text
stringlengths
41
89.8k
type
stringclasses
1 value
start
int64
79
258k
end
int64
342
260k
depth
int64
0
0
filepath
stringlengths
81
164
parent_class
null
class_index
int64
0
1.38k
class PriorTransformerOutput(BaseOutput): """ The output of [`PriorTransformer`]. Args: predicted_image_embedding (`torch.Tensor` of shape `(batch_size, embedding_dim)`): The predicted CLIP image embedding conditioned on the CLIP text embedding input. """ predicted_image_embedding: torch.Tensor
class_definition
638
975
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
null
1,100
class PriorTransformer(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin): """ A Prior Transformer model. Parameters: num_attention_heads (`int`, *optional*, defaults to 32): The number of heads to use for multi-head attention. attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. num_layers (`int`, *optional*, defaults to 20): The number of layers of Transformer blocks to use. embedding_dim (`int`, *optional*, defaults to 768): The dimension of the model input `hidden_states` num_embeddings (`int`, *optional*, defaults to 77): The number of embeddings of the model input `hidden_states` additional_embeddings (`int`, *optional*, defaults to 4): The number of additional tokens appended to the projected `hidden_states`. The actual length of the used `hidden_states` is `num_embeddings + additional_embeddings`. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. time_embed_act_fn (`str`, *optional*, defaults to 'silu'): The activation function to use to create timestep embeddings. norm_in_type (`str`, *optional*, defaults to None): The normalization layer to apply on hidden states before passing to Transformer blocks. Set it to `None` if normalization is not needed. embedding_proj_norm_type (`str`, *optional*, defaults to None): The normalization layer to apply on the input `proj_embedding`. Set it to `None` if normalization is not needed. encoder_hid_proj_type (`str`, *optional*, defaults to `linear`): The projection layer to apply on the input `encoder_hidden_states`. Set it to `None` if `encoder_hidden_states` is `None`. added_emb_type (`str`, *optional*, defaults to `prd`): Additional embeddings to condition the model. Choose from `prd` or `None`. if choose `prd`, it will prepend a token indicating the (quantized) dot product between the text embedding and image embedding as proposed in the unclip paper https://arxiv.org/abs/2204.06125 If it is `None`, no additional embeddings will be prepended. time_embed_dim (`int, *optional*, defaults to None): The dimension of timestep embeddings. If None, will be set to `num_attention_heads * attention_head_dim` embedding_proj_dim (`int`, *optional*, default to None): The dimension of `proj_embedding`. If None, will be set to `embedding_dim`. clip_embed_dim (`int`, *optional*, default to None): The dimension of the output. If None, will be set to `embedding_dim`. """ @register_to_config def __init__( self, num_attention_heads: int = 32, attention_head_dim: int = 64, num_layers: int = 20, embedding_dim: int = 768, num_embeddings=77, additional_embeddings=4, dropout: float = 0.0, time_embed_act_fn: str = "silu", norm_in_type: Optional[str] = None, # layer embedding_proj_norm_type: Optional[str] = None, # layer encoder_hid_proj_type: Optional[str] = "linear", # linear added_emb_type: Optional[str] = "prd", # prd time_embed_dim: Optional[int] = None, embedding_proj_dim: Optional[int] = None, clip_embed_dim: Optional[int] = None, ): super().__init__() self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim self.additional_embeddings = additional_embeddings time_embed_dim = time_embed_dim or inner_dim embedding_proj_dim = embedding_proj_dim or embedding_dim clip_embed_dim = clip_embed_dim or embedding_dim self.time_proj = Timesteps(inner_dim, True, 0) self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, out_dim=inner_dim, act_fn=time_embed_act_fn) self.proj_in = nn.Linear(embedding_dim, inner_dim) if embedding_proj_norm_type is None: self.embedding_proj_norm = None elif embedding_proj_norm_type == "layer": self.embedding_proj_norm = nn.LayerNorm(embedding_proj_dim) else: raise ValueError(f"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}") self.embedding_proj = nn.Linear(embedding_proj_dim, inner_dim) if encoder_hid_proj_type is None: self.encoder_hidden_states_proj = None elif encoder_hid_proj_type == "linear": self.encoder_hidden_states_proj = nn.Linear(embedding_dim, inner_dim) else: raise ValueError(f"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}") self.positional_embedding = nn.Parameter(torch.zeros(1, num_embeddings + additional_embeddings, inner_dim)) if added_emb_type == "prd": self.prd_embedding = nn.Parameter(torch.zeros(1, 1, inner_dim)) elif added_emb_type is None: self.prd_embedding = None else: raise ValueError( f"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." ) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, activation_fn="gelu", attention_bias=True, ) for d in range(num_layers) ] ) if norm_in_type == "layer": self.norm_in = nn.LayerNorm(inner_dim) elif norm_in_type is None: self.norm_in = None else: raise ValueError(f"Unsupported norm_in_type: {norm_in_type}.") self.norm_out = nn.LayerNorm(inner_dim) self.proj_to_clip_embeddings = nn.Linear(inner_dim, clip_embed_dim) causal_attention_mask = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings], -10000.0 ) causal_attention_mask.triu_(1) causal_attention_mask = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask", causal_attention_mask, persistent=False) self.clip_mean = nn.Parameter(torch.zeros(1, clip_embed_dim)) self.clip_std = nn.Parameter(torch.zeros(1, clip_embed_dim)) @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnAddedKVProcessor() elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnProcessor() else: raise ValueError( f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" ) self.set_attn_processor(processor) def forward( self, hidden_states, timestep: Union[torch.Tensor, float, int], proj_embedding: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.BoolTensor] = None, return_dict: bool = True, ): """ The [`PriorTransformer`] forward method. Args: hidden_states (`torch.Tensor` of shape `(batch_size, embedding_dim)`): The currently predicted image embeddings. timestep (`torch.LongTensor`): Current denoising step. proj_embedding (`torch.Tensor` of shape `(batch_size, embedding_dim)`): Projected embedding vector the denoising process is conditioned on. encoder_hidden_states (`torch.Tensor` of shape `(batch_size, num_embeddings, embedding_dim)`): Hidden states of the text embeddings the denoising process is conditioned on. attention_mask (`torch.BoolTensor` of shape `(batch_size, num_embeddings)`): Text mask for the text embeddings. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformers.prior_transformer.PriorTransformerOutput`] instead of a plain tuple. Returns: [`~models.transformers.prior_transformer.PriorTransformerOutput`] or `tuple`: If return_dict is True, a [`~models.transformers.prior_transformer.PriorTransformerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ batch_size = hidden_states.shape[0] timesteps = timestep if not torch.is_tensor(timesteps): timesteps = torch.tensor([timesteps], dtype=torch.long, device=hidden_states.device) elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: timesteps = timesteps[None].to(hidden_states.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps * torch.ones(batch_size, dtype=timesteps.dtype, device=timesteps.device) timesteps_projected = self.time_proj(timesteps) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. timesteps_projected = timesteps_projected.to(dtype=self.dtype) time_embeddings = self.time_embedding(timesteps_projected) if self.embedding_proj_norm is not None: proj_embedding = self.embedding_proj_norm(proj_embedding) proj_embeddings = self.embedding_proj(proj_embedding) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: encoder_hidden_states = self.encoder_hidden_states_proj(encoder_hidden_states) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set") hidden_states = self.proj_in(hidden_states) positional_embeddings = self.positional_embedding.to(hidden_states.dtype) additional_embeds = [] additional_embeddings_len = 0 if encoder_hidden_states is not None: additional_embeds.append(encoder_hidden_states) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape) == 2: proj_embeddings = proj_embeddings[:, None, :] if len(hidden_states.shape) == 2: hidden_states = hidden_states[:, None, :] additional_embeds = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: prd_embedding = self.prd_embedding.to(hidden_states.dtype).expand(batch_size, -1, -1) additional_embeds.append(prd_embedding) hidden_states = torch.cat( additional_embeds, dim=1, ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens additional_embeddings_len = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: positional_embeddings = F.pad( positional_embeddings, ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ), value=0.0, ) hidden_states = hidden_states + positional_embeddings if attention_mask is not None: attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 attention_mask = F.pad(attention_mask, (0, self.additional_embeddings), value=0.0) attention_mask = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype) attention_mask = attention_mask.repeat_interleave(self.config.num_attention_heads, dim=0) if self.norm_in is not None: hidden_states = self.norm_in(hidden_states) for block in self.transformer_blocks: hidden_states = block(hidden_states, attention_mask=attention_mask) hidden_states = self.norm_out(hidden_states) if self.prd_embedding is not None: hidden_states = hidden_states[:, -1] else: hidden_states = hidden_states[:, additional_embeddings_len:] predicted_image_embedding = self.proj_to_clip_embeddings(hidden_states) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=predicted_image_embedding) def post_process_latents(self, prior_latents): prior_latents = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
class_definition
978
17,324
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/prior_transformer.py
null
1,101
class SD3SingleTransformerBlock(nn.Module): r""" A Single Transformer block as part of the MMDiT architecture, used in Stable Diffusion 3 ControlNet. Reference: https://arxiv.org/abs/2403.03206 Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, ): super().__init__() self.norm1 = AdaLayerNormZero(dim) if hasattr(F, "scaled_dot_product_attention"): processor = JointAttnProcessor2_0() else: raise ValueError( "The current PyTorch version does not support the `scaled_dot_product_attention` function." ) self.attn = Attention( query_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, bias=True, processor=processor, eps=1e-6, ) self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") def forward(self, hidden_states: torch.Tensor, temb: torch.Tensor): norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) # Attention. attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=None, ) # Process attention outputs for the `hidden_states`. attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = hidden_states + attn_output norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] ff_output = self.ff(norm_hidden_states) ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = hidden_states + ff_output return hidden_states
class_definition
1,650
3,831
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
null
1,102
class SD3Transformer2DModel( ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, SD3Transformer2DLoadersMixin ): """ The Transformer model introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206 Parameters: sample_size (`int`): The width of the latent images. This is fixed during training since it is used to learn a number of position embeddings. patch_size (`int`): Patch size to turn the input data into small patches. in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. num_layers (`int`, *optional*, defaults to 18): The number of layers of Transformer blocks to use. attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`. pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`. out_channels (`int`, defaults to 16): Number of output channels. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, sample_size: int = 128, patch_size: int = 2, in_channels: int = 16, num_layers: int = 18, attention_head_dim: int = 64, num_attention_heads: int = 18, joint_attention_dim: int = 4096, caption_projection_dim: int = 1152, pooled_projection_dim: int = 2048, out_channels: int = 16, pos_embed_max_size: int = 96, dual_attention_layers: Tuple[ int, ... ] = (), # () for sd3.0; (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) for sd3.5 qk_norm: Optional[str] = None, ): super().__init__() default_out_channels = in_channels self.out_channels = out_channels if out_channels is not None else default_out_channels self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim self.pos_embed = PatchEmbed( height=self.config.sample_size, width=self.config.sample_size, patch_size=self.config.patch_size, in_channels=self.config.in_channels, embed_dim=self.inner_dim, pos_embed_max_size=pos_embed_max_size, # hard-code for now. ) self.time_text_embed = CombinedTimestepTextProjEmbeddings( embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim ) self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim) # `attention_head_dim` is doubled to account for the mixing. # It needs to crafted when we get the actual checkpoints. self.transformer_blocks = nn.ModuleList( [ JointTransformerBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim, context_pre_only=i == num_layers - 1, qk_norm=qk_norm, use_dual_attention=True if i in dual_attention_layers else False, ) for i in range(self.config.num_layers) ] ) self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) self.gradient_checkpointing = False # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: """ Sets the attention processor to use [feed forward chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). Parameters: chunk_size (`int`, *optional*): The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually over each tensor of dim=`dim`. dim (`int`, *optional*, defaults to `0`): The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) or dim=1 (sequence length). """ if dim not in [0, 1]: raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") # By default chunk size is 1 chunk_size = chunk_size or 1 def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): if hasattr(module, "set_chunk_feed_forward"): module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) for child in module.children(): fn_recursive_feed_forward(child, chunk_size, dim) for module in self.children(): fn_recursive_feed_forward(module, chunk_size, dim) # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking def disable_forward_chunking(self): def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): if hasattr(module, "set_chunk_feed_forward"): module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) for child in module.children(): fn_recursive_feed_forward(child, chunk_size, dim) for module in self.children(): fn_recursive_feed_forward(module, None, 0) @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedJointAttnProcessor2_0 def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ self.original_attn_processors = None for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True) self.set_attn_processor(FusedJointAttnProcessor2_0()) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, pooled_projections: torch.FloatTensor = None, timestep: torch.LongTensor = None, block_controlnet_hidden_states: List = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, skip_layers: Optional[List[int]] = None, ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: """ The [`SD3Transformer2DModel`] forward method. Args: hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input `hidden_states`. encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected from the embeddings of input conditions. timestep (`torch.LongTensor`): Used to indicate denoising step. block_controlnet_hidden_states (`list` of `torch.Tensor`): A list of tensors that if specified are added to the residuals of transformer blocks. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain tuple. skip_layers (`list` of `int`, *optional*): A list of layer indices to skip during the forward pass. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ if joint_attention_kwargs is not None: joint_attention_kwargs = joint_attention_kwargs.copy() lora_scale = joint_attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." ) height, width = hidden_states.shape[-2:] hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too. temb = self.time_text_embed(timestep, pooled_projections) encoder_hidden_states = self.context_embedder(encoder_hidden_states) if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs: ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds") ip_hidden_states, ip_temb = self.image_proj(ip_adapter_image_embeds, timestep) joint_attention_kwargs.update(ip_hidden_states=ip_hidden_states, temb=ip_temb) for index_block, block in enumerate(self.transformer_blocks): # Skip specified layers is_skip = True if skip_layers is not None and index_block in skip_layers else False if torch.is_grad_enabled() and self.gradient_checkpointing and not is_skip: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, joint_attention_kwargs, **ckpt_kwargs, ) elif not is_skip: encoder_hidden_states, hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, joint_attention_kwargs=joint_attention_kwargs, ) # controlnet residual if block_controlnet_hidden_states is not None and block.context_pre_only is False: interval_control = len(self.transformer_blocks) / len(block_controlnet_hidden_states) hidden_states = hidden_states + block_controlnet_hidden_states[int(index_block / interval_control)] hidden_states = self.norm_out(hidden_states, temb) hidden_states = self.proj_out(hidden_states) # unpatchify patch_size = self.config.patch_size height = height // patch_size width = width // patch_size hidden_states = hidden_states.reshape( shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels) ) hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) output = hidden_states.reshape( shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size) ) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)
class_definition
3,834
20,444
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_sd3.py
null
1,103
class AllegroTransformerBlock(nn.Module): r""" Transformer block used in [Allegro](https://github.com/rhymes-ai/Allegro) model. Args: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. dropout (`float`, defaults to `0.0`): The dropout probability to use. cross_attention_dim (`int`, defaults to `2304`): The dimension of the cross attention features. activation_fn (`str`, defaults to `"gelu-approximate"`): Activation function to be used in feed-forward. attention_bias (`bool`, defaults to `False`): Whether or not to use bias in attention projection layers. only_cross_attention (`bool`, defaults to `False`): norm_elementwise_affine (`bool`, defaults to `True`): Whether to use learnable elementwise affine parameters for normalization. norm_eps (`float`, defaults to `1e-5`): Epsilon value for normalization layers. final_dropout (`bool` defaults to `False`): Whether to apply a final dropout after the last feed-forward layer. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int] = None, activation_fn: str = "geglu", attention_bias: bool = False, norm_elementwise_affine: bool = True, norm_eps: float = 1e-5, ): super().__init__() # 1. Self Attention self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=None, processor=AllegroAttnProcessor2_0(), ) # 2. Cross Attention self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, processor=AllegroAttnProcessor2_0(), ) # 3. Feed Forward self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) self.ff = FeedForward( dim, dropout=dropout, activation_fn=activation_fn, ) # 4. Scale-shift self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, temb: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, image_rotary_emb=None, ) -> torch.Tensor: # 0. Self-Attention batch_size = hidden_states.shape[0] shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( self.scale_shift_table[None] + temb.reshape(batch_size, 6, -1) ).chunk(6, dim=1) norm_hidden_states = self.norm1(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa norm_hidden_states = norm_hidden_states.squeeze(1) attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=None, attention_mask=attention_mask, image_rotary_emb=image_rotary_emb, ) attn_output = gate_msa * attn_output hidden_states = attn_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) # 1. Cross-Attention if self.attn2 is not None: norm_hidden_states = hidden_states attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, image_rotary_emb=None, ) hidden_states = attn_output + hidden_states # 2. Feed-forward norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp ff_output = self.ff(norm_hidden_states) ff_output = gate_mlp * ff_output hidden_states = ff_output + hidden_states # TODO(aryan): maybe following line is not required if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) return hidden_states
class_definition
1,284
6,282
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py
null
1,104
class AllegroTransformer3DModel(ModelMixin, ConfigMixin): _supports_gradient_checkpointing = True """ A 3D Transformer model for video-like data. Args: patch_size (`int`, defaults to `2`): The size of spatial patches to use in the patch embedding layer. patch_size_t (`int`, defaults to `1`): The size of temporal patches to use in the patch embedding layer. num_attention_heads (`int`, defaults to `24`): The number of heads to use for multi-head attention. attention_head_dim (`int`, defaults to `96`): The number of channels in each head. in_channels (`int`, defaults to `4`): The number of channels in the input. out_channels (`int`, *optional*, defaults to `4`): The number of channels in the output. num_layers (`int`, defaults to `32`): The number of layers of Transformer blocks to use. dropout (`float`, defaults to `0.0`): The dropout probability to use. cross_attention_dim (`int`, defaults to `2304`): The dimension of the cross attention features. attention_bias (`bool`, defaults to `True`): Whether or not to use bias in the attention projection layers. sample_height (`int`, defaults to `90`): The height of the input latents. sample_width (`int`, defaults to `160`): The width of the input latents. sample_frames (`int`, defaults to `22`): The number of frames in the input latents. activation_fn (`str`, defaults to `"gelu-approximate"`): Activation function to use in feed-forward. norm_elementwise_affine (`bool`, defaults to `False`): Whether or not to use elementwise affine in normalization layers. norm_eps (`float`, defaults to `1e-6`): The epsilon value to use in normalization layers. caption_channels (`int`, defaults to `4096`): Number of channels to use for projecting the caption embeddings. interpolation_scale_h (`float`, defaults to `2.0`): Scaling factor to apply in 3D positional embeddings across height dimension. interpolation_scale_w (`float`, defaults to `2.0`): Scaling factor to apply in 3D positional embeddings across width dimension. interpolation_scale_t (`float`, defaults to `2.2`): Scaling factor to apply in 3D positional embeddings across time dimension. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, patch_size: int = 2, patch_size_t: int = 1, num_attention_heads: int = 24, attention_head_dim: int = 96, in_channels: int = 4, out_channels: int = 4, num_layers: int = 32, dropout: float = 0.0, cross_attention_dim: int = 2304, attention_bias: bool = True, sample_height: int = 90, sample_width: int = 160, sample_frames: int = 22, activation_fn: str = "gelu-approximate", norm_elementwise_affine: bool = False, norm_eps: float = 1e-6, caption_channels: int = 4096, interpolation_scale_h: float = 2.0, interpolation_scale_w: float = 2.0, interpolation_scale_t: float = 2.2, ): super().__init__() self.inner_dim = num_attention_heads * attention_head_dim interpolation_scale_t = ( interpolation_scale_t if interpolation_scale_t is not None else ((sample_frames - 1) // 16 + 1) if sample_frames % 2 == 1 else sample_frames // 16 ) interpolation_scale_h = interpolation_scale_h if interpolation_scale_h is not None else sample_height / 30 interpolation_scale_w = interpolation_scale_w if interpolation_scale_w is not None else sample_width / 40 # 1. Patch embedding self.pos_embed = PatchEmbed( height=sample_height, width=sample_width, patch_size=patch_size, in_channels=in_channels, embed_dim=self.inner_dim, pos_embed_type=None, ) # 2. Transformer blocks self.transformer_blocks = nn.ModuleList( [ AllegroTransformerBlock( self.inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, attention_bias=attention_bias, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, ) for _ in range(num_layers) ] ) # 3. Output projection & norm self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5) self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * out_channels) # 4. Timestep embeddings self.adaln_single = AdaLayerNormSingle(self.inner_dim, use_additional_conditions=False) # 5. Caption projection self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=self.inner_dim) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): self.gradient_checkpointing = value def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, timestep: torch.LongTensor, attention_mask: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, return_dict: bool = True, ): batch_size, num_channels, num_frames, height, width = hidden_states.shape p_t = self.config.patch_size_t p = self.config.patch_size post_patch_num_frames = num_frames // p_t post_patch_height = height // p post_patch_width = width // p # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. # expects mask of shape: # [batch, key_tokens] # adds singleton query_tokens dimension: # [batch, 1, key_tokens] # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) attention_mask_vid, attention_mask_img = None, None if attention_mask is not None and attention_mask.ndim == 4: # assume that mask is expressed as: # (1 = keep, 0 = discard) # convert mask into a bias that can be added to attention scores: # (keep = +0, discard = -10000.0) # b, frame+use_image_num, h, w -> a video with images # b, 1, h, w -> only images attention_mask = attention_mask.to(hidden_states.dtype) attention_mask = attention_mask[:, :num_frames] # [batch_size, num_frames, height, width] if attention_mask.numel() > 0: attention_mask = attention_mask.unsqueeze(1) # [batch_size, 1, num_frames, height, width] attention_mask = F.max_pool3d(attention_mask, kernel_size=(p_t, p, p), stride=(p_t, p, p)) attention_mask = attention_mask.flatten(1).view(batch_size, 1, -1) attention_mask = ( (1 - attention_mask.bool().to(hidden_states.dtype)) * -10000.0 if attention_mask.numel() > 0 else None ) # convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: encoder_attention_mask = (1 - encoder_attention_mask.to(self.dtype)) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) # 1. Timestep embeddings timestep, embedded_timestep = self.adaln_single( timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype ) # 2. Patch embeddings hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) hidden_states = self.pos_embed(hidden_states) hidden_states = hidden_states.unflatten(0, (batch_size, -1)).flatten(1, 2) encoder_hidden_states = self.caption_projection(encoder_hidden_states) encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, encoder_hidden_states.shape[-1]) # 3. Transformer blocks for i, block in enumerate(self.transformer_blocks): # TODO(aryan): Implement gradient checkpointing if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, timestep, attention_mask, encoder_attention_mask, image_rotary_emb, **ckpt_kwargs, ) else: hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=timestep, attention_mask=attention_mask, encoder_attention_mask=encoder_attention_mask, image_rotary_emb=image_rotary_emb, ) # 4. Output normalization & projection shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) hidden_states = self.norm_out(hidden_states) # Modulation hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.squeeze(1) # 5. Unpatchify hidden_states = hidden_states.reshape( batch_size, post_patch_num_frames, post_patch_height, post_patch_width, p_t, p, p, -1 ) hidden_states = hidden_states.permute(0, 7, 1, 4, 2, 5, 3, 6) output = hidden_states.reshape(batch_size, -1, num_frames, height, width) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)
class_definition
6,285
17,562
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_allegro.py
null
1,105
class AdaLayerNormShift(nn.Module): r""" Norm layer modified to incorporate timestep embeddings. Parameters: embedding_dim (`int`): The size of each embedding vector. num_embeddings (`int`): The size of the embeddings dictionary. """ def __init__(self, embedding_dim: int, elementwise_affine=True, eps=1e-6): super().__init__() self.silu = nn.SiLU() self.linear = nn.Linear(embedding_dim, embedding_dim) self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=elementwise_affine, eps=eps) def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor: shift = self.linear(self.silu(emb.to(torch.float32)).to(emb.dtype)) x = self.norm(x) + shift.unsqueeze(dim=1) return x
class_definition
1,386
2,167
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py
null
1,106
class HunyuanDiTBlock(nn.Module): r""" Transformer block used in Hunyuan-DiT model (https://github.com/Tencent/HunyuanDiT). Allow skip connection and QKNorm Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of headsto use for multi-head attention. cross_attention_dim (`int`,*optional*): The size of the encoder_hidden_states vector for cross attention. dropout(`float`, *optional*, defaults to 0.0): The dropout probability to use. activation_fn (`str`,*optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. . norm_elementwise_affine (`bool`, *optional*, defaults to `True`): Whether to use learnable elementwise affine parameters for normalization. norm_eps (`float`, *optional*, defaults to 1e-6): A small constant added to the denominator in normalization layers to prevent division by zero. final_dropout (`bool` *optional*, defaults to False): Whether to apply a final dropout after the last feed-forward layer. ff_inner_dim (`int`, *optional*): The size of the hidden layer in the feed-forward block. Defaults to `None`. ff_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the feed-forward block. skip (`bool`, *optional*, defaults to `False`): Whether to use skip connection. Defaults to `False` for down-blocks and mid-blocks. qk_norm (`bool`, *optional*, defaults to `True`): Whether to use normalization in QK calculation. Defaults to `True`. """ def __init__( self, dim: int, num_attention_heads: int, cross_attention_dim: int = 1024, dropout=0.0, activation_fn: str = "geglu", norm_elementwise_affine: bool = True, norm_eps: float = 1e-6, final_dropout: bool = False, ff_inner_dim: Optional[int] = None, ff_bias: bool = True, skip: bool = False, qk_norm: bool = True, ): super().__init__() # Define 3 blocks. Each block has its own normalization layer. # NOTE: when new version comes, check norm2 and norm 3 # 1. Self-Attn self.norm1 = AdaLayerNormShift(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) self.attn1 = Attention( query_dim=dim, cross_attention_dim=None, dim_head=dim // num_attention_heads, heads=num_attention_heads, qk_norm="layer_norm" if qk_norm else None, eps=1e-6, bias=True, processor=HunyuanAttnProcessor2_0(), ) # 2. Cross-Attn self.norm2 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, dim_head=dim // num_attention_heads, heads=num_attention_heads, qk_norm="layer_norm" if qk_norm else None, eps=1e-6, bias=True, processor=HunyuanAttnProcessor2_0(), ) # 3. Feed-forward self.norm3 = FP32LayerNorm(dim, norm_eps, norm_elementwise_affine) self.ff = FeedForward( dim, dropout=dropout, ### 0.0 activation_fn=activation_fn, ### approx GeLU final_dropout=final_dropout, ### 0.0 inner_dim=ff_inner_dim, ### int(dim * mlp_ratio) bias=ff_bias, ) # 4. Skip Connection if skip: self.skip_norm = FP32LayerNorm(2 * dim, norm_eps, elementwise_affine=True) self.skip_linear = nn.Linear(2 * dim, dim) else: self.skip_linear = None # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 # Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): # Sets chunk feed-forward self._chunk_size = chunk_size self._chunk_dim = dim def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, image_rotary_emb=None, skip=None, ) -> torch.Tensor: # Notice that normalization is always applied before the real computation in the following blocks. # 0. Long Skip Connection if self.skip_linear is not None: cat = torch.cat([hidden_states, skip], dim=-1) cat = self.skip_norm(cat) hidden_states = self.skip_linear(cat) # 1. Self-Attention norm_hidden_states = self.norm1(hidden_states, temb) ### checked: self.norm1 is correct attn_output = self.attn1( norm_hidden_states, image_rotary_emb=image_rotary_emb, ) hidden_states = hidden_states + attn_output # 2. Cross-Attention hidden_states = hidden_states + self.attn2( self.norm2(hidden_states), encoder_hidden_states=encoder_hidden_states, image_rotary_emb=image_rotary_emb, ) # FFN Layer ### TODO: switch norm2 and norm3 in the state dict mlp_inputs = self.norm3(hidden_states) hidden_states = hidden_states + self.ff(mlp_inputs) return hidden_states
class_definition
2,192
7,784
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py
null
1,107
class HunyuanDiT2DModel(ModelMixin, ConfigMixin): """ HunYuanDiT: Diffusion model with a Transformer backbone. Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers. Parameters: num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. in_channels (`int`, *optional*): The number of channels in the input and output (specify if the input is **continuous**). patch_size (`int`, *optional*): The size of the patch to use for the input. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. sample_size (`int`, *optional*): The width of the latent images. This is fixed during training since it is used to learn a number of position embeddings. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The number of dimension in the clip text embedding. hidden_size (`int`, *optional*): The size of hidden layer in the conditioning embedding layers. num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. mlp_ratio (`float`, *optional*, defaults to 4.0): The ratio of the hidden layer size to the input size. learn_sigma (`bool`, *optional*, defaults to `True`): Whether to predict variance. cross_attention_dim_t5 (`int`, *optional*): The number dimensions in t5 text embedding. pooled_projection_dim (`int`, *optional*): The size of the pooled projection. text_len (`int`, *optional*): The length of the clip text embedding. text_len_t5 (`int`, *optional*): The length of the T5 text embedding. use_style_cond_and_image_meta_size (`bool`, *optional*): Whether or not to use style condition and image meta size. True for version <=1.1, False for version >= 1.2 """ @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, patch_size: Optional[int] = None, activation_fn: str = "gelu-approximate", sample_size=32, hidden_size=1152, num_layers: int = 28, mlp_ratio: float = 4.0, learn_sigma: bool = True, cross_attention_dim: int = 1024, norm_type: str = "layer_norm", cross_attention_dim_t5: int = 2048, pooled_projection_dim: int = 1024, text_len: int = 77, text_len_t5: int = 256, use_style_cond_and_image_meta_size: bool = True, ): super().__init__() self.out_channels = in_channels * 2 if learn_sigma else in_channels self.num_heads = num_attention_heads self.inner_dim = num_attention_heads * attention_head_dim self.text_embedder = PixArtAlphaTextProjection( in_features=cross_attention_dim_t5, hidden_size=cross_attention_dim_t5 * 4, out_features=cross_attention_dim, act_fn="silu_fp32", ) self.text_embedding_padding = nn.Parameter( torch.randn(text_len + text_len_t5, cross_attention_dim, dtype=torch.float32) ) self.pos_embed = PatchEmbed( height=sample_size, width=sample_size, in_channels=in_channels, embed_dim=hidden_size, patch_size=patch_size, pos_embed_type=None, ) self.time_extra_emb = HunyuanCombinedTimestepTextSizeStyleEmbedding( hidden_size, pooled_projection_dim=pooled_projection_dim, seq_len=text_len_t5, cross_attention_dim=cross_attention_dim_t5, use_style_cond_and_image_meta_size=use_style_cond_and_image_meta_size, ) # HunyuanDiT Blocks self.blocks = nn.ModuleList( [ HunyuanDiTBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, activation_fn=activation_fn, ff_inner_dim=int(self.inner_dim * mlp_ratio), cross_attention_dim=cross_attention_dim, qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details. skip=layer > num_layers // 2, ) for layer in range(num_layers) ] ) self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedHunyuanAttnProcessor2_0 def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ self.original_attn_processors = None for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True) self.set_attn_processor(FusedHunyuanAttnProcessor2_0()) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors) @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ self.set_attn_processor(HunyuanAttnProcessor2_0()) def forward( self, hidden_states, timestep, encoder_hidden_states=None, text_embedding_mask=None, encoder_hidden_states_t5=None, text_embedding_mask_t5=None, image_meta_size=None, style=None, image_rotary_emb=None, controlnet_block_samples=None, return_dict=True, ): """ The [`HunyuanDiT2DModel`] forward method. Args: hidden_states (`torch.Tensor` of shape `(batch size, dim, height, width)`): The input tensor. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. This is the output of `BertModel`. text_embedding_mask: torch.Tensor An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output of `BertModel`. encoder_hidden_states_t5 ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. This is the output of T5 Text Encoder. text_embedding_mask_t5: torch.Tensor An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. This is the output of T5 Text Encoder. image_meta_size (torch.Tensor): Conditional embedding indicate the image sizes style: torch.Tensor: Conditional embedding indicate the style image_rotary_emb (`torch.Tensor`): The image rotary embeddings to apply on query and key tensors during attention calculation. return_dict: bool Whether to return a dictionary. """ height, width = hidden_states.shape[-2:] hidden_states = self.pos_embed(hidden_states) temb = self.time_extra_emb( timestep, encoder_hidden_states_t5, image_meta_size, style, hidden_dtype=timestep.dtype ) # [B, D] # text projection batch_size, sequence_length, _ = encoder_hidden_states_t5.shape encoder_hidden_states_t5 = self.text_embedder( encoder_hidden_states_t5.view(-1, encoder_hidden_states_t5.shape[-1]) ) encoder_hidden_states_t5 = encoder_hidden_states_t5.view(batch_size, sequence_length, -1) encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_t5], dim=1) text_embedding_mask = torch.cat([text_embedding_mask, text_embedding_mask_t5], dim=-1) text_embedding_mask = text_embedding_mask.unsqueeze(2).bool() encoder_hidden_states = torch.where(text_embedding_mask, encoder_hidden_states, self.text_embedding_padding) skips = [] for layer, block in enumerate(self.blocks): if layer > self.config.num_layers // 2: if controlnet_block_samples is not None: skip = skips.pop() + controlnet_block_samples.pop() else: skip = skips.pop() hidden_states = block( hidden_states, temb=temb, encoder_hidden_states=encoder_hidden_states, image_rotary_emb=image_rotary_emb, skip=skip, ) # (N, L, D) else: hidden_states = block( hidden_states, temb=temb, encoder_hidden_states=encoder_hidden_states, image_rotary_emb=image_rotary_emb, ) # (N, L, D) if layer < (self.config.num_layers // 2 - 1): skips.append(hidden_states) if controlnet_block_samples is not None and len(controlnet_block_samples) != 0: raise ValueError("The number of controls is not equal to the number of skip connections.") # final layer hidden_states = self.norm_out(hidden_states, temb.to(torch.float32)) hidden_states = self.proj_out(hidden_states) # (N, L, patch_size ** 2 * out_channels) # unpatchify: (N, out_channels, H, W) patch_size = self.pos_embed.patch_size height = height // patch_size width = width // patch_size hidden_states = hidden_states.reshape( shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels) ) hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) output = hidden_states.reshape( shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size) ) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output) # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None: """ Sets the attention processor to use [feed forward chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers). Parameters: chunk_size (`int`, *optional*): The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually over each tensor of dim=`dim`. dim (`int`, *optional*, defaults to `0`): The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch) or dim=1 (sequence length). """ if dim not in [0, 1]: raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}") # By default chunk size is 1 chunk_size = chunk_size or 1 def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): if hasattr(module, "set_chunk_feed_forward"): module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) for child in module.children(): fn_recursive_feed_forward(child, chunk_size, dim) for module in self.children(): fn_recursive_feed_forward(module, chunk_size, dim) # Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking def disable_forward_chunking(self): def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int): if hasattr(module, "set_chunk_feed_forward"): module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim) for child in module.children(): fn_recursive_feed_forward(child, chunk_size, dim) for module in self.children(): fn_recursive_feed_forward(module, None, 0)
