polynomial_coefficient(self, order, lambda_list):
"""
Calculate the coefficient of lagrange polynomial
"""
assert order in [0, 1, 2, 3]
assert order == len(lambda_list) - 1
if order == 0:
return [[1]]
elif order == 1:
return [
[
1 / (lambda_list[0] - lambda_list[1]),
-lambda_list[1] / (lambda_list[0] - lambda_list[1]),
],
[
1 / (lambda_list[1] - lambda_list[0]),
-lambda_list[0] / (lambda_list[1] - lambda_list[0]),
],
]
elif order == 2:
denominator1 = (lambda_list[0] - lambda_list[1]) * (lambda_list[0] - lambda_list[2])
denominator2 = (lambda_list[1] - lambda_list[0]) * (lambda_list[1] - lambda_list[2])
denominator3 = (lambda_list[2] - lambda_list[0]) * (lambda_list[2] - lambda_list[1])
return [
[
1 / denominator1,
(-lambda_list[1] - lambda_list[2]) / denominator1,
lambda_list[1] * lambda_list[2] / denominator1,
],
[
1 / denominator2,
(-lambda_list[0] - lambda_list[2]) / denominator2,
lambda_list[0] * lambda_list[2] / denominator2,
],
[
1 / denominator3,
(-lambda_list[0] - lambda_list[1]) / denominator3,
lambda_list[0] * lambda_list[1] / denominator3,
],
]
elif order == 3:
denominator1 = (
(lambda_list[0] - lambda_list[1])
* (lambda_list[0] - lambda_list[2])
* (lambda_list[0] - lambda_list[3])
)
denominator2 = (
(lambda_list[1] - lambda_list[0])
* (lambda_list[1] - lambda_list[2])
* (lambda_list[1] - lambda_list[3])
)
denominator3 = (
(lambda_list[2] - lambda_list[0])
* (lambda_list[2] - lambda_list[1])
* (lambda_list[2] - lambda_list[3])
)
denominator4 = (
(lambda_list[3] - lambda_list[0])
* (lambda_list[3] - lambda_list[1])
* (lambda_list[3] - lambda_list[2])
)
return [
[
1 / denominator1,
(-lambda_list[1] - lambda_list[2] - lambda_list[3]) / denominator1,
(
lambda_list[1] * lambda_list[2]
+ lambda_list[1] * lambda_list[3]
+ lambda_list[2] * lambda_list[3]
)
/ denominator1,
(-lambda_list[1] * lambda_list[2] * lambda_list[3]) / denominator1,
],
[
1 / denominator2,
(-lambda_list[0] - lambda_list[2] - lambda_list[3]) / denominator2,
(
lambda_list[0] * lambda_list[2]
+ lambda_list[0] * lambda_list[3]
+ lambda_list[2] * lambda_list[3]
)
/ denominator2,
(-lambda_list[0] * lambda_list[2] * lambda_list[3]) / denominator2,
],
[
1 / denominator3,
(-lambda_list[0] - lambda_list[1] - lambda_list[3]) / denominator3,
(
lambda_list[0] * lambda_list[1]
+ lambda_list[0] * lambda_list[3]
+ lambda_list[1] * lambda_list[3]
)
/ denominator3,
(-lambda_list[0] * lambda_list[1] * lambda_list[3]) / denominator3,
],
[
1 / denominator4,
(-lambda_list[0] - lambda_list[1] - lambda_list[2]) / denominator4,
(
lambda_list[0] * lambda_list[1]
+ lambda_list[0] * lambda_list[2]
+ lambda_list[1] * lambda_list[2]
)
/ denominator4,
(-lambda_list[0] * lambda_list[1] * lambda_list[2]) / denominator4,
],
]
def get_coefficients_fn(self, order, interval_start, interval_end, lambda_list, tau):
assert order in [1, 2, 3, 4]
assert order == len(lambda_list), "the length of lambda list must be equal to the order"
coefficients = []
lagrange_coefficient = self.lagrange_polynomial_coefficient(order - 1, lambda_list)
for i in range(order):
coefficient = 0
for j in range(order):
if self.predict_x0:
coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_positive(
order - 1 - j, interval_start, interval_end, tau
)
else:
coefficient += lagrange_coefficient[i][j] * self.get_coefficients_exponential_negative(
order - 1 - j, interval_start, interval_end
)
coefficients.append(coefficient)
assert len(coefficients) == order, "the length of coefficients does not match the order"
return coefficients
def stochastic_adams_bashforth_update(
self,
model_output: torch.Tensor,
*args,
sample: torch.Tensor,
noise: torch.Tensor,
order: int,
tau: torch.Tensor,
**kwargs,
) -> torch.Tensor:
"""
One step for the SA-Predictor.
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model at the current timestep.
prev_timestep (`int`):
The previous discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
order (`int`):
The order of SA-Predictor at this timestep.
Returns:
`torch.Tensor`:
The sample tensor at the previous timestep.
"""
prev_timestep = args[0] if len(args) > 0 else kwargs.pop("prev_timestep", None)
if sample is None:
if len(args) > 1:
sample = args[1]
else:
raise ValueError(" missing `sample` as a required keyward argument")
if noise is None:
if len(args) > 2:
noise = args[2]
else:
raise ValueError(" missing `noise` as a required keyward argument")
if order is None:
if len(args) > 3:
order = args[3]
else:
raise ValueError(" missing `order` as a required keyward argument")
if tau is None:
if len(args) > 4:
tau = args[4]
else:
raise ValueError(" missing `tau` as a required keyward argument")
if prev_timestep is not None:
deprecate(
"prev_timestep",
"1.0.0",
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
model_output_list = self.model_outputs
sigma_t, sigma_s0 = (
self.sigmas[self.step_index + 1],
self.sigmas[self.step_index],
)
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
gradient_part = torch.zeros_like(sample)
h = lambda_t - lambda_s0
lambda_list = []
for i in range(order):
si = self.step_index - i
alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
lambda_list.append(lambda_si)
gradient_coefficients = self.get_coefficients_fn(order, lambda_s0, lambda_t, lambda_list, tau)
x = sample
if self.predict_x0:
if (
order == 2
): ## if order = 2 we do a modification that does not influence the convergence order similar to unipc. Note: This is used only for few steps sampling.
# The added term is O(h^3). Empirically we find it will slightly improve the image quality.
# ODE case
# gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2]))
# gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2]))
temp_sigma = self.sigmas[self.step_index - 1]
temp_alpha_s, temp_sigma_s = self._sigma_to_alpha_sigma_t(temp_sigma)
temp_lambda_s = torch.log(temp_alpha_s) - torch.log(temp_sigma_s)
gradient_coefficients[0] += (
1.0
* torch.exp((1 + tau**2) * lambda_t)
* (h**2 / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2))
/ (lambda_s0 - temp_lambda_s)
)
gradient_coefficients[1] -= (
1.0
* torch.exp((1 + tau**2) * lambda_t)
* (h**2 / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2))
/ (lambda_s0 - temp_lambda_s)
)
for i in range(order):
if self.predict_x0:
gradient_part += (
(1 + tau**2)
* sigma_t
* torch.exp(-(tau**2) * lambda_t)
* gradient_coefficients[i]
* model_output_list[-(i + 1)]
)
else:
gradient_part += -(1 + tau**2) * alpha_t * gradient_coefficients[i] * model_output_list[-(i + 1)]
if self.predict_x0:
noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau**2 * h)) * noise
else:
noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise
if self.predict_x0:
x_t = torch.exp(-(tau**2) * h) * (sigma_t / sigma_s0) * x + gradient_part + noise_part
else:
x_t = (alpha_t / alpha_s0) * x + gradient_part + noise_part
x_t = x_t.to(x.dtype)
return x_t
def stochastic_adams_moulton_update(
self,
this_model_output: torch.Tensor,
*args,
last_sample: torch.Tensor,
last_noise: torch.Tensor,
this_sample: torch.Tensor,
order: int,
tau: torch.Tensor,
**kwargs,
) -> torch.Tensor:
"""
One step for the SA-Corrector.
Args:
this_model_output (`torch.Tensor`):
The model outputs at `x_t`.
this_timestep (`int`):
The current timestep `t`.
last_sample (`torch.Tensor`):
The generated sample before the last predictor `x_{t-1}`.
this_sample (`torch.Tensor`):
The generated sample after the last predictor `x_{t}`.
order (`int`):
The order of SA-Corrector at this step.
Returns:
`torch.Tensor`:
The corrected sample tensor at the current timestep.
"""
this_timestep = args[0] if len(args) > 0 else kwargs.pop("this_timestep", None)
if last_sample is None:
if len(args) > 1:
last_sample = args[1]
else:
raise ValueError(" missing`last_sample` as a required keyward argument")
if last_noise is None:
if len(args) > 2:
last_noise = args[2]
else:
raise ValueError(" missing`last_noise` as a required keyward argument")
if this_sample is None:
if len(args) > 3:
this_sample = args[3]
else:
raise ValueError(" missing`this_sample` as a required keyward argument")
if order is None:
if len(args) > 4:
order = args[4]
else:
raise ValueError(" missing`order` as a required keyward argument")
if tau is None:
if len(args) > 5:
tau = args[5]
else:
raise ValueError(" missing`tau` as a required keyward argument")
if this_timestep is not None:
deprecate(
"this_timestep",
"1.0.0",
"Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
)
model_output_list = self.model_outputs
sigma_t, sigma_s0 = (
self.sigmas[self.step_index],
self.sigmas[self.step_index - 1],
)
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
gradient_part = torch.zeros_like(this_sample)
h = lambda_t - lambda_s0
lambda_list = []
for i in range(order):
si = self.step_index - i
alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
lambda_list.append(lambda_si)
model_prev_list = model_output_list + [this_model_output]
gradient_coefficients = self.get_coefficients_fn(order, lambda_s0, lambda_t, lambda_list, tau)
x = last_sample
if self.predict_x0:
if (
order == 2
): ## if order = 2 we do a modification that does not influence the convergence order similar to UniPC. Note: This is used only for few steps sampling.
# The added term is O(h^3). Empirically we find it will slightly improve the image quality.
# ODE case
# gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h / 2 - (h - 1 + torch.exp(-h)) / h)
# gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h / 2 - (h - 1 + torch.exp(-h)) / h)
gradient_coefficients[0] += (
1.0
* torch.exp((1 + tau**2) * lambda_t)
* (h / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2 * h))
)
gradient_coefficients[1] -= (
1.0
* torch.exp((1 + tau**2) * lambda_t)
* (h / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2 * h))
)
for i in range(order):
if self.predict_x0:
gradient_part += (
(1 + tau**2)
* sigma_t
* torch.exp(-(tau**2) * lambda_t)
* gradient_coefficients[i]
* model_prev_list[-(i + 1)]
)
else:
gradient_part += -(1 + tau**2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)]
if self.predict_x0:
noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau**2 * h)) * last_noise
else:
noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * last_noise
if self.predict_x0:
x_t = torch.exp(-(tau**2) * h) * (sigma_t / sigma_s0) * x + gradient_part + noise_part
else:
x_t = (alpha_t / alpha_s0) * x + gradient_part + noise_part
x_t = x_t.to(x.dtype)
return x_t
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
index_candidates = (schedule_timesteps == timestep).nonzero()
if len(index_candidates) == 0:
step_index = len(self.timesteps) - 1
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
elif len(index_candidates) > 1:
step_index = index_candidates[1].item()
else:
step_index = index_candidates[0].item()
return step_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
def _init_step_index(self, timestep):
"""
Initialize the step_index counter for the scheduler.
"""
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
def step(
self,
model_output: torch.Tensor,
timestep: int,
sample: torch.Tensor,
generator=None,
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
the SA-Solver.
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`int`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
if self.step_index is None:
self._init_step_index(timestep)
use_corrector = self.step_index > 0 and self.last_sample is not None
model_output_convert = self.convert_model_output(model_output, sample=sample)
if use_corrector:
current_tau = self.tau_func(self.timestep_list[-1])
sample = self.stochastic_adams_moulton_update(
this_model_output=model_output_convert,
last_sample=self.last_sample,
last_noise=self.last_noise,
this_sample=sample,
order=self.this_corrector_order,
tau=current_tau,
)
for i in range(max(self.config.predictor_order, self.config.corrector_order - 1) - 1):
self.model_outputs[i] = self.model_outputs[i + 1]
self.timestep_list[i] = self.timestep_list[i + 1]
self.model_outputs[-1] = model_output_convert
self.timestep_list[-1] = timestep
noise = randn_tensor(
model_output.shape,
generator=generator,
device=model_output.device,
dtype=model_output.dtype,
)
if self.config.lower_order_final:
this_predictor_order = min(self.config.predictor_order, len(self.timesteps) - self.step_index)
this_corrector_order = min(self.config.corrector_order, len(self.timesteps) - self.step_index + 1)
else:
this_predictor_order = self.config.predictor_order
this_corrector_order = self.config.corrector_order
self.this_predictor_order = min(this_predictor_order, self.lower_order_nums + 1) # warmup for multistep
self.this_corrector_order = min(this_corrector_order, self.lower_order_nums + 2) # warmup for multistep
assert self.this_predictor_order > 0
assert self.this_corrector_order > 0
self.last_sample = sample
self.last_noise = noise
current_tau = self.tau_func(self.timestep_list[-1])
prev_sample = self.stochastic_adams_bashforth_update(
model_output=model_output_convert,
sample=sample,
noise=noise,
order=self.this_predictor_order,
tau=current_tau,
)
if self.lower_order_nums < max(self.config.predictor_order, self.config.corrector_order - 1):
self.lower_order_nums += 1
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample)
def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.Tensor`):
The input sample.
Returns:
`torch.Tensor`:
A scaled input sample.
"""
return sample
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
timesteps: torch.IntTensor,
) -> torch.Tensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
# for the subsequent add_noise calls
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
timesteps = timesteps.to(original_samples.device)
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps | class_definition | 2,902 | 55,087 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py | null | 1,278 |
class KarrasVeSchedulerState:
# setable values
num_inference_steps: Optional[int] = None
timesteps: Optional[jnp.ndarray] = None
schedule: Optional[jnp.ndarray] = None # sigma(t_i)
@classmethod
def create(cls):
return cls() | class_definition | 943 | 1,200 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_karras_ve_flax.py | null | 1,279 |
class FlaxKarrasVeOutput(BaseOutput):
"""
Output class for the scheduler's step function output.
Args:
prev_sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
derivative (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images):
Derivative of predicted original image sample (x_0).
state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class.
"""
prev_sample: jnp.ndarray
derivative: jnp.ndarray
state: KarrasVeSchedulerState | class_definition | 1,214 | 1,927 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_karras_ve_flax.py | null | 1,280 |
class FlaxKarrasVeScheduler(FlaxSchedulerMixin, ConfigMixin):
"""
Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and
the VE column of Table 1 from [1] for reference.
[1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic
differential equations." https://arxiv.org/abs/2011.13456
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
[`~SchedulerMixin.from_pretrained`] functions.
For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of
Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the
optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper.
Args:
sigma_min (`float`): minimum noise magnitude
sigma_max (`float`): maximum noise magnitude
s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling.
A reasonable range is [1.000, 1.011].
s_churn (`float`): the parameter controlling the overall amount of stochasticity.
A reasonable range is [0, 100].
s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity).
A reasonable range is [0, 10].
s_max (`float`): the end value of the sigma range where we add noise.
A reasonable range is [0.2, 80].
"""
@property
def has_state(self):
return True
@register_to_config
def __init__(
self,
sigma_min: float = 0.02,
sigma_max: float = 100,
s_noise: float = 1.007,
s_churn: float = 80,
s_min: float = 0.05,
s_max: float = 50,
):
pass
def create_state(self):
return KarrasVeSchedulerState.create()
def set_timesteps(
self, state: KarrasVeSchedulerState, num_inference_steps: int, shape: Tuple = ()
) -> KarrasVeSchedulerState:
"""
Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
state (`KarrasVeSchedulerState`):
the `FlaxKarrasVeScheduler` state data class.
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
"""
timesteps = jnp.arange(0, num_inference_steps)[::-1].copy()
schedule = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in timesteps
]
return state.replace(
num_inference_steps=num_inference_steps,
schedule=jnp.array(schedule, dtype=jnp.float32),
timesteps=timesteps,
)
def add_noise_to_input(
self,
state: KarrasVeSchedulerState,
sample: jnp.ndarray,
sigma: float,
key: jax.Array,
) -> Tuple[jnp.ndarray, float]:
"""
Explicit Langevin-like "churn" step of adding noise to the sample according to a factor gamma_i ≥ 0 to reach a
higher noise level sigma_hat = sigma_i + gamma_i*sigma_i.
TODO Args:
"""
if self.config.s_min <= sigma <= self.config.s_max:
gamma = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1)
else:
gamma = 0
# sample eps ~ N(0, S_noise^2 * I)
key = random.split(key, num=1)
eps = self.config.s_noise * random.normal(key=key, shape=sample.shape)
sigma_hat = sigma + gamma * sigma
sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def step(
self,
state: KarrasVeSchedulerState,
model_output: jnp.ndarray,
sigma_hat: float,
sigma_prev: float,
sample_hat: jnp.ndarray,
return_dict: bool = True,
) -> Union[FlaxKarrasVeOutput, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class.
model_output (`torch.Tensor` or `np.ndarray`): direct output from learned diffusion model.
sigma_hat (`float`): TODO
sigma_prev (`float`): TODO
sample_hat (`torch.Tensor` or `np.ndarray`): TODO
return_dict (`bool`): option for returning tuple rather than FlaxKarrasVeOutput class
Returns:
[`~schedulers.scheduling_karras_ve_flax.FlaxKarrasVeOutput`] or `tuple`: Updated sample in the diffusion
chain and derivative. [`~schedulers.scheduling_karras_ve_flax.FlaxKarrasVeOutput`] if `return_dict` is
True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor.
"""
pred_original_sample = sample_hat + sigma_hat * model_output
derivative = (sample_hat - pred_original_sample) / sigma_hat
sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=sample_prev, derivative=derivative, state=state)
def step_correct(
self,
state: KarrasVeSchedulerState,
model_output: jnp.ndarray,
sigma_hat: float,
sigma_prev: float,
sample_hat: jnp.ndarray,
sample_prev: jnp.ndarray,
derivative: jnp.ndarray,
return_dict: bool = True,
) -> Union[FlaxKarrasVeOutput, Tuple]:
"""
Correct the predicted sample based on the output model_output of the network. TODO complete description
Args:
state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class.
model_output (`torch.Tensor` or `np.ndarray`): direct output from learned diffusion model.
sigma_hat (`float`): TODO
sigma_prev (`float`): TODO
sample_hat (`torch.Tensor` or `np.ndarray`): TODO
sample_prev (`torch.Tensor` or `np.ndarray`): TODO
derivative (`torch.Tensor` or `np.ndarray`): TODO
return_dict (`bool`): option for returning tuple rather than FlaxKarrasVeOutput class
Returns:
prev_sample (TODO): updated sample in the diffusion chain. derivative (TODO): TODO
"""
pred_original_sample = sample_prev + sigma_prev * model_output
derivative_corr = (sample_prev - pred_original_sample) / sigma_prev
sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative, state)
return FlaxKarrasVeOutput(prev_sample=sample_prev, derivative=derivative, state=state)
def add_noise(self, state: KarrasVeSchedulerState, original_samples, noise, timesteps):
raise NotImplementedError() | class_definition | 1,930 | 9,605 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_karras_ve_flax.py | null | 1,281 |
class FlowMatchEulerDiscreteSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
"""
prev_sample: torch.FloatTensor | class_definition | 1,076 | 1,509 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py | null | 1,282 |
class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
"""
Euler scheduler.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
shift (`float`, defaults to 1.0):
The shift value for the timestep schedule.
use_dynamic_shifting (`bool`, defaults to False):
Whether to apply timestep shifting on-the-fly based on the image resolution.
base_shift (`float`, defaults to 0.5):
Value to stabilize image generation. Increasing `base_shift` reduces variation and image is more consistent
with desired output.
max_shift (`float`, defaults to 1.15):
Value change allowed to latent vectors. Increasing `max_shift` encourages more variation and image may be
more exaggerated or stylized.
base_image_seq_len (`int`, defaults to 256):
The base image sequence length.
max_image_seq_len (`int`, defaults to 4096):
The maximum image sequence length.
invert_sigmas (`bool`, defaults to False):
Whether to invert the sigmas.
shift_terminal (`float`, defaults to None):
The end value of the shifted timestep schedule.
use_karras_sigmas (`bool`, defaults to False):
Whether to use Karras sigmas for step sizes in the noise schedule during sampling.
use_exponential_sigmas (`bool`, defaults to False):
Whether to use exponential sigmas for step sizes in the noise schedule during sampling.
use_beta_sigmas (`bool`, defaults to False):
Whether to use beta sigmas for step sizes in the noise schedule during sampling.
"""
_compatibles = []
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
shift: float = 1.0,
use_dynamic_shifting=False,
base_shift: Optional[float] = 0.5,
max_shift: Optional[float] = 1.15,
base_image_seq_len: Optional[int] = 256,
max_image_seq_len: Optional[int] = 4096,
invert_sigmas: bool = False,
shift_terminal: Optional[float] = None,
use_karras_sigmas: Optional[bool] = False,
use_exponential_sigmas: Optional[bool] = False,
use_beta_sigmas: Optional[bool] = False,
):
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
sigmas = timesteps / num_train_timesteps
if not use_dynamic_shifting:
# when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)
self.timesteps = sigmas * num_train_timesteps
self._step_index = None
self._begin_index = None
self._shift = shift
self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication
self.sigma_min = self.sigmas[-1].item()
self.sigma_max = self.sigmas[0].item()
@property
def shift(self):
"""
The value used for shifting.
"""
return self._shift
@property
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
@property
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index
def set_shift(self, shift: float):
self._shift = shift
def scale_noise(
self,
sample: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
noise: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
"""
Forward process in flow-matching
Args:
sample (`torch.FloatTensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.FloatTensor`:
A scaled input sample.
"""
# Make sure sigmas and timesteps have the same device and dtype as original_samples
sigmas = self.sigmas.to(device=sample.device, dtype=sample.dtype)
if sample.device.type == "mps" and torch.is_floating_point(timestep):
# mps does not support float64
schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32)
timestep = timestep.to(sample.device, dtype=torch.float32)
else:
schedule_timesteps = self.timesteps.to(sample.device)
timestep = timestep.to(sample.device)
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
if self.begin_index is None:
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timestep]
elif self.step_index is not None:
# add_noise is called after first denoising step (for inpainting)
step_indices = [self.step_index] * timestep.shape[0]
else:
# add noise is called before first denoising step to create initial latent(img2img)
step_indices = [self.begin_index] * timestep.shape[0]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < len(sample.shape):
sigma = sigma.unsqueeze(-1)
sample = sigma * noise + (1.0 - sigma) * sample
return sample
def _sigma_to_t(self, sigma):
return sigma * self.config.num_train_timesteps
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def stretch_shift_to_terminal(self, t: torch.Tensor) -> torch.Tensor:
r"""
Stretches and shifts the timestep schedule to ensure it terminates at the configured `shift_terminal` config
value.
Reference:
https://github.com/Lightricks/LTX-Video/blob/a01a171f8fe3d99dce2728d60a73fecf4d4238ae/ltx_video/schedulers/rf.py#L51
Args:
t (`torch.Tensor`):
A tensor of timesteps to be stretched and shifted.
Returns:
`torch.Tensor`:
A tensor of adjusted timesteps such that the final value equals `self.config.shift_terminal`.
"""
one_minus_z = 1 - t
scale_factor = one_minus_z[-1] / (1 - self.config.shift_terminal)
stretched_t = 1 - (one_minus_z / scale_factor)
return stretched_t
def set_timesteps(
self,
num_inference_steps: int = None,
device: Union[str, torch.device] = None,
sigmas: Optional[List[float]] = None,
mu: Optional[float] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
if self.config.use_dynamic_shifting and mu is None:
raise ValueError(" you have a pass a value for `mu` when `use_dynamic_shifting` is set to be `True`")
if sigmas is None:
timesteps = np.linspace(
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
)
sigmas = timesteps / self.config.num_train_timesteps
else:
sigmas = np.array(sigmas).astype(np.float32)
num_inference_steps = len(sigmas)
self.num_inference_steps = num_inference_steps
if self.config.use_dynamic_shifting:
sigmas = self.time_shift(mu, 1.0, sigmas)
else:
sigmas = self.shift * sigmas / (1 + (self.shift - 1) * sigmas)
if self.config.shift_terminal:
sigmas = self.stretch_shift_to_terminal(sigmas)
if self.config.use_karras_sigmas:
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
elif self.config.use_beta_sigmas:
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
timesteps = sigmas * self.config.num_train_timesteps
if self.config.invert_sigmas:
sigmas = 1.0 - sigmas
timesteps = sigmas * self.config.num_train_timesteps
sigmas = torch.cat([sigmas, torch.ones(1, device=sigmas.device)])
else:
sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
self.timesteps = timesteps.to(device=device)
self.sigmas = sigmas
self._step_index = None
self._begin_index = None
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
indices = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
return indices[pos].item()
def _init_step_index(self, timestep):
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
def step(
self,
model_output: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
sample: torch.FloatTensor,
s_churn: float = 0.0,
s_tmin: float = 0.0,
s_tmax: float = float("inf"),
s_noise: float = 1.0,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.FloatTensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.FloatTensor`):
A current instance of a sample created by the diffusion process.
s_churn (`float`):
s_tmin (`float`):
s_tmax (`float`):
s_noise (`float`, defaults to 1.0):
Scaling factor for noise added to the sample.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
tuple.