class_definition
7,787
24,233
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/hunyuan_transformer_2d.py
null
1,108
class LuminaNextDiTBlock(nn.Module): """ A LuminaNextDiTBlock for LuminaNextDiT2DModel. Parameters: dim (`int`): Embedding dimension of the input features. num_attention_heads (`int`): Number of attention heads. num_kv_heads (`int`): Number of attention heads in key and value features (if using GQA), or set to None for the same as query. multiple_of (`int`): The number of multiple of ffn layer. ffn_dim_multiplier (`float`): The multipier factor of ffn layer dimension. norm_eps (`float`): The eps for norm layer. qk_norm (`bool`): normalization for query and key. cross_attention_dim (`int`): Cross attention embedding dimension of the input text prompt hidden_states. norm_elementwise_affine (`bool`, *optional*, defaults to True), """ def __init__( self, dim: int, num_attention_heads: int, num_kv_heads: int, multiple_of: int, ffn_dim_multiplier: float, norm_eps: float, qk_norm: bool, cross_attention_dim: int, norm_elementwise_affine: bool = True, ) -> None: super().__init__() self.head_dim = dim // num_attention_heads self.gate = nn.Parameter(torch.zeros([num_attention_heads])) # Self-attention self.attn1 = Attention( query_dim=dim, cross_attention_dim=None, dim_head=dim // num_attention_heads, qk_norm="layer_norm_across_heads" if qk_norm else None, heads=num_attention_heads, kv_heads=num_kv_heads, eps=1e-5, bias=False, out_bias=False, processor=LuminaAttnProcessor2_0(), ) self.attn1.to_out = nn.Identity() # Cross-attention self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, dim_head=dim // num_attention_heads, qk_norm="layer_norm_across_heads" if qk_norm else None, heads=num_attention_heads, kv_heads=num_kv_heads, eps=1e-5, bias=False, out_bias=False, processor=LuminaAttnProcessor2_0(), ) self.feed_forward = LuminaFeedForward( dim=dim, inner_dim=4 * dim, multiple_of=multiple_of, ffn_dim_multiplier=ffn_dim_multiplier, ) self.norm1 = LuminaRMSNormZero( embedding_dim=dim, norm_eps=norm_eps, norm_elementwise_affine=norm_elementwise_affine, ) self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) self.norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) self.norm1_context = RMSNorm(cross_attention_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, image_rotary_emb: torch.Tensor, encoder_hidden_states: torch.Tensor, encoder_mask: torch.Tensor, temb: torch.Tensor, cross_attention_kwargs: Optional[Dict[str, Any]] = None, ): """ Perform a forward pass through the LuminaNextDiTBlock. Parameters: hidden_states (`torch.Tensor`): The input of hidden_states for LuminaNextDiTBlock. attention_mask (`torch.Tensor): The input of hidden_states corresponse attention mask. image_rotary_emb (`torch.Tensor`): Precomputed cosine and sine frequencies. encoder_hidden_states: (`torch.Tensor`): The hidden_states of text prompt are processed by Gemma encoder. encoder_mask (`torch.Tensor`): The hidden_states of text prompt attention mask. temb (`torch.Tensor`): Timestep embedding with text prompt embedding. cross_attention_kwargs (`Dict[str, Any]`): kwargs for cross attention. """ residual = hidden_states # Self-attention norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb) self_attn_output = self.attn1( hidden_states=norm_hidden_states, encoder_hidden_states=norm_hidden_states, attention_mask=attention_mask, query_rotary_emb=image_rotary_emb, key_rotary_emb=image_rotary_emb, **cross_attention_kwargs, ) # Cross-attention norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states) cross_attn_output = self.attn2( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, attention_mask=encoder_mask, query_rotary_emb=image_rotary_emb, key_rotary_emb=None, **cross_attention_kwargs, ) cross_attn_output = cross_attn_output * self.gate.tanh().view(1, 1, -1, 1) mixed_attn_output = self_attn_output + cross_attn_output mixed_attn_output = mixed_attn_output.flatten(-2) # linear proj hidden_states = self.attn2.to_out[0](mixed_attn_output) hidden_states = residual + gate_msa.unsqueeze(1).tanh() * self.norm2(hidden_states) mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1))) hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output) return hidden_states
class_definition
1,259
6,893
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py
null
1,109
class LuminaNextDiT2DModel(ModelMixin, ConfigMixin): """ LuminaNextDiT: Diffusion model with a Transformer backbone. Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers. Parameters: sample_size (`int`): The width of the latent images. This is fixed during training since it is used to learn a number of position embeddings. patch_size (`int`, *optional*, (`int`, *optional*, defaults to 2): The size of each patch in the image. This parameter defines the resolution of patches fed into the model. in_channels (`int`, *optional*, defaults to 4): The number of input channels for the model. Typically, this matches the number of channels in the input images. hidden_size (`int`, *optional*, defaults to 4096): The dimensionality of the hidden layers in the model. This parameter determines the width of the model's hidden representations. num_layers (`int`, *optional*, default to 32): The number of layers in the model. This defines the depth of the neural network. num_attention_heads (`int`, *optional*, defaults to 32): The number of attention heads in each attention layer. This parameter specifies how many separate attention mechanisms are used. num_kv_heads (`int`, *optional*, defaults to 8): The number of key-value heads in the attention mechanism, if different from the number of attention heads. If None, it defaults to num_attention_heads. multiple_of (`int`, *optional*, defaults to 256): A factor that the hidden size should be a multiple of. This can help optimize certain hardware configurations. ffn_dim_multiplier (`float`, *optional*): A multiplier for the dimensionality of the feed-forward network. If None, it uses a default value based on the model configuration. norm_eps (`float`, *optional*, defaults to 1e-5): A small value added to the denominator for numerical stability in normalization layers. learn_sigma (`bool`, *optional*, defaults to True): Whether the model should learn the sigma parameter, which might be related to uncertainty or variance in predictions. qk_norm (`bool`, *optional*, defaults to True): Indicates if the queries and keys in the attention mechanism should be normalized. cross_attention_dim (`int`, *optional*, defaults to 2048): The dimensionality of the text embeddings. This parameter defines the size of the text representations used in the model. scaling_factor (`float`, *optional*, defaults to 1.0): A scaling factor applied to certain parameters or layers in the model. This can be used for adjusting the overall scale of the model's operations. """ @register_to_config def __init__( self, sample_size: int = 128, patch_size: Optional[int] = 2, in_channels: Optional[int] = 4, hidden_size: Optional[int] = 2304, num_layers: Optional[int] = 32, num_attention_heads: Optional[int] = 32, num_kv_heads: Optional[int] = None, multiple_of: Optional[int] = 256, ffn_dim_multiplier: Optional[float] = None, norm_eps: Optional[float] = 1e-5, learn_sigma: Optional[bool] = True, qk_norm: Optional[bool] = True, cross_attention_dim: Optional[int] = 2048, scaling_factor: Optional[float] = 1.0, ) -> None: super().__init__() self.sample_size = sample_size self.patch_size = patch_size self.in_channels = in_channels self.out_channels = in_channels * 2 if learn_sigma else in_channels self.hidden_size = hidden_size self.num_attention_heads = num_attention_heads self.head_dim = hidden_size // num_attention_heads self.scaling_factor = scaling_factor self.patch_embedder = LuminaPatchEmbed( patch_size=patch_size, in_channels=in_channels, embed_dim=hidden_size, bias=True ) self.pad_token = nn.Parameter(torch.empty(hidden_size)) self.time_caption_embed = LuminaCombinedTimestepCaptionEmbedding( hidden_size=min(hidden_size, 1024), cross_attention_dim=cross_attention_dim ) self.layers = nn.ModuleList( [ LuminaNextDiTBlock( hidden_size, num_attention_heads, num_kv_heads, multiple_of, ffn_dim_multiplier, norm_eps, qk_norm, cross_attention_dim, ) for _ in range(num_layers) ] ) self.norm_out = LuminaLayerNormContinuous( embedding_dim=hidden_size, conditioning_embedding_dim=min(hidden_size, 1024), elementwise_affine=False, eps=1e-6, bias=True, out_dim=patch_size * patch_size * self.out_channels, ) # self.final_layer = LuminaFinalLayer(hidden_size, patch_size, self.out_channels) assert (hidden_size // num_attention_heads) % 4 == 0, "2d rope needs head dim to be divisible by 4" def forward( self, hidden_states: torch.Tensor, timestep: torch.Tensor, encoder_hidden_states: torch.Tensor, encoder_mask: torch.Tensor, image_rotary_emb: torch.Tensor, cross_attention_kwargs: Dict[str, Any] = None, return_dict=True, ) -> torch.Tensor: """ Forward pass of LuminaNextDiT. Parameters: hidden_states (torch.Tensor): Input tensor of shape (N, C, H, W). timestep (torch.Tensor): Tensor of diffusion timesteps of shape (N,). encoder_hidden_states (torch.Tensor): Tensor of caption features of shape (N, D). encoder_mask (torch.Tensor): Tensor of caption masks of shape (N, L). """ hidden_states, mask, img_size, image_rotary_emb = self.patch_embedder(hidden_states, image_rotary_emb) image_rotary_emb = image_rotary_emb.to(hidden_states.device) temb = self.time_caption_embed(timestep, encoder_hidden_states, encoder_mask) encoder_mask = encoder_mask.bool() for layer in self.layers: hidden_states = layer( hidden_states, mask, image_rotary_emb, encoder_hidden_states, encoder_mask, temb=temb, cross_attention_kwargs=cross_attention_kwargs, ) hidden_states = self.norm_out(hidden_states, temb) # unpatchify height_tokens = width_tokens = self.patch_size height, width = img_size[0] batch_size = hidden_states.size(0) sequence_length = (height // height_tokens) * (width // width_tokens) hidden_states = hidden_states[:, :sequence_length].view( batch_size, height // height_tokens, width // width_tokens, height_tokens, width_tokens, self.out_channels ) output = hidden_states.permute(0, 5, 1, 3, 2, 4).flatten(4, 5).flatten(2, 3) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)
class_definition
6,896
14,392
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/lumina_nextdit2d.py
null
1,110
class DiTTransformer2DModel(ModelMixin, ConfigMixin): r""" A 2D Transformer model as introduced in DiT (https://arxiv.org/abs/2212.09748). Parameters: num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention. attention_head_dim (int, optional, defaults to 72): The number of channels in each head. in_channels (int, defaults to 4): The number of channels in the input. out_channels (int, optional): The number of channels in the output. Specify this parameter if the output channel number differs from the input. num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use. dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks. norm_num_groups (int, optional, defaults to 32): Number of groups for group normalization within Transformer blocks. attention_bias (bool, optional, defaults to True): Configure if the Transformer blocks' attention should contain a bias parameter. sample_size (int, defaults to 32): The width of the latent images. This parameter is fixed during training. patch_size (int, defaults to 2): Size of the patches the model processes, relevant for architectures working on non-sequential data. activation_fn (str, optional, defaults to "gelu-approximate"): Activation function to use in feed-forward networks within Transformer blocks. num_embeds_ada_norm (int, optional, defaults to 1000): Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during inference. upcast_attention (bool, optional, defaults to False): If true, upcasts the attention mechanism dimensions for potentially improved performance. norm_type (str, optional, defaults to "ada_norm_zero"): Specifies the type of normalization used, can be 'ada_norm_zero'. norm_elementwise_affine (bool, optional, defaults to False): If true, enables element-wise affine parameters in the normalization layers. norm_eps (float, optional, defaults to 1e-5): A small constant added to the denominator in normalization layers to prevent division by zero. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 72, in_channels: int = 4, out_channels: Optional[int] = None, num_layers: int = 28, dropout: float = 0.0, norm_num_groups: int = 32, attention_bias: bool = True, sample_size: int = 32, patch_size: int = 2, activation_fn: str = "gelu-approximate", num_embeds_ada_norm: Optional[int] = 1000, upcast_attention: bool = False, norm_type: str = "ada_norm_zero", norm_elementwise_affine: bool = False, norm_eps: float = 1e-5, ): super().__init__() # Validate inputs. if norm_type != "ada_norm_zero": raise NotImplementedError( f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'." ) elif norm_type == "ada_norm_zero" and num_embeds_ada_norm is None: raise ValueError( f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None." ) # Set some common variables used across the board. self.attention_head_dim = attention_head_dim self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim self.out_channels = in_channels if out_channels is None else out_channels self.gradient_checkpointing = False # 2. Initialize the position embedding and transformer blocks. self.height = self.config.sample_size self.width = self.config.sample_size self.patch_size = self.config.patch_size self.pos_embed = PatchEmbed( height=self.config.sample_size, width=self.config.sample_size, patch_size=self.config.patch_size, in_channels=self.config.in_channels, embed_dim=self.inner_dim, ) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( self.inner_dim, self.config.num_attention_heads, self.config.attention_head_dim, dropout=self.config.dropout, activation_fn=self.config.activation_fn, num_embeds_ada_norm=self.config.num_embeds_ada_norm, attention_bias=self.config.attention_bias, upcast_attention=self.config.upcast_attention, norm_type=norm_type, norm_elementwise_affine=self.config.norm_elementwise_affine, norm_eps=self.config.norm_eps, ) for _ in range(self.config.num_layers) ] ) # 3. Output blocks. self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim) self.proj_out_2 = nn.Linear( self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels ) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states: torch.Tensor, timestep: Optional[torch.LongTensor] = None, class_labels: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, return_dict: bool = True, ): """ The [`DiTTransformer2DModel`] forward method. Args: hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): Input `hidden_states`. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in `AdaLayerZeroNorm`. cross_attention_kwargs ( `Dict[str, Any]`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ # 1. Input height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size hidden_states = self.pos_embed(hidden_states) # 2. Blocks for block in self.transformer_blocks: if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, None, None, None, timestep, cross_attention_kwargs, class_labels, **ckpt_kwargs, ) else: hidden_states = block( hidden_states, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels, ) # 3. Output conditioning = self.transformer_blocks[0].norm1.emb(timestep, class_labels, hidden_dtype=hidden_states.dtype) shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] hidden_states = self.proj_out_2(hidden_states) # unpatchify height = width = int(hidden_states.shape[1] ** 0.5) hidden_states = hidden_states.reshape( shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) ) hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) output = hidden_states.reshape( shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) ) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)
class_definition
1,079
11,167
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dit_transformer_2d.py
null
1,111
class DualTransformer2DModel(nn.Module): """ Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference. Parameters: num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. in_channels (`int`, *optional*): Pass if the input is continuous. The number of channels in the input and output. num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use. cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use. sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images. Note that this is fixed at training time as it is used for learning a number of position embeddings. See `ImagePositionalEmbeddings`. num_vector_embeds (`int`, *optional*): Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels. Includes the class for the masked latent pixel. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`. The number of diffusion steps used during training. Note that this is fixed at training time as it is used to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for up to but not more than steps than `num_embeds_ada_norm`. attention_bias (`bool`, *optional*): Configure if the TransformerBlocks' attention should contain a bias parameter. """ def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, norm_num_groups: int = 32, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, sample_size: Optional[int] = None, num_vector_embeds: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, ): super().__init__() self.transformers = nn.ModuleList( [ Transformer2DModel( num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, in_channels=in_channels, num_layers=num_layers, dropout=dropout, norm_num_groups=norm_num_groups, cross_attention_dim=cross_attention_dim, attention_bias=attention_bias, sample_size=sample_size, num_vector_embeds=num_vector_embeds, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, ) for _ in range(2) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference self.mix_ratio = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` self.condition_lengths = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` self.transformer_index_for_condition = [1, 0] def forward( self, hidden_states, encoder_hidden_states, timestep=None, attention_mask=None, cross_attention_kwargs=None, return_dict: bool = True, ): """ Args: hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`. When continuous, `torch.Tensor` of shape `(batch size, channel, height, width)`): Input hidden_states. encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. timestep ( `torch.long`, *optional*): Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step. attention_mask (`torch.Tensor`, *optional*): Optional attention mask to be applied in Attention. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: [`~models.transformers.transformer_2d.Transformer2DModelOutput`] or `tuple`: [`~models.transformers.transformer_2d.Transformer2DModelOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ input_states = hidden_states encoded_states = [] tokens_start = 0 # attention_mask is not used yet for i in range(2): # for each of the two transformers, pass the corresponding condition tokens condition_state = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] transformer_index = self.transformer_index_for_condition[i] encoded_state = self.transformers[transformer_index]( input_states, encoder_hidden_states=condition_state, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] encoded_states.append(encoded_state - input_states) tokens_start += self.condition_lengths[i] output_states = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) output_states = output_states + input_states if not return_dict: return (output_states,) return Transformer2DModelOutput(sample=output_states)
class_definition
762
7,710
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/dual_transformer_2d.py
null
1,112
class TransformerTemporalModelOutput(BaseOutput): """ The output of [`TransformerTemporalModel`]. Args: sample (`torch.Tensor` of shape `(batch_size x num_frames, num_channels, height, width)`): The hidden states output conditioned on `encoder_hidden_states` input. """ sample: torch.Tensor
class_definition
1,032
1,364
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py
null
1,113
class TransformerTemporalModel(ModelMixin, ConfigMixin): """ A Transformer model for video-like data. Parameters: num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. in_channels (`int`, *optional*): The number of channels in the input and output (specify if the input is **continuous**). num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. attention_bias (`bool`, *optional*): Configure if the `TransformerBlock` attention should contain a bias parameter. sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). This is fixed during training since it is used to learn a number of position embeddings. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. See `diffusers.models.activations.get_activation` for supported activation functions. norm_elementwise_affine (`bool`, *optional*): Configure if the `TransformerBlock` should use learnable elementwise affine parameters for normalization. double_self_attention (`bool`, *optional*): Configure if each `TransformerBlock` should contain two self-attention layers. positional_embeddings: (`str`, *optional*): The type of positional embeddings to apply to the sequence input before passing use. num_positional_embeddings: (`int`, *optional*): The maximum length of the sequence over which to apply positional embeddings. """ @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, out_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, norm_num_groups: int = 32, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, sample_size: Optional[int] = None, activation_fn: str = "geglu", norm_elementwise_affine: bool = True, double_self_attention: bool = True, positional_embeddings: Optional[str] = None, num_positional_embeddings: Optional[int] = None, ): super().__init__() self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim self.in_channels = in_channels self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) self.proj_in = nn.Linear(in_channels, inner_dim) # 3. Define transformers blocks self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, attention_bias=attention_bias, double_self_attention=double_self_attention, norm_elementwise_affine=norm_elementwise_affine, positional_embeddings=positional_embeddings, num_positional_embeddings=num_positional_embeddings, ) for d in range(num_layers) ] ) self.proj_out = nn.Linear(inner_dim, in_channels) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.LongTensor] = None, timestep: Optional[torch.LongTensor] = None, class_labels: torch.LongTensor = None, num_frames: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> TransformerTemporalModelOutput: """ The [`TransformerTemporal`] forward method. Args: hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.Tensor` of shape `(batch size, channel, height, width)` if continuous): Input hidden_states. encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in `AdaLayerZeroNorm`. num_frames (`int`, *optional*, defaults to 1): The number of frames to be processed per batch. This is used to reshape the hidden states. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] instead of a plain tuple. Returns: [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`: If `return_dict` is True, an [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ # 1. Input batch_frames, channel, height, width = hidden_states.shape batch_size = batch_frames // num_frames residual = hidden_states hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, channel, height, width) hidden_states = hidden_states.permute(0, 2, 1, 3, 4) hidden_states = self.norm(hidden_states) hidden_states = hidden_states.permute(0, 3, 4, 2, 1).reshape(batch_size * height * width, num_frames, channel) hidden_states = self.proj_in(hidden_states) # 2. Blocks for block in self.transformer_blocks: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels, ) # 3. Output hidden_states = self.proj_out(hidden_states) hidden_states = ( hidden_states[None, None, :] .reshape(batch_size, height, width, num_frames, channel) .permute(0, 3, 4, 1, 2) .contiguous() ) hidden_states = hidden_states.reshape(batch_frames, channel, height, width) output = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=output)
class_definition
1,367
9,244
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py
null
1,114
class TransformerSpatioTemporalModel(nn.Module): """ A Transformer model for video-like data. Parameters: num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. in_channels (`int`, *optional*): The number of channels in the input and output (specify if the input is **continuous**). out_channels (`int`, *optional*): The number of channels in the output (specify if the input is **continuous**). num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. """ def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: int = 320, out_channels: Optional[int] = None, num_layers: int = 1, cross_attention_dim: Optional[int] = None, ): super().__init__() self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim self.inner_dim = inner_dim # 2. Define input layers self.in_channels = in_channels self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6) self.proj_in = nn.Linear(in_channels, inner_dim) # 3. Define transformers blocks self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, cross_attention_dim=cross_attention_dim, ) for d in range(num_layers) ] ) time_mix_inner_dim = inner_dim self.temporal_transformer_blocks = nn.ModuleList( [ TemporalBasicTransformerBlock( inner_dim, time_mix_inner_dim, num_attention_heads, attention_head_dim, cross_attention_dim=cross_attention_dim, ) for _ in range(num_layers) ] ) time_embed_dim = in_channels * 4 self.time_pos_embed = TimestepEmbedding(in_channels, time_embed_dim, out_dim=in_channels) self.time_proj = Timesteps(in_channels, True, 0) self.time_mixer = AlphaBlender(alpha=0.5, merge_strategy="learned_with_images") # 4. Define output layers self.out_channels = in_channels if out_channels is None else out_channels # TODO: should use out_channels for continuous projections self.proj_out = nn.Linear(inner_dim, in_channels) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, image_only_indicator: Optional[torch.Tensor] = None, return_dict: bool = True, ): """ Args: hidden_states (`torch.Tensor` of shape `(batch size, channel, height, width)`): Input hidden_states. num_frames (`int`): The number of frames to be processed per batch. This is used to reshape the hidden states. encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. image_only_indicator (`torch.LongTensor` of shape `(batch size, num_frames)`, *optional*): A tensor indicating whether the input contains only images. 1 indicates that the input contains only images, 0 indicates that the input contains video frames. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] instead of a plain tuple. Returns: [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] or `tuple`: If `return_dict` is True, an [`~models.transformers.transformer_temporal.TransformerTemporalModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ # 1. Input batch_frames, _, height, width = hidden_states.shape num_frames = image_only_indicator.shape[-1] batch_size = batch_frames // num_frames time_context = encoder_hidden_states time_context_first_timestep = time_context[None, :].reshape( batch_size, num_frames, -1, time_context.shape[-1] )[:, 0] time_context = time_context_first_timestep[:, None].broadcast_to( batch_size, height * width, time_context.shape[-2], time_context.shape[-1] ) time_context = time_context.reshape(batch_size * height * width, -1, time_context.shape[-1]) residual = hidden_states hidden_states = self.norm(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_frames, height * width, inner_dim) hidden_states = self.proj_in(hidden_states) num_frames_emb = torch.arange(num_frames, device=hidden_states.device) num_frames_emb = num_frames_emb.repeat(batch_size, 1) num_frames_emb = num_frames_emb.reshape(-1) t_emb = self.time_proj(num_frames_emb) # `Timesteps` does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=hidden_states.dtype) emb = self.time_pos_embed(t_emb) emb = emb[:, None, :] # 2. Blocks for block, temporal_block in zip(self.transformer_blocks, self.temporal_transformer_blocks): if torch.is_grad_enabled() and self.gradient_checkpointing: hidden_states = torch.utils.checkpoint.checkpoint( block, hidden_states, None, encoder_hidden_states, None, use_reentrant=False, ) else: hidden_states = block( hidden_states, encoder_hidden_states=encoder_hidden_states, ) hidden_states_mix = hidden_states hidden_states_mix = hidden_states_mix + emb hidden_states_mix = temporal_block( hidden_states_mix, num_frames=num_frames, encoder_hidden_states=time_context, ) hidden_states = self.time_mixer( x_spatial=hidden_states, x_temporal=hidden_states_mix, image_only_indicator=image_only_indicator, ) # 3. Output hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.reshape(batch_frames, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() output = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=output)
class_definition
9,247
16,943
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_temporal.py
null
1,115
class LTXVideoAttentionProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). This is used in the LTX model. It applies a normalization layer and rotary embedding on the query and key vector. """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "LTXVideoAttentionProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if encoder_hidden_states is None: encoder_hidden_states = hidden_states query = attn.to_q(hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.norm_q(query) key = attn.norm_k(key) if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2) key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2) value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2) hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).flatten(2, 3) hidden_states = hidden_states.to(query.dtype) hidden_states = attn.to_out[0](hidden_states) hidden_states = attn.to_out[1](hidden_states) return hidden_states
class_definition
1,402
3,691
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
null
1,116
class LTXVideoRotaryPosEmbed(nn.Module): def __init__( self, dim: int, base_num_frames: int = 20, base_height: int = 2048, base_width: int = 2048, patch_size: int = 1, patch_size_t: int = 1, theta: float = 10000.0, ) -> None: super().__init__() self.dim = dim self.base_num_frames = base_num_frames self.base_height = base_height self.base_width = base_width self.patch_size = patch_size self.patch_size_t = patch_size_t self.theta = theta def forward( self, hidden_states: torch.Tensor, num_frames: int, height: int, width: int, rope_interpolation_scale: Optional[Tuple[torch.Tensor, float, float]] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: batch_size = hidden_states.size(0) # Always compute rope in fp32 grid_h = torch.arange(height, dtype=torch.float32, device=hidden_states.device) grid_w = torch.arange(width, dtype=torch.float32, device=hidden_states.device) grid_f = torch.arange(num_frames, dtype=torch.float32, device=hidden_states.device) grid = torch.meshgrid(grid_f, grid_h, grid_w, indexing="ij") grid = torch.stack(grid, dim=0) grid = grid.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1) if rope_interpolation_scale is not None: grid[:, 0:1] = grid[:, 0:1] * rope_interpolation_scale[0] * self.patch_size_t / self.base_num_frames grid[:, 1:2] = grid[:, 1:2] * rope_interpolation_scale[1] * self.patch_size / self.base_height grid[:, 2:3] = grid[:, 2:3] * rope_interpolation_scale[2] * self.patch_size / self.base_width grid = grid.flatten(2, 4).transpose(1, 2) start = 1.0 end = self.theta freqs = self.theta ** torch.linspace( math.log(start, self.theta), math.log(end, self.theta), self.dim // 6, device=hidden_states.device, dtype=torch.float32, ) freqs = freqs * math.pi / 2.0 freqs = freqs * (grid.unsqueeze(-1) * 2 - 1) freqs = freqs.transpose(-1, -2).flatten(2) cos_freqs = freqs.cos().repeat_interleave(2, dim=-1) sin_freqs = freqs.sin().repeat_interleave(2, dim=-1) if self.dim % 6 != 0: cos_padding = torch.ones_like(cos_freqs[:, :, : self.dim % 6]) sin_padding = torch.zeros_like(cos_freqs[:, :, : self.dim % 6]) cos_freqs = torch.cat([cos_padding, cos_freqs], dim=-1) sin_freqs = torch.cat([sin_padding, sin_freqs], dim=-1) return cos_freqs, sin_freqs
class_definition
3,694
6,387
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
null
1,117
class LTXVideoTransformerBlock(nn.Module): r""" Transformer block used in [LTX](https://huggingface.co/Lightricks/LTX-Video). Args: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. qk_norm (`str`, defaults to `"rms_norm"`): The normalization layer to use. activation_fn (`str`, defaults to `"gelu-approximate"`): Activation function to use in feed-forward. eps (`float`, defaults to `1e-6`): Epsilon value for normalization layers. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, cross_attention_dim: int, qk_norm: str = "rms_norm_across_heads", activation_fn: str = "gelu-approximate", attention_bias: bool = True, attention_out_bias: bool = True, eps: float = 1e-6, elementwise_affine: bool = False, ): super().__init__() self.norm1 = RMSNorm(dim, eps=eps, elementwise_affine=elementwise_affine) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, kv_heads=num_attention_heads, dim_head=attention_head_dim, bias=attention_bias, cross_attention_dim=None, out_bias=attention_out_bias, qk_norm=qk_norm, processor=LTXVideoAttentionProcessor2_0(), ) self.norm2 = RMSNorm(dim, eps=eps, elementwise_affine=elementwise_affine) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, kv_heads=num_attention_heads, dim_head=attention_head_dim, bias=attention_bias, out_bias=attention_out_bias, qk_norm=qk_norm, processor=LTXVideoAttentionProcessor2_0(), ) self.ff = FeedForward(dim, activation_fn=activation_fn) self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, encoder_attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: batch_size = hidden_states.size(0) norm_hidden_states = self.norm1(hidden_states) num_ada_params = self.scale_shift_table.shape[0] ada_values = self.scale_shift_table[None, None] + temb.reshape(batch_size, temb.size(1), num_ada_params, -1) shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ada_values.unbind(dim=2) norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa attn_hidden_states = self.attn1( hidden_states=norm_hidden_states, encoder_hidden_states=None, image_rotary_emb=image_rotary_emb, ) hidden_states = hidden_states + attn_hidden_states * gate_msa attn_hidden_states = self.attn2( hidden_states, encoder_hidden_states=encoder_hidden_states, image_rotary_emb=None, attention_mask=encoder_attention_mask, ) hidden_states = hidden_states + attn_hidden_states norm_hidden_states = self.norm2(hidden_states) * (1 + scale_mlp) + shift_mlp ff_output = self.ff(norm_hidden_states) hidden_states = hidden_states + ff_output * gate_mlp return hidden_states