Returns:
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
returned, otherwise a tuple is returned where the first element is the sample tensor.
"""
if (
isinstance(timestep, int)
or isinstance(timestep, torch.IntTensor)
or isinstance(timestep, torch.LongTensor)
):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
)
if self.step_index is None:
self._init_step_index(timestep)
# Upcast to avoid precision issues when computing prev_sample
sample = sample.to(torch.float32)
sigma = self.sigmas[self.step_index]
sigma_next = self.sigmas[self.step_index + 1]
prev_sample = sample + (sigma_next - sigma) * model_output
# Cast sample back to model compatible dtype
prev_sample = prev_sample.to(model_output.dtype)
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (prev_sample,)
return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample)
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
"""Constructs the noise schedule of Karras et al. (2022)."""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
rho = 7.0 # 7.0 is the value used in the paper
ramp = np.linspace(0, 1, num_inference_steps)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
"""Constructs an exponential noise schedule."""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
return sigmas
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
def _convert_to_beta(
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
) -> torch.Tensor:
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
sigmas = np.array(
[
sigma_min + (ppf * (sigma_max - sigma_min))
for ppf in [
scipy.stats.beta.ppf(timestep, alpha, beta)
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
]
]
)
return sigmas
def __len__(self):
return self.config.num_train_timesteps | class_definition | 1,512 | 19,360 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py | null | 1,283 |
class EulerDiscreteSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.Tensor
pred_original_sample: Optional[torch.Tensor] = None | class_definition | 1,230 | 2,000 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py | null | 1,284 |
class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
"""
Euler scheduler.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.0001):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear` or `scaled_linear`.
trained_betas (`np.ndarray`, *optional*):
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
interpolation_type(`str`, defaults to `"linear"`, *optional*):
The interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be on of
`"linear"` or `"log_linear"`.
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
the sigmas are determined according to a sequence of noise levels {σi}.
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
steps_offset (`int`, defaults to 0):
An offset added to the inference steps, as required by some model families.
rescale_betas_zero_snr (`bool`, defaults to `False`):
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
dark samples instead of limiting it to samples with medium brightness. Loosely related to
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
final_sigmas_type (`str`, defaults to `"zero"`):
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
"""
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
prediction_type: str = "epsilon",
interpolation_type: str = "linear",
use_karras_sigmas: Optional[bool] = False,
use_exponential_sigmas: Optional[bool] = False,
use_beta_sigmas: Optional[bool] = False,
sigma_min: Optional[float] = None,
sigma_max: Optional[float] = None,
timestep_spacing: str = "linspace",
timestep_type: str = "discrete", # can be "discrete" or "continuous"
steps_offset: int = 0,
rescale_betas_zero_snr: bool = False,
final_sigmas_type: str = "zero", # can be "zero" or "sigma_min"
):
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
if rescale_betas_zero_snr:
self.betas = rescale_zero_terminal_snr(self.betas)
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
if rescale_betas_zero_snr:
# Close to 0 without being 0 so first sigma is not inf
# FP16 smallest positive subnormal works well here
self.alphas_cumprod[-1] = 2**-24
sigmas = (((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5).flip(0)
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
# setable values
self.num_inference_steps = None
# TODO: Support the full EDM scalings for all prediction types and timestep types
if timestep_type == "continuous" and prediction_type == "v_prediction":
self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas])
else:
self.timesteps = timesteps
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
self.is_scale_input_called = False
self.use_karras_sigmas = use_karras_sigmas
self.use_exponential_sigmas = use_exponential_sigmas
self.use_beta_sigmas = use_beta_sigmas
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
@property
def init_noise_sigma(self):
# standard deviation of the initial noise distribution
max_sigma = max(self.sigmas) if isinstance(self.sigmas, list) else self.sigmas.max()
if self.config.timestep_spacing in ["linspace", "trailing"]:
return max_sigma
return (max_sigma**2 + 1) ** 0.5
@property
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
@property
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index
def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
Args:
sample (`torch.Tensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.Tensor`:
A scaled input sample.
"""
if self.step_index is None:
self._init_step_index(timestep)
sigma = self.sigmas[self.step_index]
sample = sample / ((sigma**2 + 1) ** 0.5)
self.is_scale_input_called = True
return sample
def set_timesteps(
self,
num_inference_steps: int = None,
device: Union[str, torch.device] = None,
timesteps: Optional[List[int]] = None,
sigmas: Optional[List[float]] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to support arbitrary timesteps schedule. If `None`, timesteps will be generated
based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps` and `sigmas`
must be `None`, and `timestep_spacing` attribute will be ignored.
sigmas (`List[float]`, *optional*):
Custom sigmas used to support arbitrary timesteps schedule schedule. If `None`, timesteps and sigmas
will be generated based on the relevant scheduler attributes. If `sigmas` is passed,
`num_inference_steps` and `timesteps` must be `None`, and the timesteps will be generated based on the
custom sigmas schedule.
"""
if timesteps is not None and sigmas is not None:
raise ValueError("Only one of `timesteps` or `sigmas` should be set.")
if num_inference_steps is None and timesteps is None and sigmas is None:
raise ValueError("Must pass exactly one of `num_inference_steps` or `timesteps` or `sigmas.")
if num_inference_steps is not None and (timesteps is not None or sigmas is not None):
raise ValueError("Can only pass one of `num_inference_steps` or `timesteps` or `sigmas`.")
if timesteps is not None and self.config.use_karras_sigmas:
raise ValueError("Cannot set `timesteps` with `config.use_karras_sigmas = True`.")
if timesteps is not None and self.config.use_exponential_sigmas:
raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
if timesteps is not None and self.config.use_beta_sigmas:
raise ValueError("Cannot set `timesteps` with `config.use_beta_sigmas = True`.")
if (
timesteps is not None
and self.config.timestep_type == "continuous"
and self.config.prediction_type == "v_prediction"
):
raise ValueError(
"Cannot set `timesteps` with `config.timestep_type = 'continuous'` and `config.prediction_type = 'v_prediction'`."
)
if num_inference_steps is None:
num_inference_steps = len(timesteps) if timesteps is not None else len(sigmas) - 1
self.num_inference_steps = num_inference_steps
if sigmas is not None:
log_sigmas = np.log(np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5))
sigmas = np.array(sigmas).astype(np.float32)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas[:-1]])
else:
if timesteps is not None:
timesteps = np.array(timesteps).astype(np.float32)
else:
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
timesteps = np.linspace(
0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32
)[::-1].copy()
elif self.config.timestep_spacing == "leading":
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (
(np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
)
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
step_ratio = self.config.num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (
(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
)
timesteps -= 1
else:
raise ValueError(
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
)
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
log_sigmas = np.log(sigmas)
if self.config.interpolation_type == "linear":
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
elif self.config.interpolation_type == "log_linear":
sigmas = torch.linspace(np.log(sigmas[-1]), np.log(sigmas[0]), num_inference_steps + 1).exp().numpy()
else:
raise ValueError(
f"{self.config.interpolation_type} is not implemented. Please specify interpolation_type to either"
" 'linear' or 'log_linear'"
)
if self.config.use_karras_sigmas:
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
elif self.config.use_beta_sigmas:
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
if self.config.final_sigmas_type == "sigma_min":
sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
elif self.config.final_sigmas_type == "zero":
sigma_last = 0
else:
raise ValueError(
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
)
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
# TODO: Support the full EDM scalings for all prediction types and timestep types
if self.config.timestep_type == "continuous" and self.config.prediction_type == "v_prediction":
self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas[:-1]]).to(device=device)
else:
self.timesteps = torch.from_numpy(timesteps.astype(np.float32)).to(device=device)
self._step_index = None
self._begin_index = None
self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(np.maximum(sigma, 1e-10))
# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
high_idx = low_idx + 1
low = log_sigmas[low_idx]
high = log_sigmas[high_idx]
# interpolate sigmas
w = (low - log_sigma) / (low - high)
w = np.clip(w, 0, 1)
# transform interpolation to time range
t = (1 - w) * low_idx + w * high_idx
t = t.reshape(sigma.shape)
return t
# Copied from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
"""Constructs the noise schedule of Karras et al. (2022)."""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
rho = 7.0 # 7.0 is the value used in the paper
ramp = np.linspace(0, 1, num_inference_steps)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
# Copied from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L26
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
"""Constructs an exponential noise schedule."""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
return sigmas
def _convert_to_beta(
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
) -> torch.Tensor:
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
sigmas = np.array(
[
sigma_min + (ppf * (sigma_max - sigma_min))
for ppf in [
scipy.stats.beta.ppf(timestep, alpha, beta)
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
]
]
)
return sigmas
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
indices = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
return indices[pos].item()
def _init_step_index(self, timestep):
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
def step(
self,
model_output: torch.Tensor,
timestep: Union[float, torch.Tensor],
sample: torch.Tensor,
s_churn: float = 0.0,
s_tmin: float = 0.0,
s_tmax: float = float("inf"),
s_noise: float = 1.0,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[EulerDiscreteSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
s_churn (`float`):
s_tmin (`float`):
s_tmax (`float`):
s_noise (`float`, defaults to 1.0):
Scaling factor for noise added to the sample.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
tuple.
Returns:
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
returned, otherwise a tuple is returned where the first element is the sample tensor.
"""
if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
)
if not self.is_scale_input_called:
logger.warning(
"The `scale_model_input` function should be called before `step` to ensure correct denoising. "
"See `StableDiffusionPipeline` for a usage example."
)
if self.step_index is None:
self._init_step_index(timestep)
# Upcast to avoid precision issues when computing prev_sample
sample = sample.to(torch.float32)
sigma = self.sigmas[self.step_index]
gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0
sigma_hat = sigma * (gamma + 1)
if gamma > 0:
noise = randn_tensor(
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
)
eps = noise * s_noise
sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
# NOTE: "original_sample" should not be an expected prediction_type but is left in for
# backwards compatibility
if self.config.prediction_type == "original_sample" or self.config.prediction_type == "sample":
pred_original_sample = model_output
elif self.config.prediction_type == "epsilon":
pred_original_sample = sample - sigma_hat * model_output
elif self.config.prediction_type == "v_prediction":
# denoised = model_output * c_out + input * c_skip
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
)
# 2. Convert to an ODE derivative
derivative = (sample - pred_original_sample) / sigma_hat
dt = self.sigmas[self.step_index + 1] - sigma_hat
prev_sample = sample + derivative * dt
# Cast sample back to model compatible dtype
prev_sample = prev_sample.to(model_output.dtype)
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (
prev_sample,
pred_original_sample,
)
return EulerDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
timesteps: torch.Tensor,
) -> torch.Tensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
# mps does not support float64
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
else:
schedule_timesteps = self.timesteps.to(original_samples.device)
timesteps = timesteps.to(original_samples.device)
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
if self.begin_index is None:
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
elif self.step_index is not None:
# add_noise is called after first denoising step (for inpainting)
step_indices = [self.step_index] * timesteps.shape[0]
else:
# add noise is called before first denoising step to create initial latent(img2img)
step_indices = [self.begin_index] * timesteps.shape[0]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < len(original_samples.shape):
sigma = sigma.unsqueeze(-1)
noisy_samples = original_samples + noise * sigma
return noisy_samples
def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor:
if (
isinstance(timesteps, int)
or isinstance(timesteps, torch.IntTensor)
or isinstance(timesteps, torch.LongTensor)
):
raise ValueError(
(
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
" `EulerDiscreteScheduler.get_velocity()` is not supported. Make sure to pass"
" one of the `scheduler.timesteps` as a timestep."
),
)
if sample.device.type == "mps" and torch.is_floating_point(timesteps):
# mps does not support float64
schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32)
timesteps = timesteps.to(sample.device, dtype=torch.float32)
else:
schedule_timesteps = self.timesteps.to(sample.device)
timesteps = timesteps.to(sample.device)
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
alphas_cumprod = self.alphas_cumprod.to(sample)
sqrt_alpha_prod = alphas_cumprod[step_indices] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(sample.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[step_indices]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
def __len__(self):
return self.config.num_train_timesteps | class_definition | 4,806 | 34,931 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py | null | 1,285 |
class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin):
"""
Implements a variant of `DPMSolverMultistepScheduler` with cosine schedule, proposed by Nichol and Dhariwal (2021).
This scheduler was used in Stable Audio Open [1].
[1] Evans, Parker, et al. "Stable Audio Open" https://arxiv.org/abs/2407.14358
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
sigma_min (`float`, *optional*, defaults to 0.3):
Minimum noise magnitude in the sigma schedule. This was set to 0.3 in Stable Audio Open [1].
sigma_max (`float`, *optional*, defaults to 500):
Maximum noise magnitude in the sigma schedule. This was set to 500 in Stable Audio Open [1].
sigma_data (`float`, *optional*, defaults to 1.0):
The standard deviation of the data distribution. This is set to 1.0 in Stable Audio Open [1].
sigma_schedule (`str`, *optional*, defaults to `exponential`):
Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper
(https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was
incorporated in this model: https://huggingface.co/stabilityai/cosxl.
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
solver_order (`int`, defaults to 2):
The DPMSolver order which can be `1` or `2`. It is recommended to use `solver_order=2`.
prediction_type (`str`, defaults to `v_prediction`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
solver_type (`str`, defaults to `midpoint`):
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers.
lower_order_final (`bool`, defaults to `True`):
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
euler_at_final (`bool`, defaults to `False`):
Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
steps, but sometimes may result in blurring.
final_sigmas_type (`str`, defaults to `"zero"`):
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
"""
_compatibles = []
order = 1
@register_to_config
def __init__(
self,
sigma_min: float = 0.3,
sigma_max: float = 500,
sigma_data: float = 1.0,
sigma_schedule: str = "exponential",
num_train_timesteps: int = 1000,
solver_order: int = 2,
prediction_type: str = "v_prediction",
rho: float = 7.0,
solver_type: str = "midpoint",
lower_order_final: bool = True,
euler_at_final: bool = False,
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
):
if solver_type not in ["midpoint", "heun"]:
if solver_type in ["logrho", "bh1", "bh2"]:
self.register_to_config(solver_type="midpoint")
else:
raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}")
ramp = torch.linspace(0, 1, num_train_timesteps)
if sigma_schedule == "karras":
sigmas = self._compute_karras_sigmas(ramp)
elif sigma_schedule == "exponential":
sigmas = self._compute_exponential_sigmas(ramp)
self.timesteps = self.precondition_noise(sigmas)
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
# setable values
self.num_inference_steps = None
self.model_outputs = [None] * solver_order
self.lower_order_nums = 0
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
@property
def init_noise_sigma(self):
# standard deviation of the initial noise distribution
return (self.config.sigma_max**2 + 1) ** 0.5
@property
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
@property
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_inputs
def precondition_inputs(self, sample, sigma):
c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
scaled_sample = sample * c_in
return scaled_sample
def precondition_noise(self, sigma):
if not isinstance(sigma, torch.Tensor):
sigma = torch.tensor([sigma])
return sigma.atan() / math.pi * 2
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_outputs
def precondition_outputs(self, sample, model_output, sigma):
sigma_data = self.config.sigma_data
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
if self.config.prediction_type == "epsilon":
c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
elif self.config.prediction_type == "v_prediction":
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
else:
raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.")
denoised = c_skip * sample + c_out * model_output
return denoised
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.scale_model_input
def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
Args:
sample (`torch.Tensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.Tensor`:
A scaled input sample.
"""
if self.step_index is None:
self._init_step_index(timestep)
sigma = self.sigmas[self.step_index]
sample = self.precondition_inputs(sample, sigma)
self.is_scale_input_called = True
return sample
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
self.num_inference_steps = num_inference_steps
ramp = torch.linspace(0, 1, self.num_inference_steps)
if self.config.sigma_schedule == "karras":
sigmas = self._compute_karras_sigmas(ramp)
elif self.config.sigma_schedule == "exponential":
sigmas = self._compute_exponential_sigmas(ramp)
sigmas = sigmas.to(dtype=torch.float32, device=device)
self.timesteps = self.precondition_noise(sigmas)
if self.config.final_sigmas_type == "sigma_min":
sigma_last = self.config.sigma_min
elif self.config.final_sigmas_type == "zero":
sigma_last = 0
else:
raise ValueError(
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
)
self.sigmas = torch.cat([sigmas, torch.tensor([sigma_last], dtype=torch.float32, device=device)])
self.model_outputs = [
None,
] * self.config.solver_order
self.lower_order_nums = 0
# add an index counter for schedulers that allow duplicated timesteps
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
# if a noise sampler is used, reinitialise it
self.noise_sampler = None
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_karras_sigmas
def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
"""Constructs the noise schedule of Karras et al. (2022)."""
sigma_min = sigma_min or self.config.sigma_min
sigma_max = sigma_max or self.config.sigma_max
rho = self.config.rho
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_exponential_sigmas
def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
"""Implementation closely follows k-diffusion.
https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26
"""
sigma_min = sigma_min or self.config.sigma_min
sigma_max = sigma_max or self.config.sigma_max
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0)
return sigmas
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(np.maximum(sigma, 1e-10))
# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
high_idx = low_idx + 1
low = log_sigmas[low_idx]
high = log_sigmas[high_idx]
# interpolate sigmas
w = (low - log_sigma) / (low - high)
w = np.clip(w, 0, 1)
# transform interpolation to time range
t = (1 - w) * low_idx + w * high_idx
t = t.reshape(sigma.shape)
return t
def _sigma_to_alpha_sigma_t(self, sigma):
alpha_t = torch.tensor(1) # Inputs are pre-scaled before going into unet, so alpha_t = 1
sigma_t = sigma
return alpha_t, sigma_t
def convert_model_output(
self,
model_output: torch.Tensor,
sample: torch.Tensor = None,
) -> torch.Tensor:
"""
Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
integral of the data prediction model.
<Tip>
The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
prediction and data prediction models.
</Tip>
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
Returns:
`torch.Tensor`:
The converted model output.
"""
sigma = self.sigmas[self.step_index]
x0_pred = self.precondition_outputs(sample, model_output, sigma)
return x0_pred
def dpm_solver_first_order_update(
self,
model_output: torch.Tensor,
sample: torch.Tensor = None,
noise: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
One step for the first-order DPMSolver (equivalent to DDIM).
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
Returns:
`torch.Tensor`:
The sample tensor at the previous timestep.
"""
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
h = lambda_t - lambda_s
assert noise is not None
x_t = (
(sigma_t / sigma_s * torch.exp(-h)) * sample
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
)
return x_t
def multistep_dpm_solver_second_order_update(
self,
model_output_list: List[torch.Tensor],
sample: torch.Tensor = None,
noise: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
One step for the second-order multistep DPMSolver.
Args:
model_output_list (`List[torch.Tensor]`):
The direct outputs from learned diffusion model at current and latter timesteps.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
Returns:
`torch.Tensor`:
The sample tensor at the previous timestep.
"""
sigma_t, sigma_s0, sigma_s1 = (
self.sigmas[self.step_index + 1],
self.sigmas[self.step_index],
self.sigmas[self.step_index - 1],
)
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
m0, m1 = model_output_list[-1], model_output_list[-2]
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
r0 = h_0 / h
D0, D1 = m0, (1.0 / r0) * (m0 - m1)
# sde-dpmsolver++
assert noise is not None
if self.config.solver_type == "midpoint":
x_t = (
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
+ 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
)
elif self.config.solver_type == "heun":
x_t = (
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
)
return x_t
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
index_candidates = (schedule_timesteps == timestep).nonzero()
if len(index_candidates) == 0:
step_index = len(self.timesteps) - 1
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
elif len(index_candidates) > 1:
step_index = index_candidates[1].item()
else:
step_index = index_candidates[0].item()
return step_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
def _init_step_index(self, timestep):
"""
Initialize the step_index counter for the scheduler.
"""
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
def step(
self,
model_output: torch.Tensor,
timestep: Union[int, torch.Tensor],
sample: torch.Tensor,
generator=None,
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
the multistep DPMSolver.
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`int`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
if self.step_index is None:
self._init_step_index(timestep)
# Improve numerical stability for small number of steps
lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
self.config.euler_at_final
or (self.config.lower_order_final and len(self.timesteps) < 15)
or self.config.final_sigmas_type == "zero"
)
lower_order_second = (
(self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
)
model_output = self.convert_model_output(model_output, sample=sample)
for i in range(self.config.solver_order - 1):
self.model_outputs[i] = self.model_outputs[i + 1]
self.model_outputs[-1] = model_output
if self.noise_sampler is None:
seed = None
if generator is not None:
seed = (
[g.initial_seed() for g in generator] if isinstance(generator, list) else generator.initial_seed()
)
self.noise_sampler = BrownianTreeNoiseSampler(
model_output, sigma_min=self.config.sigma_min, sigma_max=self.config.sigma_max, seed=seed
)
noise = self.noise_sampler(self.sigmas[self.step_index], self.sigmas[self.step_index + 1]).to(
model_output.device
)
if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
if self.lower_order_nums < self.config.solver_order:
self.lower_order_nums += 1
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample)
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
timesteps: torch.Tensor,
) -> torch.Tensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
# mps does not support float64
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
else:
schedule_timesteps = self.timesteps.to(original_samples.device)
timesteps = timesteps.to(original_samples.device)
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
if self.begin_index is None:
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
elif self.step_index is not None:
# add_noise is called after first denoising step (for inpainting)
step_indices = [self.step_index] * timesteps.shape[0]
else:
# add noise is called before first denoising step to create initial latent(img2img)
step_indices = [self.begin_index] * timesteps.shape[0]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < len(original_samples.shape):
sigma = sigma.unsqueeze(-1)
noisy_samples = original_samples + noise * sigma
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps | class_definition | 1,035 | 24,639 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py | null | 1,286 |
class LCMSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.Tensor
denoised: Optional[torch.Tensor] = None | class_definition | 1,188 | 1,936 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py | null | 1,287 |
class LCMScheduler(SchedulerMixin, ConfigMixin):
"""
`LCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
non-Markovian guidance.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. [`~ConfigMixin`] takes care of storing all config
attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be
accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving
functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.0001):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, *optional*):
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
original_inference_steps (`int`, *optional*, defaults to 50):
The default number of inference steps used to generate a linearly-spaced timestep schedule, from which we
will ultimately take `num_inference_steps` evenly spaced timesteps to form the final timestep schedule.
clip_sample (`bool`, defaults to `True`):
Clip the predicted sample for numerical stability.
clip_sample_range (`float`, defaults to 1.0):
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
set_alpha_to_one (`bool`, defaults to `True`):
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
otherwise it uses the alpha value at step 0.
steps_offset (`int`, defaults to 0):
An offset added to the inference steps, as required by some model families.
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
dynamic_thresholding_ratio (`float`, defaults to 0.995):
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
sample_max_value (`float`, defaults to 1.0):
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
timestep_spacing (`str`, defaults to `"leading"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
timestep_scaling (`float`, defaults to 10.0):
The factor the timesteps will be multiplied by when calculating the consistency model boundary conditions
`c_skip` and `c_out`. Increasing this will decrease the approximation error (although the approximation
error at the default of `10.0` is already pretty small).
rescale_betas_zero_snr (`bool`, defaults to `False`):
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
dark samples instead of limiting it to samples with medium brightness. Loosely related to
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
"""
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.00085,
beta_end: float = 0.012,
beta_schedule: str = "scaled_linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
original_inference_steps: int = 50,
clip_sample: bool = False,
clip_sample_range: float = 1.0,
set_alpha_to_one: bool = True,
steps_offset: int = 0,
prediction_type: str = "epsilon",
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
sample_max_value: float = 1.0,
timestep_spacing: str = "leading",
timestep_scaling: float = 10.0,
rescale_betas_zero_snr: bool = False,
):
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
# Rescale for zero SNR
if rescale_betas_zero_snr:
self.betas = rescale_zero_terminal_snr(self.betas)
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
# At every step in ddim, we are looking into the previous alphas_cumprod
# For the final step, there is no previous alphas_cumprod because we are already at 0
# `set_alpha_to_one` decides whether we set this parameter simply to one or
# whether we use the final alpha of the "non-previous" one.
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# setable values
self.num_inference_steps = None
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
self.custom_timesteps = False
self._step_index = None
self._begin_index = None
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
indices = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
return indices[pos].item()
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
def _init_step_index(self, timestep):
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
@property
def step_index(self):
return self._step_index
@property
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.Tensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.Tensor`:
A scaled input sample.