class_definition
6,412
10,188
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
null
1,118
class LTXVideoTransformer3DModel(ModelMixin, ConfigMixin, FromOriginalModelMixin, PeftAdapterMixin): r""" A Transformer model for video-like data used in [LTX](https://huggingface.co/Lightricks/LTX-Video). Args: in_channels (`int`, defaults to `128`): The number of channels in the input. out_channels (`int`, defaults to `128`): The number of channels in the output. patch_size (`int`, defaults to `1`): The size of the spatial patches to use in the patch embedding layer. patch_size_t (`int`, defaults to `1`): The size of the tmeporal patches to use in the patch embedding layer. num_attention_heads (`int`, defaults to `32`): The number of heads to use for multi-head attention. attention_head_dim (`int`, defaults to `64`): The number of channels in each head. cross_attention_dim (`int`, defaults to `2048 `): The number of channels for cross attention heads. num_layers (`int`, defaults to `28`): The number of layers of Transformer blocks to use. activation_fn (`str`, defaults to `"gelu-approximate"`): Activation function to use in feed-forward. qk_norm (`str`, defaults to `"rms_norm_across_heads"`): The normalization layer to use. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, in_channels: int = 128, out_channels: int = 128, patch_size: int = 1, patch_size_t: int = 1, num_attention_heads: int = 32, attention_head_dim: int = 64, cross_attention_dim: int = 2048, num_layers: int = 28, activation_fn: str = "gelu-approximate", qk_norm: str = "rms_norm_across_heads", norm_elementwise_affine: bool = False, norm_eps: float = 1e-6, caption_channels: int = 4096, attention_bias: bool = True, attention_out_bias: bool = True, ) -> None: super().__init__() out_channels = out_channels or in_channels inner_dim = num_attention_heads * attention_head_dim self.proj_in = nn.Linear(in_channels, inner_dim) self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) self.time_embed = AdaLayerNormSingle(inner_dim, use_additional_conditions=False) self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) self.rope = LTXVideoRotaryPosEmbed( dim=inner_dim, base_num_frames=20, base_height=2048, base_width=2048, patch_size=patch_size, patch_size_t=patch_size_t, theta=10000.0, ) self.transformer_blocks = nn.ModuleList( [ LTXVideoTransformerBlock( dim=inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, cross_attention_dim=cross_attention_dim, qk_norm=qk_norm, activation_fn=activation_fn, attention_bias=attention_bias, attention_out_bias=attention_out_bias, eps=norm_eps, elementwise_affine=norm_elementwise_affine, ) for _ in range(num_layers) ] ) self.norm_out = nn.LayerNorm(inner_dim, eps=1e-6, elementwise_affine=False) self.proj_out = nn.Linear(inner_dim, out_channels) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, timestep: torch.LongTensor, encoder_attention_mask: torch.Tensor, num_frames: int, height: int, width: int, rope_interpolation_scale: Optional[Tuple[float, float, float]] = None, attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> torch.Tensor: if attention_kwargs is not None: attention_kwargs = attention_kwargs.copy() lora_scale = attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." ) image_rotary_emb = self.rope(hidden_states, num_frames, height, width, rope_interpolation_scale) # convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) batch_size = hidden_states.size(0) hidden_states = self.proj_in(hidden_states) temb, embedded_timestep = self.time_embed( timestep.flatten(), batch_size=batch_size, hidden_dtype=hidden_states.dtype, ) temb = temb.view(batch_size, -1, temb.size(-1)) embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.size(-1)) encoder_hidden_states = self.caption_projection(encoder_hidden_states) encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.size(-1)) for block in self.transformer_blocks: if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, image_rotary_emb, encoder_attention_mask, **ckpt_kwargs, ) else: hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, encoder_attention_mask=encoder_attention_mask, ) scale_shift_values = self.scale_shift_table[None, None] + embedded_timestep[:, :, None] shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1] hidden_states = self.norm_out(hidden_states) hidden_states = hidden_states * (1 + scale) + shift output = self.proj_out(hidden_states) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)
class_definition
10,213
18,114
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_ltx.py
null
1,119
class LatteTransformer3DModel(ModelMixin, ConfigMixin): _supports_gradient_checkpointing = True """ A 3D Transformer model for video-like data, paper: https://arxiv.org/abs/2401.03048, offical code: https://github.com/Vchitect/Latte Parameters: num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. in_channels (`int`, *optional*): The number of channels in the input. out_channels (`int`, *optional*): The number of channels in the output. num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. attention_bias (`bool`, *optional*): Configure if the `TransformerBlocks` attention should contain a bias parameter. sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). This is fixed during training since it is used to learn a number of position embeddings. patch_size (`int`, *optional*): The size of the patches to use in the patch embedding layer. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. num_embeds_ada_norm ( `int`, *optional*): The number of diffusion steps used during training. Pass if at least one of the norm_layers is `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`. norm_type (`str`, *optional*, defaults to `"layer_norm"`): The type of normalization to use. Options are `"layer_norm"` or `"ada_layer_norm"`. norm_elementwise_affine (`bool`, *optional*, defaults to `True`): Whether or not to use elementwise affine in normalization layers. norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use in normalization layers. caption_channels (`int`, *optional*): The number of channels in the caption embeddings. video_length (`int`, *optional*): The number of frames in the video-like data. """ @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, out_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, sample_size: int = 64, patch_size: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, norm_type: str = "layer_norm", norm_elementwise_affine: bool = True, norm_eps: float = 1e-5, caption_channels: int = None, video_length: int = 16, ): super().__init__() inner_dim = num_attention_heads * attention_head_dim # 1. Define input layers self.height = sample_size self.width = sample_size interpolation_scale = self.config.sample_size // 64 interpolation_scale = max(interpolation_scale, 1) self.pos_embed = PatchEmbed( height=sample_size, width=sample_size, patch_size=patch_size, in_channels=in_channels, embed_dim=inner_dim, interpolation_scale=interpolation_scale, ) # 2. Define spatial transformers blocks self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=cross_attention_dim, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, norm_type=norm_type, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, ) for d in range(num_layers) ] ) # 3. Define temporal transformers blocks self.temporal_transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, cross_attention_dim=None, activation_fn=activation_fn, num_embeds_ada_norm=num_embeds_ada_norm, attention_bias=attention_bias, norm_type=norm_type, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, ) for d in range(num_layers) ] ) # 4. Define output layers self.out_channels = in_channels if out_channels is None else out_channels self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * self.out_channels) # 5. Latte other blocks. self.adaln_single = AdaLayerNormSingle(inner_dim, use_additional_conditions=False) self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) # define temporal positional embedding temp_pos_embed = get_1d_sincos_pos_embed_from_grid( inner_dim, torch.arange(0, video_length).unsqueeze(1), output_type="pt" ) # 1152 hidden size self.register_buffer("temp_pos_embed", temp_pos_embed.float().unsqueeze(0), persistent=False) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): self.gradient_checkpointing = value def forward( self, hidden_states: torch.Tensor, timestep: Optional[torch.LongTensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, enable_temporal_attentions: bool = True, return_dict: bool = True, ): """ The [`LatteTransformer3DModel`] forward method. Args: hidden_states shape `(batch size, channel, num_frame, height, width)`: Input `hidden_states`. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. encoder_attention_mask ( `torch.Tensor`, *optional*): Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: * Mask `(batcheight, sequence_length)` True = keep, False = discard. * Bias `(batcheight, 1, sequence_length)` 0 = keep, -10000 = discard. If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format above. This bias will be added to the cross-attention scores. enable_temporal_attentions: (`bool`, *optional*, defaults to `True`): Whether to enable temporal attentions. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ # Reshape hidden states batch_size, channels, num_frame, height, width = hidden_states.shape # batch_size channels num_frame height width -> (batch_size * num_frame) channels height width hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(-1, channels, height, width) # Input height, width = ( hidden_states.shape[-2] // self.config.patch_size, hidden_states.shape[-1] // self.config.patch_size, ) num_patches = height * width hidden_states = self.pos_embed(hidden_states) # alrady add positional embeddings added_cond_kwargs = {"resolution": None, "aspect_ratio": None} timestep, embedded_timestep = self.adaln_single( timestep, added_cond_kwargs=added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype ) # Prepare text embeddings for spatial block # batch_size num_tokens hidden_size -> (batch_size * num_frame) num_tokens hidden_size encoder_hidden_states = self.caption_projection(encoder_hidden_states) # 3 120 1152 encoder_hidden_states_spatial = encoder_hidden_states.repeat_interleave(num_frame, dim=0).view( -1, encoder_hidden_states.shape[-2], encoder_hidden_states.shape[-1] ) # Prepare timesteps for spatial and temporal block timestep_spatial = timestep.repeat_interleave(num_frame, dim=0).view(-1, timestep.shape[-1]) timestep_temp = timestep.repeat_interleave(num_patches, dim=0).view(-1, timestep.shape[-1]) # Spatial and temporal transformer blocks for i, (spatial_block, temp_block) in enumerate( zip(self.transformer_blocks, self.temporal_transformer_blocks) ): if torch.is_grad_enabled() and self.gradient_checkpointing: hidden_states = torch.utils.checkpoint.checkpoint( spatial_block, hidden_states, None, # attention_mask encoder_hidden_states_spatial, encoder_attention_mask, timestep_spatial, None, # cross_attention_kwargs None, # class_labels use_reentrant=False, ) else: hidden_states = spatial_block( hidden_states, None, # attention_mask encoder_hidden_states_spatial, encoder_attention_mask, timestep_spatial, None, # cross_attention_kwargs None, # class_labels ) if enable_temporal_attentions: # (batch_size * num_frame) num_tokens hidden_size -> (batch_size * num_tokens) num_frame hidden_size hidden_states = hidden_states.reshape( batch_size, -1, hidden_states.shape[-2], hidden_states.shape[-1] ).permute(0, 2, 1, 3) hidden_states = hidden_states.reshape(-1, hidden_states.shape[-2], hidden_states.shape[-1]) if i == 0 and num_frame > 1: hidden_states = hidden_states + self.temp_pos_embed if torch.is_grad_enabled() and self.gradient_checkpointing: hidden_states = torch.utils.checkpoint.checkpoint( temp_block, hidden_states, None, # attention_mask None, # encoder_hidden_states None, # encoder_attention_mask timestep_temp, None, # cross_attention_kwargs None, # class_labels use_reentrant=False, ) else: hidden_states = temp_block( hidden_states, None, # attention_mask None, # encoder_hidden_states None, # encoder_attention_mask timestep_temp, None, # cross_attention_kwargs None, # class_labels ) # (batch_size * num_tokens) num_frame hidden_size -> (batch_size * num_frame) num_tokens hidden_size hidden_states = hidden_states.reshape( batch_size, -1, hidden_states.shape[-2], hidden_states.shape[-1] ).permute(0, 2, 1, 3) hidden_states = hidden_states.reshape(-1, hidden_states.shape[-2], hidden_states.shape[-1]) embedded_timestep = embedded_timestep.repeat_interleave(num_frame, dim=0).view(-1, embedded_timestep.shape[-1]) shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) hidden_states = self.norm_out(hidden_states) # Modulation hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.proj_out(hidden_states) # unpatchify if self.adaln_single is None: height = width = int(hidden_states.shape[1] ** 0.5) hidden_states = hidden_states.reshape( shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels) ) hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) output = hidden_states.reshape( shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size) ) output = output.reshape(batch_size, -1, output.shape[-3], output.shape[-2], output.shape[-1]).permute( 0, 2, 1, 3, 4 ) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)
class_definition
1,077
15,504
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/latte_transformer_3d.py
null
1,120
class GLUMBConv(nn.Module): def __init__( self, in_channels: int, out_channels: int, expand_ratio: float = 4, norm_type: Optional[str] = None, residual_connection: bool = True, ) -> None: super().__init__() hidden_channels = int(expand_ratio * in_channels) self.norm_type = norm_type self.residual_connection = residual_connection self.nonlinearity = nn.SiLU() self.conv_inverted = nn.Conv2d(in_channels, hidden_channels * 2, 1, 1, 0) self.conv_depth = nn.Conv2d(hidden_channels * 2, hidden_channels * 2, 3, 1, 1, groups=hidden_channels * 2) self.conv_point = nn.Conv2d(hidden_channels, out_channels, 1, 1, 0, bias=False) self.norm = None if norm_type == "rms_norm": self.norm = RMSNorm(out_channels, eps=1e-5, elementwise_affine=True, bias=True) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: if self.residual_connection: residual = hidden_states hidden_states = self.conv_inverted(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.conv_depth(hidden_states) hidden_states, gate = torch.chunk(hidden_states, 2, dim=1) hidden_states = hidden_states * self.nonlinearity(gate) hidden_states = self.conv_point(hidden_states) if self.norm_type == "rms_norm": # move channel to the last dimension so we apply RMSnorm across channel dimension hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1) if self.residual_connection: hidden_states = hidden_states + residual return hidden_states
class_definition
1,328
3,067
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
null
1,121
class SanaTransformerBlock(nn.Module): r""" Transformer block introduced in [Sana](https://huggingface.co/papers/2410.10629). """ def __init__( self, dim: int = 2240, num_attention_heads: int = 70, attention_head_dim: int = 32, dropout: float = 0.0, num_cross_attention_heads: Optional[int] = 20, cross_attention_head_dim: Optional[int] = 112, cross_attention_dim: Optional[int] = 2240, attention_bias: bool = True, norm_elementwise_affine: bool = False, norm_eps: float = 1e-6, attention_out_bias: bool = True, mlp_ratio: float = 2.5, ) -> None: super().__init__() # 1. Self Attention self.norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=norm_eps) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=attention_bias, cross_attention_dim=None, processor=SanaLinearAttnProcessor2_0(), ) # 2. Cross Attention if cross_attention_dim is not None: self.norm2 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_cross_attention_heads, dim_head=cross_attention_head_dim, dropout=dropout, bias=True, out_bias=attention_out_bias, processor=AttnProcessor2_0(), ) # 3. Feed-forward self.ff = GLUMBConv(dim, dim, mlp_ratio, norm_type=None, residual_connection=False) self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, height: int = None, width: int = None, ) -> torch.Tensor: batch_size = hidden_states.shape[0] # 1. Modulation shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) ).chunk(6, dim=1) # 2. Self Attention norm_hidden_states = self.norm1(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa norm_hidden_states = norm_hidden_states.to(hidden_states.dtype) attn_output = self.attn1(norm_hidden_states) hidden_states = hidden_states + gate_msa * attn_output # 3. Cross Attention if self.attn2 is not None: attn_output = self.attn2( hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = attn_output + hidden_states # 4. Feed-forward norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp norm_hidden_states = norm_hidden_states.unflatten(1, (height, width)).permute(0, 3, 1, 2) ff_output = self.ff(norm_hidden_states) ff_output = ff_output.flatten(2, 3).permute(0, 2, 1) hidden_states = hidden_states + gate_mlp * ff_output return hidden_states
class_definition
3,070
6,698
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
null
1,122
class SanaTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): r""" A 2D Transformer model introduced in [Sana](https://huggingface.co/papers/2410.10629) family of models. Args: in_channels (`int`, defaults to `32`): The number of channels in the input. out_channels (`int`, *optional*, defaults to `32`): The number of channels in the output. num_attention_heads (`int`, defaults to `70`): The number of heads to use for multi-head attention. attention_head_dim (`int`, defaults to `32`): The number of channels in each head. num_layers (`int`, defaults to `20`): The number of layers of Transformer blocks to use. num_cross_attention_heads (`int`, *optional*, defaults to `20`): The number of heads to use for cross-attention. cross_attention_head_dim (`int`, *optional*, defaults to `112`): The number of channels in each head for cross-attention. cross_attention_dim (`int`, *optional*, defaults to `2240`): The number of channels in the cross-attention output. caption_channels (`int`, defaults to `2304`): The number of channels in the caption embeddings. mlp_ratio (`float`, defaults to `2.5`): The expansion ratio to use in the GLUMBConv layer. dropout (`float`, defaults to `0.0`): The dropout probability. attention_bias (`bool`, defaults to `False`): Whether to use bias in the attention layer. sample_size (`int`, defaults to `32`): The base size of the input latent. patch_size (`int`, defaults to `1`): The size of the patches to use in the patch embedding layer. norm_elementwise_affine (`bool`, defaults to `False`): Whether to use elementwise affinity in the normalization layer. norm_eps (`float`, defaults to `1e-6`): The epsilon value for the normalization layer. """ _supports_gradient_checkpointing = True _no_split_modules = ["SanaTransformerBlock", "PatchEmbed"] @register_to_config def __init__( self, in_channels: int = 32, out_channels: Optional[int] = 32, num_attention_heads: int = 70, attention_head_dim: int = 32, num_layers: int = 20, num_cross_attention_heads: Optional[int] = 20, cross_attention_head_dim: Optional[int] = 112, cross_attention_dim: Optional[int] = 2240, caption_channels: int = 2304, mlp_ratio: float = 2.5, dropout: float = 0.0, attention_bias: bool = False, sample_size: int = 32, patch_size: int = 1, norm_elementwise_affine: bool = False, norm_eps: float = 1e-6, interpolation_scale: Optional[int] = None, ) -> None: super().__init__() out_channels = out_channels or in_channels inner_dim = num_attention_heads * attention_head_dim # 1. Patch Embedding self.patch_embed = PatchEmbed( height=sample_size, width=sample_size, patch_size=patch_size, in_channels=in_channels, embed_dim=inner_dim, interpolation_scale=interpolation_scale, pos_embed_type="sincos" if interpolation_scale is not None else None, ) # 2. Additional condition embeddings self.time_embed = AdaLayerNormSingle(inner_dim) self.caption_projection = PixArtAlphaTextProjection(in_features=caption_channels, hidden_size=inner_dim) self.caption_norm = RMSNorm(inner_dim, eps=1e-5, elementwise_affine=True) # 3. Transformer blocks self.transformer_blocks = nn.ModuleList( [ SanaTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, dropout=dropout, num_cross_attention_heads=num_cross_attention_heads, cross_attention_head_dim=cross_attention_head_dim, cross_attention_dim=cross_attention_dim, attention_bias=attention_bias, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, mlp_ratio=mlp_ratio, ) for _ in range(num_layers) ] ) # 4. Output blocks self.scale_shift_table = nn.Parameter(torch.randn(2, inner_dim) / inner_dim**0.5) self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, timestep: torch.LongTensor, encoder_attention_mask: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> Union[Tuple[torch.Tensor, ...], Transformer2DModelOutput]: if attention_kwargs is not None: attention_kwargs = attention_kwargs.copy() lora_scale = attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." ) # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. # expects mask of shape: # [batch, key_tokens] # adds singleton query_tokens dimension: # [batch, 1, key_tokens] # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) if attention_mask is not None and attention_mask.ndim == 2: # assume that mask is expressed as: # (1 = keep, 0 = discard) # convert mask into a bias that can be added to attention scores: # (keep = +0, discard = -10000.0) attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) # 1. Input batch_size, num_channels, height, width = hidden_states.shape p = self.config.patch_size post_patch_height, post_patch_width = height // p, width // p hidden_states = self.patch_embed(hidden_states) timestep, embedded_timestep = self.time_embed( timestep, batch_size=batch_size, hidden_dtype=hidden_states.dtype ) encoder_hidden_states = self.caption_projection(encoder_hidden_states) encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) encoder_hidden_states = self.caption_norm(encoder_hidden_states) # 2. Transformer blocks if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} for block in self.transformer_blocks: hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, timestep, post_patch_height, post_patch_width, **ckpt_kwargs, ) else: for block in self.transformer_blocks: hidden_states = block( hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, timestep, post_patch_height, post_patch_width, ) # 3. Normalization shift, scale = ( self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device) ).chunk(2, dim=1) hidden_states = self.norm_out(hidden_states) # 4. Modulation hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.proj_out(hidden_states) # 5. Unpatchify hidden_states = hidden_states.reshape( batch_size, post_patch_height, post_patch_width, self.config.patch_size, self.config.patch_size, -1 ) hidden_states = hidden_states.permute(0, 5, 1, 3, 2, 4) output = hidden_states.reshape(batch_size, -1, post_patch_height * p, post_patch_width * p) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)
class_definition
6,701
20,078
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/sana_transformer.py
null
1,123
class AuraFlowPatchEmbed(nn.Module): def __init__( self, height=224, width=224, patch_size=16, in_channels=3, embed_dim=768, pos_embed_max_size=None, ): super().__init__() self.num_patches = (height // patch_size) * (width // patch_size) self.pos_embed_max_size = pos_embed_max_size self.proj = nn.Linear(patch_size * patch_size * in_channels, embed_dim) self.pos_embed = nn.Parameter(torch.randn(1, pos_embed_max_size, embed_dim) * 0.1) self.patch_size = patch_size self.height, self.width = height // patch_size, width // patch_size self.base_size = height // patch_size def pe_selection_index_based_on_dim(self, h, w): # select subset of positional embedding based on H, W, where H, W is size of latent # PE will be viewed as 2d-grid, and H/p x W/p of the PE will be selected # because original input are in flattened format, we have to flatten this 2d grid as well. h_p, w_p = h // self.patch_size, w // self.patch_size original_pe_indexes = torch.arange(self.pos_embed.shape[1]) h_max, w_max = int(self.pos_embed_max_size**0.5), int(self.pos_embed_max_size**0.5) original_pe_indexes = original_pe_indexes.view(h_max, w_max) starth = h_max // 2 - h_p // 2 endh = starth + h_p startw = w_max // 2 - w_p // 2 endw = startw + w_p original_pe_indexes = original_pe_indexes[starth:endh, startw:endw] return original_pe_indexes.flatten() def forward(self, latent): batch_size, num_channels, height, width = latent.size() latent = latent.view( batch_size, num_channels, height // self.patch_size, self.patch_size, width // self.patch_size, self.patch_size, ) latent = latent.permute(0, 2, 4, 1, 3, 5).flatten(-3).flatten(1, 2) latent = self.proj(latent) pe_index = self.pe_selection_index_based_on_dim(height, width) return latent + self.pos_embed[:, pe_index]
class_definition
1,644
3,774
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
null
1,124
class AuraFlowFeedForward(nn.Module): def __init__(self, dim, hidden_dim=None) -> None: super().__init__() if hidden_dim is None: hidden_dim = 4 * dim final_hidden_dim = int(2 * hidden_dim / 3) final_hidden_dim = find_multiple(final_hidden_dim, 256) self.linear_1 = nn.Linear(dim, final_hidden_dim, bias=False) self.linear_2 = nn.Linear(dim, final_hidden_dim, bias=False) self.out_projection = nn.Linear(final_hidden_dim, dim, bias=False) def forward(self, x: torch.Tensor) -> torch.Tensor: x = F.silu(self.linear_1(x)) * self.linear_2(x) x = self.out_projection(x) return x
class_definition
3,881
4,558
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
null
1,125
class AuraFlowPreFinalBlock(nn.Module): def __init__(self, embedding_dim: int, conditioning_embedding_dim: int): super().__init__() self.silu = nn.SiLU() self.linear = nn.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=False) def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor: emb = self.linear(self.silu(conditioning_embedding).to(x.dtype)) scale, shift = torch.chunk(emb, 2, dim=1) x = x * (1 + scale)[:, None, :] + shift[:, None, :] return x
class_definition
4,561
5,121
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
null
1,126
class AuraFlowSingleTransformerBlock(nn.Module): """Similar to `AuraFlowJointTransformerBlock` with a single DiT instead of an MMDiT.""" def __init__(self, dim, num_attention_heads, attention_head_dim): super().__init__() self.norm1 = AdaLayerNormZero(dim, bias=False, norm_type="fp32_layer_norm") processor = AuraFlowAttnProcessor2_0() self.attn = Attention( query_dim=dim, cross_attention_dim=None, dim_head=attention_head_dim, heads=num_attention_heads, qk_norm="fp32_layer_norm", out_dim=dim, bias=False, out_bias=False, processor=processor, ) self.norm2 = FP32LayerNorm(dim, elementwise_affine=False, bias=False) self.ff = AuraFlowFeedForward(dim, dim * 4) def forward(self, hidden_states: torch.FloatTensor, temb: torch.FloatTensor): residual = hidden_states # Norm + Projection. norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) # Attention. attn_output = self.attn(hidden_states=norm_hidden_states) # Process attention outputs for the `hidden_states`. hidden_states = self.norm2(residual + gate_msa.unsqueeze(1) * attn_output) hidden_states = hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] ff_output = self.ff(hidden_states) hidden_states = gate_mlp.unsqueeze(1) * ff_output hidden_states = residual + hidden_states return hidden_states
class_definition
5,146
6,735
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
null
1,127
class AuraFlowJointTransformerBlock(nn.Module): r""" Transformer block for Aura Flow. Similar to SD3 MMDiT. Differences (non-exhaustive): * QK Norm in the attention blocks * No bias in the attention blocks * Most LayerNorms are in FP32 Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. is_last (`bool`): Boolean to determine if this is the last block in the model. """ def __init__(self, dim, num_attention_heads, attention_head_dim): super().__init__() self.norm1 = AdaLayerNormZero(dim, bias=False, norm_type="fp32_layer_norm") self.norm1_context = AdaLayerNormZero(dim, bias=False, norm_type="fp32_layer_norm") processor = AuraFlowAttnProcessor2_0() self.attn = Attention( query_dim=dim, cross_attention_dim=None, added_kv_proj_dim=dim, added_proj_bias=False, dim_head=attention_head_dim, heads=num_attention_heads, qk_norm="fp32_layer_norm", out_dim=dim, bias=False, out_bias=False, processor=processor, context_pre_only=False, ) self.norm2 = FP32LayerNorm(dim, elementwise_affine=False, bias=False) self.ff = AuraFlowFeedForward(dim, dim * 4) self.norm2_context = FP32LayerNorm(dim, elementwise_affine=False, bias=False) self.ff_context = AuraFlowFeedForward(dim, dim * 4) def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, temb: torch.FloatTensor ): residual = hidden_states residual_context = encoder_hidden_states # Norm + Projection. norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( encoder_hidden_states, emb=temb ) # Attention. attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states ) # Process attention outputs for the `hidden_states`. hidden_states = self.norm2(residual + gate_msa.unsqueeze(1) * attn_output) hidden_states = hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] hidden_states = gate_mlp.unsqueeze(1) * self.ff(hidden_states) hidden_states = residual + hidden_states # Process attention outputs for the `encoder_hidden_states`. encoder_hidden_states = self.norm2_context(residual_context + c_gate_msa.unsqueeze(1) * context_attn_output) encoder_hidden_states = encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] encoder_hidden_states = c_gate_mlp.unsqueeze(1) * self.ff_context(encoder_hidden_states) encoder_hidden_states = residual_context + encoder_hidden_states return encoder_hidden_states, hidden_states
class_definition
6,760
9,980
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
null
1,128
class AuraFlowTransformer2DModel(ModelMixin, ConfigMixin, FromOriginalModelMixin): r""" A 2D Transformer model as introduced in AuraFlow (https://blog.fal.ai/auraflow/). Parameters: sample_size (`int`): The width of the latent images. This is fixed during training since it is used to learn a number of position embeddings. patch_size (`int`): Patch size to turn the input data into small patches. in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. num_mmdit_layers (`int`, *optional*, defaults to 4): The number of layers of MMDiT Transformer blocks to use. num_single_dit_layers (`int`, *optional*, defaults to 4): The number of layers of Transformer blocks to use. These blocks use concatenated image and text representations. attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`. out_channels (`int`, defaults to 16): Number of output channels. pos_embed_max_size (`int`, defaults to 4096): Maximum positions to embed from the image latents. """ _no_split_modules = ["AuraFlowJointTransformerBlock", "AuraFlowSingleTransformerBlock", "AuraFlowPatchEmbed"] _supports_gradient_checkpointing = True @register_to_config def __init__( self, sample_size: int = 64, patch_size: int = 2, in_channels: int = 4, num_mmdit_layers: int = 4, num_single_dit_layers: int = 32, attention_head_dim: int = 256, num_attention_heads: int = 12, joint_attention_dim: int = 2048, caption_projection_dim: int = 3072, out_channels: int = 4, pos_embed_max_size: int = 1024, ): super().__init__() default_out_channels = in_channels self.out_channels = out_channels if out_channels is not None else default_out_channels self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim self.pos_embed = AuraFlowPatchEmbed( height=self.config.sample_size, width=self.config.sample_size, patch_size=self.config.patch_size, in_channels=self.config.in_channels, embed_dim=self.inner_dim, pos_embed_max_size=pos_embed_max_size, ) self.context_embedder = nn.Linear( self.config.joint_attention_dim, self.config.caption_projection_dim, bias=False ) self.time_step_embed = Timesteps(num_channels=256, downscale_freq_shift=0, scale=1000, flip_sin_to_cos=True) self.time_step_proj = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim) self.joint_transformer_blocks = nn.ModuleList( [ AuraFlowJointTransformerBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim, ) for i in range(self.config.num_mmdit_layers) ] ) self.single_transformer_blocks = nn.ModuleList( [ AuraFlowSingleTransformerBlock( dim=self.inner_dim, num_attention_heads=self.config.num_attention_heads, attention_head_dim=self.config.attention_head_dim, ) for _ in range(self.config.num_single_dit_layers) ] ) self.norm_out = AuraFlowPreFinalBlock(self.inner_dim, self.inner_dim) self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=False) # https://arxiv.org/abs/2309.16588 # prevents artifacts in the attention maps self.register_tokens = nn.Parameter(torch.randn(1, 8, self.inner_dim) * 0.02) self.gradient_checkpointing = False @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedAuraFlowAttnProcessor2_0 def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ self.original_attn_processors = None for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True) self.set_attn_processor(FusedAuraFlowAttnProcessor2_0()) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, timestep: torch.LongTensor = None, return_dict: bool = True, ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: height, width = hidden_states.shape[-2:] # Apply patch embedding, timestep embedding, and project the caption embeddings. hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too. temb = self.time_step_embed(timestep).to(dtype=next(self.parameters()).dtype) temb = self.time_step_proj(temb) encoder_hidden_states = self.context_embedder(encoder_hidden_states) encoder_hidden_states = torch.cat( [self.register_tokens.repeat(encoder_hidden_states.size(0), 1, 1), encoder_hidden_states], dim=1 ) # MMDiT blocks. for index_block, block in enumerate(self.joint_transformer_blocks): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, **ckpt_kwargs, ) else: encoder_hidden_states, hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb ) # Single DiT blocks that combine the `hidden_states` (image) and `encoder_hidden_states` (text) if len(self.single_transformer_blocks) > 0: encoder_seq_len = encoder_hidden_states.size(1) combined_hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) for index_block, block in enumerate(self.single_transformer_blocks): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} combined_hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), combined_hidden_states, temb, **ckpt_kwargs, ) else: combined_hidden_states = block(hidden_states=combined_hidden_states, temb=temb) hidden_states = combined_hidden_states[:, encoder_seq_len:] hidden_states = self.norm_out(hidden_states, temb) hidden_states = self.proj_out(hidden_states) # unpatchify patch_size = self.config.patch_size out_channels = self.config.out_channels height = height // patch_size width = width // patch_size hidden_states = hidden_states.reshape( shape=(hidden_states.shape[0], height, width, patch_size, patch_size, out_channels) ) hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) output = hidden_states.reshape( shape=(hidden_states.shape[0], out_channels, height * patch_size, width * patch_size) ) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)
class_definition
9,983
22,957
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/auraflow_transformer_2d.py
null
1,129
class T5FilmDecoder(ModelMixin, ConfigMixin): r""" T5 style decoder with FiLM conditioning. Args: input_dims (`int`, *optional*, defaults to `128`): The number of input dimensions. targets_length (`int`, *optional*, defaults to `256`): The length of the targets. d_model (`int`, *optional*, defaults to `768`): Size of the input hidden states. num_layers (`int`, *optional*, defaults to `12`): The number of `DecoderLayer`'s to use. num_heads (`int`, *optional*, defaults to `12`): The number of attention heads to use. d_kv (`int`, *optional*, defaults to `64`): Size of the key-value projection vectors. d_ff (`int`, *optional*, defaults to `2048`): The number of dimensions in the intermediate feed-forward layer of `DecoderLayer`'s. dropout_rate (`float`, *optional*, defaults to `0.1`): Dropout probability. """ @register_to_config def __init__( self, input_dims: int = 128, targets_length: int = 256, max_decoder_noise_time: float = 2000.0, d_model: int = 768, num_layers: int = 12, num_heads: int = 12, d_kv: int = 64, d_ff: int = 2048, dropout_rate: float = 0.1, ): super().__init__() self.conditioning_emb = nn.Sequential( nn.Linear(d_model, d_model * 4, bias=False), nn.SiLU(), nn.Linear(d_model * 4, d_model * 4, bias=False), nn.SiLU(), ) self.position_encoding = nn.Embedding(targets_length, d_model) self.position_encoding.weight.requires_grad = False self.continuous_inputs_projection = nn.Linear(input_dims, d_model, bias=False) self.dropout = nn.Dropout(p=dropout_rate) self.decoders = nn.ModuleList() for lyr_num in range(num_layers): # FiLM conditional T5 decoder lyr = DecoderLayer(d_model=d_model, d_kv=d_kv, num_heads=num_heads, d_ff=d_ff, dropout_rate=dropout_rate) self.decoders.append(lyr) self.decoder_norm = T5LayerNorm(d_model) self.post_dropout = nn.Dropout(p=dropout_rate) self.spec_out = nn.Linear(d_model, input_dims, bias=False) def encoder_decoder_mask(self, query_input: torch.Tensor, key_input: torch.Tensor) -> torch.Tensor: mask = torch.mul(query_input.unsqueeze(-1), key_input.unsqueeze(-2)) return mask.unsqueeze(-3) def forward(self, encodings_and_masks, decoder_input_tokens, decoder_noise_time): batch, _, _ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. time_steps = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time, embedding_dim=self.config.d_model, max_period=self.config.max_decoder_noise_time, ).to(dtype=self.dtype) conditioning_emb = self.conditioning_emb(time_steps).unsqueeze(1) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) seq_length = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. decoder_positions = torch.broadcast_to( torch.arange(seq_length, device=decoder_input_tokens.device), (batch, seq_length), ) position_encodings = self.position_encoding(decoder_positions) inputs = self.continuous_inputs_projection(decoder_input_tokens) inputs += position_encodings y = self.dropout(inputs) # decoder: No padding present. decoder_mask = torch.ones( decoder_input_tokens.shape[:2], device=decoder_input_tokens.device, dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. encodings_and_encdec_masks = [(x, self.encoder_decoder_mask(decoder_mask, y)) for x, y in encodings_and_masks] # cross attend style: concat encodings encoded = torch.cat([x[0] for x in encodings_and_encdec_masks], dim=1) encoder_decoder_mask = torch.cat([x[1] for x in encodings_and_encdec_masks], dim=-1) for lyr in self.decoders: y = lyr( y, conditioning_emb=conditioning_emb, encoder_hidden_states=encoded, encoder_attention_mask=encoder_decoder_mask, )[0] y = self.decoder_norm(y) y = self.post_dropout(y) spec_out = self.spec_out(y) return spec_out