"""
return sample
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
"""
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
photorealism as well as better image-text alignment, especially when using very large guidance weights."
https://arxiv.org/abs/2205.11487
"""
dtype = sample.dtype
batch_size, channels, *remaining_dims = sample.shape
if dtype not in (torch.float32, torch.float64):
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
# Flatten sample for doing quantile calculation along each image
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
s = torch.clamp(
s, min=1, max=self.config.sample_max_value
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
sample = sample.reshape(batch_size, channels, *remaining_dims)
sample = sample.to(dtype)
return sample
def set_timesteps(
self,
num_inference_steps: Optional[int] = None,
device: Union[str, torch.device] = None,
original_inference_steps: Optional[int] = None,
timesteps: Optional[List[int]] = None,
strength: int = 1.0,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`, *optional*):
The number of diffusion steps used when generating samples with a pre-trained model. If used,
`timesteps` must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
original_inference_steps (`int`, *optional*):
The original number of inference steps, which will be used to generate a linearly-spaced timestep
schedule (which is different from the standard `diffusers` implementation). We will then take
`num_inference_steps` timesteps from this schedule, evenly spaced in terms of indices, and use that as
our final timestep schedule. If not set, this will default to the `original_inference_steps` attribute.
timesteps (`List[int]`, *optional*):
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
timestep spacing strategy of equal spacing between timesteps on the training/distillation timestep
schedule is used. If `timesteps` is passed, `num_inference_steps` must be `None`.
"""
# 0. Check inputs
if num_inference_steps is None and timesteps is None:
raise ValueError("Must pass exactly one of `num_inference_steps` or `custom_timesteps`.")
if num_inference_steps is not None and timesteps is not None:
raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
# 1. Calculate the LCM original training/distillation timestep schedule.
original_steps = (
original_inference_steps if original_inference_steps is not None else self.config.original_inference_steps
)
if original_steps > self.config.num_train_timesteps:
raise ValueError(
f"`original_steps`: {original_steps} cannot be larger than `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
f" maximal {self.config.num_train_timesteps} timesteps."
)
# LCM Timesteps Setting
# The skipping step parameter k from the paper.
k = self.config.num_train_timesteps // original_steps
# LCM Training/Distillation Steps Schedule
# Currently, only a linearly-spaced schedule is supported (same as in the LCM distillation scripts).
lcm_origin_timesteps = np.asarray(list(range(1, int(original_steps * strength) + 1))) * k - 1
# 2. Calculate the LCM inference timestep schedule.
if timesteps is not None:
# 2.1 Handle custom timestep schedules.
train_timesteps = set(lcm_origin_timesteps)
non_train_timesteps = []
for i in range(1, len(timesteps)):
if timesteps[i] >= timesteps[i - 1]:
raise ValueError("`custom_timesteps` must be in descending order.")
if timesteps[i] not in train_timesteps:
non_train_timesteps.append(timesteps[i])
if timesteps[0] >= self.config.num_train_timesteps:
raise ValueError(
f"`timesteps` must start before `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps}."
)
# Raise warning if timestep schedule does not start with self.config.num_train_timesteps - 1
if strength == 1.0 and timesteps[0] != self.config.num_train_timesteps - 1:
logger.warning(
f"The first timestep on the custom timestep schedule is {timesteps[0]}, not"
f" `self.config.num_train_timesteps - 1`: {self.config.num_train_timesteps - 1}. You may get"
f" unexpected results when using this timestep schedule."
)
# Raise warning if custom timestep schedule contains timesteps not on original timestep schedule
if non_train_timesteps:
logger.warning(
f"The custom timestep schedule contains the following timesteps which are not on the original"
f" training/distillation timestep schedule: {non_train_timesteps}. You may get unexpected results"
f" when using this timestep schedule."
)
# Raise warning if custom timestep schedule is longer than original_steps
if len(timesteps) > original_steps:
logger.warning(
f"The number of timesteps in the custom timestep schedule is {len(timesteps)}, which exceeds the"
f" the length of the timestep schedule used for training: {original_steps}. You may get some"
f" unexpected results when using this timestep schedule."
)
timesteps = np.array(timesteps, dtype=np.int64)
self.num_inference_steps = len(timesteps)
self.custom_timesteps = True
# Apply strength (e.g. for img2img pipelines) (see StableDiffusionImg2ImgPipeline.get_timesteps)
init_timestep = min(int(self.num_inference_steps * strength), self.num_inference_steps)
t_start = max(self.num_inference_steps - init_timestep, 0)
timesteps = timesteps[t_start * self.order :]
# TODO: also reset self.num_inference_steps?
else:
# 2.2 Create the "standard" LCM inference timestep schedule.
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
f" maximal {self.config.num_train_timesteps} timesteps."
)
skipping_step = len(lcm_origin_timesteps) // num_inference_steps
if skipping_step < 1:
raise ValueError(
f"The combination of `original_steps x strength`: {original_steps} x {strength} is smaller than `num_inference_steps`: {num_inference_steps}. Make sure to either reduce `num_inference_steps` to a value smaller than {int(original_steps * strength)} or increase `strength` to a value higher than {float(num_inference_steps / original_steps)}."
)
self.num_inference_steps = num_inference_steps
if num_inference_steps > original_steps:
raise ValueError(
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `original_inference_steps`:"
f" {original_steps} because the final timestep schedule will be a subset of the"
f" `original_inference_steps`-sized initial timestep schedule."
)
# LCM Inference Steps Schedule
lcm_origin_timesteps = lcm_origin_timesteps[::-1].copy()
# Select (approximately) evenly spaced indices from lcm_origin_timesteps.
inference_indices = np.linspace(0, len(lcm_origin_timesteps), num=num_inference_steps, endpoint=False)
inference_indices = np.floor(inference_indices).astype(np.int64)
timesteps = lcm_origin_timesteps[inference_indices]
self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.long)
self._step_index = None
self._begin_index = None
def get_scalings_for_boundary_condition_discrete(self, timestep):
self.sigma_data = 0.5 # Default: 0.5
scaled_timestep = timestep * self.config.timestep_scaling
c_skip = self.sigma_data**2 / (scaled_timestep**2 + self.sigma_data**2)
c_out = scaled_timestep / (scaled_timestep**2 + self.sigma_data**2) ** 0.5
return c_skip, c_out
def step(
self,
model_output: torch.Tensor,
timestep: int,
sample: torch.Tensor,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[LCMSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
if self.step_index is None:
self._init_step_index(timestep)
# 1. get previous step value
prev_step_index = self.step_index + 1
if prev_step_index < len(self.timesteps):
prev_timestep = self.timesteps[prev_step_index]
else:
prev_timestep = timestep
# 2. compute alphas, betas
alpha_prod_t = self.alphas_cumprod[timestep]
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
# 3. Get scalings for boundary conditions
c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep)
# 4. Compute the predicted original sample x_0 based on the model parameterization
if self.config.prediction_type == "epsilon": # noise-prediction
predicted_original_sample = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt()
elif self.config.prediction_type == "sample": # x-prediction
predicted_original_sample = model_output
elif self.config.prediction_type == "v_prediction": # v-prediction
predicted_original_sample = alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
" `v_prediction` for `LCMScheduler`."
)
# 5. Clip or threshold "predicted x_0"
if self.config.thresholding:
predicted_original_sample = self._threshold_sample(predicted_original_sample)
elif self.config.clip_sample:
predicted_original_sample = predicted_original_sample.clamp(
-self.config.clip_sample_range, self.config.clip_sample_range
)
# 6. Denoise model output using boundary conditions
denoised = c_out * predicted_original_sample + c_skip * sample
# 7. Sample and inject noise z ~ N(0, I) for MultiStep Inference
# Noise is not used on the final timestep of the timestep schedule.
# This also means that noise is not used for one-step sampling.
if self.step_index != self.num_inference_steps - 1:
noise = randn_tensor(
model_output.shape, generator=generator, device=model_output.device, dtype=denoised.dtype
)
prev_sample = alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise
else:
prev_sample = denoised
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (prev_sample, denoised)
return LCMSchedulerOutput(prev_sample=prev_sample, denoised=denoised)
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
timesteps: torch.IntTensor,
) -> torch.Tensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
# for the subsequent add_noise calls
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
timesteps = timesteps.to(original_samples.device)
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
# Make sure alphas_cumprod and timestep have same device and dtype as sample
self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
timesteps = timesteps.to(sample.device)
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(sample.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
def __len__(self):
return self.config.num_train_timesteps
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.previous_timestep
def previous_timestep(self, timestep):
if self.custom_timesteps or self.num_inference_steps:
index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
if index == self.timesteps.shape[0] - 1:
prev_t = torch.tensor(-1)
else:
prev_t = self.timesteps[index + 1]
else:
prev_t = timestep - 1
return prev_t | class_definition | 4,772 | 32,021 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py | null | 1,288 |
class DDPMSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.Tensor
pred_original_sample: Optional[torch.Tensor] = None | class_definition | 1,069 | 1,830 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py | null | 1,289 |
class DDPMScheduler(SchedulerMixin, ConfigMixin):
"""
`DDPMScheduler` explores the connections between denoising score matching and Langevin dynamics sampling.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.0001):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, *optional*):
An array of betas to pass directly to the constructor without using `beta_start` and `beta_end`.
variance_type (`str`, defaults to `"fixed_small"`):
Clip the variance when adding noise to the denoised sample. Choose from `fixed_small`, `fixed_small_log`,
`fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
clip_sample (`bool`, defaults to `True`):
Clip the predicted sample for numerical stability.
clip_sample_range (`float`, defaults to 1.0):
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
dynamic_thresholding_ratio (`float`, defaults to 0.995):
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
sample_max_value (`float`, defaults to 1.0):
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
timestep_spacing (`str`, defaults to `"leading"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
steps_offset (`int`, defaults to 0):
An offset added to the inference steps, as required by some model families.
rescale_betas_zero_snr (`bool`, defaults to `False`):
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
dark samples instead of limiting it to samples with medium brightness. Loosely related to
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
"""
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
variance_type: str = "fixed_small",
clip_sample: bool = True,
prediction_type: str = "epsilon",
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
clip_sample_range: float = 1.0,
sample_max_value: float = 1.0,
timestep_spacing: str = "leading",
steps_offset: int = 0,
rescale_betas_zero_snr: bool = False,
):
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
elif beta_schedule == "sigmoid":
# GeoDiff sigmoid schedule
betas = torch.linspace(-6, 6, num_train_timesteps)
self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
else:
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
# Rescale for zero SNR
if rescale_betas_zero_snr:
self.betas = rescale_zero_terminal_snr(self.betas)
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
self.one = torch.tensor(1.0)
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# setable values
self.custom_timesteps = False
self.num_inference_steps = None
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
self.variance_type = variance_type
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.Tensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.Tensor`:
A scaled input sample.
"""
return sample
def set_timesteps(
self,
num_inference_steps: Optional[int] = None,
device: Union[str, torch.device] = None,
timesteps: Optional[List[int]] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used,
`timesteps` must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
`num_inference_steps` must be `None`.
"""
if num_inference_steps is not None and timesteps is not None:
raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
if timesteps is not None:
for i in range(1, len(timesteps)):
if timesteps[i] >= timesteps[i - 1]:
raise ValueError("`custom_timesteps` must be in descending order.")
if timesteps[0] >= self.config.num_train_timesteps:
raise ValueError(
f"`timesteps` must start before `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps}."
)
timesteps = np.array(timesteps, dtype=np.int64)
self.custom_timesteps = True
else:
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
f" maximal {self.config.num_train_timesteps} timesteps."
)
self.num_inference_steps = num_inference_steps
self.custom_timesteps = False
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
timesteps = (
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
.round()[::-1]
.copy()
.astype(np.int64)
)
elif self.config.timestep_spacing == "leading":
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
step_ratio = self.config.num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
timesteps -= 1
else:
raise ValueError(
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
)
self.timesteps = torch.from_numpy(timesteps).to(device)
def _get_variance(self, t, predicted_variance=None, variance_type=None):
prev_t = self.previous_timestep(t)
alpha_prod_t = self.alphas_cumprod[t]
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t
# we always take the log of variance, so clamp it to ensure it's not 0
variance = torch.clamp(variance, min=1e-20)
if variance_type is None:
variance_type = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
variance = variance
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
variance = torch.log(variance)
variance = torch.exp(0.5 * variance)
elif variance_type == "fixed_large":
variance = current_beta_t
elif variance_type == "fixed_large_log":
# Glide max_log
variance = torch.log(current_beta_t)
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
min_log = torch.log(variance)
max_log = torch.log(current_beta_t)
frac = (predicted_variance + 1) / 2
variance = frac * max_log + (1 - frac) * min_log
return variance
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
"""
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
photorealism as well as better image-text alignment, especially when using very large guidance weights."
https://arxiv.org/abs/2205.11487
"""
dtype = sample.dtype
batch_size, channels, *remaining_dims = sample.shape
if dtype not in (torch.float32, torch.float64):
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
# Flatten sample for doing quantile calculation along each image
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
s = torch.clamp(
s, min=1, max=self.config.sample_max_value
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
sample = sample.reshape(batch_size, channels, *remaining_dims)
sample = sample.to(dtype)
return sample
def step(
self,
model_output: torch.Tensor,
timestep: int,
sample: torch.Tensor,
generator=None,
return_dict: bool = True,
) -> Union[DDPMSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.
"""
t = timestep
prev_t = self.previous_timestep(t)
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
else:
predicted_variance = None
# 1. compute alphas, betas
alpha_prod_t = self.alphas_cumprod[t]
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
current_alpha_t = alpha_prod_t / alpha_prod_t_prev
current_beta_t = 1 - current_alpha_t
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
elif self.config.prediction_type == "sample":
pred_original_sample = model_output
elif self.config.prediction_type == "v_prediction":
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
" `v_prediction` for the DDPMScheduler."
)
# 3. Clip or threshold "predicted x_0"
if self.config.thresholding:
pred_original_sample = self._threshold_sample(pred_original_sample)
elif self.config.clip_sample:
pred_original_sample = pred_original_sample.clamp(
-self.config.clip_sample_range, self.config.clip_sample_range
)
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
variance = 0
if t > 0:
device = model_output.device
variance_noise = randn_tensor(
model_output.shape, generator=generator, device=device, dtype=model_output.dtype
)
if self.variance_type == "fixed_small_log":
variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
elif self.variance_type == "learned_range":
variance = self._get_variance(t, predicted_variance=predicted_variance)
variance = torch.exp(0.5 * variance) * variance_noise
else:
variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
pred_prev_sample = pred_prev_sample + variance
if not return_dict:
return (
pred_prev_sample,
pred_original_sample,
)
return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
timesteps: torch.IntTensor,
) -> torch.Tensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
# for the subsequent add_noise calls
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
timesteps = timesteps.to(original_samples.device)
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
# Make sure alphas_cumprod and timestep have same device and dtype as sample
self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
timesteps = timesteps.to(sample.device)
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(sample.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
def __len__(self):
return self.config.num_train_timesteps
def previous_timestep(self, timestep):
if self.custom_timesteps or self.num_inference_steps:
index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
if index == self.timesteps.shape[0] - 1:
prev_t = torch.tensor(-1)
else:
prev_t = self.timesteps[index + 1]
else:
prev_t = timestep - 1
return prev_t | class_definition | 4,565 | 25,987 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py | null | 1,290 |
class HeunDiscreteSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.Tensor
pred_original_sample: Optional[torch.Tensor] = None | class_definition | 1,110 | 1,879 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_heun_discrete.py | null | 1,291 |
class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
"""
Scheduler with Heun steps for discrete beta schedules.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.0001):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear` or `scaled_linear`.
trained_betas (`np.ndarray`, *optional*):
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
clip_sample (`bool`, defaults to `True`):
Clip the predicted sample for numerical stability.
clip_sample_range (`float`, defaults to 1.0):
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
the sigmas are determined according to a sequence of noise levels {σi}.
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
steps_offset (`int`, defaults to 0):
An offset added to the inference steps, as required by some model families.
"""
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 2
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.00085, # sensible defaults
beta_end: float = 0.012,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
prediction_type: str = "epsilon",
use_karras_sigmas: Optional[bool] = False,
use_exponential_sigmas: Optional[bool] = False,
use_beta_sigmas: Optional[bool] = False,
clip_sample: Optional[bool] = False,
clip_sample_range: float = 1.0,
timestep_spacing: str = "linspace",
steps_offset: int = 0,
):
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="cosine")
elif beta_schedule == "exp":
self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="exp")
else:
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
# set all values
self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
self.use_karras_sigmas = use_karras_sigmas
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
indices = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
return indices[pos].item()
@property
def init_noise_sigma(self):
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
@property
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
@property
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index
def scale_model_input(
self,
sample: torch.Tensor,
timestep: Union[float, torch.Tensor],
) -> torch.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.Tensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.Tensor`:
A scaled input sample.
"""
if self.step_index is None:
self._init_step_index(timestep)
sigma = self.sigmas[self.step_index]
sample = sample / ((sigma**2 + 1) ** 0.5)
return sample
def set_timesteps(
self,
num_inference_steps: Optional[int] = None,
device: Union[str, torch.device] = None,
num_train_timesteps: Optional[int] = None,
timesteps: Optional[List[int]] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
num_train_timesteps (`int`, *optional*):
The number of diffusion steps used when training the model. If `None`, the default
`num_train_timesteps` attribute is used.
timesteps (`List[int]`, *optional*):
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, timesteps will be
generated based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps`
must be `None`, and `timestep_spacing` attribute will be ignored.
"""
if num_inference_steps is None and timesteps is None:
raise ValueError("Must pass exactly one of `num_inference_steps` or `custom_timesteps`.")
if num_inference_steps is not None and timesteps is not None:
raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
if timesteps is not None and self.config.use_karras_sigmas:
raise ValueError("Cannot use `timesteps` with `config.use_karras_sigmas = True`")
if timesteps is not None and self.config.use_exponential_sigmas:
raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
if timesteps is not None and self.config.use_beta_sigmas:
raise ValueError("Cannot set `timesteps` with `config.use_beta_sigmas = True`.")
num_inference_steps = num_inference_steps or len(timesteps)
self.num_inference_steps = num_inference_steps
num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps
if timesteps is not None:
timesteps = np.array(timesteps, dtype=np.float32)
else:
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[::-1].copy()
elif self.config.timestep_spacing == "leading":
step_ratio = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
step_ratio = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (np.arange(num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
timesteps -= 1
else:
raise ValueError(
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
)
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
log_sigmas = np.log(sigmas)
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
if self.config.use_karras_sigmas:
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
elif self.config.use_beta_sigmas:
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
sigmas = torch.from_numpy(sigmas).to(device=device)
self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]])
timesteps = torch.from_numpy(timesteps)
timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
self.timesteps = timesteps.to(device=device, dtype=torch.float32)
# empty dt and derivative
self.prev_derivative = None
self.dt = None
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(np.maximum(sigma, 1e-10))
# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
high_idx = low_idx + 1
low = log_sigmas[low_idx]
high = log_sigmas[high_idx]
# interpolate sigmas
w = (low - log_sigma) / (low - high)
w = np.clip(w, 0, 1)
# transform interpolation to time range
t = (1 - w) * low_idx + w * high_idx
t = t.reshape(sigma.shape)
return t
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
"""Constructs the noise schedule of Karras et al. (2022)."""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
rho = 7.0 # 7.0 is the value used in the paper
ramp = np.linspace(0, 1, num_inference_steps)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
"""Constructs an exponential noise schedule."""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
return sigmas
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
def _convert_to_beta(
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
) -> torch.Tensor:
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
sigmas = np.array(
[
sigma_min + (ppf * (sigma_max - sigma_min))
for ppf in [
scipy.stats.beta.ppf(timestep, alpha, beta)
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
]
]
)
return sigmas
@property
def state_in_first_order(self):
return self.dt is None
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
def _init_step_index(self, timestep):
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
def step(
self,
model_output: Union[torch.Tensor, np.ndarray],
timestep: Union[float, torch.Tensor],
sample: Union[torch.Tensor, np.ndarray],
return_dict: bool = True,
) -> Union[HeunDiscreteSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_heun_discrete.HeunDiscreteSchedulerOutput`] or
tuple.
Returns:
[`~schedulers.scheduling_heun_discrete.HeunDiscreteSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_heun_discrete.HeunDiscreteSchedulerOutput`] is
returned, otherwise a tuple is returned where the first element is the sample tensor.
"""
if self.step_index is None:
self._init_step_index(timestep)
if self.state_in_first_order:
sigma = self.sigmas[self.step_index]
sigma_next = self.sigmas[self.step_index + 1]
else:
# 2nd order / Heun's method
sigma = self.sigmas[self.step_index - 1]
sigma_next = self.sigmas[self.step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
gamma = 0
sigma_hat = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
sigma_input = sigma_hat if self.state_in_first_order else sigma_next
pred_original_sample = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
sigma_input = sigma_hat if self.state_in_first_order else sigma_next
pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
pred_original_sample = model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
)
if self.config.clip_sample:
pred_original_sample = pred_original_sample.clamp(
-self.config.clip_sample_range, self.config.clip_sample_range
)
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
derivative = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
dt = sigma_next - sigma_hat
# store for 2nd order step
self.prev_derivative = derivative
self.dt = dt
self.sample = sample
else:
# 2. 2nd order / Heun's method
derivative = (sample - pred_original_sample) / sigma_next
derivative = (self.prev_derivative + derivative) / 2
# 3. take prev timestep & sample
dt = self.dt
sample = self.sample
# free dt and derivative
# Note, this puts the scheduler in "first order mode"
self.prev_derivative = None
self.dt = None
self.sample = None
prev_sample = sample + derivative * dt
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (
prev_sample,
pred_original_sample,
)
return HeunDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
timesteps: torch.Tensor,
) -> torch.Tensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
# mps does not support float64
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
else:
schedule_timesteps = self.timesteps.to(original_samples.device)
timesteps = timesteps.to(original_samples.device)
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
if self.begin_index is None:
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
elif self.step_index is not None:
# add_noise is called after first denoising step (for inpainting)
step_indices = [self.step_index] * timesteps.shape[0]
else:
# add noise is called before first denoising step to create initial latent(img2img)
step_indices = [self.begin_index] * timesteps.shape[0]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < len(original_samples.shape):
sigma = sigma.unsqueeze(-1)
noisy_samples = original_samples + noise * sigma
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps | class_definition | 3,499 | 27,699 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_heun_discrete.py | null | 1,292 |
class KDPM2DiscreteSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.Tensor
pred_original_sample: Optional[torch.Tensor] = None | class_definition | 1,111 | 1,881 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py | null | 1,293 |
class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
"""
KDPM2DiscreteScheduler is inspired by the DPMSolver2 and Algorithm 2 from the [Elucidating the Design Space of
Diffusion-Based Generative Models](https://huggingface.co/papers/2206.00364) paper.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.00085):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.012):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear` or `scaled_linear`.
trained_betas (`np.ndarray`, *optional*):
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
the sigmas are determined according to a sequence of noise levels {σi}.
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
steps_offset (`int`, defaults to 0):
An offset added to the inference steps, as required by some model families.
"""
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 2
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.00085, # sensible defaults
beta_end: float = 0.012,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
use_karras_sigmas: Optional[bool] = False,
use_exponential_sigmas: Optional[bool] = False,
use_beta_sigmas: Optional[bool] = False,
prediction_type: str = "epsilon",
timestep_spacing: str = "linspace",
steps_offset: int = 0,
):
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
raise ValueError(
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
# set all values
self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
@property
def init_noise_sigma(self):
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
@property
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
@property
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index
def scale_model_input(
self,
sample: torch.Tensor,
timestep: Union[float, torch.Tensor],
) -> torch.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.Tensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.Tensor`:
A scaled input sample.
"""
if self.step_index is None:
self._init_step_index(timestep)
if self.state_in_first_order:
sigma = self.sigmas[self.step_index]
else:
sigma = self.sigmas_interpol[self.step_index]
sample = sample / ((sigma**2 + 1) ** 0.5)
return sample
def set_timesteps(
self,
num_inference_steps: int,
device: Union[str, torch.device] = None,
num_train_timesteps: Optional[int] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
self.num_inference_steps = num_inference_steps
num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[::-1].copy()
elif self.config.timestep_spacing == "leading":
step_ratio = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
step_ratio = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (np.arange(num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
timesteps -= 1
else:
raise ValueError(
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
)
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
log_sigmas = np.log(sigmas)
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
if self.config.use_karras_sigmas:
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]).round()
elif self.config.use_exponential_sigmas:
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
elif self.config.use_beta_sigmas:
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
self.log_sigmas = torch.from_numpy(log_sigmas).to(device=device)
sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
sigmas = torch.from_numpy(sigmas).to(device=device)
# interpolate sigmas
sigmas_interpol = sigmas.log().lerp(sigmas.roll(1).log(), 0.5).exp()
self.sigmas = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]])
self.sigmas_interpol = torch.cat(
[sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]]
)
timesteps = torch.from_numpy(timesteps).to(device)
# interpolate timesteps
sigmas_interpol = sigmas_interpol.cpu()
log_sigmas = self.log_sigmas.cpu()
timesteps_interpol = np.array(
[self._sigma_to_t(sigma_interpol, log_sigmas) for sigma_interpol in sigmas_interpol]
)
timesteps_interpol = torch.from_numpy(timesteps_interpol).to(device, dtype=timesteps.dtype)
interleaved_timesteps = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), dim=-1).flatten()
self.timesteps = torch.cat([timesteps[:1], interleaved_timesteps])
self.sample = None
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
@property
def state_in_first_order(self):
return self.sample is None
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
indices = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
return indices[pos].item()
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
def _init_step_index(self, timestep):
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(np.maximum(sigma, 1e-10))
# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
high_idx = low_idx + 1
low = log_sigmas[low_idx]
high = log_sigmas[high_idx]
# interpolate sigmas
w = (low - log_sigma) / (low - high)
w = np.clip(w, 0, 1)
# transform interpolation to time range
t = (1 - w) * low_idx + w * high_idx
t = t.reshape(sigma.shape)
return t
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
"""Constructs the noise schedule of Karras et al. (2022)."""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
rho = 7.0 # 7.0 is the value used in the paper
ramp = np.linspace(0, 1, num_inference_steps)
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
"""Constructs an exponential noise schedule."""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
return sigmas
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
def _convert_to_beta(
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
) -> torch.Tensor:
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
# Hack to make sure that other schedulers which copy this function don't break
# TODO: Add this logic to the other schedulers
if hasattr(self.config, "sigma_min"):
sigma_min = self.config.sigma_min
else:
sigma_min = None
if hasattr(self.config, "sigma_max"):
sigma_max = self.config.sigma_max
else:
sigma_max = None
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
sigmas = np.array(
[
sigma_min + (ppf * (sigma_max - sigma_min))
for ppf in [
scipy.stats.beta.ppf(timestep, alpha, beta)
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
]
]
)
return sigmas
def step(
self,
model_output: Union[torch.Tensor, np.ndarray],
timestep: Union[float, torch.Tensor],
sample: Union[torch.Tensor, np.ndarray],
return_dict: bool = True,
) -> Union[KDPM2DiscreteSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_k_dpm_2_discrete.KDPM2DiscreteSchedulerOutput`] or
tuple.