class_definition
890
5,641
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/t5_film_transformer.py
null
1,130
class DecoderLayer(nn.Module): r""" T5 decoder layer. Args: d_model (`int`): Size of the input hidden states. d_kv (`int`): Size of the key-value projection vectors. num_heads (`int`): Number of attention heads. d_ff (`int`): Size of the intermediate feed-forward layer. dropout_rate (`float`): Dropout probability. layer_norm_epsilon (`float`, *optional*, defaults to `1e-6`): A small value used for numerical stability to avoid dividing by zero. """ def __init__( self, d_model: int, d_kv: int, num_heads: int, d_ff: int, dropout_rate: float, layer_norm_epsilon: float = 1e-6 ): super().__init__() self.layer = nn.ModuleList() # cond self attention: layer 0 self.layer.append( T5LayerSelfAttentionCond(d_model=d_model, d_kv=d_kv, num_heads=num_heads, dropout_rate=dropout_rate) ) # cross attention: layer 1 self.layer.append( T5LayerCrossAttention( d_model=d_model, d_kv=d_kv, num_heads=num_heads, dropout_rate=dropout_rate, layer_norm_epsilon=layer_norm_epsilon, ) ) # Film Cond MLP + dropout: last layer self.layer.append( T5LayerFFCond(d_model=d_model, d_ff=d_ff, dropout_rate=dropout_rate, layer_norm_epsilon=layer_norm_epsilon) ) def forward( self, hidden_states: torch.Tensor, conditioning_emb: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, encoder_decoder_position_bias=None, ) -> Tuple[torch.Tensor]: hidden_states = self.layer[0]( hidden_states, conditioning_emb=conditioning_emb, attention_mask=attention_mask, ) if encoder_hidden_states is not None: encoder_extended_attention_mask = torch.where(encoder_attention_mask > 0, 0, -1e10).to( encoder_hidden_states.dtype ) hidden_states = self.layer[1]( hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_extended_attention_mask, ) # Apply Film Conditional Feed Forward layer hidden_states = self.layer[-1](hidden_states, conditioning_emb) return (hidden_states,)
class_definition
5,644
8,271
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/t5_film_transformer.py
null
1,131
class T5LayerSelfAttentionCond(nn.Module): r""" T5 style self-attention layer with conditioning. Args: d_model (`int`): Size of the input hidden states. d_kv (`int`): Size of the key-value projection vectors. num_heads (`int`): Number of attention heads. dropout_rate (`float`): Dropout probability. """ def __init__(self, d_model: int, d_kv: int, num_heads: int, dropout_rate: float): super().__init__() self.layer_norm = T5LayerNorm(d_model) self.FiLMLayer = T5FiLMLayer(in_features=d_model * 4, out_features=d_model) self.attention = Attention(query_dim=d_model, heads=num_heads, dim_head=d_kv, out_bias=False, scale_qk=False) self.dropout = nn.Dropout(dropout_rate) def forward( self, hidden_states: torch.Tensor, conditioning_emb: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: # pre_self_attention_layer_norm normed_hidden_states = self.layer_norm(hidden_states) if conditioning_emb is not None: normed_hidden_states = self.FiLMLayer(normed_hidden_states, conditioning_emb) # Self-attention block attention_output = self.attention(normed_hidden_states) hidden_states = hidden_states + self.dropout(attention_output) return hidden_states
class_definition
8,274
9,721
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/t5_film_transformer.py
null
1,132
class T5LayerCrossAttention(nn.Module): r""" T5 style cross-attention layer. Args: d_model (`int`): Size of the input hidden states. d_kv (`int`): Size of the key-value projection vectors. num_heads (`int`): Number of attention heads. dropout_rate (`float`): Dropout probability. layer_norm_epsilon (`float`): A small value used for numerical stability to avoid dividing by zero. """ def __init__(self, d_model: int, d_kv: int, num_heads: int, dropout_rate: float, layer_norm_epsilon: float): super().__init__() self.attention = Attention(query_dim=d_model, heads=num_heads, dim_head=d_kv, out_bias=False, scale_qk=False) self.layer_norm = T5LayerNorm(d_model, eps=layer_norm_epsilon) self.dropout = nn.Dropout(dropout_rate) def forward( self, hidden_states: torch.Tensor, key_value_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.attention( normed_hidden_states, encoder_hidden_states=key_value_states, attention_mask=attention_mask.squeeze(1), ) layer_output = hidden_states + self.dropout(attention_output) return layer_output
class_definition
9,724
11,159
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/t5_film_transformer.py
null
1,133
class T5LayerFFCond(nn.Module): r""" T5 style feed-forward conditional layer. Args: d_model (`int`): Size of the input hidden states. d_ff (`int`): Size of the intermediate feed-forward layer. dropout_rate (`float`): Dropout probability. layer_norm_epsilon (`float`): A small value used for numerical stability to avoid dividing by zero. """ def __init__(self, d_model: int, d_ff: int, dropout_rate: float, layer_norm_epsilon: float): super().__init__() self.DenseReluDense = T5DenseGatedActDense(d_model=d_model, d_ff=d_ff, dropout_rate=dropout_rate) self.film = T5FiLMLayer(in_features=d_model * 4, out_features=d_model) self.layer_norm = T5LayerNorm(d_model, eps=layer_norm_epsilon) self.dropout = nn.Dropout(dropout_rate) def forward(self, hidden_states: torch.Tensor, conditioning_emb: Optional[torch.Tensor] = None) -> torch.Tensor: forwarded_states = self.layer_norm(hidden_states) if conditioning_emb is not None: forwarded_states = self.film(forwarded_states, conditioning_emb) forwarded_states = self.DenseReluDense(forwarded_states) hidden_states = hidden_states + self.dropout(forwarded_states) return hidden_states
class_definition
11,162
12,489
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/t5_film_transformer.py
null
1,134
class T5DenseGatedActDense(nn.Module): r""" T5 style feed-forward layer with gated activations and dropout. Args: d_model (`int`): Size of the input hidden states. d_ff (`int`): Size of the intermediate feed-forward layer. dropout_rate (`float`): Dropout probability. """ def __init__(self, d_model: int, d_ff: int, dropout_rate: float): super().__init__() self.wi_0 = nn.Linear(d_model, d_ff, bias=False) self.wi_1 = nn.Linear(d_model, d_ff, bias=False) self.wo = nn.Linear(d_ff, d_model, bias=False) self.dropout = nn.Dropout(dropout_rate) self.act = NewGELUActivation() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_gelu = self.act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states) hidden_states = self.wo(hidden_states) return hidden_states
class_definition
12,492
13,550
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/t5_film_transformer.py
null
1,135
class T5LayerNorm(nn.Module): r""" T5 style layer normalization module. Args: hidden_size (`int`): Size of the input hidden states. eps (`float`, `optional`, defaults to `1e-6`): A small value used for numerical stability to avoid dividing by zero. """ def __init__(self, hidden_size: int, eps: float = 1e-6): """ Construct a layernorm module in the T5 style. No bias and no subtraction of mean. """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(self.weight.dtype) return self.weight * hidden_states
class_definition
13,553
14,971
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/t5_film_transformer.py
null
1,136
class NewGELUActivation(nn.Module): """ Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415 """ def forward(self, input: torch.Tensor) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (input + 0.044715 * torch.pow(input, 3.0))))
class_definition
14,974
15,398
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/t5_film_transformer.py
null
1,137
class T5FiLMLayer(nn.Module): """ T5 style FiLM Layer. Args: in_features (`int`): Number of input features. out_features (`int`): Number of output features. """ def __init__(self, in_features: int, out_features: int): super().__init__() self.scale_bias = nn.Linear(in_features, out_features * 2, bias=False) def forward(self, x: torch.Tensor, conditioning_emb: torch.Tensor) -> torch.Tensor: emb = self.scale_bias(conditioning_emb) scale, shift = torch.chunk(emb, 2, -1) x = x * (1 + scale) + shift return x
class_definition
15,401
16,023
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/t5_film_transformer.py
null
1,138
class FluxSingleTransformerBlock(nn.Module): r""" A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206 Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the processing of `context` conditions. """ def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0): super().__init__() self.mlp_hidden_dim = int(dim * mlp_ratio) self.norm = AdaLayerNormZeroSingle(dim) self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim) self.act_mlp = nn.GELU(approximate="tanh") self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim) if is_torch_npu_available(): processor = FluxAttnProcessor2_0_NPU() else: processor = FluxAttnProcessor2_0() self.attn = Attention( query_dim=dim, cross_attention_dim=None, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, bias=True, processor=processor, qk_norm="rms_norm", eps=1e-6, pre_only=True, ) def forward( self, hidden_states: torch.Tensor, temb: torch.Tensor, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, ) -> torch.Tensor: residual = hidden_states norm_hidden_states, gate = self.norm(hidden_states, emb=temb) mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) joint_attention_kwargs = joint_attention_kwargs or {} attn_output = self.attn( hidden_states=norm_hidden_states, image_rotary_emb=image_rotary_emb, **joint_attention_kwargs, ) hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) gate = gate.unsqueeze(1) hidden_states = gate * self.proj_out(hidden_states) hidden_states = residual + hidden_states if hidden_states.dtype == torch.float16: hidden_states = hidden_states.clip(-65504, 65504) return hidden_states
class_definition
1,803
4,332
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_flux.py
null
1,139
class FluxTransformerBlock(nn.Module): r""" A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. Reference: https://arxiv.org/abs/2403.03206 Args: dim (`int`): The embedding dimension of the block. num_attention_heads (`int`): The number of attention heads to use. attention_head_dim (`int`): The number of dimensions to use for each attention head. qk_norm (`str`, defaults to `"rms_norm"`): The normalization to use for the query and key tensors. eps (`float`, defaults to `1e-6`): The epsilon value to use for the normalization. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6 ): super().__init__() self.norm1 = AdaLayerNormZero(dim) self.norm1_context = AdaLayerNormZero(dim) if hasattr(F, "scaled_dot_product_attention"): processor = FluxAttnProcessor2_0() else: raise ValueError( "The current PyTorch version does not support the `scaled_dot_product_attention` function." ) self.attn = Attention( query_dim=dim, cross_attention_dim=None, added_kv_proj_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=dim, context_pre_only=False, bias=True, processor=processor, qk_norm=qk_norm, eps=eps, ) self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( encoder_hidden_states, emb=temb ) joint_attention_kwargs = joint_attention_kwargs or {} # Attention. attention_outputs = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, image_rotary_emb=image_rotary_emb, **joint_attention_kwargs, ) if len(attention_outputs) == 2: attn_output, context_attn_output = attention_outputs elif len(attention_outputs) == 3: attn_output, context_attn_output, ip_attn_output = attention_outputs # Process attention outputs for the `hidden_states`. attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = hidden_states + attn_output norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] ff_output = self.ff(norm_hidden_states) ff_output = gate_mlp.unsqueeze(1) * ff_output hidden_states = hidden_states + ff_output if len(attention_outputs) == 3: hidden_states = hidden_states + ip_attn_output # Process attention outputs for the `encoder_hidden_states`. context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output encoder_hidden_states = encoder_hidden_states + context_attn_output norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] context_ff_output = self.ff_context(norm_encoder_hidden_states) encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output if encoder_hidden_states.dtype == torch.float16: encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) return encoder_hidden_states, hidden_states
class_definition
4,357
8,926
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_flux.py
null
1,140
class FluxTransformer2DModel( ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, FluxTransformer2DLoadersMixin ): """ The Transformer model introduced in Flux. Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ Args: patch_size (`int`, defaults to `1`): Patch size to turn the input data into small patches. in_channels (`int`, defaults to `64`): The number of channels in the input. out_channels (`int`, *optional*, defaults to `None`): The number of channels in the output. If not specified, it defaults to `in_channels`. num_layers (`int`, defaults to `19`): The number of layers of dual stream DiT blocks to use. num_single_layers (`int`, defaults to `38`): The number of layers of single stream DiT blocks to use. attention_head_dim (`int`, defaults to `128`): The number of dimensions to use for each attention head. num_attention_heads (`int`, defaults to `24`): The number of attention heads to use. joint_attention_dim (`int`, defaults to `4096`): The number of dimensions to use for the joint attention (embedding/channel dimension of `encoder_hidden_states`). pooled_projection_dim (`int`, defaults to `768`): The number of dimensions to use for the pooled projection. guidance_embeds (`bool`, defaults to `False`): Whether to use guidance embeddings for guidance-distilled variant of the model. axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`): The dimensions to use for the rotary positional embeddings. """ _supports_gradient_checkpointing = True _no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"] @register_to_config def __init__( self, patch_size: int = 1, in_channels: int = 64, out_channels: Optional[int] = None, num_layers: int = 19, num_single_layers: int = 38, attention_head_dim: int = 128, num_attention_heads: int = 24, joint_attention_dim: int = 4096, pooled_projection_dim: int = 768, guidance_embeds: bool = False, axes_dims_rope: Tuple[int] = (16, 56, 56), ): super().__init__() self.out_channels = out_channels or in_channels self.inner_dim = num_attention_heads * attention_head_dim self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope) text_time_guidance_cls = ( CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings ) self.time_text_embed = text_time_guidance_cls( embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim ) self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim) self.x_embedder = nn.Linear(in_channels, self.inner_dim) self.transformer_blocks = nn.ModuleList( [ FluxTransformerBlock( dim=self.inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, ) for _ in range(num_layers) ] ) self.single_transformer_blocks = nn.ModuleList( [ FluxSingleTransformerBlock( dim=self.inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, ) for _ in range(num_single_layers) ] ) self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) self.gradient_checkpointing = False @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0 def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ self.original_attn_processors = None for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True) self.set_attn_processor(FusedFluxAttnProcessor2_0()) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor = None, pooled_projections: torch.Tensor = None, timestep: torch.LongTensor = None, img_ids: torch.Tensor = None, txt_ids: torch.Tensor = None, guidance: torch.Tensor = None, joint_attention_kwargs: Optional[Dict[str, Any]] = None, controlnet_block_samples=None, controlnet_single_block_samples=None, return_dict: bool = True, controlnet_blocks_repeat: bool = False, ) -> Union[torch.Tensor, Transformer2DModelOutput]: """ The [`FluxTransformer2DModel`] forward method. Args: hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`): Input `hidden_states`. encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`): Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. pooled_projections (`torch.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected from the embeddings of input conditions. timestep ( `torch.LongTensor`): Used to indicate denoising step. block_controlnet_hidden_states: (`list` of `torch.Tensor`): A list of tensors that if specified are added to the residuals of transformer blocks. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ if joint_attention_kwargs is not None: joint_attention_kwargs = joint_attention_kwargs.copy() lora_scale = joint_attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." ) hidden_states = self.x_embedder(hidden_states) timestep = timestep.to(hidden_states.dtype) * 1000 if guidance is not None: guidance = guidance.to(hidden_states.dtype) * 1000 else: guidance = None temb = ( self.time_text_embed(timestep, pooled_projections) if guidance is None else self.time_text_embed(timestep, guidance, pooled_projections) ) encoder_hidden_states = self.context_embedder(encoder_hidden_states) if txt_ids.ndim == 3: logger.warning( "Passing `txt_ids` 3d torch.Tensor is deprecated." "Please remove the batch dimension and pass it as a 2d torch Tensor" ) txt_ids = txt_ids[0] if img_ids.ndim == 3: logger.warning( "Passing `img_ids` 3d torch.Tensor is deprecated." "Please remove the batch dimension and pass it as a 2d torch Tensor" ) img_ids = img_ids[0] ids = torch.cat((txt_ids, img_ids), dim=0) image_rotary_emb = self.pos_embed(ids) if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs: ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds") ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds) joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states}) for index_block, block in enumerate(self.transformer_blocks): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, image_rotary_emb, **ckpt_kwargs, ) else: encoder_hidden_states, hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, joint_attention_kwargs=joint_attention_kwargs, ) # controlnet residual if controlnet_block_samples is not None: interval_control = len(self.transformer_blocks) / len(controlnet_block_samples) interval_control = int(np.ceil(interval_control)) # For Xlabs ControlNet. if controlnet_blocks_repeat: hidden_states = ( hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)] ) else: hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control] hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) for index_block, block in enumerate(self.single_transformer_blocks): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, temb, image_rotary_emb, **ckpt_kwargs, ) else: hidden_states = block( hidden_states=hidden_states, temb=temb, image_rotary_emb=image_rotary_emb, joint_attention_kwargs=joint_attention_kwargs, ) # controlnet residual if controlnet_single_block_samples is not None: interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples) interval_control = int(np.ceil(interval_control)) hidden_states[:, encoder_hidden_states.shape[1] :, ...] = ( hidden_states[:, encoder_hidden_states.shape[1] :, ...] + controlnet_single_block_samples[index_block // interval_control] ) hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] hidden_states = self.norm_out(hidden_states, temb) output = self.proj_out(hidden_states) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)
class_definition
8,929
25,988
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_flux.py
null
1,141
class Transformer2DModelOutput(Transformer2DModelOutput): def __init__(self, *args, **kwargs): deprecation_message = "Importing `Transformer2DModelOutput` from `diffusers.models.transformer_2d` is deprecated and this will be removed in a future version. Please use `from diffusers.models.modeling_outputs import Transformer2DModelOutput`, instead." deprecate("Transformer2DModelOutput", "1.0.0", deprecation_message) super().__init__(*args, **kwargs)
class_definition
1,203
1,681
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_2d.py
null
1,142
class Transformer2DModel(LegacyModelMixin, LegacyConfigMixin): """ A 2D Transformer model for image-like data. Parameters: num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. in_channels (`int`, *optional*): The number of channels in the input and output (specify if the input is **continuous**). num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**). This is fixed during training since it is used to learn a number of position embeddings. num_vector_embeds (`int`, *optional*): The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**). Includes the class for the masked latent pixel. activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward. num_embeds_ada_norm ( `int`, *optional*): The number of diffusion steps used during training. Pass if at least one of the norm_layers is `AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`. attention_bias (`bool`, *optional*): Configure if the `TransformerBlocks` attention should contain a bias parameter. """ _supports_gradient_checkpointing = True _no_split_modules = ["BasicTransformerBlock"] @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, out_channels: Optional[int] = None, num_layers: int = 1, dropout: float = 0.0, norm_num_groups: int = 32, cross_attention_dim: Optional[int] = None, attention_bias: bool = False, sample_size: Optional[int] = None, num_vector_embeds: Optional[int] = None, patch_size: Optional[int] = None, activation_fn: str = "geglu", num_embeds_ada_norm: Optional[int] = None, use_linear_projection: bool = False, only_cross_attention: bool = False, double_self_attention: bool = False, upcast_attention: bool = False, norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen' norm_elementwise_affine: bool = True, norm_eps: float = 1e-5, attention_type: str = "default", caption_channels: int = None, interpolation_scale: float = None, use_additional_conditions: Optional[bool] = None, ): super().__init__() # Validate inputs. if patch_size is not None: if norm_type not in ["ada_norm", "ada_norm_zero", "ada_norm_single"]: raise NotImplementedError( f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'." ) elif norm_type in ["ada_norm", "ada_norm_zero"] and num_embeds_ada_norm is None: raise ValueError( f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None." ) # 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)` # Define whether input is continuous or discrete depending on configuration self.is_input_continuous = (in_channels is not None) and (patch_size is None) self.is_input_vectorized = num_vector_embeds is not None self.is_input_patches = in_channels is not None and patch_size is not None if self.is_input_continuous and self.is_input_vectorized: raise ValueError( f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make" " sure that either `in_channels` or `num_vector_embeds` is None." ) elif self.is_input_vectorized and self.is_input_patches: raise ValueError( f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make" " sure that either `num_vector_embeds` or `num_patches` is None." ) elif not self.is_input_continuous and not self.is_input_vectorized and not self.is_input_patches: raise ValueError( f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:" f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None." ) if norm_type == "layer_norm" and num_embeds_ada_norm is not None: deprecation_message = ( f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or" " incorrectly set to `'layer_norm'`. Make sure to set `norm_type` to `'ada_norm'` in the config." " Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect" " results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it" " would be very nice if you could open a Pull request for the `transformer/config.json` file" ) deprecate("norm_type!=num_embeds_ada_norm", "1.0.0", deprecation_message, standard_warn=False) norm_type = "ada_norm" # Set some common variables used across the board. self.use_linear_projection = use_linear_projection self.interpolation_scale = interpolation_scale self.caption_channels = caption_channels self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim self.in_channels = in_channels self.out_channels = in_channels if out_channels is None else out_channels self.gradient_checkpointing = False if use_additional_conditions is None: if norm_type == "ada_norm_single" and sample_size == 128: use_additional_conditions = True else: use_additional_conditions = False self.use_additional_conditions = use_additional_conditions # 2. Initialize the right blocks. # These functions follow a common structure: # a. Initialize the input blocks. b. Initialize the transformer blocks. # c. Initialize the output blocks and other projection blocks when necessary. if self.is_input_continuous: self._init_continuous_input(norm_type=norm_type) elif self.is_input_vectorized: self._init_vectorized_inputs(norm_type=norm_type) elif self.is_input_patches: self._init_patched_inputs(norm_type=norm_type) def _init_continuous_input(self, norm_type): self.norm = torch.nn.GroupNorm( num_groups=self.config.norm_num_groups, num_channels=self.in_channels, eps=1e-6, affine=True ) if self.use_linear_projection: self.proj_in = torch.nn.Linear(self.in_channels, self.inner_dim) else: self.proj_in = torch.nn.Conv2d(self.in_channels, self.inner_dim, kernel_size=1, stride=1, padding=0) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( self.inner_dim, self.config.num_attention_heads, self.config.attention_head_dim, dropout=self.config.dropout, cross_attention_dim=self.config.cross_attention_dim, activation_fn=self.config.activation_fn, num_embeds_ada_norm=self.config.num_embeds_ada_norm, attention_bias=self.config.attention_bias, only_cross_attention=self.config.only_cross_attention, double_self_attention=self.config.double_self_attention, upcast_attention=self.config.upcast_attention, norm_type=norm_type, norm_elementwise_affine=self.config.norm_elementwise_affine, norm_eps=self.config.norm_eps, attention_type=self.config.attention_type, ) for _ in range(self.config.num_layers) ] ) if self.use_linear_projection: self.proj_out = torch.nn.Linear(self.inner_dim, self.out_channels) else: self.proj_out = torch.nn.Conv2d(self.inner_dim, self.out_channels, kernel_size=1, stride=1, padding=0) def _init_vectorized_inputs(self, norm_type): assert self.config.sample_size is not None, "Transformer2DModel over discrete input must provide sample_size" assert ( self.config.num_vector_embeds is not None ), "Transformer2DModel over discrete input must provide num_embed" self.height = self.config.sample_size self.width = self.config.sample_size self.num_latent_pixels = self.height * self.width self.latent_image_embedding = ImagePositionalEmbeddings( num_embed=self.config.num_vector_embeds, embed_dim=self.inner_dim, height=self.height, width=self.width ) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( self.inner_dim, self.config.num_attention_heads, self.config.attention_head_dim, dropout=self.config.dropout, cross_attention_dim=self.config.cross_attention_dim, activation_fn=self.config.activation_fn, num_embeds_ada_norm=self.config.num_embeds_ada_norm, attention_bias=self.config.attention_bias, only_cross_attention=self.config.only_cross_attention, double_self_attention=self.config.double_self_attention, upcast_attention=self.config.upcast_attention, norm_type=norm_type, norm_elementwise_affine=self.config.norm_elementwise_affine, norm_eps=self.config.norm_eps, attention_type=self.config.attention_type, ) for _ in range(self.config.num_layers) ] ) self.norm_out = nn.LayerNorm(self.inner_dim) self.out = nn.Linear(self.inner_dim, self.config.num_vector_embeds - 1) def _init_patched_inputs(self, norm_type): assert self.config.sample_size is not None, "Transformer2DModel over patched input must provide sample_size" self.height = self.config.sample_size self.width = self.config.sample_size self.patch_size = self.config.patch_size interpolation_scale = ( self.config.interpolation_scale if self.config.interpolation_scale is not None else max(self.config.sample_size // 64, 1) ) self.pos_embed = PatchEmbed( height=self.config.sample_size, width=self.config.sample_size, patch_size=self.config.patch_size, in_channels=self.in_channels, embed_dim=self.inner_dim, interpolation_scale=interpolation_scale, ) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( self.inner_dim, self.config.num_attention_heads, self.config.attention_head_dim, dropout=self.config.dropout, cross_attention_dim=self.config.cross_attention_dim, activation_fn=self.config.activation_fn, num_embeds_ada_norm=self.config.num_embeds_ada_norm, attention_bias=self.config.attention_bias, only_cross_attention=self.config.only_cross_attention, double_self_attention=self.config.double_self_attention, upcast_attention=self.config.upcast_attention, norm_type=norm_type, norm_elementwise_affine=self.config.norm_elementwise_affine, norm_eps=self.config.norm_eps, attention_type=self.config.attention_type, ) for _ in range(self.config.num_layers) ] ) if self.config.norm_type != "ada_norm_single": self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim) self.proj_out_2 = nn.Linear( self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels ) elif self.config.norm_type == "ada_norm_single": self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5) self.proj_out = nn.Linear( self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels ) # PixArt-Alpha blocks. self.adaln_single = None if self.config.norm_type == "ada_norm_single": # TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use # additional conditions until we find better name self.adaln_single = AdaLayerNormSingle( self.inner_dim, use_additional_conditions=self.use_additional_conditions ) self.caption_projection = None if self.caption_channels is not None: self.caption_projection = PixArtAlphaTextProjection( in_features=self.caption_channels, hidden_size=self.inner_dim ) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, added_cond_kwargs: Dict[str, torch.Tensor] = None, class_labels: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, attention_mask: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, return_dict: bool = True, ): """ The [`Transformer2DModel`] forward method. Args: hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.Tensor` of shape `(batch size, channel, height, width)` if continuous): Input `hidden_states`. encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in `AdaLayerZeroNorm`. cross_attention_kwargs ( `Dict[str, Any]`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). attention_mask ( `torch.Tensor`, *optional*): An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. encoder_attention_mask ( `torch.Tensor`, *optional*): Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: * Mask `(batch, sequence_length)` True = keep, False = discard. * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format above. This bias will be added to the cross-attention scores. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformers.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ if cross_attention_kwargs is not None: if cross_attention_kwargs.get("scale", None) is not None: logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.") # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. # expects mask of shape: # [batch, key_tokens] # adds singleton query_tokens dimension: # [batch, 1, key_tokens] # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) if attention_mask is not None and attention_mask.ndim == 2: # assume that mask is expressed as: # (1 = keep, 0 = discard) # convert mask into a bias that can be added to attention scores: # (keep = +0, discard = -10000.0) attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) # 1. Input if self.is_input_continuous: batch_size, _, height, width = hidden_states.shape residual = hidden_states hidden_states, inner_dim = self._operate_on_continuous_inputs(hidden_states) elif self.is_input_vectorized: hidden_states = self.latent_image_embedding(hidden_states) elif self.is_input_patches: height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size hidden_states, encoder_hidden_states, timestep, embedded_timestep = self._operate_on_patched_inputs( hidden_states, encoder_hidden_states, timestep, added_cond_kwargs ) # 2. Blocks for block in self.transformer_blocks: if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, timestep, cross_attention_kwargs, class_labels, **ckpt_kwargs, ) else: hidden_states = block( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels, ) # 3. Output if self.is_input_continuous: output = self._get_output_for_continuous_inputs( hidden_states=hidden_states, residual=residual, batch_size=batch_size, height=height, width=width, inner_dim=inner_dim, ) elif self.is_input_vectorized: output = self._get_output_for_vectorized_inputs(hidden_states) elif self.is_input_patches: output = self._get_output_for_patched_inputs( hidden_states=hidden_states, timestep=timestep, class_labels=class_labels, embedded_timestep=embedded_timestep, height=height, width=width, ) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output) def _operate_on_continuous_inputs(self, hidden_states): batch, _, height, width = hidden_states.shape hidden_states = self.norm(hidden_states) if not self.use_linear_projection: hidden_states = self.proj_in(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) else: inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * width, inner_dim) hidden_states = self.proj_in(hidden_states) return hidden_states, inner_dim def _operate_on_patched_inputs(self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs): batch_size = hidden_states.shape[0] hidden_states = self.pos_embed(hidden_states) embedded_timestep = None if self.adaln_single is not None: if self.use_additional_conditions and added_cond_kwargs is None: raise ValueError( "`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`." ) timestep, embedded_timestep = self.adaln_single( timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype ) if self.caption_projection is not None: encoder_hidden_states = self.caption_projection(encoder_hidden_states) encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) return hidden_states, encoder_hidden_states, timestep, embedded_timestep def _get_output_for_continuous_inputs(self, hidden_states, residual, batch_size, height, width, inner_dim): if not self.use_linear_projection: hidden_states = ( hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() ) hidden_states = self.proj_out(hidden_states) else: hidden_states = self.proj_out(hidden_states) hidden_states = ( hidden_states.reshape(batch_size, height, width, inner_dim).permute(0, 3, 1, 2).contiguous() ) output = hidden_states + residual return output def _get_output_for_vectorized_inputs(self, hidden_states): hidden_states = self.norm_out(hidden_states) logits = self.out(hidden_states) # (batch, self.num_vector_embeds - 1, self.num_latent_pixels) logits = logits.permute(0, 2, 1) # log(p(x_0)) output = F.log_softmax(logits.double(), dim=1).float() return output def _get_output_for_patched_inputs( self, hidden_states, timestep, class_labels, embedded_timestep, height=None, width=None ): if self.config.norm_type != "ada_norm_single": conditioning = self.transformer_blocks[0].norm1.emb( timestep, class_labels, hidden_dtype=hidden_states.dtype ) shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] hidden_states = self.proj_out_2(hidden_states) elif self.config.norm_type == "ada_norm_single": shift, scale = (self.scale_shift_table[None] + embedded_timestep[:, None]).chunk(2, dim=1) hidden_states = self.norm_out(hidden_states) # Modulation hidden_states = hidden_states * (1 + scale) + shift hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.squeeze(1) # unpatchify if self.adaln_single is None: height = width = int(hidden_states.shape[1] ** 0.5) hidden_states = hidden_states.reshape( shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) ) hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) output = hidden_states.reshape( shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) ) return output
class_definition
1,684
28,962
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_2d.py
null
1,143