Returns:
[`~schedulers.scheduling_k_dpm_2_discrete.KDPM2DiscreteSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_k_dpm_2_discrete.KDPM2DiscreteSchedulerOutput`] is
returned, otherwise a tuple is returned where the first element is the sample tensor.
"""
if self.step_index is None:
self._init_step_index(timestep)
if self.state_in_first_order:
sigma = self.sigmas[self.step_index]
sigma_interpol = self.sigmas_interpol[self.step_index + 1]
sigma_next = self.sigmas[self.step_index + 1]
else:
# 2nd order / KDPM2's method
sigma = self.sigmas[self.step_index - 1]
sigma_interpol = self.sigmas_interpol[self.step_index]
sigma_next = self.sigmas[self.step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
gamma = 0
sigma_hat = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol
pred_original_sample = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol
pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
raise NotImplementedError("prediction_type not implemented yet: sample")
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
)
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
derivative = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
dt = sigma_interpol - sigma_hat
# store for 2nd order step
self.sample = sample
else:
# DPM-Solver-2
# 2. Convert to an ODE derivative for 2nd order
derivative = (sample - pred_original_sample) / sigma_interpol
# 3. delta timestep
dt = sigma_next - sigma_hat
sample = self.sample
self.sample = None
# upon completion increase step index by one
self._step_index += 1
prev_sample = sample + derivative * dt
if not return_dict:
return (
prev_sample,
pred_original_sample,
)
return KDPM2DiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
timesteps: torch.Tensor,
) -> torch.Tensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
# mps does not support float64
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
else:
schedule_timesteps = self.timesteps.to(original_samples.device)
timesteps = timesteps.to(original_samples.device)
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
if self.begin_index is None:
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
elif self.step_index is not None:
# add_noise is called after first denoising step (for inpainting)
step_indices = [self.step_index] * timesteps.shape[0]
else:
# add noise is called before first denoising step to create initial latent(img2img)
step_indices = [self.begin_index] * timesteps.shape[0]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < len(original_samples.shape):
sigma = sigma.unsqueeze(-1)
noisy_samples = original_samples + noise * sigma
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps | class_definition | 3,501 | 26,131 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_k_dpm_2_discrete.py | null | 1,294 |
class PNDMSchedulerState:
common: CommonSchedulerState
final_alpha_cumprod: jnp.ndarray
# setable values
init_noise_sigma: jnp.ndarray
timesteps: jnp.ndarray
num_inference_steps: Optional[int] = None
prk_timesteps: Optional[jnp.ndarray] = None
plms_timesteps: Optional[jnp.ndarray] = None
# running values
cur_model_output: Optional[jnp.ndarray] = None
counter: Optional[jnp.int32] = None
cur_sample: Optional[jnp.ndarray] = None
ets: Optional[jnp.ndarray] = None
@classmethod
def create(
cls,
common: CommonSchedulerState,
final_alpha_cumprod: jnp.ndarray,
init_noise_sigma: jnp.ndarray,
timesteps: jnp.ndarray,
):
return cls(
common=common,
final_alpha_cumprod=final_alpha_cumprod,
init_noise_sigma=init_noise_sigma,
timesteps=timesteps,
) | class_definition | 1,109 | 2,021 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm_flax.py | null | 1,295 |
class FlaxPNDMSchedulerOutput(FlaxSchedulerOutput):
state: PNDMSchedulerState | class_definition | 2,035 | 2,116 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm_flax.py | null | 1,296 |
class FlaxPNDMScheduler(FlaxSchedulerMixin, ConfigMixin):
"""
Pseudo numerical methods for diffusion models (PNDM) proposes using more advanced ODE integration techniques,
namely Runge-Kutta method and a linear multi-step method.
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
[`~SchedulerMixin.from_pretrained`] functions.
For more details, see the original paper: https://arxiv.org/abs/2202.09778
Args:
num_train_timesteps (`int`): number of diffusion steps used to train the model.
beta_start (`float`): the starting `beta` value of inference.
beta_end (`float`): the final `beta` value.
beta_schedule (`str`):
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`jnp.ndarray`, optional):
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
skip_prk_steps (`bool`):
allows the scheduler to skip the Runge-Kutta steps that are defined in the original paper as being required
before plms steps; defaults to `False`.
set_alpha_to_one (`bool`, default `False`):
each diffusion step uses the value of alphas product at that step and at the previous one. For the final
step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
otherwise it uses the value of alpha at step 0.
steps_offset (`int`, default `0`):
An offset added to the inference steps, as required by some model families.
prediction_type (`str`, default `epsilon`, optional):
prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
https://imagen.research.google/video/paper.pdf)
dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`):
the `dtype` used for params and computation.
"""
_compatibles = [e.name for e in FlaxKarrasDiffusionSchedulers]
dtype: jnp.dtype
pndm_order: int
@property
def has_state(self):
return True
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[jnp.ndarray] = None,
skip_prk_steps: bool = False,
set_alpha_to_one: bool = False,
steps_offset: int = 0,
prediction_type: str = "epsilon",
dtype: jnp.dtype = jnp.float32,
):
self.dtype = dtype
# For now we only support F-PNDM, i.e. the runge-kutta method
# For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
# mainly at formula (9), (12), (13) and the Algorithm 2.
self.pndm_order = 4
def create_state(self, common: Optional[CommonSchedulerState] = None) -> PNDMSchedulerState:
if common is None:
common = CommonSchedulerState.create(self)
# At every step in ddim, we are looking into the previous alphas_cumprod
# For the final step, there is no previous alphas_cumprod because we are already at 0
# `set_alpha_to_one` decides whether we set this parameter simply to one or
# whether we use the final alpha of the "non-previous" one.
final_alpha_cumprod = (
jnp.array(1.0, dtype=self.dtype) if self.config.set_alpha_to_one else common.alphas_cumprod[0]
)
# standard deviation of the initial noise distribution
init_noise_sigma = jnp.array(1.0, dtype=self.dtype)
timesteps = jnp.arange(0, self.config.num_train_timesteps).round()[::-1]
return PNDMSchedulerState.create(
common=common,
final_alpha_cumprod=final_alpha_cumprod,
init_noise_sigma=init_noise_sigma,
timesteps=timesteps,
)
def set_timesteps(self, state: PNDMSchedulerState, num_inference_steps: int, shape: Tuple) -> PNDMSchedulerState:
"""
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.
Args:
state (`PNDMSchedulerState`):
the `FlaxPNDMScheduler` state data class instance.
num_inference_steps (`int`):
the number of diffusion steps used when generating samples with a pre-trained model.
shape (`Tuple`):
the shape of the samples to be generated.
"""
step_ratio = self.config.num_train_timesteps // num_inference_steps
# creates integer timesteps by multiplying by ratio
# rounding to avoid issues when num_inference_step is power of 3
_timesteps = (jnp.arange(0, num_inference_steps) * step_ratio).round() + self.config.steps_offset
if self.config.skip_prk_steps:
# for some models like stable diffusion the prk steps can/should be skipped to
# produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation
# is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51
prk_timesteps = jnp.array([], dtype=jnp.int32)
plms_timesteps = jnp.concatenate([_timesteps[:-1], _timesteps[-2:-1], _timesteps[-1:]])[::-1]
else:
prk_timesteps = _timesteps[-self.pndm_order :].repeat(2) + jnp.tile(
jnp.array([0, self.config.num_train_timesteps // num_inference_steps // 2], dtype=jnp.int32),
self.pndm_order,
)
prk_timesteps = (prk_timesteps[:-1].repeat(2)[1:-1])[::-1]
plms_timesteps = _timesteps[:-3][::-1]
timesteps = jnp.concatenate([prk_timesteps, plms_timesteps])
# initial running values
cur_model_output = jnp.zeros(shape, dtype=self.dtype)
counter = jnp.int32(0)
cur_sample = jnp.zeros(shape, dtype=self.dtype)
ets = jnp.zeros((4,) + shape, dtype=self.dtype)
return state.replace(
timesteps=timesteps,
num_inference_steps=num_inference_steps,
prk_timesteps=prk_timesteps,
plms_timesteps=plms_timesteps,
cur_model_output=cur_model_output,
counter=counter,
cur_sample=cur_sample,
ets=ets,
)
def scale_model_input(
self, state: PNDMSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None
) -> jnp.ndarray:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance.
sample (`jnp.ndarray`): input sample
timestep (`int`, optional): current timestep
Returns:
`jnp.ndarray`: scaled input sample
"""
return sample
def step(
self,
state: PNDMSchedulerState,
model_output: jnp.ndarray,
timestep: int,
sample: jnp.ndarray,
return_dict: bool = True,
) -> Union[FlaxPNDMSchedulerOutput, Tuple]:
"""
Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
process from the learned model outputs (most often the predicted noise).
This function calls `step_prk()` or `step_plms()` depending on the internal variable `counter`.
Args:
state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance.
model_output (`jnp.ndarray`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`jnp.ndarray`):
current instance of sample being created by diffusion process.
return_dict (`bool`): option for returning tuple rather than FlaxPNDMSchedulerOutput class
Returns:
[`FlaxPNDMSchedulerOutput`] or `tuple`: [`FlaxPNDMSchedulerOutput`] if `return_dict` is True, otherwise a
`tuple`. When returning a tuple, the first element is the sample tensor.
"""
if state.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
if self.config.skip_prk_steps:
prev_sample, state = self.step_plms(state, model_output, timestep, sample)
else:
prk_prev_sample, prk_state = self.step_prk(state, model_output, timestep, sample)
plms_prev_sample, plms_state = self.step_plms(state, model_output, timestep, sample)
cond = state.counter < len(state.prk_timesteps)
prev_sample = jax.lax.select(cond, prk_prev_sample, plms_prev_sample)
state = state.replace(
cur_model_output=jax.lax.select(cond, prk_state.cur_model_output, plms_state.cur_model_output),
ets=jax.lax.select(cond, prk_state.ets, plms_state.ets),
cur_sample=jax.lax.select(cond, prk_state.cur_sample, plms_state.cur_sample),
counter=jax.lax.select(cond, prk_state.counter, plms_state.counter),
)
if not return_dict:
return (prev_sample, state)
return FlaxPNDMSchedulerOutput(prev_sample=prev_sample, state=state)
def step_prk(
self,
state: PNDMSchedulerState,
model_output: jnp.ndarray,
timestep: int,
sample: jnp.ndarray,
) -> Union[FlaxPNDMSchedulerOutput, Tuple]:
"""
Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the
solution to the differential equation.
Args:
state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance.
model_output (`jnp.ndarray`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`jnp.ndarray`):
current instance of sample being created by diffusion process.
return_dict (`bool`): option for returning tuple rather than FlaxPNDMSchedulerOutput class
Returns:
[`FlaxPNDMSchedulerOutput`] or `tuple`: [`FlaxPNDMSchedulerOutput`] if `return_dict` is True, otherwise a
`tuple`. When returning a tuple, the first element is the sample tensor.