class PixArtTransformer2DModel(ModelMixin, ConfigMixin): r""" A 2D Transformer model as introduced in PixArt family of models (https://arxiv.org/abs/2310.00426, https://arxiv.org/abs/2403.04692). Parameters: num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention. attention_head_dim (int, optional, defaults to 72): The number of channels in each head. in_channels (int, defaults to 4): The number of channels in the input. out_channels (int, optional): The number of channels in the output. Specify this parameter if the output channel number differs from the input. num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use. dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks. norm_num_groups (int, optional, defaults to 32): Number of groups for group normalization within Transformer blocks. cross_attention_dim (int, optional): The dimensionality for cross-attention layers, typically matching the encoder's hidden dimension. attention_bias (bool, optional, defaults to True): Configure if the Transformer blocks' attention should contain a bias parameter. sample_size (int, defaults to 128): The width of the latent images. This parameter is fixed during training. patch_size (int, defaults to 2): Size of the patches the model processes, relevant for architectures working on non-sequential data. activation_fn (str, optional, defaults to "gelu-approximate"): Activation function to use in feed-forward networks within Transformer blocks. num_embeds_ada_norm (int, optional, defaults to 1000): Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during inference. upcast_attention (bool, optional, defaults to False): If true, upcasts the attention mechanism dimensions for potentially improved performance. norm_type (str, optional, defaults to "ada_norm_zero"): Specifies the type of normalization used, can be 'ada_norm_zero'. norm_elementwise_affine (bool, optional, defaults to False): If true, enables element-wise affine parameters in the normalization layers. norm_eps (float, optional, defaults to 1e-6): A small constant added to the denominator in normalization layers to prevent division by zero. interpolation_scale (int, optional): Scale factor to use during interpolating the position embeddings. use_additional_conditions (bool, optional): If we're using additional conditions as inputs. attention_type (str, optional, defaults to "default"): Kind of attention mechanism to be used. caption_channels (int, optional, defaults to None): Number of channels to use for projecting the caption embeddings. use_linear_projection (bool, optional, defaults to False): Deprecated argument. Will be removed in a future version. num_vector_embeds (bool, optional, defaults to False): Deprecated argument. Will be removed in a future version. """ _supports_gradient_checkpointing = True _no_split_modules = ["BasicTransformerBlock", "PatchEmbed"] @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 72, in_channels: int = 4, out_channels: Optional[int] = 8, num_layers: int = 28, dropout: float = 0.0, norm_num_groups: int = 32, cross_attention_dim: Optional[int] = 1152, attention_bias: bool = True, sample_size: int = 128, patch_size: int = 2, activation_fn: str = "gelu-approximate", num_embeds_ada_norm: Optional[int] = 1000, upcast_attention: bool = False, norm_type: str = "ada_norm_single", norm_elementwise_affine: bool = False, norm_eps: float = 1e-6, interpolation_scale: Optional[int] = None, use_additional_conditions: Optional[bool] = None, caption_channels: Optional[int] = None, attention_type: Optional[str] = "default", ): super().__init__() # Validate inputs. if norm_type != "ada_norm_single": raise NotImplementedError( f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'." ) elif norm_type == "ada_norm_single" and num_embeds_ada_norm is None: raise ValueError( f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None." ) # Set some common variables used across the board. self.attention_head_dim = attention_head_dim self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim self.out_channels = in_channels if out_channels is None else out_channels if use_additional_conditions is None: if sample_size == 128: use_additional_conditions = True else: use_additional_conditions = False self.use_additional_conditions = use_additional_conditions self.gradient_checkpointing = False # 2. Initialize the position embedding and transformer blocks. self.height = self.config.sample_size self.width = self.config.sample_size interpolation_scale = ( self.config.interpolation_scale if self.config.interpolation_scale is not None else max(self.config.sample_size // 64, 1) ) self.pos_embed = PatchEmbed( height=self.config.sample_size, width=self.config.sample_size, patch_size=self.config.patch_size, in_channels=self.config.in_channels, embed_dim=self.inner_dim, interpolation_scale=interpolation_scale, ) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( self.inner_dim, self.config.num_attention_heads, self.config.attention_head_dim, dropout=self.config.dropout, cross_attention_dim=self.config.cross_attention_dim, activation_fn=self.config.activation_fn, num_embeds_ada_norm=self.config.num_embeds_ada_norm, attention_bias=self.config.attention_bias, upcast_attention=self.config.upcast_attention, norm_type=norm_type, norm_elementwise_affine=self.config.norm_elementwise_affine, norm_eps=self.config.norm_eps, attention_type=self.config.attention_type, ) for _ in range(self.config.num_layers) ] ) # 3. Output blocks. self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim**0.5) self.proj_out = nn.Linear(self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels) self.adaln_single = AdaLayerNormSingle( self.inner_dim, use_additional_conditions=self.use_additional_conditions ) self.caption_projection = None if self.config.caption_channels is not None: self.caption_projection = PixArtAlphaTextProjection( in_features=self.config.caption_channels, hidden_size=self.inner_dim ) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. Safe to just use `AttnProcessor()` as PixArt doesn't have any exotic attention processors in default model. """ self.set_attn_processor(AttnProcessor()) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ self.original_attn_processors = None for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True) self.set_attn_processor(FusedAttnProcessor2_0()) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, added_cond_kwargs: Dict[str, torch.Tensor] = None, cross_attention_kwargs: Dict[str, Any] = None, attention_mask: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, return_dict: bool = True, ): """ The [`PixArtTransformer2DModel`] forward method. Args: hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input `hidden_states`. encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention. timestep (`torch.LongTensor`, *optional*): Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. added_cond_kwargs: (`Dict[str, Any]`, *optional*): Additional conditions to be used as inputs. cross_attention_kwargs ( `Dict[str, Any]`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). attention_mask ( `torch.Tensor`, *optional*): An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large negative values to the attention scores corresponding to "discard" tokens. encoder_attention_mask ( `torch.Tensor`, *optional*): Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: * Mask `(batch, sequence_length)` True = keep, False = discard. * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format above. This bias will be added to the cross-attention scores. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ if self.use_additional_conditions and added_cond_kwargs is None: raise ValueError("`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`.") # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. # expects mask of shape: # [batch, key_tokens] # adds singleton query_tokens dimension: # [batch, 1, key_tokens] # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) if attention_mask is not None and attention_mask.ndim == 2: # assume that mask is expressed as: # (1 = keep, 0 = discard) # convert mask into a bias that can be added to attention scores: # (keep = +0, discard = -10000.0) attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 attention_mask = attention_mask.unsqueeze(1) # convert encoder_attention_mask to a bias the same way we do for attention_mask if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) # 1. Input batch_size = hidden_states.shape[0] height, width = ( hidden_states.shape[-2] // self.config.patch_size, hidden_states.shape[-1] // self.config.patch_size, ) hidden_states = self.pos_embed(hidden_states) timestep, embedded_timestep = self.adaln_single( timestep, added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_states.dtype ) if self.caption_projection is not None: encoder_hidden_states = self.caption_projection(encoder_hidden_states) encoder_hidden_states = encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1]) # 2. Blocks for block in self.transformer_blocks: if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, attention_mask, encoder_hidden_states, encoder_attention_mask, timestep, cross_attention_kwargs, None, **ckpt_kwargs, ) else: hidden_states = block( hidden_states, attention_mask=attention_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=None, ) # 3. Output shift, scale = ( self.scale_shift_table[None] + embedded_timestep[:, None].to(self.scale_shift_table.device) ).chunk(2, dim=1) hidden_states = self.norm_out(hidden_states) # Modulation hidden_states = hidden_states * (1 + scale.to(hidden_states.device)) + shift.to(hidden_states.device) hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.squeeze(1) # unpatchify hidden_states = hidden_states.reshape( shape=(-1, height, width, self.config.patch_size, self.config.patch_size, self.out_channels) ) hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) output = hidden_states.reshape( shape=(-1, self.out_channels, height * self.config.patch_size, width * self.config.patch_size) ) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)
class_definition
1,230
21,578
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/pixart_transformer_2d.py
null
1,144
class HunyuanVideoAttnProcessor2_0: def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "HunyuanVideoAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> torch.Tensor: if attn.add_q_proj is None and encoder_hidden_states is not None: hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) # 1. QKV projections query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2) key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2) value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2) # 2. QK normalization if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # 3. Rotational positional embeddings applied to latent stream if image_rotary_emb is not None: from ..embeddings import apply_rotary_emb if attn.add_q_proj is None and encoder_hidden_states is not None: query = torch.cat( [ apply_rotary_emb(query[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb), query[:, :, -encoder_hidden_states.shape[1] :], ], dim=2, ) key = torch.cat( [ apply_rotary_emb(key[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb), key[:, :, -encoder_hidden_states.shape[1] :], ], dim=2, ) else: query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) # 4. Encoder condition QKV projection and normalization if attn.add_q_proj is not None and encoder_hidden_states is not None: encoder_query = attn.add_q_proj(encoder_hidden_states) encoder_key = attn.add_k_proj(encoder_hidden_states) encoder_value = attn.add_v_proj(encoder_hidden_states) encoder_query = encoder_query.unflatten(2, (attn.heads, -1)).transpose(1, 2) encoder_key = encoder_key.unflatten(2, (attn.heads, -1)).transpose(1, 2) encoder_value = encoder_value.unflatten(2, (attn.heads, -1)).transpose(1, 2) if attn.norm_added_q is not None: encoder_query = attn.norm_added_q(encoder_query) if attn.norm_added_k is not None: encoder_key = attn.norm_added_k(encoder_key) query = torch.cat([query, encoder_query], dim=2) key = torch.cat([key, encoder_key], dim=2) value = torch.cat([value, encoder_value], dim=2) # 5. Attention hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).flatten(2, 3) hidden_states = hidden_states.to(query.dtype) # 6. Output projection if encoder_hidden_states is not None: hidden_states, encoder_hidden_states = ( hidden_states[:, : -encoder_hidden_states.shape[1]], hidden_states[:, -encoder_hidden_states.shape[1] :], ) if getattr(attn, "to_out", None) is not None: hidden_states = attn.to_out[0](hidden_states) hidden_states = attn.to_out[1](hidden_states) if getattr(attn, "to_add_out", None) is not None: encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states
class_definition
1,531
5,748
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_hunyuan_video.py
null
1,145
class HunyuanVideoPatchEmbed(nn.Module): def __init__( self, patch_size: Union[int, Tuple[int, int, int]] = 16, in_chans: int = 3, embed_dim: int = 768, ) -> None: super().__init__() patch_size = (patch_size, patch_size, patch_size) if isinstance(patch_size, int) else patch_size self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.proj(hidden_states) hidden_states = hidden_states.flatten(2).transpose(1, 2) # BCFHW -> BNC return hidden_states
class_definition
5,751
6,409
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_hunyuan_video.py
null
1,146
class HunyuanVideoAdaNorm(nn.Module): def __init__(self, in_features: int, out_features: Optional[int] = None) -> None: super().__init__() out_features = out_features or 2 * in_features self.linear = nn.Linear(in_features, out_features) self.nonlinearity = nn.SiLU() def forward( self, temb: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: temb = self.linear(self.nonlinearity(temb)) gate_msa, gate_mlp = temb.chunk(2, dim=1) gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1) return gate_msa, gate_mlp
class_definition
6,412
7,062
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_hunyuan_video.py
null
1,147
class HunyuanVideoIndividualTokenRefinerBlock(nn.Module): def __init__( self, num_attention_heads: int, attention_head_dim: int, mlp_width_ratio: str = 4.0, mlp_drop_rate: float = 0.0, attention_bias: bool = True, ) -> None: super().__init__() hidden_size = num_attention_heads * attention_head_dim self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6) self.attn = Attention( query_dim=hidden_size, cross_attention_dim=None, heads=num_attention_heads, dim_head=attention_head_dim, bias=attention_bias, ) self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6) self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate) self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size) def forward( self, hidden_states: torch.Tensor, temb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: norm_hidden_states = self.norm1(hidden_states) attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=None, attention_mask=attention_mask, ) gate_msa, gate_mlp = self.norm_out(temb) hidden_states = hidden_states + attn_output * gate_msa ff_output = self.ff(self.norm2(hidden_states)) hidden_states = hidden_states + ff_output * gate_mlp return hidden_states
class_definition
7,065
8,684
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_hunyuan_video.py
null
1,148
class HunyuanVideoIndividualTokenRefiner(nn.Module): def __init__( self, num_attention_heads: int, attention_head_dim: int, num_layers: int, mlp_width_ratio: float = 4.0, mlp_drop_rate: float = 0.0, attention_bias: bool = True, ) -> None: super().__init__() self.refiner_blocks = nn.ModuleList( [ HunyuanVideoIndividualTokenRefinerBlock( num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, mlp_width_ratio=mlp_width_ratio, mlp_drop_rate=mlp_drop_rate, attention_bias=attention_bias, ) for _ in range(num_layers) ] ) def forward( self, hidden_states: torch.Tensor, temb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, ) -> None: self_attn_mask = None if attention_mask is not None: batch_size = attention_mask.shape[0] seq_len = attention_mask.shape[1] attention_mask = attention_mask.to(hidden_states.device).bool() self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1) self_attn_mask_2 = self_attn_mask_1.transpose(2, 3) self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool() self_attn_mask[:, :, :, 0] = True for block in self.refiner_blocks: hidden_states = block(hidden_states, temb, self_attn_mask) return hidden_states
class_definition
8,687
10,329
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_hunyuan_video.py
null
1,149
class HunyuanVideoTokenRefiner(nn.Module): def __init__( self, in_channels: int, num_attention_heads: int, attention_head_dim: int, num_layers: int, mlp_ratio: float = 4.0, mlp_drop_rate: float = 0.0, attention_bias: bool = True, ) -> None: super().__init__() hidden_size = num_attention_heads * attention_head_dim self.time_text_embed = CombinedTimestepTextProjEmbeddings( embedding_dim=hidden_size, pooled_projection_dim=in_channels ) self.proj_in = nn.Linear(in_channels, hidden_size, bias=True) self.token_refiner = HunyuanVideoIndividualTokenRefiner( num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, num_layers=num_layers, mlp_width_ratio=mlp_ratio, mlp_drop_rate=mlp_drop_rate, attention_bias=attention_bias, ) def forward( self, hidden_states: torch.Tensor, timestep: torch.LongTensor, attention_mask: Optional[torch.LongTensor] = None, ) -> torch.Tensor: if attention_mask is None: pooled_projections = hidden_states.mean(dim=1) else: original_dtype = hidden_states.dtype mask_float = attention_mask.float().unsqueeze(-1) pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1) pooled_projections = pooled_projections.to(original_dtype) temb = self.time_text_embed(timestep, pooled_projections) hidden_states = self.proj_in(hidden_states) hidden_states = self.token_refiner(hidden_states, temb, attention_mask) return hidden_states
class_definition
10,332
12,096
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_hunyuan_video.py
null
1,150
class HunyuanVideoRotaryPosEmbed(nn.Module): def __init__(self, patch_size: int, patch_size_t: int, rope_dim: List[int], theta: float = 256.0) -> None: super().__init__() self.patch_size = patch_size self.patch_size_t = patch_size_t self.rope_dim = rope_dim self.theta = theta def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: batch_size, num_channels, num_frames, height, width = hidden_states.shape rope_sizes = [num_frames // self.patch_size_t, height // self.patch_size, width // self.patch_size] axes_grids = [] for i in range(3): # Note: The following line diverges from original behaviour. We create the grid on the device, whereas # original implementation creates it on CPU and then moves it to device. This results in numerical # differences in layerwise debugging outputs, but visually it is the same. grid = torch.arange(0, rope_sizes[i], device=hidden_states.device, dtype=torch.float32) axes_grids.append(grid) grid = torch.meshgrid(*axes_grids, indexing="ij") # [W, H, T] grid = torch.stack(grid, dim=0) # [3, W, H, T] freqs = [] for i in range(3): freq = get_1d_rotary_pos_embed(self.rope_dim[i], grid[i].reshape(-1), self.theta, use_real=True) freqs.append(freq) freqs_cos = torch.cat([f[0] for f in freqs], dim=1) # (W * H * T, D / 2) freqs_sin = torch.cat([f[1] for f in freqs], dim=1) # (W * H * T, D / 2) return freqs_cos, freqs_sin
class_definition
12,099
13,695
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_hunyuan_video.py
null
1,151
class HunyuanVideoSingleTransformerBlock(nn.Module): def __init__( self, num_attention_heads: int, attention_head_dim: int, mlp_ratio: float = 4.0, qk_norm: str = "rms_norm", ) -> None: super().__init__() hidden_size = num_attention_heads * attention_head_dim mlp_dim = int(hidden_size * mlp_ratio) self.attn = Attention( query_dim=hidden_size, cross_attention_dim=None, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=hidden_size, bias=True, processor=HunyuanVideoAttnProcessor2_0(), qk_norm=qk_norm, eps=1e-6, pre_only=True, ) self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm") self.proj_mlp = nn.Linear(hidden_size, mlp_dim) self.act_mlp = nn.GELU(approximate="tanh") self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, ) -> torch.Tensor: text_seq_length = encoder_hidden_states.shape[1] hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) residual = hidden_states # 1. Input normalization norm_hidden_states, gate = self.norm(hidden_states, emb=temb) mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) norm_hidden_states, norm_encoder_hidden_states = ( norm_hidden_states[:, :-text_seq_length, :], norm_hidden_states[:, -text_seq_length:, :], ) # 2. Attention attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, attention_mask=attention_mask, image_rotary_emb=image_rotary_emb, ) attn_output = torch.cat([attn_output, context_attn_output], dim=1) # 3. Modulation and residual connection hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) hidden_states = gate.unsqueeze(1) * self.proj_out(hidden_states) hidden_states = hidden_states + residual hidden_states, encoder_hidden_states = ( hidden_states[:, :-text_seq_length, :], hidden_states[:, -text_seq_length:, :], ) return hidden_states, encoder_hidden_states
class_definition
13,698
16,367
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_hunyuan_video.py
null
1,152
class HunyuanVideoTransformerBlock(nn.Module): def __init__( self, num_attention_heads: int, attention_head_dim: int, mlp_ratio: float, qk_norm: str = "rms_norm", ) -> None: super().__init__() hidden_size = num_attention_heads * attention_head_dim self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm") self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm") self.attn = Attention( query_dim=hidden_size, cross_attention_dim=None, added_kv_proj_dim=hidden_size, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=hidden_size, context_pre_only=False, bias=True, processor=HunyuanVideoAttnProcessor2_0(), qk_norm=qk_norm, eps=1e-6, ) self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate") self.norm2_context = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate") def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: # 1. Input normalization norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( encoder_hidden_states, emb=temb ) # 2. Joint attention attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, attention_mask=attention_mask, image_rotary_emb=freqs_cis, ) # 3. Modulation and residual connection hidden_states = hidden_states + attn_output * gate_msa.unsqueeze(1) encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa.unsqueeze(1) norm_hidden_states = self.norm2(hidden_states) norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] # 4. Feed-forward ff_output = self.ff(norm_hidden_states) context_ff_output = self.ff_context(norm_encoder_hidden_states) hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output return hidden_states, encoder_hidden_states
class_definition
16,370
19,494
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_hunyuan_video.py
null
1,153
class HunyuanVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): r""" A Transformer model for video-like data used in [HunyuanVideo](https://huggingface.co/tencent/HunyuanVideo). Args: in_channels (`int`, defaults to `16`): The number of channels in the input. out_channels (`int`, defaults to `16`): The number of channels in the output. num_attention_heads (`int`, defaults to `24`): The number of heads to use for multi-head attention. attention_head_dim (`int`, defaults to `128`): The number of channels in each head. num_layers (`int`, defaults to `20`): The number of layers of dual-stream blocks to use. num_single_layers (`int`, defaults to `40`): The number of layers of single-stream blocks to use. num_refiner_layers (`int`, defaults to `2`): The number of layers of refiner blocks to use. mlp_ratio (`float`, defaults to `4.0`): The ratio of the hidden layer size to the input size in the feedforward network. patch_size (`int`, defaults to `2`): The size of the spatial patches to use in the patch embedding layer. patch_size_t (`int`, defaults to `1`): The size of the tmeporal patches to use in the patch embedding layer. qk_norm (`str`, defaults to `rms_norm`): The normalization to use for the query and key projections in the attention layers. guidance_embeds (`bool`, defaults to `True`): Whether to use guidance embeddings in the model. text_embed_dim (`int`, defaults to `4096`): Input dimension of text embeddings from the text encoder. pooled_projection_dim (`int`, defaults to `768`): The dimension of the pooled projection of the text embeddings. rope_theta (`float`, defaults to `256.0`): The value of theta to use in the RoPE layer. rope_axes_dim (`Tuple[int]`, defaults to `(16, 56, 56)`): The dimensions of the axes to use in the RoPE layer. """ _supports_gradient_checkpointing = True _no_split_modules = [ "HunyuanVideoTransformerBlock", "HunyuanVideoSingleTransformerBlock", "HunyuanVideoPatchEmbed", "HunyuanVideoTokenRefiner", ] @register_to_config def __init__( self, in_channels: int = 16, out_channels: int = 16, num_attention_heads: int = 24, attention_head_dim: int = 128, num_layers: int = 20, num_single_layers: int = 40, num_refiner_layers: int = 2, mlp_ratio: float = 4.0, patch_size: int = 2, patch_size_t: int = 1, qk_norm: str = "rms_norm", guidance_embeds: bool = True, text_embed_dim: int = 4096, pooled_projection_dim: int = 768, rope_theta: float = 256.0, rope_axes_dim: Tuple[int] = (16, 56, 56), ) -> None: super().__init__() inner_dim = num_attention_heads * attention_head_dim out_channels = out_channels or in_channels # 1. Latent and condition embedders self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim) self.context_embedder = HunyuanVideoTokenRefiner( text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers ) self.time_text_embed = CombinedTimestepGuidanceTextProjEmbeddings(inner_dim, pooled_projection_dim) # 2. RoPE self.rope = HunyuanVideoRotaryPosEmbed(patch_size, patch_size_t, rope_axes_dim, rope_theta) # 3. Dual stream transformer blocks self.transformer_blocks = nn.ModuleList( [ HunyuanVideoTransformerBlock( num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm ) for _ in range(num_layers) ] ) # 4. Single stream transformer blocks self.single_transformer_blocks = nn.ModuleList( [ HunyuanVideoSingleTransformerBlock( num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm ) for _ in range(num_single_layers) ] ) # 5. Output projection self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels) self.gradient_checkpointing = False @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states: torch.Tensor, timestep: torch.LongTensor, encoder_hidden_states: torch.Tensor, encoder_attention_mask: torch.Tensor, pooled_projections: torch.Tensor, guidance: torch.Tensor = None, attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: if attention_kwargs is not None: attention_kwargs = attention_kwargs.copy() lora_scale = attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." ) batch_size, num_channels, num_frames, height, width = hidden_states.shape p, p_t = self.config.patch_size, self.config.patch_size_t post_patch_num_frames = num_frames // p_t post_patch_height = height // p post_patch_width = width // p # 1. RoPE image_rotary_emb = self.rope(hidden_states) # 2. Conditional embeddings temb = self.time_text_embed(timestep, guidance, pooled_projections) hidden_states = self.x_embedder(hidden_states) encoder_hidden_states = self.context_embedder(encoder_hidden_states, timestep, encoder_attention_mask) # 3. Attention mask preparation latent_sequence_length = hidden_states.shape[1] condition_sequence_length = encoder_hidden_states.shape[1] sequence_length = latent_sequence_length + condition_sequence_length attention_mask = torch.zeros( batch_size, sequence_length, device=hidden_states.device, dtype=torch.bool ) # [B, N] effective_condition_sequence_length = encoder_attention_mask.sum(dim=1, dtype=torch.int) # [B,] effective_sequence_length = latent_sequence_length + effective_condition_sequence_length for i in range(batch_size): attention_mask[i, : effective_sequence_length[i]] = True # [B, 1, 1, N], for broadcasting across attention heads attention_mask = attention_mask.unsqueeze(1).unsqueeze(1) # 4. Transformer blocks if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} for block in self.transformer_blocks: hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, attention_mask, image_rotary_emb, **ckpt_kwargs, ) for block in self.single_transformer_blocks: hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, attention_mask, image_rotary_emb, **ckpt_kwargs, ) else: for block in self.transformer_blocks: hidden_states, encoder_hidden_states = block( hidden_states, encoder_hidden_states, temb, attention_mask, image_rotary_emb ) for block in self.single_transformer_blocks: hidden_states, encoder_hidden_states = block( hidden_states, encoder_hidden_states, temb, attention_mask, image_rotary_emb ) # 5. Output projection hidden_states = self.norm_out(hidden_states, temb) hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.reshape( batch_size, post_patch_num_frames, post_patch_height, post_patch_width, -1, p_t, p, p ) hidden_states = hidden_states.permute(0, 4, 1, 5, 2, 6, 3, 7) hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (hidden_states,) return Transformer2DModelOutput(sample=hidden_states)
class_definition
19,497
32,230
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_hunyuan_video.py
null
1,154
class CogVideoXBlock(nn.Module): r""" Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model. Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. time_embed_dim (`int`): The number of channels in timestep embedding. dropout (`float`, defaults to `0.0`): The dropout probability to use. activation_fn (`str`, defaults to `"gelu-approximate"`): Activation function to be used in feed-forward. attention_bias (`bool`, defaults to `False`): Whether or not to use bias in attention projection layers. qk_norm (`bool`, defaults to `True`): Whether or not to use normalization after query and key projections in Attention. norm_elementwise_affine (`bool`, defaults to `True`): Whether to use learnable elementwise affine parameters for normalization. norm_eps (`float`, defaults to `1e-5`): Epsilon value for normalization layers. final_dropout (`bool` defaults to `False`): Whether to apply a final dropout after the last feed-forward layer. ff_inner_dim (`int`, *optional*, defaults to `None`): Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used. ff_bias (`bool`, defaults to `True`): Whether or not to use bias in Feed-forward layer. attention_out_bias (`bool`, defaults to `True`): Whether or not to use bias in Attention output projection layer. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, time_embed_dim: int, dropout: float = 0.0, activation_fn: str = "gelu-approximate", attention_bias: bool = False, qk_norm: bool = True, norm_elementwise_affine: bool = True, norm_eps: float = 1e-5, final_dropout: bool = True, ff_inner_dim: Optional[int] = None, ff_bias: bool = True, attention_out_bias: bool = True, ): super().__init__() # 1. Self Attention self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) self.attn1 = Attention( query_dim=dim, dim_head=attention_head_dim, heads=num_attention_heads, qk_norm="layer_norm" if qk_norm else None, eps=1e-6, bias=attention_bias, out_bias=attention_out_bias, processor=CogVideoXAttnProcessor2_0(), ) # 2. Feed Forward self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) self.ff = FeedForward( dim, dropout=dropout, activation_fn=activation_fn, final_dropout=final_dropout, inner_dim=ff_inner_dim, bias=ff_bias, ) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, attention_kwargs: Optional[Dict[str, Any]] = None, ) -> torch.Tensor: text_seq_length = encoder_hidden_states.size(1) attention_kwargs = attention_kwargs or {} # norm & modulate norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1( hidden_states, encoder_hidden_states, temb ) # attention attn_hidden_states, attn_encoder_hidden_states = self.attn1( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, image_rotary_emb=image_rotary_emb, **attention_kwargs, ) hidden_states = hidden_states + gate_msa * attn_hidden_states encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states # norm & modulate norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2( hidden_states, encoder_hidden_states, temb ) # feed-forward norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1) ff_output = self.ff(norm_hidden_states) hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:] encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length] return hidden_states, encoder_hidden_states
class_definition
1,509
6,331
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/cogvideox_transformer_3d.py
null
1,155
class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): """ A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo). Parameters: num_attention_heads (`int`, defaults to `30`): The number of heads to use for multi-head attention. attention_head_dim (`int`, defaults to `64`): The number of channels in each head. in_channels (`int`, defaults to `16`): The number of channels in the input. out_channels (`int`, *optional*, defaults to `16`): The number of channels in the output. flip_sin_to_cos (`bool`, defaults to `True`): Whether to flip the sin to cos in the time embedding. time_embed_dim (`int`, defaults to `512`): Output dimension of timestep embeddings. ofs_embed_dim (`int`, defaults to `512`): Output dimension of "ofs" embeddings used in CogVideoX-5b-I2B in version 1.5 text_embed_dim (`int`, defaults to `4096`): Input dimension of text embeddings from the text encoder. num_layers (`int`, defaults to `30`): The number of layers of Transformer blocks to use. dropout (`float`, defaults to `0.0`): The dropout probability to use. attention_bias (`bool`, defaults to `True`): Whether to use bias in the attention projection layers. sample_width (`int`, defaults to `90`): The width of the input latents. sample_height (`int`, defaults to `60`): The height of the input latents. sample_frames (`int`, defaults to `49`): The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49 instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings, but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1). patch_size (`int`, defaults to `2`): The size of the patches to use in the patch embedding layer. temporal_compression_ratio (`int`, defaults to `4`): The compression ratio across the temporal dimension. See documentation for `sample_frames`. max_text_seq_length (`int`, defaults to `226`): The maximum sequence length of the input text embeddings. activation_fn (`str`, defaults to `"gelu-approximate"`): Activation function to use in feed-forward. timestep_activation_fn (`str`, defaults to `"silu"`): Activation function to use when generating the timestep embeddings. norm_elementwise_affine (`bool`, defaults to `True`): Whether to use elementwise affine in normalization layers. norm_eps (`float`, defaults to `1e-5`): The epsilon value to use in normalization layers. spatial_interpolation_scale (`float`, defaults to `1.875`): Scaling factor to apply in 3D positional embeddings across spatial dimensions. temporal_interpolation_scale (`float`, defaults to `1.0`): Scaling factor to apply in 3D positional embeddings across temporal dimensions. """ _supports_gradient_checkpointing = True _no_split_modules = ["CogVideoXBlock", "CogVideoXPatchEmbed"] @register_to_config def __init__( self, num_attention_heads: int = 30, attention_head_dim: int = 64, in_channels: int = 16, out_channels: Optional[int] = 16, flip_sin_to_cos: bool = True, freq_shift: int = 0, time_embed_dim: int = 512, ofs_embed_dim: Optional[int] = None, text_embed_dim: int = 4096, num_layers: int = 30, dropout: float = 0.0, attention_bias: bool = True, sample_width: int = 90, sample_height: int = 60, sample_frames: int = 49, patch_size: int = 2, patch_size_t: Optional[int] = None, temporal_compression_ratio: int = 4, max_text_seq_length: int = 226, activation_fn: str = "gelu-approximate", timestep_activation_fn: str = "silu", norm_elementwise_affine: bool = True, norm_eps: float = 1e-5, spatial_interpolation_scale: float = 1.875, temporal_interpolation_scale: float = 1.0, use_rotary_positional_embeddings: bool = False, use_learned_positional_embeddings: bool = False, patch_bias: bool = True, ): super().__init__() inner_dim = num_attention_heads * attention_head_dim if not use_rotary_positional_embeddings and use_learned_positional_embeddings: raise ValueError( "There are no CogVideoX checkpoints available with disable rotary embeddings and learned positional " "embeddings. If you're using a custom model and/or believe this should be supported, please open an " "issue at https://github.com/huggingface/diffusers/issues." ) # 1. Patch embedding self.patch_embed = CogVideoXPatchEmbed( patch_size=patch_size, patch_size_t=patch_size_t, in_channels=in_channels, embed_dim=inner_dim, text_embed_dim=text_embed_dim, bias=patch_bias, sample_width=sample_width, sample_height=sample_height, sample_frames=sample_frames, temporal_compression_ratio=temporal_compression_ratio, max_text_seq_length=max_text_seq_length, spatial_interpolation_scale=spatial_interpolation_scale, temporal_interpolation_scale=temporal_interpolation_scale, use_positional_embeddings=not use_rotary_positional_embeddings, use_learned_positional_embeddings=use_learned_positional_embeddings, ) self.embedding_dropout = nn.Dropout(dropout) # 2. Time embeddings and ofs embedding(Only CogVideoX1.5-5B I2V have) self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift) self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn) self.ofs_proj = None self.ofs_embedding = None if ofs_embed_dim: self.ofs_proj = Timesteps(ofs_embed_dim, flip_sin_to_cos, freq_shift) self.ofs_embedding = TimestepEmbedding( ofs_embed_dim, ofs_embed_dim, timestep_activation_fn ) # same as time embeddings, for ofs # 3. Define spatio-temporal transformers blocks self.transformer_blocks = nn.ModuleList( [ CogVideoXBlock( dim=inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, time_embed_dim=time_embed_dim, dropout=dropout, activation_fn=activation_fn, attention_bias=attention_bias, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, ) for _ in range(num_layers) ] ) self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine) # 4. Output blocks self.norm_out = AdaLayerNorm( embedding_dim=time_embed_dim, output_dim=2 * inner_dim, norm_elementwise_affine=norm_elementwise_affine, norm_eps=norm_eps, chunk_dim=1, ) if patch_size_t is None: # For CogVideox 1.0 output_dim = patch_size * patch_size * out_channels else: # For CogVideoX 1.5 output_dim = patch_size * patch_size * patch_size_t * out_channels self.proj_out = nn.Linear(inner_dim, output_dim) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): self.gradient_checkpointing = value @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedCogVideoXAttnProcessor2_0 def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ self.original_attn_processors = None for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True) self.set_attn_processor(FusedCogVideoXAttnProcessor2_0()) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, timestep: Union[int, float, torch.LongTensor], timestep_cond: Optional[torch.Tensor] = None, ofs: Optional[Union[int, float, torch.LongTensor]] = None, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ): if attention_kwargs is not None: attention_kwargs = attention_kwargs.copy() lora_scale = attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." ) batch_size, num_frames, channels, height, width = hidden_states.shape # 1. Time embedding timesteps = timestep t_emb = self.time_proj(timesteps) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might actually be running in fp16. so we need to cast here. # there might be better ways to encapsulate this. t_emb = t_emb.to(dtype=hidden_states.dtype) emb = self.time_embedding(t_emb, timestep_cond) if self.ofs_embedding is not None: ofs_emb = self.ofs_proj(ofs) ofs_emb = ofs_emb.to(dtype=hidden_states.dtype) ofs_emb = self.ofs_embedding(ofs_emb) emb = emb + ofs_emb # 2. Patch embedding hidden_states = self.patch_embed(encoder_hidden_states, hidden_states) hidden_states = self.embedding_dropout(hidden_states) text_seq_length = encoder_hidden_states.shape[1] encoder_hidden_states = hidden_states[:, :text_seq_length] hidden_states = hidden_states[:, text_seq_length:] # 3. Transformer blocks for i, block in enumerate(self.transformer_blocks): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, emb, image_rotary_emb, attention_kwargs, **ckpt_kwargs, ) else: hidden_states, encoder_hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=emb, image_rotary_emb=image_rotary_emb, attention_kwargs=attention_kwargs, ) if not self.config.use_rotary_positional_embeddings: # CogVideoX-2B hidden_states = self.norm_final(hidden_states) else: # CogVideoX-5B hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) hidden_states = self.norm_final(hidden_states) hidden_states = hidden_states[:, text_seq_length:] # 4. Final block hidden_states = self.norm_out(hidden_states, temb=emb) hidden_states = self.proj_out(hidden_states) # 5. Unpatchify p = self.config.patch_size p_t = self.config.patch_size_t if p_t is None: output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p) output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4) else: output = hidden_states.reshape( batch_size, (num_frames + p_t - 1) // p_t, height // p, width // p, -1, p_t, p, p ) output = output.permute(0, 1, 5, 4, 2, 6, 3, 7).flatten(6, 7).flatten(4, 5).flatten(1, 2) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)
class_definition
6,334
23,546
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/cogvideox_transformer_3d.py
null
1,156
class CogView3PlusTransformerBlock(nn.Module): r""" Transformer block used in [CogView](https://github.com/THUDM/CogView3) model. Args: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. time_embed_dim (`int`): The number of channels in timestep embedding. """ def __init__( self, dim: int = 2560, num_attention_heads: int = 64, attention_head_dim: int = 40, time_embed_dim: int = 512, ): super().__init__() self.norm1 = CogView3PlusAdaLayerNormZeroTextImage(embedding_dim=time_embed_dim, dim=dim) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, out_dim=dim, bias=True, qk_norm="layer_norm", elementwise_affine=False, eps=1e-6, processor=CogVideoXAttnProcessor2_0(), ) self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5) self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-5) self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, emb: torch.Tensor, ) -> torch.Tensor: text_seq_length = encoder_hidden_states.size(1) # norm & modulate ( norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp, ) = self.norm1(hidden_states, encoder_hidden_states, emb) # attention attn_hidden_states, attn_encoder_hidden_states = self.attn1( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states ) hidden_states = hidden_states + gate_msa.unsqueeze(1) * attn_hidden_states encoder_hidden_states = encoder_hidden_states + c_gate_msa.unsqueeze(1) * attn_encoder_hidden_states # norm & modulate norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] # feed-forward norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1) ff_output = self.ff(norm_hidden_states) hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output[:, text_seq_length:] encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * ff_output[:, :text_seq_length] if hidden_states.dtype == torch.float16: hidden_states = hidden_states.clip(-65504, 65504) if encoder_hidden_states.dtype == torch.float16: encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) return hidden_states, encoder_hidden_states
class_definition
1,398
4,825
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_cogview3plus.py
null
1,157
class CogView3PlusTransformer2DModel(ModelMixin, ConfigMixin): r""" The Transformer model introduced in [CogView3: Finer and Faster Text-to-Image Generation via Relay Diffusion](https://huggingface.co/papers/2403.05121). Args: patch_size (`int`, defaults to `2`): The size of the patches to use in the patch embedding layer. in_channels (`int`, defaults to `16`): The number of channels in the input. num_layers (`int`, defaults to `30`): The number of layers of Transformer blocks to use. attention_head_dim (`int`, defaults to `40`): The number of channels in each head. num_attention_heads (`int`, defaults to `64`): The number of heads to use for multi-head attention. out_channels (`int`, defaults to `16`): The number of channels in the output. text_embed_dim (`int`, defaults to `4096`): Input dimension of text embeddings from the text encoder. time_embed_dim (`int`, defaults to `512`): Output dimension of timestep embeddings. condition_dim (`int`, defaults to `256`): The embedding dimension of the input SDXL-style resolution conditions (original_size, target_size, crop_coords). pos_embed_max_size (`int`, defaults to `128`): The maximum resolution of the positional embeddings, from which slices of shape `H x W` are taken and added to input patched latents, where `H` and `W` are the latent height and width respectively. A value of 128 means that the maximum supported height and width for image generation is `128 * vae_scale_factor * patch_size => 128 * 8 * 2 => 2048`. sample_size (`int`, defaults to `128`): The base resolution of input latents. If height/width is not provided during generation, this value is used to determine the resolution as `sample_size * vae_scale_factor => 128 * 8 => 1024` """ _supports_gradient_checkpointing = True _no_split_modules = ["CogView3PlusTransformerBlock", "CogView3PlusPatchEmbed"] @register_to_config def __init__( self, patch_size: int = 2, in_channels: int = 16, num_layers: int = 30, attention_head_dim: int = 40, num_attention_heads: int = 64, out_channels: int = 16, text_embed_dim: int = 4096, time_embed_dim: int = 512, condition_dim: int = 256, pos_embed_max_size: int = 128, sample_size: int = 128, ): super().__init__() self.out_channels = out_channels self.inner_dim = num_attention_heads * attention_head_dim # CogView3 uses 3 additional SDXL-like conditions - original_size, target_size, crop_coords # Each of these are sincos embeddings of shape 2 * condition_dim self.pooled_projection_dim = 3 * 2 * condition_dim self.patch_embed = CogView3PlusPatchEmbed( in_channels=in_channels, hidden_size=self.inner_dim, patch_size=patch_size, text_hidden_size=text_embed_dim, pos_embed_max_size=pos_embed_max_size, ) self.time_condition_embed = CogView3CombinedTimestepSizeEmbeddings( embedding_dim=time_embed_dim, condition_dim=condition_dim, pooled_projection_dim=self.pooled_projection_dim, timesteps_dim=self.inner_dim, ) self.transformer_blocks = nn.ModuleList( [ CogView3PlusTransformerBlock( dim=self.inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, time_embed_dim=time_embed_dim, ) for _ in range(num_layers) ] ) self.norm_out = AdaLayerNormContinuous( embedding_dim=self.inner_dim, conditioning_embedding_dim=time_embed_dim, elementwise_affine=False, eps=1e-6, ) self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True) self.gradient_checkpointing = False @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, timestep: torch.LongTensor, original_size: torch.Tensor, target_size: torch.Tensor, crop_coords: torch.Tensor, return_dict: bool = True, ) -> Union[torch.Tensor, Transformer2DModelOutput]: """ The [`CogView3PlusTransformer2DModel`] forward method. Args: hidden_states (`torch.Tensor`): Input `hidden_states` of shape `(batch size, channel, height, width)`. encoder_hidden_states (`torch.Tensor`): Conditional embeddings (embeddings computed from the input conditions such as prompts) of shape `(batch_size, sequence_len, text_embed_dim)` timestep (`torch.LongTensor`): Used to indicate denoising step. original_size (`torch.Tensor`): CogView3 uses SDXL-like micro-conditioning for original image size as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). target_size (`torch.Tensor`): CogView3 uses SDXL-like micro-conditioning for target image size as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). crop_coords (`torch.Tensor`): CogView3 uses SDXL-like micro-conditioning for crop coordinates as explained in section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain tuple. Returns: `torch.Tensor` or [`~models.transformer_2d.Transformer2DModelOutput`]: The denoised latents using provided inputs as conditioning. """ height, width = hidden_states.shape[-2:] text_seq_length = encoder_hidden_states.shape[1] hidden_states = self.patch_embed( hidden_states, encoder_hidden_states ) # takes care of adding positional embeddings too. emb = self.time_condition_embed(timestep, original_size, target_size, crop_coords, hidden_states.dtype) encoder_hidden_states = hidden_states[:, :text_seq_length] hidden_states = hidden_states[:, text_seq_length:] for index_block, block in enumerate(self.transformer_blocks): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, emb, **ckpt_kwargs, ) else: hidden_states, encoder_hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, emb=emb, ) hidden_states = self.norm_out(hidden_states, emb) hidden_states = self.proj_out(hidden_states) # (batch_size, height*width, patch_size*patch_size*out_channels) # unpatchify patch_size = self.config.patch_size height = height // patch_size width = width // patch_size hidden_states = hidden_states.reshape( shape=(hidden_states.shape[0], height, width, self.out_channels, patch_size, patch_size) ) hidden_states = torch.einsum("nhwcpq->nchpwq", hidden_states) output = hidden_states.reshape( shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size) ) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)
class_definition
4,828
16,380
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_cogview3plus.py
null
1,158
class StableAudioGaussianFourierProjection(nn.Module): """Gaussian Fourier embeddings for noise levels.""" # Copied from diffusers.models.embeddings.GaussianFourierProjection.__init__ def __init__( self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False ): super().__init__() self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) self.log = log self.flip_sin_to_cos = flip_sin_to_cos if set_W_to_weight: # to delete later del self.weight self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False) self.weight = self.W del self.W def forward(self, x): if self.log: x = torch.log(x) x_proj = 2 * np.pi * x[:, None] @ self.weight[None, :] if self.flip_sin_to_cos: out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1) else: out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1) return out
class_definition
1,284
2,401
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/stable_audio_transformer.py
null
1,159
class StableAudioDiTBlock(nn.Module): r""" Transformer block used in Stable Audio model (https://github.com/Stability-AI/stable-audio-tools). Allow skip connection and QKNorm Parameters: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for the query states. num_key_value_attention_heads (`int`): The number of heads to use for the key and value states. attention_head_dim (`int`): The number of channels in each head. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. upcast_attention (`bool`, *optional*): Whether to upcast the attention computation to float32. This is useful for mixed precision training. """ def __init__( self, dim: int, num_attention_heads: int, num_key_value_attention_heads: int, attention_head_dim: int, dropout=0.0, cross_attention_dim: Optional[int] = None, upcast_attention: bool = False, norm_eps: float = 1e-5, ff_inner_dim: Optional[int] = None, ): super().__init__() # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn self.norm1 = nn.LayerNorm(dim, elementwise_affine=True, eps=norm_eps) self.attn1 = Attention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, dropout=dropout, bias=False, upcast_attention=upcast_attention, out_bias=False, processor=StableAudioAttnProcessor2_0(), ) # 2. Cross-Attn self.norm2 = nn.LayerNorm(dim, norm_eps, True) self.attn2 = Attention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, kv_heads=num_key_value_attention_heads, dropout=dropout, bias=False, upcast_attention=upcast_attention, out_bias=False, processor=StableAudioAttnProcessor2_0(), ) # is self-attn if encoder_hidden_states is none # 3. Feed-forward self.norm3 = nn.LayerNorm(dim, norm_eps, True) self.ff = FeedForward( dim, dropout=dropout, activation_fn="swiglu", final_dropout=False, inner_dim=ff_inner_dim, bias=True, ) # let chunk size default to None self._chunk_size = None self._chunk_dim = 0 def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): # Sets chunk feed-forward self._chunk_size = chunk_size self._chunk_dim = dim def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, rotary_embedding: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: # Notice that normalization is always applied before the real computation in the following blocks. # 0. Self-Attention norm_hidden_states = self.norm1(hidden_states) attn_output = self.attn1( norm_hidden_states, attention_mask=attention_mask, rotary_emb=rotary_embedding, ) hidden_states = attn_output + hidden_states # 2. Cross-Attention norm_hidden_states = self.norm2(hidden_states) attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, ) hidden_states = attn_output + hidden_states # 3. Feed-forward norm_hidden_states = self.norm3(hidden_states) ff_output = self.ff(norm_hidden_states) hidden_states = ff_output + hidden_states return hidden_states
class_definition
2,426
6,635
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/stable_audio_transformer.py
null
1,160
class StableAudioDiTModel(ModelMixin, ConfigMixin): """ The Diffusion Transformer model introduced in Stable Audio. Reference: https://github.com/Stability-AI/stable-audio-tools Parameters: sample_size ( `int`, *optional*, defaults to 1024): The size of the input sample. in_channels (`int`, *optional*, defaults to 64): The number of channels in the input. num_layers (`int`, *optional*, defaults to 24): The number of layers of Transformer blocks to use. attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. num_attention_heads (`int`, *optional*, defaults to 24): The number of heads to use for the query states. num_key_value_attention_heads (`int`, *optional*, defaults to 12): The number of heads to use for the key and value states. out_channels (`int`, defaults to 64): Number of output channels. cross_attention_dim ( `int`, *optional*, defaults to 768): Dimension of the cross-attention projection. time_proj_dim ( `int`, *optional*, defaults to 256): Dimension of the timestep inner projection. global_states_input_dim ( `int`, *optional*, defaults to 1536): Input dimension of the global hidden states projection. cross_attention_input_dim ( `int`, *optional*, defaults to 768): Input dimension of the cross-attention projection """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, sample_size: int = 1024, in_channels: int = 64, num_layers: int = 24, attention_head_dim: int = 64, num_attention_heads: int = 24, num_key_value_attention_heads: int = 12, out_channels: int = 64, cross_attention_dim: int = 768, time_proj_dim: int = 256, global_states_input_dim: int = 1536, cross_attention_input_dim: int = 768, ): super().__init__() self.sample_size = sample_size self.out_channels = out_channels self.inner_dim = num_attention_heads * attention_head_dim self.time_proj = StableAudioGaussianFourierProjection( embedding_size=time_proj_dim // 2, flip_sin_to_cos=True, log=False, set_W_to_weight=False, ) self.timestep_proj = nn.Sequential( nn.Linear(time_proj_dim, self.inner_dim, bias=True), nn.SiLU(), nn.Linear(self.inner_dim, self.inner_dim, bias=True), ) self.global_proj = nn.Sequential( nn.Linear(global_states_input_dim, self.inner_dim, bias=False), nn.SiLU(), nn.Linear(self.inner_dim, self.inner_dim, bias=False), ) self.cross_attention_proj = nn.Sequential( nn.Linear(cross_attention_input_dim, cross_attention_dim, bias=False), nn.SiLU(), nn.Linear(cross_attention_dim, cross_attention_dim, bias=False), ) self.preprocess_conv = nn.Conv1d(in_channels, in_channels, 1, bias=False) self.proj_in = nn.Linear(in_channels, self.inner_dim, bias=False) self.transformer_blocks = nn.ModuleList( [ StableAudioDiTBlock( dim=self.inner_dim, num_attention_heads=num_attention_heads, num_key_value_attention_heads=num_key_value_attention_heads, attention_head_dim=attention_head_dim, cross_attention_dim=cross_attention_dim, ) for i in range(num_layers) ] ) self.proj_out = nn.Linear(self.inner_dim, self.out_channels, bias=False) self.postprocess_conv = nn.Conv1d(self.out_channels, self.out_channels, 1, bias=False) self.gradient_checkpointing = False @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.transformers.hunyuan_transformer_2d.HunyuanDiT2DModel.set_default_attn_processor with Hunyuan->StableAudio def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ self.set_attn_processor(StableAudioAttnProcessor2_0()) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states: torch.FloatTensor, timestep: torch.LongTensor = None, encoder_hidden_states: torch.FloatTensor = None, global_hidden_states: torch.FloatTensor = None, rotary_embedding: torch.FloatTensor = None, return_dict: bool = True, attention_mask: Optional[torch.LongTensor] = None, encoder_attention_mask: Optional[torch.LongTensor] = None, ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: """ The [`StableAudioDiTModel`] forward method. Args: hidden_states (`torch.FloatTensor` of shape `(batch size, in_channels, sequence_len)`): Input `hidden_states`. timestep ( `torch.LongTensor`): Used to indicate denoising step. encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, encoder_sequence_len, cross_attention_input_dim)`): Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. global_hidden_states (`torch.FloatTensor` of shape `(batch size, global_sequence_len, global_states_input_dim)`): Global embeddings that will be prepended to the hidden states. rotary_embedding (`torch.Tensor`): The rotary embeddings to apply on query and key tensors during attention calculation. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain tuple. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_len)`, *optional*): Mask to avoid performing attention on padding token indices, formed by concatenating the attention masks for the two text encoders together. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. encoder_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_len)`, *optional*): Mask to avoid performing attention on padding token cross-attention indices, formed by concatenating the attention masks for the two text encoders together. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ cross_attention_hidden_states = self.cross_attention_proj(encoder_hidden_states) global_hidden_states = self.global_proj(global_hidden_states) time_hidden_states = self.timestep_proj(self.time_proj(timestep.to(self.dtype))) global_hidden_states = global_hidden_states + time_hidden_states.unsqueeze(1) hidden_states = self.preprocess_conv(hidden_states) + hidden_states # (batch_size, dim, sequence_length) -> (batch_size, sequence_length, dim) hidden_states = hidden_states.transpose(1, 2) hidden_states = self.proj_in(hidden_states) # prepend global states to hidden states hidden_states = torch.cat([global_hidden_states, hidden_states], dim=-2) if attention_mask is not None: prepend_mask = torch.ones((hidden_states.shape[0], 1), device=hidden_states.device, dtype=torch.bool) attention_mask = torch.cat([prepend_mask, attention_mask], dim=-1) for block in self.transformer_blocks: if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, attention_mask, cross_attention_hidden_states, encoder_attention_mask, rotary_embedding, **ckpt_kwargs, ) else: hidden_states = block( hidden_states=hidden_states, attention_mask=attention_mask, encoder_hidden_states=cross_attention_hidden_states, encoder_attention_mask=encoder_attention_mask, rotary_embedding=rotary_embedding, ) hidden_states = self.proj_out(hidden_states) # (batch_size, sequence_length, dim) -> (batch_size, dim, sequence_length) # remove prepend length that has been added by global hidden states hidden_states = hidden_states.transpose(1, 2)[:, :, 1:] hidden_states = self.postprocess_conv(hidden_states) + hidden_states if not return_dict: return (hidden_states,) return Transformer2DModelOutput(sample=hidden_states)
class_definition
6,638
19,324
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/stable_audio_transformer.py
null
1,161
class MochiModulatedRMSNorm(nn.Module): def __init__(self, eps: float): super().__init__() self.eps = eps self.norm = RMSNorm(0, eps, False) def forward(self, hidden_states, scale=None): hidden_states_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) hidden_states = self.norm(hidden_states) if scale is not None: hidden_states = hidden_states * scale hidden_states = hidden_states.to(hidden_states_dtype) return hidden_states
class_definition
1,454
2,004
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_mochi.py
null
1,162
class MochiLayerNormContinuous(nn.Module): def __init__( self, embedding_dim: int, conditioning_embedding_dim: int, eps=1e-5, bias=True, ): super().__init__() # AdaLN self.silu = nn.SiLU() self.linear_1 = nn.Linear(conditioning_embedding_dim, embedding_dim, bias=bias) self.norm = MochiModulatedRMSNorm(eps=eps) def forward( self, x: torch.Tensor, conditioning_embedding: torch.Tensor, ) -> torch.Tensor: input_dtype = x.dtype # convert back to the original dtype in case `conditioning_embedding`` is upcasted to float32 (needed for hunyuanDiT) scale = self.linear_1(self.silu(conditioning_embedding).to(x.dtype)) x = self.norm(x, (1 + scale.unsqueeze(1).to(torch.float32))) return x.to(input_dtype)
class_definition
2,007
2,870
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_mochi.py
null
1,163
class MochiRMSNormZero(nn.Module): r""" Adaptive RMS Norm used in Mochi. Parameters: embedding_dim (`int`): The size of each embedding vector. """ def __init__( self, embedding_dim: int, hidden_dim: int, eps: float = 1e-5, elementwise_affine: bool = False ) -> None: super().__init__() self.silu = nn.SiLU() self.linear = nn.Linear(embedding_dim, hidden_dim) self.norm = RMSNorm(0, eps, False) def forward( self, hidden_states: torch.Tensor, emb: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: hidden_states_dtype = hidden_states.dtype emb = self.linear(self.silu(emb)) scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1) hidden_states = self.norm(hidden_states.to(torch.float32)) * (1 + scale_msa[:, None].to(torch.float32)) hidden_states = hidden_states.to(hidden_states_dtype) return hidden_states, gate_msa, scale_mlp, gate_mlp
class_definition
2,873
3,891
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_mochi.py
null
1,164
class MochiTransformerBlock(nn.Module): r""" Transformer block used in [Mochi](https://huggingface.co/genmo/mochi-1-preview). Args: dim (`int`): The number of channels in the input and output. num_attention_heads (`int`): The number of heads to use for multi-head attention. attention_head_dim (`int`): The number of channels in each head. qk_norm (`str`, defaults to `"rms_norm"`): The normalization layer to use. activation_fn (`str`, defaults to `"swiglu"`): Activation function to use in feed-forward. context_pre_only (`bool`, defaults to `False`): Whether or not to process context-related conditions with additional layers. eps (`float`, defaults to `1e-6`): Epsilon value for normalization layers. """ def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, pooled_projection_dim: int, qk_norm: str = "rms_norm", activation_fn: str = "swiglu", context_pre_only: bool = False, eps: float = 1e-6, ) -> None: super().__init__() self.context_pre_only = context_pre_only self.ff_inner_dim = (4 * dim * 2) // 3 self.ff_context_inner_dim = (4 * pooled_projection_dim * 2) // 3 self.norm1 = MochiRMSNormZero(dim, 4 * dim, eps=eps, elementwise_affine=False) if not context_pre_only: self.norm1_context = MochiRMSNormZero(dim, 4 * pooled_projection_dim, eps=eps, elementwise_affine=False) else: self.norm1_context = MochiLayerNormContinuous( embedding_dim=pooled_projection_dim, conditioning_embedding_dim=dim, eps=eps, ) self.attn1 = MochiAttention( query_dim=dim, heads=num_attention_heads, dim_head=attention_head_dim, bias=False, added_kv_proj_dim=pooled_projection_dim, added_proj_bias=False, out_dim=dim, out_context_dim=pooled_projection_dim, context_pre_only=context_pre_only, processor=MochiAttnProcessor2_0(), eps=1e-5, ) # TODO(aryan): norm_context layers are not needed when `context_pre_only` is True self.norm2 = MochiModulatedRMSNorm(eps=eps) self.norm2_context = MochiModulatedRMSNorm(eps=eps) if not self.context_pre_only else None self.norm3 = MochiModulatedRMSNorm(eps) self.norm3_context = MochiModulatedRMSNorm(eps=eps) if not self.context_pre_only else None self.ff = FeedForward(dim, inner_dim=self.ff_inner_dim, activation_fn=activation_fn, bias=False) self.ff_context = None if not context_pre_only: self.ff_context = FeedForward( pooled_projection_dim, inner_dim=self.ff_context_inner_dim, activation_fn=activation_fn, bias=False, ) self.norm4 = MochiModulatedRMSNorm(eps=eps) self.norm4_context = MochiModulatedRMSNorm(eps=eps) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, encoder_attention_mask: torch.Tensor, image_rotary_emb: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb) if not self.context_pre_only: norm_encoder_hidden_states, enc_gate_msa, enc_scale_mlp, enc_gate_mlp = self.norm1_context( encoder_hidden_states, temb ) else: norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb) attn_hidden_states, context_attn_hidden_states = self.attn1( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, image_rotary_emb=image_rotary_emb, attention_mask=encoder_attention_mask, ) hidden_states = hidden_states + self.norm2(attn_hidden_states, torch.tanh(gate_msa).unsqueeze(1)) norm_hidden_states = self.norm3(hidden_states, (1 + scale_mlp.unsqueeze(1).to(torch.float32))) ff_output = self.ff(norm_hidden_states) hidden_states = hidden_states + self.norm4(ff_output, torch.tanh(gate_mlp).unsqueeze(1)) if not self.context_pre_only: encoder_hidden_states = encoder_hidden_states + self.norm2_context( context_attn_hidden_states, torch.tanh(enc_gate_msa).unsqueeze(1) ) norm_encoder_hidden_states = self.norm3_context( encoder_hidden_states, (1 + enc_scale_mlp.unsqueeze(1).to(torch.float32)) ) context_ff_output = self.ff_context(norm_encoder_hidden_states) encoder_hidden_states = encoder_hidden_states + self.norm4_context( context_ff_output, torch.tanh(enc_gate_mlp).unsqueeze(1) ) return hidden_states, encoder_hidden_states
class_definition
3,916
9,097
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_mochi.py
null
1,165
class MochiRoPE(nn.Module): r""" RoPE implementation used in [Mochi](https://huggingface.co/genmo/mochi-1-preview). Args: base_height (`int`, defaults to `192`): Base height used to compute interpolation scale for rotary positional embeddings. base_width (`int`, defaults to `192`): Base width used to compute interpolation scale for rotary positional embeddings. """ def __init__(self, base_height: int = 192, base_width: int = 192) -> None: super().__init__() self.target_area = base_height * base_width def _centers(self, start, stop, num, device, dtype) -> torch.Tensor: edges = torch.linspace(start, stop, num + 1, device=device, dtype=dtype) return (edges[:-1] + edges[1:]) / 2 def _get_positions( self, num_frames: int, height: int, width: int, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ) -> torch.Tensor: scale = (self.target_area / (height * width)) ** 0.5 t = torch.arange(num_frames, device=device, dtype=dtype) h = self._centers(-height * scale / 2, height * scale / 2, height, device, dtype) w = self._centers(-width * scale / 2, width * scale / 2, width, device, dtype) grid_t, grid_h, grid_w = torch.meshgrid(t, h, w, indexing="ij") positions = torch.stack([grid_t, grid_h, grid_w], dim=-1).view(-1, 3) return positions def _create_rope(self, freqs: torch.Tensor, pos: torch.Tensor) -> torch.Tensor: with torch.autocast(freqs.device.type, torch.float32): # Always run ROPE freqs computation in FP32 freqs = torch.einsum("nd,dhf->nhf", pos.to(torch.float32), freqs.to(torch.float32)) freqs_cos = torch.cos(freqs) freqs_sin = torch.sin(freqs) return freqs_cos, freqs_sin def forward( self, pos_frequencies: torch.Tensor, num_frames: int, height: int, width: int, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: pos = self._get_positions(num_frames, height, width, device, dtype) rope_cos, rope_sin = self._create_rope(pos_frequencies, pos) return rope_cos, rope_sin
class_definition
9,100
11,447
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_mochi.py
null
1,166
class MochiTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin): r""" A Transformer model for video-like data introduced in [Mochi](https://huggingface.co/genmo/mochi-1-preview). Args: patch_size (`int`, defaults to `2`): The size of the patches to use in the patch embedding layer. num_attention_heads (`int`, defaults to `24`): The number of heads to use for multi-head attention. attention_head_dim (`int`, defaults to `128`): The number of channels in each head. num_layers (`int`, defaults to `48`): The number of layers of Transformer blocks to use. in_channels (`int`, defaults to `12`): The number of channels in the input. out_channels (`int`, *optional*, defaults to `None`): The number of channels in the output. qk_norm (`str`, defaults to `"rms_norm"`): The normalization layer to use. text_embed_dim (`int`, defaults to `4096`): Input dimension of text embeddings from the text encoder. time_embed_dim (`int`, defaults to `256`): Output dimension of timestep embeddings. activation_fn (`str`, defaults to `"swiglu"`): Activation function to use in feed-forward. max_sequence_length (`int`, defaults to `256`): The maximum sequence length of text embeddings supported. """ _supports_gradient_checkpointing = True _no_split_modules = ["MochiTransformerBlock"] @register_to_config def __init__( self, patch_size: int = 2, num_attention_heads: int = 24, attention_head_dim: int = 128, num_layers: int = 48, pooled_projection_dim: int = 1536, in_channels: int = 12, out_channels: Optional[int] = None, qk_norm: str = "rms_norm", text_embed_dim: int = 4096, time_embed_dim: int = 256, activation_fn: str = "swiglu", max_sequence_length: int = 256, ) -> None: super().__init__() inner_dim = num_attention_heads * attention_head_dim out_channels = out_channels or in_channels self.patch_embed = PatchEmbed( patch_size=patch_size, in_channels=in_channels, embed_dim=inner_dim, pos_embed_type=None, ) self.time_embed = MochiCombinedTimestepCaptionEmbedding( embedding_dim=inner_dim, pooled_projection_dim=pooled_projection_dim, text_embed_dim=text_embed_dim, time_embed_dim=time_embed_dim, num_attention_heads=8, ) self.pos_frequencies = nn.Parameter(torch.full((3, num_attention_heads, attention_head_dim // 2), 0.0)) self.rope = MochiRoPE() self.transformer_blocks = nn.ModuleList( [ MochiTransformerBlock( dim=inner_dim, num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, pooled_projection_dim=pooled_projection_dim, qk_norm=qk_norm, activation_fn=activation_fn, context_pre_only=i == num_layers - 1, ) for i in range(num_layers) ] ) self.norm_out = AdaLayerNormContinuous( inner_dim, inner_dim, elementwise_affine=False, eps=1e-6, norm_type="layer_norm", ) self.proj_out = nn.Linear(inner_dim, patch_size * patch_size * out_channels) self.gradient_checkpointing = False def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, timestep: torch.LongTensor, encoder_attention_mask: torch.Tensor, attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, ) -> torch.Tensor: if attention_kwargs is not None: attention_kwargs = attention_kwargs.copy() lora_scale = attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." ) batch_size, num_channels, num_frames, height, width = hidden_states.shape p = self.config.patch_size post_patch_height = height // p post_patch_width = width // p temb, encoder_hidden_states = self.time_embed( timestep, encoder_hidden_states, encoder_attention_mask, hidden_dtype=hidden_states.dtype, ) hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) hidden_states = self.patch_embed(hidden_states) hidden_states = hidden_states.unflatten(0, (batch_size, -1)).flatten(1, 2) image_rotary_emb = self.rope( self.pos_frequencies, num_frames, post_patch_height, post_patch_width, device=hidden_states.device, dtype=torch.float32, ) for i, block in enumerate(self.transformer_blocks): if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, encoder_hidden_states, temb, encoder_attention_mask, image_rotary_emb, **ckpt_kwargs, ) else: hidden_states, encoder_hidden_states = block( hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states, temb=temb, encoder_attention_mask=encoder_attention_mask, image_rotary_emb=image_rotary_emb, ) hidden_states = self.norm_out(hidden_states, temb) hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.reshape(batch_size, num_frames, post_patch_height, post_patch_width, p, p, -1) hidden_states = hidden_states.permute(0, 6, 1, 2, 4, 3, 5) output = hidden_states.reshape(batch_size, -1, num_frames, height, width) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)
class_definition
11,472
18,960
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/transformers/transformer_mochi.py
null
1,167
class TemporalDecoder(nn.Module): def __init__( self, in_channels: int = 4, out_channels: int = 3, block_out_channels: Tuple[int] = (128, 256, 512, 512), layers_per_block: int = 2, ): super().__init__() self.layers_per_block = layers_per_block self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1) self.mid_block = MidBlockTemporalDecoder( num_layers=self.layers_per_block, in_channels=block_out_channels[-1], out_channels=block_out_channels[-1], attention_head_dim=block_out_channels[-1], ) # up self.up_blocks = nn.ModuleList([]) reversed_block_out_channels = list(reversed(block_out_channels)) output_channel = reversed_block_out_channels[0] for i in range(len(block_out_channels)): prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 up_block = UpBlockTemporalDecoder( num_layers=self.layers_per_block + 1, in_channels=prev_output_channel, out_channels=output_channel, add_upsample=not is_final_block, ) self.up_blocks.append(up_block) prev_output_channel = output_channel self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-6) self.conv_act = nn.SiLU() self.conv_out = torch.nn.Conv2d( in_channels=block_out_channels[0], out_channels=out_channels, kernel_size=3, padding=1, ) conv_out_kernel_size = (3, 1, 1) padding = [int(k // 2) for k in conv_out_kernel_size] self.time_conv_out = torch.nn.Conv3d( in_channels=out_channels, out_channels=out_channels, kernel_size=conv_out_kernel_size, padding=padding, ) self.gradient_checkpointing = False def forward( self, sample: torch.Tensor, image_only_indicator: torch.Tensor, num_frames: int = 1, ) -> torch.Tensor: r"""The forward method of the `Decoder` class.""" sample = self.conv_in(sample) upscale_dtype = next(itertools.chain(self.up_blocks.parameters(), self.up_blocks.buffers())).dtype if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward if is_torch_version(">=", "1.11.0"): # middle sample = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block), sample, image_only_indicator, use_reentrant=False, ) sample = sample.to(upscale_dtype) # up for up_block in self.up_blocks: sample = torch.utils.checkpoint.checkpoint( create_custom_forward(up_block), sample, image_only_indicator, use_reentrant=False, ) else: # middle sample = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block), sample, image_only_indicator, ) sample = sample.to(upscale_dtype) # up for up_block in self.up_blocks: sample = torch.utils.checkpoint.checkpoint( create_custom_forward(up_block), sample, image_only_indicator, ) else: # middle sample = self.mid_block(sample, image_only_indicator=image_only_indicator) sample = sample.to(upscale_dtype) # up for up_block in self.up_blocks: sample = up_block(sample, image_only_indicator=image_only_indicator) # post-process sample = self.conv_norm_out(sample) sample = self.conv_act(sample) sample = self.conv_out(sample) batch_frames, channels, height, width = sample.shape batch_size = batch_frames // num_frames sample = sample[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4) sample = self.time_conv_out(sample) sample = sample.permute(0, 2, 1, 3, 4).reshape(batch_frames, channels, height, width) return sample
class_definition
1,212
6,077
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py
null
1,168