"""
if state.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
diff_to_prev = jnp.where(
state.counter % 2, 0, self.config.num_train_timesteps // state.num_inference_steps // 2
)
prev_timestep = timestep - diff_to_prev
timestep = state.prk_timesteps[state.counter // 4 * 4]
model_output = jax.lax.select(
(state.counter % 4) != 3,
model_output, # remainder 0, 1, 2
state.cur_model_output + 1 / 6 * model_output, # remainder 3
)
state = state.replace(
cur_model_output=jax.lax.select_n(
state.counter % 4,
state.cur_model_output + 1 / 6 * model_output, # remainder 0
state.cur_model_output + 1 / 3 * model_output, # remainder 1
state.cur_model_output + 1 / 3 * model_output, # remainder 2
jnp.zeros_like(state.cur_model_output), # remainder 3
),
ets=jax.lax.select(
(state.counter % 4) == 0,
state.ets.at[0:3].set(state.ets[1:4]).at[3].set(model_output), # remainder 0
state.ets, # remainder 1, 2, 3
),
cur_sample=jax.lax.select(
(state.counter % 4) == 0,
sample, # remainder 0
state.cur_sample, # remainder 1, 2, 3
),
)
cur_sample = state.cur_sample
prev_sample = self._get_prev_sample(state, cur_sample, timestep, prev_timestep, model_output)
state = state.replace(counter=state.counter + 1)
return (prev_sample, state)
def step_plms(
self,
state: PNDMSchedulerState,
model_output: jnp.ndarray,
timestep: int,
sample: jnp.ndarray,
) -> Union[FlaxPNDMSchedulerOutput, Tuple]:
"""
Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple
times to approximate the solution.
Args:
state (`PNDMSchedulerState`): the `FlaxPNDMScheduler` state data class instance.
model_output (`jnp.ndarray`): direct output from learned diffusion model.
timestep (`int`): current discrete timestep in the diffusion chain.
sample (`jnp.ndarray`):
current instance of sample being created by diffusion process.
return_dict (`bool`): option for returning tuple rather than FlaxPNDMSchedulerOutput class
Returns:
[`FlaxPNDMSchedulerOutput`] or `tuple`: [`FlaxPNDMSchedulerOutput`] if `return_dict` is True, otherwise a
`tuple`. When returning a tuple, the first element is the sample tensor.
"""
if state.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
# NOTE: There is no way to check in the jitted runtime if the prk mode was ran before
prev_timestep = timestep - self.config.num_train_timesteps // state.num_inference_steps
prev_timestep = jnp.where(prev_timestep > 0, prev_timestep, 0)
# Reference:
# if state.counter != 1:
# state.ets.append(model_output)
# else:
# prev_timestep = timestep
# timestep = timestep + self.config.num_train_timesteps // state.num_inference_steps
prev_timestep = jnp.where(state.counter == 1, timestep, prev_timestep)
timestep = jnp.where(
state.counter == 1, timestep + self.config.num_train_timesteps // state.num_inference_steps, timestep
)
# Reference:
# if len(state.ets) == 1 and state.counter == 0:
# model_output = model_output
# state.cur_sample = sample
# elif len(state.ets) == 1 and state.counter == 1:
# model_output = (model_output + state.ets[-1]) / 2
# sample = state.cur_sample
# state.cur_sample = None
# elif len(state.ets) == 2:
# model_output = (3 * state.ets[-1] - state.ets[-2]) / 2
# elif len(state.ets) == 3:
# model_output = (23 * state.ets[-1] - 16 * state.ets[-2] + 5 * state.ets[-3]) / 12
# else:
# model_output = (1 / 24) * (55 * state.ets[-1] - 59 * state.ets[-2] + 37 * state.ets[-3] - 9 * state.ets[-4])
state = state.replace(
ets=jax.lax.select(
state.counter != 1,
state.ets.at[0:3].set(state.ets[1:4]).at[3].set(model_output), # counter != 1
state.ets, # counter 1
),
cur_sample=jax.lax.select(
state.counter != 1,
sample, # counter != 1
state.cur_sample, # counter 1
),
)
state = state.replace(
cur_model_output=jax.lax.select_n(
jnp.clip(state.counter, 0, 4),
model_output, # counter 0
(model_output + state.ets[-1]) / 2, # counter 1
(3 * state.ets[-1] - state.ets[-2]) / 2, # counter 2
(23 * state.ets[-1] - 16 * state.ets[-2] + 5 * state.ets[-3]) / 12, # counter 3
(1 / 24)
* (55 * state.ets[-1] - 59 * state.ets[-2] + 37 * state.ets[-3] - 9 * state.ets[-4]), # counter >= 4
),
)
sample = state.cur_sample
model_output = state.cur_model_output
prev_sample = self._get_prev_sample(state, sample, timestep, prev_timestep, model_output)
state = state.replace(counter=state.counter + 1)
return (prev_sample, state)
def _get_prev_sample(self, state: PNDMSchedulerState, sample, timestep, prev_timestep, model_output):
# See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf
# this function computes x_(t−δ) using the formula of (9)
# Note that x_t needs to be added to both sides of the equation
# Notation (<variable name> -> <name in paper>
# alpha_prod_t -> α_t
# alpha_prod_t_prev -> α_(t−δ)
# beta_prod_t -> (1 - α_t)
# beta_prod_t_prev -> (1 - α_(t−δ))
# sample -> x_t
# model_output -> e_θ(x_t, t)
# prev_sample -> x_(t−δ)
alpha_prod_t = state.common.alphas_cumprod[timestep]
alpha_prod_t_prev = jnp.where(
prev_timestep >= 0, state.common.alphas_cumprod[prev_timestep], state.final_alpha_cumprod
)
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
if self.config.prediction_type == "v_prediction":
model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
elif self.config.prediction_type != "epsilon":
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `v_prediction`"
)
# corresponds to (α_(t−δ) - α_t) divided by
# denominator of x_t in formula (9) and plus 1
# Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
# sqrt(α_(t−δ)) / sqrt(α_t))
sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)
# corresponds to denominator of e_θ(x_t, t) in formula (9)
model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
alpha_prod_t * beta_prod_t * alpha_prod_t_prev
) ** (0.5)
# full formula (9)
prev_sample = (
sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff
)
return prev_sample
def add_noise(
self,
state: PNDMSchedulerState,
original_samples: jnp.ndarray,
noise: jnp.ndarray,
timesteps: jnp.ndarray,
) -> jnp.ndarray:
return add_noise_common(state.common, original_samples, noise, timesteps)
def __len__(self):
return self.config.num_train_timesteps | class_definition | 2,119 | 21,538 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_pndm_flax.py | null | 1,297 |
class DDIMSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.Tensor
pred_original_sample: Optional[torch.Tensor] = None | class_definition | 1,248 | 2,009 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpm_cogvideox.py | null | 1,298 |
class CogVideoXDPMScheduler(SchedulerMixin, ConfigMixin):
"""
`DDIMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
non-Markovian guidance.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving.
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.0001):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, *optional*):
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
clip_sample (`bool`, defaults to `True`):
Clip the predicted sample for numerical stability.
clip_sample_range (`float`, defaults to 1.0):
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
set_alpha_to_one (`bool`, defaults to `True`):
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
otherwise it uses the alpha value at step 0.
steps_offset (`int`, defaults to 0):
An offset added to the inference steps, as required by some model families.
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
dynamic_thresholding_ratio (`float`, defaults to 0.995):
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
sample_max_value (`float`, defaults to 1.0):
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
timestep_spacing (`str`, defaults to `"leading"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
rescale_betas_zero_snr (`bool`, defaults to `False`):
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
dark samples instead of limiting it to samples with medium brightness. Loosely related to
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
"""
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 1
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.00085,
beta_end: float = 0.0120,
beta_schedule: str = "scaled_linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
clip_sample: bool = True,
set_alpha_to_one: bool = True,
steps_offset: int = 0,
prediction_type: str = "epsilon",
clip_sample_range: float = 1.0,
sample_max_value: float = 1.0,
timestep_spacing: str = "leading",
rescale_betas_zero_snr: bool = False,
snr_shift_scale: float = 3.0,
):
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float64) ** 2
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
# Modify: SNR shift following SD3
self.alphas_cumprod = self.alphas_cumprod / (snr_shift_scale + (1 - snr_shift_scale) * self.alphas_cumprod)
# Rescale for zero SNR
if rescale_betas_zero_snr:
self.alphas_cumprod = rescale_zero_terminal_snr(self.alphas_cumprod)
# At every step in ddim, we are looking into the previous alphas_cumprod
# For the final step, there is no previous alphas_cumprod because we are already at 0
# `set_alpha_to_one` decides whether we set this parameter simply to one or
# whether we use the final alpha of the "non-previous" one.
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# setable values
self.num_inference_steps = None
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
def _get_variance(self, timestep, prev_timestep):
alpha_prod_t = self.alphas_cumprod[timestep]
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
return variance
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.Tensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.Tensor`:
A scaled input sample.
"""
return sample
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
"""
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
f" maximal {self.config.num_train_timesteps} timesteps."
)
self.num_inference_steps = num_inference_steps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
timesteps = (
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
.round()[::-1]
.copy()
.astype(np.int64)
)
elif self.config.timestep_spacing == "leading":
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
step_ratio = self.config.num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
timesteps -= 1
else:
raise ValueError(
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
)
self.timesteps = torch.from_numpy(timesteps).to(device)
def get_variables(self, alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back=None):
lamb = ((alpha_prod_t / (1 - alpha_prod_t)) ** 0.5).log()
lamb_next = ((alpha_prod_t_prev / (1 - alpha_prod_t_prev)) ** 0.5).log()
h = lamb_next - lamb
if alpha_prod_t_back is not None:
lamb_previous = ((alpha_prod_t_back / (1 - alpha_prod_t_back)) ** 0.5).log()
h_last = lamb - lamb_previous
r = h_last / h
return h, r, lamb, lamb_next
else:
return h, None, lamb, lamb_next
def get_mult(self, h, r, alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back):
mult1 = ((1 - alpha_prod_t_prev) / (1 - alpha_prod_t)) ** 0.5 * (-h).exp()
mult2 = (-2 * h).expm1() * alpha_prod_t_prev**0.5
if alpha_prod_t_back is not None:
mult3 = 1 + 1 / (2 * r)
mult4 = 1 / (2 * r)
return mult1, mult2, mult3, mult4
else:
return mult1, mult2
def step(
self,
model_output: torch.Tensor,
old_pred_original_sample: torch.Tensor,
timestep: int,
timestep_back: int,
sample: torch.Tensor,
eta: float = 0.0,
use_clipped_model_output: bool = False,
generator=None,
variance_noise: Optional[torch.Tensor] = None,
return_dict: bool = False,
) -> Union[DDIMSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
eta (`float`):
The weight of noise for added noise in diffusion step.
use_clipped_model_output (`bool`, defaults to `False`):
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
`use_clipped_model_output` has no effect.
generator (`torch.Generator`, *optional*):
A random number generator.
variance_noise (`torch.Tensor`):
Alternative to generating noise with `generator` by directly providing the noise for the variance
itself. Useful for methods such as [`CycleDiffusion`].
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
alpha_prod_t = self.alphas_cumprod[timestep]
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
alpha_prod_t_back = self.alphas_cumprod[timestep_back] if timestep_back is not None else None
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
# To make style tests pass, commented out `pred_epsilon` as it is an unused variable
if self.config.prediction_type == "epsilon":
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
# pred_epsilon = model_output
elif self.config.prediction_type == "sample":
pred_original_sample = model_output
# pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
elif self.config.prediction_type == "v_prediction":
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
# pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
" `v_prediction`"
)
h, r, lamb, lamb_next = self.get_variables(alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back)
mult = list(self.get_mult(h, r, alpha_prod_t, alpha_prod_t_prev, alpha_prod_t_back))
mult_noise = (1 - alpha_prod_t_prev) ** 0.5 * (1 - (-2 * h).exp()) ** 0.5
noise = randn_tensor(sample.shape, generator=generator, device=sample.device, dtype=sample.dtype)
prev_sample = mult[0] * sample - mult[1] * pred_original_sample + mult_noise * noise
if old_pred_original_sample is None or prev_timestep < 0:
# Save a network evaluation if all noise levels are 0 or on the first step
return prev_sample, pred_original_sample
else:
denoised_d = mult[2] * pred_original_sample - mult[3] * old_pred_original_sample
noise = randn_tensor(sample.shape, generator=generator, device=sample.device, dtype=sample.dtype)
x_advanced = mult[0] * sample - mult[1] * denoised_d + mult_noise * noise
prev_sample = x_advanced
if not return_dict:
return (prev_sample, pred_original_sample)
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
timesteps: torch.IntTensor,
) -> torch.Tensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
# for the subsequent add_noise calls
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
timesteps = timesteps.to(original_samples.device)
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
# Make sure alphas_cumprod and timestep have same device and dtype as sample
self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
timesteps = timesteps.to(sample.device)
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(sample.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
def __len__(self):
return self.config.num_train_timesteps | class_definition | 4,502 | 23,326 | 0 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_dpm_cogvideox.py | null | 1,299 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.