class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin): r""" A VAE model with KL loss for encoding images into latents and decoding latent representations into images. This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). Parameters: in_channels (int, *optional*, defaults to 3): Number of channels in the input image. out_channels (int, *optional*, defaults to 3): Number of channels in the output. down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): Tuple of downsample block types. block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): Tuple of block output channels. layers_per_block: (`int`, *optional*, defaults to 1): Number of layers per block. latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space. sample_size (`int`, *optional*, defaults to `32`): Sample input size. scaling_factor (`float`, *optional*, defaults to 0.18215): The component-wise standard deviation of the trained latent space computed using the first batch of the training set. This is used to scale the latent space to have unit variance when training the diffusion model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. force_upcast (`bool`, *optional*, default to `True`): If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE can be fine-tuned / trained to a lower range without loosing too much precision in which case `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, in_channels: int = 3, out_channels: int = 3, down_block_types: Tuple[str] = ("DownEncoderBlock2D",), block_out_channels: Tuple[int] = (64,), layers_per_block: int = 1, latent_channels: int = 4, sample_size: int = 32, scaling_factor: float = 0.18215, force_upcast: float = True, ): super().__init__() # pass init params to Encoder self.encoder = Encoder( in_channels=in_channels, out_channels=latent_channels, down_block_types=down_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, double_z=True, ) # pass init params to Decoder self.decoder = TemporalDecoder( in_channels=latent_channels, out_channels=out_channels, block_out_channels=block_out_channels, layers_per_block=layers_per_block, ) self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (Encoder, TemporalDecoder)): module.gradient_checkpointing = value @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnProcessor() else: raise ValueError( f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" ) self.set_attn_processor(processor) @apply_forward_hook def encode( self, x: torch.Tensor, return_dict: bool = True ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: """ Encode a batch of images into latents. Args: x (`torch.Tensor`): Input batch of images. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.autoencoders.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. Returns: The latent representations of the encoded images. If `return_dict` is True, a [`~models.autoencoders.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. """ h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=posterior) @apply_forward_hook def decode( self, z: torch.Tensor, num_frames: int, return_dict: bool = True, ) -> Union[DecoderOutput, torch.Tensor]: """ Decode a batch of images. Args: z (`torch.Tensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ batch_size = z.shape[0] // num_frames image_only_indicator = torch.zeros(batch_size, num_frames, dtype=z.dtype, device=z.device) decoded = self.decoder(z, num_frames=num_frames, image_only_indicator=image_only_indicator) if not return_dict: return (decoded,) return DecoderOutput(sample=decoded) def forward( self, sample: torch.Tensor, sample_posterior: bool = False, return_dict: bool = True, generator: Optional[torch.Generator] = None, num_frames: int = 1, ) -> Union[DecoderOutput, torch.Tensor]: r""" Args: sample (`torch.Tensor`): Input sample. sample_posterior (`bool`, *optional*, defaults to `False`): Whether to sample from the posterior. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`DecoderOutput`] instead of a plain tuple. """ x = sample posterior = self.encode(x).latent_dist if sample_posterior: z = posterior.sample(generator=generator) else: z = posterior.mode() dec = self.decode(z, num_frames=num_frames).sample if not return_dict: return (dec,) return DecoderOutput(sample=dec)
class_definition
6,080
15,986
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py
null
1,169
class CogVideoXSafeConv3d(nn.Conv3d): r""" A 3D convolution layer that splits the input tensor into smaller parts to avoid OOM in CogVideoX Model. """ def forward(self, input: torch.Tensor) -> torch.Tensor: memory_count = ( (input.shape[0] * input.shape[1] * input.shape[2] * input.shape[3] * input.shape[4]) * 2 / 1024**3 ) # Set to 2GB, suitable for CuDNN if memory_count > 2: kernel_size = self.kernel_size[0] part_num = int(memory_count / 2) + 1 input_chunks = torch.chunk(input, part_num, dim=2) if kernel_size > 1: input_chunks = [input_chunks[0]] + [ torch.cat((input_chunks[i - 1][:, :, -kernel_size + 1 :], input_chunks[i]), dim=2) for i in range(1, len(input_chunks)) ] output_chunks = [] for input_chunk in input_chunks: output_chunks.append(super().forward(input_chunk)) output = torch.cat(output_chunks, dim=2) return output else: return super().forward(input)
class_definition
1,377
2,518
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_cogvideox.py
null
1,170
class CogVideoXCausalConv3d(nn.Module): r"""A 3D causal convolution layer that pads the input tensor to ensure causality in CogVideoX Model. Args: in_channels (`int`): Number of channels in the input tensor. out_channels (`int`): Number of output channels produced by the convolution. kernel_size (`int` or `Tuple[int, int, int]`): Kernel size of the convolutional kernel. stride (`int`, defaults to `1`): Stride of the convolution. dilation (`int`, defaults to `1`): Dilation rate of the convolution. pad_mode (`str`, defaults to `"constant"`): Padding mode. """ def __init__( self, in_channels: int, out_channels: int, kernel_size: Union[int, Tuple[int, int, int]], stride: int = 1, dilation: int = 1, pad_mode: str = "constant", ): super().__init__() if isinstance(kernel_size, int): kernel_size = (kernel_size,) * 3 time_kernel_size, height_kernel_size, width_kernel_size = kernel_size # TODO(aryan): configure calculation based on stride and dilation in the future. # Since CogVideoX does not use it, it is currently tailored to "just work" with Mochi time_pad = time_kernel_size - 1 height_pad = (height_kernel_size - 1) // 2 width_pad = (width_kernel_size - 1) // 2 self.pad_mode = pad_mode self.height_pad = height_pad self.width_pad = width_pad self.time_pad = time_pad self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0) self.temporal_dim = 2 self.time_kernel_size = time_kernel_size stride = stride if isinstance(stride, tuple) else (stride, 1, 1) dilation = (dilation, 1, 1) self.conv = CogVideoXSafeConv3d( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, ) def fake_context_parallel_forward( self, inputs: torch.Tensor, conv_cache: Optional[torch.Tensor] = None ) -> torch.Tensor: if self.pad_mode == "replicate": inputs = F.pad(inputs, self.time_causal_padding, mode="replicate") else: kernel_size = self.time_kernel_size if kernel_size > 1: cached_inputs = [conv_cache] if conv_cache is not None else [inputs[:, :, :1]] * (kernel_size - 1) inputs = torch.cat(cached_inputs + [inputs], dim=2) return inputs def forward(self, inputs: torch.Tensor, conv_cache: Optional[torch.Tensor] = None) -> torch.Tensor: inputs = self.fake_context_parallel_forward(inputs, conv_cache) if self.pad_mode == "replicate": conv_cache = None else: padding_2d = (self.width_pad, self.width_pad, self.height_pad, self.height_pad) conv_cache = inputs[:, :, -self.time_kernel_size + 1 :].clone() inputs = F.pad(inputs, padding_2d, mode="constant", value=0) output = self.conv(inputs) return output, conv_cache
class_definition
2,521
5,678
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_cogvideox.py
null
1,171
class CogVideoXSpatialNorm3D(nn.Module): r""" Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002. This implementation is specific to 3D-video like data. CogVideoXSafeConv3d is used instead of nn.Conv3d to avoid OOM in CogVideoX Model. Args: f_channels (`int`): The number of channels for input to group normalization layer, and output of the spatial norm layer. zq_channels (`int`): The number of channels for the quantized vector as described in the paper. groups (`int`): Number of groups to separate the channels into for group normalization. """ def __init__( self, f_channels: int, zq_channels: int, groups: int = 32, ): super().__init__() self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=groups, eps=1e-6, affine=True) self.conv_y = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1) self.conv_b = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1) def forward( self, f: torch.Tensor, zq: torch.Tensor, conv_cache: Optional[Dict[str, torch.Tensor]] = None ) -> torch.Tensor: new_conv_cache = {} conv_cache = conv_cache or {} if f.shape[2] > 1 and f.shape[2] % 2 == 1: f_first, f_rest = f[:, :, :1], f[:, :, 1:] f_first_size, f_rest_size = f_first.shape[-3:], f_rest.shape[-3:] z_first, z_rest = zq[:, :, :1], zq[:, :, 1:] z_first = F.interpolate(z_first, size=f_first_size) z_rest = F.interpolate(z_rest, size=f_rest_size) zq = torch.cat([z_first, z_rest], dim=2) else: zq = F.interpolate(zq, size=f.shape[-3:]) conv_y, new_conv_cache["conv_y"] = self.conv_y(zq, conv_cache=conv_cache.get("conv_y")) conv_b, new_conv_cache["conv_b"] = self.conv_b(zq, conv_cache=conv_cache.get("conv_b")) norm_f = self.norm_layer(f) new_f = norm_f * conv_y + conv_b return new_f, new_conv_cache
class_definition
5,681
7,791
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_cogvideox.py
null
1,172
class CogVideoXResnetBlock3D(nn.Module): r""" A 3D ResNet block used in the CogVideoX model. Args: in_channels (`int`): Number of input channels. out_channels (`int`, *optional*): Number of output channels. If None, defaults to `in_channels`. dropout (`float`, defaults to `0.0`): Dropout rate. temb_channels (`int`, defaults to `512`): Number of time embedding channels. groups (`int`, defaults to `32`): Number of groups to separate the channels into for group normalization. eps (`float`, defaults to `1e-6`): Epsilon value for normalization layers. non_linearity (`str`, defaults to `"swish"`): Activation function to use. conv_shortcut (bool, defaults to `False`): Whether or not to use a convolution shortcut. spatial_norm_dim (`int`, *optional*): The dimension to use for spatial norm if it is to be used instead of group norm. pad_mode (str, defaults to `"first"`): Padding mode. """ def __init__( self, in_channels: int, out_channels: Optional[int] = None, dropout: float = 0.0, temb_channels: int = 512, groups: int = 32, eps: float = 1e-6, non_linearity: str = "swish", conv_shortcut: bool = False, spatial_norm_dim: Optional[int] = None, pad_mode: str = "first", ): super().__init__() out_channels = out_channels or in_channels self.in_channels = in_channels self.out_channels = out_channels self.nonlinearity = get_activation(non_linearity) self.use_conv_shortcut = conv_shortcut self.spatial_norm_dim = spatial_norm_dim if spatial_norm_dim is None: self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=groups, eps=eps) self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=groups, eps=eps) else: self.norm1 = CogVideoXSpatialNorm3D( f_channels=in_channels, zq_channels=spatial_norm_dim, groups=groups, ) self.norm2 = CogVideoXSpatialNorm3D( f_channels=out_channels, zq_channels=spatial_norm_dim, groups=groups, ) self.conv1 = CogVideoXCausalConv3d( in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode ) if temb_channels > 0: self.temb_proj = nn.Linear(in_features=temb_channels, out_features=out_channels) self.dropout = nn.Dropout(dropout) self.conv2 = CogVideoXCausalConv3d( in_channels=out_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode ) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = CogVideoXCausalConv3d( in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode ) else: self.conv_shortcut = CogVideoXSafeConv3d( in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0 ) def forward( self, inputs: torch.Tensor, temb: Optional[torch.Tensor] = None, zq: Optional[torch.Tensor] = None, conv_cache: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: new_conv_cache = {} conv_cache = conv_cache or {} hidden_states = inputs if zq is not None: hidden_states, new_conv_cache["norm1"] = self.norm1(hidden_states, zq, conv_cache=conv_cache.get("norm1")) else: hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states, new_conv_cache["conv1"] = self.conv1(hidden_states, conv_cache=conv_cache.get("conv1")) if temb is not None: hidden_states = hidden_states + self.temb_proj(self.nonlinearity(temb))[:, :, None, None, None] if zq is not None: hidden_states, new_conv_cache["norm2"] = self.norm2(hidden_states, zq, conv_cache=conv_cache.get("norm2")) else: hidden_states = self.norm2(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states, new_conv_cache["conv2"] = self.conv2(hidden_states, conv_cache=conv_cache.get("conv2")) if self.in_channels != self.out_channels: if self.use_conv_shortcut: inputs, new_conv_cache["conv_shortcut"] = self.conv_shortcut( inputs, conv_cache=conv_cache.get("conv_shortcut") ) else: inputs = self.conv_shortcut(inputs) hidden_states = hidden_states + inputs return hidden_states, new_conv_cache
class_definition
7,794
12,854
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_cogvideox.py
null
1,173
class CogVideoXDownBlock3D(nn.Module): r""" A downsampling block used in the CogVideoX model. Args: in_channels (`int`): Number of input channels. out_channels (`int`, *optional*): Number of output channels. If None, defaults to `in_channels`. temb_channels (`int`, defaults to `512`): Number of time embedding channels. num_layers (`int`, defaults to `1`): Number of resnet layers. dropout (`float`, defaults to `0.0`): Dropout rate. resnet_eps (`float`, defaults to `1e-6`): Epsilon value for normalization layers. resnet_act_fn (`str`, defaults to `"swish"`): Activation function to use. resnet_groups (`int`, defaults to `32`): Number of groups to separate the channels into for group normalization. add_downsample (`bool`, defaults to `True`): Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension. compress_time (`bool`, defaults to `False`): Whether or not to downsample across temporal dimension. pad_mode (str, defaults to `"first"`): Padding mode. """ _supports_gradient_checkpointing = True def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_act_fn: str = "swish", resnet_groups: int = 32, add_downsample: bool = True, downsample_padding: int = 0, compress_time: bool = False, pad_mode: str = "first", ): super().__init__() resnets = [] for i in range(num_layers): in_channel = in_channels if i == 0 else out_channels resnets.append( CogVideoXResnetBlock3D( in_channels=in_channel, out_channels=out_channels, dropout=dropout, temb_channels=temb_channels, groups=resnet_groups, eps=resnet_eps, non_linearity=resnet_act_fn, pad_mode=pad_mode, ) ) self.resnets = nn.ModuleList(resnets) self.downsamplers = None if add_downsample: self.downsamplers = nn.ModuleList( [ CogVideoXDownsample3D( out_channels, out_channels, padding=downsample_padding, compress_time=compress_time ) ] ) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None, zq: Optional[torch.Tensor] = None, conv_cache: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: r"""Forward method of the `CogVideoXDownBlock3D` class.""" new_conv_cache = {} conv_cache = conv_cache or {} for i, resnet in enumerate(self.resnets): conv_cache_key = f"resnet_{i}" if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def create_forward(*inputs): return module(*inputs) return create_forward hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, zq, conv_cache.get(conv_cache_key), ) else: hidden_states, new_conv_cache[conv_cache_key] = resnet( hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key) ) if self.downsamplers is not None: for downsampler in self.downsamplers: hidden_states = downsampler(hidden_states) return hidden_states, new_conv_cache
class_definition
12,857
17,031
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_cogvideox.py
null
1,174
class CogVideoXMidBlock3D(nn.Module): r""" A middle block used in the CogVideoX model. Args: in_channels (`int`): Number of input channels. temb_channels (`int`, defaults to `512`): Number of time embedding channels. dropout (`float`, defaults to `0.0`): Dropout rate. num_layers (`int`, defaults to `1`): Number of resnet layers. resnet_eps (`float`, defaults to `1e-6`): Epsilon value for normalization layers. resnet_act_fn (`str`, defaults to `"swish"`): Activation function to use. resnet_groups (`int`, defaults to `32`): Number of groups to separate the channels into for group normalization. spatial_norm_dim (`int`, *optional*): The dimension to use for spatial norm if it is to be used instead of group norm. pad_mode (str, defaults to `"first"`): Padding mode. """ _supports_gradient_checkpointing = True def __init__( self, in_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_act_fn: str = "swish", resnet_groups: int = 32, spatial_norm_dim: Optional[int] = None, pad_mode: str = "first", ): super().__init__() resnets = [] for _ in range(num_layers): resnets.append( CogVideoXResnetBlock3D( in_channels=in_channels, out_channels=in_channels, dropout=dropout, temb_channels=temb_channels, groups=resnet_groups, eps=resnet_eps, spatial_norm_dim=spatial_norm_dim, non_linearity=resnet_act_fn, pad_mode=pad_mode, ) ) self.resnets = nn.ModuleList(resnets) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None, zq: Optional[torch.Tensor] = None, conv_cache: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: r"""Forward method of the `CogVideoXMidBlock3D` class.""" new_conv_cache = {} conv_cache = conv_cache or {} for i, resnet in enumerate(self.resnets): conv_cache_key = f"resnet_{i}" if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def create_forward(*inputs): return module(*inputs) return create_forward hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, zq, conv_cache.get(conv_cache_key) ) else: hidden_states, new_conv_cache[conv_cache_key] = resnet( hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key) ) return hidden_states, new_conv_cache
class_definition
17,034
20,263
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_cogvideox.py
null
1,175
class CogVideoXUpBlock3D(nn.Module): r""" An upsampling block used in the CogVideoX model. Args: in_channels (`int`): Number of input channels. out_channels (`int`, *optional*): Number of output channels. If None, defaults to `in_channels`. temb_channels (`int`, defaults to `512`): Number of time embedding channels. dropout (`float`, defaults to `0.0`): Dropout rate. num_layers (`int`, defaults to `1`): Number of resnet layers. resnet_eps (`float`, defaults to `1e-6`): Epsilon value for normalization layers. resnet_act_fn (`str`, defaults to `"swish"`): Activation function to use. resnet_groups (`int`, defaults to `32`): Number of groups to separate the channels into for group normalization. spatial_norm_dim (`int`, defaults to `16`): The dimension to use for spatial norm if it is to be used instead of group norm. add_upsample (`bool`, defaults to `True`): Whether or not to use a upsampling layer. If not used, output dimension would be same as input dimension. compress_time (`bool`, defaults to `False`): Whether or not to downsample across temporal dimension. pad_mode (str, defaults to `"first"`): Padding mode. """ def __init__( self, in_channels: int, out_channels: int, temb_channels: int, dropout: float = 0.0, num_layers: int = 1, resnet_eps: float = 1e-6, resnet_act_fn: str = "swish", resnet_groups: int = 32, spatial_norm_dim: int = 16, add_upsample: bool = True, upsample_padding: int = 1, compress_time: bool = False, pad_mode: str = "first", ): super().__init__() resnets = [] for i in range(num_layers): in_channel = in_channels if i == 0 else out_channels resnets.append( CogVideoXResnetBlock3D( in_channels=in_channel, out_channels=out_channels, dropout=dropout, temb_channels=temb_channels, groups=resnet_groups, eps=resnet_eps, non_linearity=resnet_act_fn, spatial_norm_dim=spatial_norm_dim, pad_mode=pad_mode, ) ) self.resnets = nn.ModuleList(resnets) self.upsamplers = None if add_upsample: self.upsamplers = nn.ModuleList( [ CogVideoXUpsample3D( out_channels, out_channels, padding=upsample_padding, compress_time=compress_time ) ] ) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None, zq: Optional[torch.Tensor] = None, conv_cache: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: r"""Forward method of the `CogVideoXUpBlock3D` class.""" new_conv_cache = {} conv_cache = conv_cache or {} for i, resnet in enumerate(self.resnets): conv_cache_key = f"resnet_{i}" if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def create_forward(*inputs): return module(*inputs) return create_forward hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, temb, zq, conv_cache.get(conv_cache_key), ) else: hidden_states, new_conv_cache[conv_cache_key] = resnet( hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key) ) if self.upsamplers is not None: for upsampler in self.upsamplers: hidden_states = upsampler(hidden_states) return hidden_states, new_conv_cache
class_definition
20,266
24,600
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_cogvideox.py
null
1,176
class CogVideoXEncoder3D(nn.Module): r""" The `CogVideoXEncoder3D` layer of a variational autoencoder that encodes its input into a latent representation. Args: in_channels (`int`, *optional*, defaults to 3): The number of input channels. out_channels (`int`, *optional*, defaults to 3): The number of output channels. down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`): The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available options. block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): The number of output channels for each block. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. See `~diffusers.models.activations.get_activation` for available options. layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. norm_num_groups (`int`, *optional*, defaults to 32): The number of groups for normalization. """ _supports_gradient_checkpointing = True def __init__( self, in_channels: int = 3, out_channels: int = 16, down_block_types: Tuple[str, ...] = ( "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", ), block_out_channels: Tuple[int, ...] = (128, 256, 256, 512), layers_per_block: int = 3, act_fn: str = "silu", norm_eps: float = 1e-6, norm_num_groups: int = 32, dropout: float = 0.0, pad_mode: str = "first", temporal_compression_ratio: float = 4, ): super().__init__() # log2 of temporal_compress_times temporal_compress_level = int(np.log2(temporal_compression_ratio)) self.conv_in = CogVideoXCausalConv3d(in_channels, block_out_channels[0], kernel_size=3, pad_mode=pad_mode) self.down_blocks = nn.ModuleList([]) # down blocks output_channel = block_out_channels[0] for i, down_block_type in enumerate(down_block_types): input_channel = output_channel output_channel = block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 compress_time = i < temporal_compress_level if down_block_type == "CogVideoXDownBlock3D": down_block = CogVideoXDownBlock3D( in_channels=input_channel, out_channels=output_channel, temb_channels=0, dropout=dropout, num_layers=layers_per_block, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, add_downsample=not is_final_block, compress_time=compress_time, ) else: raise ValueError("Invalid `down_block_type` encountered. Must be `CogVideoXDownBlock3D`") self.down_blocks.append(down_block) # mid block self.mid_block = CogVideoXMidBlock3D( in_channels=block_out_channels[-1], temb_channels=0, dropout=dropout, num_layers=2, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, pad_mode=pad_mode, ) self.norm_out = nn.GroupNorm(norm_num_groups, block_out_channels[-1], eps=1e-6) self.conv_act = nn.SiLU() self.conv_out = CogVideoXCausalConv3d( block_out_channels[-1], 2 * out_channels, kernel_size=3, pad_mode=pad_mode ) self.gradient_checkpointing = False def forward( self, sample: torch.Tensor, temb: Optional[torch.Tensor] = None, conv_cache: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: r"""The forward method of the `CogVideoXEncoder3D` class.""" new_conv_cache = {} conv_cache = conv_cache or {} hidden_states, new_conv_cache["conv_in"] = self.conv_in(sample, conv_cache=conv_cache.get("conv_in")) if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward # 1. Down for i, down_block in enumerate(self.down_blocks): conv_cache_key = f"down_block_{i}" hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint( create_custom_forward(down_block), hidden_states, temb, None, conv_cache.get(conv_cache_key), ) # 2. Mid hidden_states, new_conv_cache["mid_block"] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block), hidden_states, temb, None, conv_cache.get("mid_block"), ) else: # 1. Down for i, down_block in enumerate(self.down_blocks): conv_cache_key = f"down_block_{i}" hidden_states, new_conv_cache[conv_cache_key] = down_block( hidden_states, temb, None, conv_cache.get(conv_cache_key) ) # 2. Mid hidden_states, new_conv_cache["mid_block"] = self.mid_block( hidden_states, temb, None, conv_cache=conv_cache.get("mid_block") ) # 3. Post-process hidden_states = self.norm_out(hidden_states) hidden_states = self.conv_act(hidden_states) hidden_states, new_conv_cache["conv_out"] = self.conv_out(hidden_states, conv_cache=conv_cache.get("conv_out")) return hidden_states, new_conv_cache
class_definition
24,603
30,720
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_cogvideox.py
null
1,177
class CogVideoXDecoder3D(nn.Module): r""" The `CogVideoXDecoder3D` layer of a variational autoencoder that decodes its latent representation into an output sample. Args: in_channels (`int`, *optional*, defaults to 3): The number of input channels. out_channels (`int`, *optional*, defaults to 3): The number of output channels. up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`): The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options. block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): The number of output channels for each block. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. See `~diffusers.models.activations.get_activation` for available options. layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. norm_num_groups (`int`, *optional*, defaults to 32): The number of groups for normalization. """ _supports_gradient_checkpointing = True def __init__( self, in_channels: int = 16, out_channels: int = 3, up_block_types: Tuple[str, ...] = ( "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", ), block_out_channels: Tuple[int, ...] = (128, 256, 256, 512), layers_per_block: int = 3, act_fn: str = "silu", norm_eps: float = 1e-6, norm_num_groups: int = 32, dropout: float = 0.0, pad_mode: str = "first", temporal_compression_ratio: float = 4, ): super().__init__() reversed_block_out_channels = list(reversed(block_out_channels)) self.conv_in = CogVideoXCausalConv3d( in_channels, reversed_block_out_channels[0], kernel_size=3, pad_mode=pad_mode ) # mid block self.mid_block = CogVideoXMidBlock3D( in_channels=reversed_block_out_channels[0], temb_channels=0, num_layers=2, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, spatial_norm_dim=in_channels, pad_mode=pad_mode, ) # up blocks self.up_blocks = nn.ModuleList([]) output_channel = reversed_block_out_channels[0] temporal_compress_level = int(np.log2(temporal_compression_ratio)) for i, up_block_type in enumerate(up_block_types): prev_output_channel = output_channel output_channel = reversed_block_out_channels[i] is_final_block = i == len(block_out_channels) - 1 compress_time = i < temporal_compress_level if up_block_type == "CogVideoXUpBlock3D": up_block = CogVideoXUpBlock3D( in_channels=prev_output_channel, out_channels=output_channel, temb_channels=0, dropout=dropout, num_layers=layers_per_block + 1, resnet_eps=norm_eps, resnet_act_fn=act_fn, resnet_groups=norm_num_groups, spatial_norm_dim=in_channels, add_upsample=not is_final_block, compress_time=compress_time, pad_mode=pad_mode, ) prev_output_channel = output_channel else: raise ValueError("Invalid `up_block_type` encountered. Must be `CogVideoXUpBlock3D`") self.up_blocks.append(up_block) self.norm_out = CogVideoXSpatialNorm3D(reversed_block_out_channels[-1], in_channels, groups=norm_num_groups) self.conv_act = nn.SiLU() self.conv_out = CogVideoXCausalConv3d( reversed_block_out_channels[-1], out_channels, kernel_size=3, pad_mode=pad_mode ) self.gradient_checkpointing = False def forward( self, sample: torch.Tensor, temb: Optional[torch.Tensor] = None, conv_cache: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: r"""The forward method of the `CogVideoXDecoder3D` class.""" new_conv_cache = {} conv_cache = conv_cache or {} hidden_states, new_conv_cache["conv_in"] = self.conv_in(sample, conv_cache=conv_cache.get("conv_in")) if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs) return custom_forward # 1. Mid hidden_states, new_conv_cache["mid_block"] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block), hidden_states, temb, sample, conv_cache.get("mid_block"), ) # 2. Up for i, up_block in enumerate(self.up_blocks): conv_cache_key = f"up_block_{i}" hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint( create_custom_forward(up_block), hidden_states, temb, sample, conv_cache.get(conv_cache_key), ) else: # 1. Mid hidden_states, new_conv_cache["mid_block"] = self.mid_block( hidden_states, temb, sample, conv_cache=conv_cache.get("mid_block") ) # 2. Up for i, up_block in enumerate(self.up_blocks): conv_cache_key = f"up_block_{i}" hidden_states, new_conv_cache[conv_cache_key] = up_block( hidden_states, temb, sample, conv_cache=conv_cache.get(conv_cache_key) ) # 3. Post-process hidden_states, new_conv_cache["norm_out"] = self.norm_out( hidden_states, sample, conv_cache=conv_cache.get("norm_out") ) hidden_states = self.conv_act(hidden_states) hidden_states, new_conv_cache["conv_out"] = self.conv_out(hidden_states, conv_cache=conv_cache.get("conv_out")) return hidden_states, new_conv_cache
class_definition
30,723
37,187
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_cogvideox.py
null
1,178
class AutoencoderKLCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin): r""" A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in [CogVideoX](https://github.com/THUDM/CogVideo). This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). Parameters: in_channels (int, *optional*, defaults to 3): Number of channels in the input image. out_channels (int, *optional*, defaults to 3): Number of channels in the output. down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): Tuple of downsample block types. up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`): Tuple of upsample block types. block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): Tuple of block output channels. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. sample_size (`int`, *optional*, defaults to `32`): Sample input size. scaling_factor (`float`, *optional*, defaults to `1.15258426`): The component-wise standard deviation of the trained latent space computed using the first batch of the training set. This is used to scale the latent space to have unit variance when training the diffusion model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. force_upcast (`bool`, *optional*, default to `True`): If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE can be fine-tuned / trained to a lower range without loosing too much precision in which case `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix """ _supports_gradient_checkpointing = True _no_split_modules = ["CogVideoXResnetBlock3D"] @register_to_config def __init__( self, in_channels: int = 3, out_channels: int = 3, down_block_types: Tuple[str] = ( "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", "CogVideoXDownBlock3D", ), up_block_types: Tuple[str] = ( "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", "CogVideoXUpBlock3D", ), block_out_channels: Tuple[int] = (128, 256, 256, 512), latent_channels: int = 16, layers_per_block: int = 3, act_fn: str = "silu", norm_eps: float = 1e-6, norm_num_groups: int = 32, temporal_compression_ratio: float = 4, sample_height: int = 480, sample_width: int = 720, scaling_factor: float = 1.15258426, shift_factor: Optional[float] = None, latents_mean: Optional[Tuple[float]] = None, latents_std: Optional[Tuple[float]] = None, force_upcast: float = True, use_quant_conv: bool = False, use_post_quant_conv: bool = False, invert_scale_latents: bool = False, ): super().__init__() self.encoder = CogVideoXEncoder3D( in_channels=in_channels, out_channels=latent_channels, down_block_types=down_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, act_fn=act_fn, norm_eps=norm_eps, norm_num_groups=norm_num_groups, temporal_compression_ratio=temporal_compression_ratio, ) self.decoder = CogVideoXDecoder3D( in_channels=latent_channels, out_channels=out_channels, up_block_types=up_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, act_fn=act_fn, norm_eps=norm_eps, norm_num_groups=norm_num_groups, temporal_compression_ratio=temporal_compression_ratio, ) self.quant_conv = CogVideoXSafeConv3d(2 * out_channels, 2 * out_channels, 1) if use_quant_conv else None self.post_quant_conv = CogVideoXSafeConv3d(out_channels, out_channels, 1) if use_post_quant_conv else None self.use_slicing = False self.use_tiling = False # Can be increased to decode more latent frames at once, but comes at a reasonable memory cost and it is not # recommended because the temporal parts of the VAE, here, are tricky to understand. # If you decode X latent frames together, the number of output frames is: # (X + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) => X + 6 frames # # Example with num_latent_frames_batch_size = 2: # - 12 latent frames: (0, 1), (2, 3), (4, 5), (6, 7), (8, 9), (10, 11) are processed together # => (12 // 2 frame slices) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) # => 6 * 8 = 48 frames # - 13 latent frames: (0, 1, 2) (special case), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12) are processed together # => (1 frame slice) * ((3 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) + # ((13 - 3) // 2) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) # => 1 * 9 + 5 * 8 = 49 frames # It has been implemented this way so as to not have "magic values" in the code base that would be hard to explain. Note that # setting it to anything other than 2 would give poor results because the VAE hasn't been trained to be adaptive with different # number of temporal frames. self.num_latent_frames_batch_size = 2 self.num_sample_frames_batch_size = 8 # We make the minimum height and width of sample for tiling half that of the generally supported self.tile_sample_min_height = sample_height // 2 self.tile_sample_min_width = sample_width // 2 self.tile_latent_min_height = int( self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1)) ) self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1))) # These are experimental overlap factors that were chosen based on experimentation and seem to work best for # 720x480 (WxH) resolution. The above resolution is the strongly recommended generation resolution in CogVideoX # and so the tiling implementation has only been tested on those specific resolutions. self.tile_overlap_factor_height = 1 / 6 self.tile_overlap_factor_width = 1 / 5 def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (CogVideoXEncoder3D, CogVideoXDecoder3D)): module.gradient_checkpointing = value def enable_tiling( self, tile_sample_min_height: Optional[int] = None, tile_sample_min_width: Optional[int] = None, tile_overlap_factor_height: Optional[float] = None, tile_overlap_factor_width: Optional[float] = None, ) -> None: r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. Args: tile_sample_min_height (`int`, *optional*): The minimum height required for a sample to be separated into tiles across the height dimension. tile_sample_min_width (`int`, *optional*): The minimum width required for a sample to be separated into tiles across the width dimension. tile_overlap_factor_height (`int`, *optional*): The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are no tiling artifacts produced across the height dimension. Must be between 0 and 1. Setting a higher value might cause more tiles to be processed leading to slow down of the decoding process. tile_overlap_factor_width (`int`, *optional*): The minimum amount of overlap between two consecutive horizontal tiles. This is to ensure that there are no tiling artifacts produced across the width dimension. Must be between 0 and 1. Setting a higher value might cause more tiles to be processed leading to slow down of the decoding process. """ self.use_tiling = True self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width self.tile_latent_min_height = int( self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1)) ) self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1))) self.tile_overlap_factor_height = tile_overlap_factor_height or self.tile_overlap_factor_height self.tile_overlap_factor_width = tile_overlap_factor_width or self.tile_overlap_factor_width def disable_tiling(self) -> None: r""" Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.use_tiling = False def enable_slicing(self) -> None: r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.use_slicing = True def disable_slicing(self) -> None: r""" Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.use_slicing = False def _encode(self, x: torch.Tensor) -> torch.Tensor: batch_size, num_channels, num_frames, height, width = x.shape if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height): return self.tiled_encode(x) frame_batch_size = self.num_sample_frames_batch_size # Note: We expect the number of frames to be either `1` or `frame_batch_size * k` or `frame_batch_size * k + 1` for some k. # As the extra single frame is handled inside the loop, it is not required to round up here. num_batches = max(num_frames // frame_batch_size, 1) conv_cache = None enc = [] for i in range(num_batches): remaining_frames = num_frames % frame_batch_size start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames) end_frame = frame_batch_size * (i + 1) + remaining_frames x_intermediate = x[:, :, start_frame:end_frame] x_intermediate, conv_cache = self.encoder(x_intermediate, conv_cache=conv_cache) if self.quant_conv is not None: x_intermediate = self.quant_conv(x_intermediate) enc.append(x_intermediate) enc = torch.cat(enc, dim=2) return enc @apply_forward_hook def encode( self, x: torch.Tensor, return_dict: bool = True ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: """ Encode a batch of images into latents. Args: x (`torch.Tensor`): Input batch of images. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. Returns: The latent representations of the encoded videos. If `return_dict` is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. """ if self.use_slicing and x.shape[0] > 1: encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)] h = torch.cat(encoded_slices) else: h = self._encode(x) posterior = DiagonalGaussianDistribution(h) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=posterior) def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: batch_size, num_channels, num_frames, height, width = z.shape if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height): return self.tiled_decode(z, return_dict=return_dict) frame_batch_size = self.num_latent_frames_batch_size num_batches = max(num_frames // frame_batch_size, 1) conv_cache = None dec = [] for i in range(num_batches): remaining_frames = num_frames % frame_batch_size start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames) end_frame = frame_batch_size * (i + 1) + remaining_frames z_intermediate = z[:, :, start_frame:end_frame] if self.post_quant_conv is not None: z_intermediate = self.post_quant_conv(z_intermediate) z_intermediate, conv_cache = self.decoder(z_intermediate, conv_cache=conv_cache) dec.append(z_intermediate) dec = torch.cat(dec, dim=2) if not return_dict: return (dec,) return DecoderOutput(sample=dec) @apply_forward_hook def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: """ Decode a batch of images. Args: z (`torch.Tensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ if self.use_slicing and z.shape[0] > 1: decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] decoded = torch.cat(decoded_slices) else: decoded = self._decode(z).sample if not return_dict: return (decoded,) return DecoderOutput(sample=decoded) def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[3], b.shape[3], blend_extent) for y in range(blend_extent): b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * ( y / blend_extent ) return b def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[4], b.shape[4], blend_extent) for x in range(blend_extent): b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * ( x / blend_extent ) return b def tiled_encode(self, x: torch.Tensor) -> torch.Tensor: r"""Encode a batch of images using a tiled encoder. When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the output, but they should be much less noticeable. Args: x (`torch.Tensor`): Input batch of videos. Returns: `torch.Tensor`: The latent representation of the encoded videos. """ # For a rough memory estimate, take a look at the `tiled_decode` method. batch_size, num_channels, num_frames, height, width = x.shape overlap_height = int(self.tile_sample_min_height * (1 - self.tile_overlap_factor_height)) overlap_width = int(self.tile_sample_min_width * (1 - self.tile_overlap_factor_width)) blend_extent_height = int(self.tile_latent_min_height * self.tile_overlap_factor_height) blend_extent_width = int(self.tile_latent_min_width * self.tile_overlap_factor_width) row_limit_height = self.tile_latent_min_height - blend_extent_height row_limit_width = self.tile_latent_min_width - blend_extent_width frame_batch_size = self.num_sample_frames_batch_size # Split x into overlapping tiles and encode them separately. # The tiles have an overlap to avoid seams between tiles. rows = [] for i in range(0, height, overlap_height): row = [] for j in range(0, width, overlap_width): # Note: We expect the number of frames to be either `1` or `frame_batch_size * k` or `frame_batch_size * k + 1` for some k. # As the extra single frame is handled inside the loop, it is not required to round up here. num_batches = max(num_frames // frame_batch_size, 1) conv_cache = None time = [] for k in range(num_batches): remaining_frames = num_frames % frame_batch_size start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames) end_frame = frame_batch_size * (k + 1) + remaining_frames tile = x[ :, :, start_frame:end_frame, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width, ] tile, conv_cache = self.encoder(tile, conv_cache=conv_cache) if self.quant_conv is not None: tile = self.quant_conv(tile) time.append(tile) row.append(torch.cat(time, dim=2)) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_extent_width) result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width]) result_rows.append(torch.cat(result_row, dim=4)) enc = torch.cat(result_rows, dim=3) return enc def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: r""" Decode a batch of images using a tiled decoder. Args: z (`torch.Tensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ # Rough memory assessment: # - In CogVideoX-2B, there are a total of 24 CausalConv3d layers. # - The biggest intermediate dimensions are: [1, 128, 9, 480, 720]. # - Assume fp16 (2 bytes per value). # Memory required: 1 * 128 * 9 * 480 * 720 * 24 * 2 / 1024**3 = 17.8 GB # # Memory assessment when using tiling: # - Assume everything as above but now HxW is 240x360 by tiling in half # Memory required: 1 * 128 * 9 * 240 * 360 * 24 * 2 / 1024**3 = 4.5 GB batch_size, num_channels, num_frames, height, width = z.shape overlap_height = int(self.tile_latent_min_height * (1 - self.tile_overlap_factor_height)) overlap_width = int(self.tile_latent_min_width * (1 - self.tile_overlap_factor_width)) blend_extent_height = int(self.tile_sample_min_height * self.tile_overlap_factor_height) blend_extent_width = int(self.tile_sample_min_width * self.tile_overlap_factor_width) row_limit_height = self.tile_sample_min_height - blend_extent_height row_limit_width = self.tile_sample_min_width - blend_extent_width frame_batch_size = self.num_latent_frames_batch_size # Split z into overlapping tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. rows = [] for i in range(0, height, overlap_height): row = [] for j in range(0, width, overlap_width): num_batches = max(num_frames // frame_batch_size, 1) conv_cache = None time = [] for k in range(num_batches): remaining_frames = num_frames % frame_batch_size start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames) end_frame = frame_batch_size * (k + 1) + remaining_frames tile = z[ :, :, start_frame:end_frame, i : i + self.tile_latent_min_height, j : j + self.tile_latent_min_width, ] if self.post_quant_conv is not None: tile = self.post_quant_conv(tile) tile, conv_cache = self.decoder(tile, conv_cache=conv_cache) time.append(tile) row.append(torch.cat(time, dim=2)) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_extent_width) result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width]) result_rows.append(torch.cat(result_row, dim=4)) dec = torch.cat(result_rows, dim=3) if not return_dict: return (dec,) return DecoderOutput(sample=dec) def forward( self, sample: torch.Tensor, sample_posterior: bool = False, return_dict: bool = True, generator: Optional[torch.Generator] = None, ) -> Union[torch.Tensor, torch.Tensor]: x = sample posterior = self.encode(x).latent_dist if sample_posterior: z = posterior.sample(generator=generator) else: z = posterior.mode() dec = self.decode(z).sample if not return_dict: return (dec,) return DecoderOutput(sample=dec)
class_definition
37,190
61,639
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_cogvideox.py
null
1,179
class MochiChunkedGroupNorm3D(nn.Module): r""" Applies per-frame group normalization for 5D video inputs. It also supports memory-efficient chunked group normalization. Args: num_channels (int): Number of channels expected in input num_groups (int, optional): Number of groups to separate the channels into. Default: 32 affine (bool, optional): If True, this module has learnable affine parameters. Default: True chunk_size (int, optional): Size of each chunk for processing. Default: 8 """ def __init__( self, num_channels: int, num_groups: int = 32, affine: bool = True, chunk_size: int = 8, ): super().__init__() self.norm_layer = nn.GroupNorm(num_channels=num_channels, num_groups=num_groups, affine=affine) self.chunk_size = chunk_size def forward(self, x: torch.Tensor = None) -> torch.Tensor: batch_size = x.size(0) x = x.permute(0, 2, 1, 3, 4).flatten(0, 1) output = torch.cat([self.norm_layer(chunk) for chunk in x.split(self.chunk_size, dim=0)], dim=0) output = output.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) return output
class_definition
1,280
2,500
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_mochi.py
null
1,180
class MochiResnetBlock3D(nn.Module): r""" A 3D ResNet block used in the Mochi model. Args: in_channels (`int`): Number of input channels. out_channels (`int`, *optional*): Number of output channels. If None, defaults to `in_channels`. non_linearity (`str`, defaults to `"swish"`): Activation function to use. """ def __init__( self, in_channels: int, out_channels: Optional[int] = None, act_fn: str = "swish", ): super().__init__() out_channels = out_channels or in_channels self.in_channels = in_channels self.out_channels = out_channels self.nonlinearity = get_activation(act_fn) self.norm1 = MochiChunkedGroupNorm3D(num_channels=in_channels) self.conv1 = CogVideoXCausalConv3d( in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, pad_mode="replicate" ) self.norm2 = MochiChunkedGroupNorm3D(num_channels=out_channels) self.conv2 = CogVideoXCausalConv3d( in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, pad_mode="replicate" ) def forward( self, inputs: torch.Tensor, conv_cache: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: new_conv_cache = {} conv_cache = conv_cache or {} hidden_states = inputs hidden_states = self.norm1(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states, new_conv_cache["conv1"] = self.conv1(hidden_states, conv_cache=conv_cache.get("conv1")) hidden_states = self.norm2(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states, new_conv_cache["conv2"] = self.conv2(hidden_states, conv_cache=conv_cache.get("conv2")) hidden_states = hidden_states + inputs return hidden_states, new_conv_cache
class_definition
2,503
4,493
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_mochi.py
null
1,181
class MochiDownBlock3D(nn.Module): r""" An downsampling block used in the Mochi model. Args: in_channels (`int`): Number of input channels. out_channels (`int`, *optional*): Number of output channels. If None, defaults to `in_channels`. num_layers (`int`, defaults to `1`): Number of resnet blocks in the block. temporal_expansion (`int`, defaults to `2`): Temporal expansion factor. spatial_expansion (`int`, defaults to `2`): Spatial expansion factor. """ def __init__( self, in_channels: int, out_channels: int, num_layers: int = 1, temporal_expansion: int = 2, spatial_expansion: int = 2, add_attention: bool = True, ): super().__init__() self.temporal_expansion = temporal_expansion self.spatial_expansion = spatial_expansion self.conv_in = CogVideoXCausalConv3d( in_channels=in_channels, out_channels=out_channels, kernel_size=(temporal_expansion, spatial_expansion, spatial_expansion), stride=(temporal_expansion, spatial_expansion, spatial_expansion), pad_mode="replicate", ) resnets = [] norms = [] attentions = [] for _ in range(num_layers): resnets.append(MochiResnetBlock3D(in_channels=out_channels)) if add_attention: norms.append(MochiChunkedGroupNorm3D(num_channels=out_channels)) attentions.append( Attention( query_dim=out_channels, heads=out_channels // 32, dim_head=32, qk_norm="l2", is_causal=True, processor=MochiVaeAttnProcessor2_0(), ) ) else: norms.append(None) attentions.append(None) self.resnets = nn.ModuleList(resnets) self.norms = nn.ModuleList(norms) self.attentions = nn.ModuleList(attentions) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, conv_cache: Optional[Dict[str, torch.Tensor]] = None, chunk_size: int = 2**15, ) -> torch.Tensor: r"""Forward method of the `MochiUpBlock3D` class.""" new_conv_cache = {} conv_cache = conv_cache or {} hidden_states, new_conv_cache["conv_in"] = self.conv_in(hidden_states) for i, (resnet, norm, attn) in enumerate(zip(self.resnets, self.norms, self.attentions)): conv_cache_key = f"resnet_{i}" if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def create_forward(*inputs): return module(*inputs) return create_forward hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, conv_cache=conv_cache.get(conv_cache_key), ) else: hidden_states, new_conv_cache[conv_cache_key] = resnet( hidden_states, conv_cache=conv_cache.get(conv_cache_key) ) if attn is not None: residual = hidden_states hidden_states = norm(hidden_states) batch_size, num_channels, num_frames, height, width = hidden_states.shape hidden_states = hidden_states.permute(0, 3, 4, 2, 1).flatten(0, 2).contiguous() # Perform attention in chunks to avoid following error: # RuntimeError: CUDA error: invalid configuration argument if hidden_states.size(0) <= chunk_size: hidden_states = attn(hidden_states) else: hidden_states_chunks = [] for i in range(0, hidden_states.size(0), chunk_size): hidden_states_chunk = hidden_states[i : i + chunk_size] hidden_states_chunk = attn(hidden_states_chunk) hidden_states_chunks.append(hidden_states_chunk) hidden_states = torch.cat(hidden_states_chunks) hidden_states = hidden_states.unflatten(0, (batch_size, height, width)).permute(0, 4, 3, 1, 2) hidden_states = residual + hidden_states return hidden_states, new_conv_cache
class_definition
4,496
9,185
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_mochi.py
null
1,182
class MochiMidBlock3D(nn.Module): r""" A middle block used in the Mochi model. Args: in_channels (`int`): Number of input channels. num_layers (`int`, defaults to `3`): Number of resnet blocks in the block. """ def __init__( self, in_channels: int, # 768 num_layers: int = 3, add_attention: bool = True, ): super().__init__() resnets = [] norms = [] attentions = [] for _ in range(num_layers): resnets.append(MochiResnetBlock3D(in_channels=in_channels)) if add_attention: norms.append(MochiChunkedGroupNorm3D(num_channels=in_channels)) attentions.append( Attention( query_dim=in_channels, heads=in_channels // 32, dim_head=32, qk_norm="l2", is_causal=True, processor=MochiVaeAttnProcessor2_0(), ) ) else: norms.append(None) attentions.append(None) self.resnets = nn.ModuleList(resnets) self.norms = nn.ModuleList(norms) self.attentions = nn.ModuleList(attentions) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, conv_cache: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: r"""Forward method of the `MochiMidBlock3D` class.""" new_conv_cache = {} conv_cache = conv_cache or {} for i, (resnet, norm, attn) in enumerate(zip(self.resnets, self.norms, self.attentions)): conv_cache_key = f"resnet_{i}" if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def create_forward(*inputs): return module(*inputs) return create_forward hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, conv_cache=conv_cache.get(conv_cache_key) ) else: hidden_states, new_conv_cache[conv_cache_key] = resnet( hidden_states, conv_cache=conv_cache.get(conv_cache_key) ) if attn is not None: residual = hidden_states hidden_states = norm(hidden_states) batch_size, num_channels, num_frames, height, width = hidden_states.shape hidden_states = hidden_states.permute(0, 3, 4, 2, 1).flatten(0, 2).contiguous() hidden_states = attn(hidden_states) hidden_states = hidden_states.unflatten(0, (batch_size, height, width)).permute(0, 4, 3, 1, 2) hidden_states = residual + hidden_states return hidden_states, new_conv_cache
class_definition
9,188
12,244
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_mochi.py
null
1,183
class MochiUpBlock3D(nn.Module): r""" An upsampling block used in the Mochi model. Args: in_channels (`int`): Number of input channels. out_channels (`int`, *optional*): Number of output channels. If None, defaults to `in_channels`. num_layers (`int`, defaults to `1`): Number of resnet blocks in the block. temporal_expansion (`int`, defaults to `2`): Temporal expansion factor. spatial_expansion (`int`, defaults to `2`): Spatial expansion factor. """ def __init__( self, in_channels: int, out_channels: int, num_layers: int = 1, temporal_expansion: int = 2, spatial_expansion: int = 2, ): super().__init__() self.temporal_expansion = temporal_expansion self.spatial_expansion = spatial_expansion resnets = [] for _ in range(num_layers): resnets.append(MochiResnetBlock3D(in_channels=in_channels)) self.resnets = nn.ModuleList(resnets) self.proj = nn.Linear(in_channels, out_channels * temporal_expansion * spatial_expansion**2) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, conv_cache: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: r"""Forward method of the `MochiUpBlock3D` class.""" new_conv_cache = {} conv_cache = conv_cache or {} for i, resnet in enumerate(self.resnets): conv_cache_key = f"resnet_{i}" if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def create_forward(*inputs): return module(*inputs) return create_forward hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint( create_custom_forward(resnet), hidden_states, conv_cache=conv_cache.get(conv_cache_key), ) else: hidden_states, new_conv_cache[conv_cache_key] = resnet( hidden_states, conv_cache=conv_cache.get(conv_cache_key) ) hidden_states = hidden_states.permute(0, 2, 3, 4, 1) hidden_states = self.proj(hidden_states) hidden_states = hidden_states.permute(0, 4, 1, 2, 3) batch_size, num_channels, num_frames, height, width = hidden_states.shape st = self.temporal_expansion sh = self.spatial_expansion sw = self.spatial_expansion # Reshape and unpatchify hidden_states = hidden_states.view(batch_size, -1, st, sh, sw, num_frames, height, width) hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous() hidden_states = hidden_states.view(batch_size, -1, num_frames * st, height * sh, width * sw) return hidden_states, new_conv_cache
class_definition
12,247
15,284
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_mochi.py
null
1,184
class FourierFeatures(nn.Module): def __init__(self, start: int = 6, stop: int = 8, step: int = 1): super().__init__() self.start = start self.stop = stop self.step = step def forward(self, inputs: torch.Tensor) -> torch.Tensor: r"""Forward method of the `FourierFeatures` class.""" original_dtype = inputs.dtype inputs = inputs.to(torch.float32) num_channels = inputs.shape[1] num_freqs = (self.stop - self.start) // self.step freqs = torch.arange(self.start, self.stop, self.step, dtype=inputs.dtype, device=inputs.device) w = torch.pow(2.0, freqs) * (2 * torch.pi) # [num_freqs] w = w.repeat(num_channels)[None, :, None, None, None] # [1, num_channels * num_freqs, 1, 1, 1] # Interleaved repeat of input channels to match w h = inputs.repeat_interleave(num_freqs, dim=1) # [B, C * num_freqs, T, H, W] # Scale channels by frequency. h = w * h return torch.cat([inputs, torch.sin(h), torch.cos(h)], dim=1).to(original_dtype)
class_definition
15,287
16,364
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_mochi.py
null
1,185
class MochiEncoder3D(nn.Module): r""" The `MochiEncoder3D` layer of a variational autoencoder that encodes input video samples to its latent representation. Args: in_channels (`int`, *optional*): The number of input channels. out_channels (`int`, *optional*): The number of output channels. block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(128, 256, 512, 768)`): The number of output channels for each block. layers_per_block (`Tuple[int, ...]`, *optional*, defaults to `(3, 3, 4, 6, 3)`): The number of resnet blocks for each block. temporal_expansions (`Tuple[int, ...]`, *optional*, defaults to `(1, 2, 3)`): The temporal expansion factor for each of the up blocks. spatial_expansions (`Tuple[int, ...]`, *optional*, defaults to `(2, 2, 2)`): The spatial expansion factor for each of the up blocks. non_linearity (`str`, *optional*, defaults to `"swish"`): The non-linearity to use in the decoder. """ def __init__( self, in_channels: int, out_channels: int, block_out_channels: Tuple[int, ...] = (128, 256, 512, 768), layers_per_block: Tuple[int, ...] = (3, 3, 4, 6, 3), temporal_expansions: Tuple[int, ...] = (1, 2, 3), spatial_expansions: Tuple[int, ...] = (2, 2, 2), add_attention_block: Tuple[bool, ...] = (False, True, True, True, True), act_fn: str = "swish", ): super().__init__() self.nonlinearity = get_activation(act_fn) self.fourier_features = FourierFeatures() self.proj_in = nn.Linear(in_channels, block_out_channels[0]) self.block_in = MochiMidBlock3D( in_channels=block_out_channels[0], num_layers=layers_per_block[0], add_attention=add_attention_block[0] ) down_blocks = [] for i in range(len(block_out_channels) - 1): down_block = MochiDownBlock3D( in_channels=block_out_channels[i], out_channels=block_out_channels[i + 1], num_layers=layers_per_block[i + 1], temporal_expansion=temporal_expansions[i], spatial_expansion=spatial_expansions[i], add_attention=add_attention_block[i + 1], ) down_blocks.append(down_block) self.down_blocks = nn.ModuleList(down_blocks) self.block_out = MochiMidBlock3D( in_channels=block_out_channels[-1], num_layers=layers_per_block[-1], add_attention=add_attention_block[-1] ) self.norm_out = MochiChunkedGroupNorm3D(block_out_channels[-1]) self.proj_out = nn.Linear(block_out_channels[-1], 2 * out_channels, bias=False) def forward( self, hidden_states: torch.Tensor, conv_cache: Optional[Dict[str, torch.Tensor]] = None ) -> torch.Tensor: r"""Forward method of the `MochiEncoder3D` class.""" new_conv_cache = {} conv_cache = conv_cache or {} hidden_states = self.fourier_features(hidden_states) hidden_states = hidden_states.permute(0, 2, 3, 4, 1) hidden_states = self.proj_in(hidden_states) hidden_states = hidden_states.permute(0, 4, 1, 2, 3) if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def create_forward(*inputs): return module(*inputs) return create_forward hidden_states, new_conv_cache["block_in"] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.block_in), hidden_states, conv_cache=conv_cache.get("block_in") ) for i, down_block in enumerate(self.down_blocks): conv_cache_key = f"down_block_{i}" hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint( create_custom_forward(down_block), hidden_states, conv_cache=conv_cache.get(conv_cache_key) ) else: hidden_states, new_conv_cache["block_in"] = self.block_in( hidden_states, conv_cache=conv_cache.get("block_in") ) for i, down_block in enumerate(self.down_blocks): conv_cache_key = f"down_block_{i}" hidden_states, new_conv_cache[conv_cache_key] = down_block( hidden_states, conv_cache=conv_cache.get(conv_cache_key) ) hidden_states, new_conv_cache["block_out"] = self.block_out( hidden_states, conv_cache=conv_cache.get("block_out") ) hidden_states = self.norm_out(hidden_states) hidden_states = self.nonlinearity(hidden_states) hidden_states = hidden_states.permute(0, 2, 3, 4, 1) hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.permute(0, 4, 1, 2, 3) return hidden_states, new_conv_cache
class_definition
16,367
21,395
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_mochi.py
null
1,186
class MochiDecoder3D(nn.Module): r""" The `MochiDecoder3D` layer of a variational autoencoder that decodes its latent representation into an output sample. Args: in_channels (`int`, *optional*): The number of input channels. out_channels (`int`, *optional*): The number of output channels. block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(128, 256, 512, 768)`): The number of output channels for each block. layers_per_block (`Tuple[int, ...]`, *optional*, defaults to `(3, 3, 4, 6, 3)`): The number of resnet blocks for each block. temporal_expansions (`Tuple[int, ...]`, *optional*, defaults to `(1, 2, 3)`): The temporal expansion factor for each of the up blocks. spatial_expansions (`Tuple[int, ...]`, *optional*, defaults to `(2, 2, 2)`): The spatial expansion factor for each of the up blocks. non_linearity (`str`, *optional*, defaults to `"swish"`): The non-linearity to use in the decoder. """ def __init__( self, in_channels: int, # 12 out_channels: int, # 3 block_out_channels: Tuple[int, ...] = (128, 256, 512, 768), layers_per_block: Tuple[int, ...] = (3, 3, 4, 6, 3), temporal_expansions: Tuple[int, ...] = (1, 2, 3), spatial_expansions: Tuple[int, ...] = (2, 2, 2), act_fn: str = "swish", ): super().__init__() self.nonlinearity = get_activation(act_fn) self.conv_in = nn.Conv3d(in_channels, block_out_channels[-1], kernel_size=(1, 1, 1)) self.block_in = MochiMidBlock3D( in_channels=block_out_channels[-1], num_layers=layers_per_block[-1], add_attention=False, ) up_blocks = [] for i in range(len(block_out_channels) - 1): up_block = MochiUpBlock3D( in_channels=block_out_channels[-i - 1], out_channels=block_out_channels[-i - 2], num_layers=layers_per_block[-i - 2], temporal_expansion=temporal_expansions[-i - 1], spatial_expansion=spatial_expansions[-i - 1], ) up_blocks.append(up_block) self.up_blocks = nn.ModuleList(up_blocks) self.block_out = MochiMidBlock3D( in_channels=block_out_channels[0], num_layers=layers_per_block[0], add_attention=False, ) self.proj_out = nn.Linear(block_out_channels[0], out_channels) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, conv_cache: Optional[Dict[str, torch.Tensor]] = None ) -> torch.Tensor: r"""Forward method of the `MochiDecoder3D` class.""" new_conv_cache = {} conv_cache = conv_cache or {} hidden_states = self.conv_in(hidden_states) # 1. Mid if torch.is_grad_enabled() and self.gradient_checkpointing: def create_custom_forward(module): def create_forward(*inputs): return module(*inputs) return create_forward hidden_states, new_conv_cache["block_in"] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.block_in), hidden_states, conv_cache=conv_cache.get("block_in") ) for i, up_block in enumerate(self.up_blocks): conv_cache_key = f"up_block_{i}" hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint( create_custom_forward(up_block), hidden_states, conv_cache=conv_cache.get(conv_cache_key) ) else: hidden_states, new_conv_cache["block_in"] = self.block_in( hidden_states, conv_cache=conv_cache.get("block_in") ) for i, up_block in enumerate(self.up_blocks): conv_cache_key = f"up_block_{i}" hidden_states, new_conv_cache[conv_cache_key] = up_block( hidden_states, conv_cache=conv_cache.get(conv_cache_key) ) hidden_states, new_conv_cache["block_out"] = self.block_out( hidden_states, conv_cache=conv_cache.get("block_out") ) hidden_states = self.nonlinearity(hidden_states) hidden_states = hidden_states.permute(0, 2, 3, 4, 1) hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.permute(0, 4, 1, 2, 3) return hidden_states, new_conv_cache
class_definition
21,398
26,009
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_mochi.py
null
1,187
class AutoencoderKLMochi(ModelMixin, ConfigMixin): r""" A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in [Mochi 1 preview](https://github.com/genmoai/models). This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). Parameters: in_channels (int, *optional*, defaults to 3): Number of channels in the input image. out_channels (int, *optional*, defaults to 3): Number of channels in the output. block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): Tuple of block output channels. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. scaling_factor (`float`, *optional*, defaults to `1.15258426`): The component-wise standard deviation of the trained latent space computed using the first batch of the training set. This is used to scale the latent space to have unit variance when training the diffusion model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. """ _supports_gradient_checkpointing = True _no_split_modules = ["MochiResnetBlock3D"] @register_to_config def __init__( self, in_channels: int = 15, out_channels: int = 3, encoder_block_out_channels: Tuple[int] = (64, 128, 256, 384), decoder_block_out_channels: Tuple[int] = (128, 256, 512, 768), latent_channels: int = 12, layers_per_block: Tuple[int, ...] = (3, 3, 4, 6, 3), act_fn: str = "silu", temporal_expansions: Tuple[int, ...] = (1, 2, 3), spatial_expansions: Tuple[int, ...] = (2, 2, 2), add_attention_block: Tuple[bool, ...] = (False, True, True, True, True), latents_mean: Tuple[float, ...] = ( -0.06730895953510081, -0.038011381506090416, -0.07477820912866141, -0.05565264470995561, 0.012767231469026969, -0.04703542746246419, 0.043896967884726704, -0.09346305707025976, -0.09918314763016893, -0.008729793427399178, -0.011931556316503654, -0.0321993391887285, ), latents_std: Tuple[float, ...] = ( 0.9263795028493863, 0.9248894543193766, 0.9393059390890617, 0.959253732819592, 0.8244560132752793, 0.917259975397747, 0.9294154431013696, 1.3720942357788521, 0.881393668867029, 0.9168315692124348, 0.9185249279345552, 0.9274757570805041, ), scaling_factor: float = 1.0, ): super().__init__() self.encoder = MochiEncoder3D( in_channels=in_channels, out_channels=latent_channels, block_out_channels=encoder_block_out_channels, layers_per_block=layers_per_block, temporal_expansions=temporal_expansions, spatial_expansions=spatial_expansions, add_attention_block=add_attention_block, act_fn=act_fn, ) self.decoder = MochiDecoder3D( in_channels=latent_channels, out_channels=out_channels, block_out_channels=decoder_block_out_channels, layers_per_block=layers_per_block, temporal_expansions=temporal_expansions, spatial_expansions=spatial_expansions, act_fn=act_fn, ) self.spatial_compression_ratio = functools.reduce(lambda x, y: x * y, spatial_expansions, 1) self.temporal_compression_ratio = functools.reduce(lambda x, y: x * y, temporal_expansions, 1) # When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension # to perform decoding of a single video latent at a time. self.use_slicing = False # When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent # frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the # intermediate tiles together, the memory requirement can be lowered. self.use_tiling = False # When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames # at a fixed frame batch size (based on `self.num_latent_frames_batch_sizes`), the memory requirement can be lowered. self.use_framewise_encoding = False self.use_framewise_decoding = False # This can be used to determine how the number of output frames in the final decoded video. To maintain consistency with # the original implementation, this defaults to `True`. # - Original implementation (drop_last_temporal_frames=True): # Output frames = (latent_frames - 1) * temporal_compression_ratio + 1 # - Without dropping additional temporal upscaled frames (drop_last_temporal_frames=False): # Output frames = latent_frames * temporal_compression_ratio # The latter case is useful for frame packing and some training/finetuning scenarios where the additional. self.drop_last_temporal_frames = True # This can be configured based on the amount of GPU memory available. # `12` for sample frames and `2` for latent frames are sensible defaults for consumer GPUs. # Setting it to higher values results in higher memory usage. self.num_sample_frames_batch_size = 12 self.num_latent_frames_batch_size = 2 # The minimal tile height and width for spatial tiling to be used self.tile_sample_min_height = 256 self.tile_sample_min_width = 256 # The minimal distance between two spatial tiles self.tile_sample_stride_height = 192 self.tile_sample_stride_width = 192 def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (MochiEncoder3D, MochiDecoder3D)): module.gradient_checkpointing = value def enable_tiling( self, tile_sample_min_height: Optional[int] = None, tile_sample_min_width: Optional[int] = None, tile_sample_stride_height: Optional[float] = None, tile_sample_stride_width: Optional[float] = None, ) -> None: r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. Args: tile_sample_min_height (`int`, *optional*): The minimum height required for a sample to be separated into tiles across the height dimension. tile_sample_min_width (`int`, *optional*): The minimum width required for a sample to be separated into tiles across the width dimension. tile_sample_stride_height (`int`, *optional*): The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are no tiling artifacts produced across the height dimension. tile_sample_stride_width (`int`, *optional*): The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling artifacts produced across the width dimension. """ self.use_tiling = True self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width def disable_tiling(self) -> None: r""" Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.use_tiling = False def enable_slicing(self) -> None: r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.use_slicing = True def disable_slicing(self) -> None: r""" Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.use_slicing = False def _enable_framewise_encoding(self): r""" Enables the framewise VAE encoding implementation with past latent padding. By default, Diffusers uses the oneshot encoding implementation without current latent replicate padding. Warning: Framewise encoding may not work as expected due to the causal attention layers. If you enable framewise encoding, encode a video, and try to decode it, there will be noticeable jittering effect. """ self.use_framewise_encoding = True for name, module in self.named_modules(): if isinstance(module, CogVideoXCausalConv3d): module.pad_mode = "constant" def _enable_framewise_decoding(self): r""" Enables the framewise VAE decoding implementation with past latent padding. By default, Diffusers uses the oneshot decoding implementation without current latent replicate padding. """ self.use_framewise_decoding = True for name, module in self.named_modules(): if isinstance(module, CogVideoXCausalConv3d): module.pad_mode = "constant" def _encode(self, x: torch.Tensor) -> torch.Tensor: batch_size, num_channels, num_frames, height, width = x.shape if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height): return self.tiled_encode(x) if self.use_framewise_encoding: raise NotImplementedError( "Frame-wise encoding does not work with the Mochi VAE Encoder due to the presence of attention layers. " "As intermediate frames are not independent from each other, they cannot be encoded frame-wise." ) else: enc, _ = self.encoder(x) return enc @apply_forward_hook def encode( self, x: torch.Tensor, return_dict: bool = True ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: """ Encode a batch of images into latents. Args: x (`torch.Tensor`): Input batch of images. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. Returns: The latent representations of the encoded videos. If `return_dict` is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. """ if self.use_slicing and x.shape[0] > 1: encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)] h = torch.cat(encoded_slices) else: h = self._encode(x) posterior = DiagonalGaussianDistribution(h) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=posterior) def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: batch_size, num_channels, num_frames, height, width = z.shape tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio tile_latent_min_width = self.tile_sample_stride_width // self.spatial_compression_ratio if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height): return self.tiled_decode(z, return_dict=return_dict) if self.use_framewise_decoding: conv_cache = None dec = [] for i in range(0, num_frames, self.num_latent_frames_batch_size): z_intermediate = z[:, :, i : i + self.num_latent_frames_batch_size] z_intermediate, conv_cache = self.decoder(z_intermediate, conv_cache=conv_cache) dec.append(z_intermediate) dec = torch.cat(dec, dim=2) else: dec, _ = self.decoder(z) if self.drop_last_temporal_frames and dec.size(2) >= self.temporal_compression_ratio: dec = dec[:, :, self.temporal_compression_ratio - 1 :] if not return_dict: return (dec,) return DecoderOutput(sample=dec) @apply_forward_hook def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: """ Decode a batch of images. Args: z (`torch.Tensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ if self.use_slicing and z.shape[0] > 1: decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] decoded = torch.cat(decoded_slices) else: decoded = self._decode(z).sample if not return_dict: return (decoded,) return DecoderOutput(sample=decoded) def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[3], b.shape[3], blend_extent) for y in range(blend_extent): b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * ( y / blend_extent ) return b def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[4], b.shape[4], blend_extent) for x in range(blend_extent): b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * ( x / blend_extent ) return b def tiled_encode(self, x: torch.Tensor) -> torch.Tensor: r"""Encode a batch of images using a tiled encoder. Args: x (`torch.Tensor`): Input batch of videos. Returns: `torch.Tensor`: The latent representation of the encoded videos. """ batch_size, num_channels, num_frames, height, width = x.shape latent_height = height // self.spatial_compression_ratio latent_width = width // self.spatial_compression_ratio tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio blend_height = tile_latent_min_height - tile_latent_stride_height blend_width = tile_latent_min_width - tile_latent_stride_width # Split x into overlapping tiles and encode them separately. # The tiles have an overlap to avoid seams between tiles. rows = [] for i in range(0, height, self.tile_sample_stride_height): row = [] for j in range(0, width, self.tile_sample_stride_width): if self.use_framewise_encoding: raise NotImplementedError( "Frame-wise encoding does not work with the Mochi VAE Encoder due to the presence of attention layers. " "As intermediate frames are not independent from each other, they cannot be encoded frame-wise." ) else: time, _ = self.encoder( x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width] ) row.append(time) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_height) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_width) result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width]) result_rows.append(torch.cat(result_row, dim=4)) enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width] return enc def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: r""" Decode a batch of images using a tiled decoder. Args: z (`torch.Tensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ batch_size, num_channels, num_frames, height, width = z.shape sample_height = height * self.spatial_compression_ratio sample_width = width * self.spatial_compression_ratio tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio blend_height = self.tile_sample_min_height - self.tile_sample_stride_height blend_width = self.tile_sample_min_width - self.tile_sample_stride_width # Split z into overlapping tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. rows = [] for i in range(0, height, tile_latent_stride_height): row = [] for j in range(0, width, tile_latent_stride_width): if self.use_framewise_decoding: time = [] conv_cache = None for k in range(0, num_frames, self.num_latent_frames_batch_size): tile = z[ :, :, k : k + self.num_latent_frames_batch_size, i : i + tile_latent_min_height, j : j + tile_latent_min_width, ] tile, conv_cache = self.decoder(tile, conv_cache=conv_cache) time.append(tile) time = torch.cat(time, dim=2) else: time, _ = self.decoder(z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width]) if self.drop_last_temporal_frames and time.size(2) >= self.temporal_compression_ratio: time = time[:, :, self.temporal_compression_ratio - 1 :] row.append(time) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_height) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_width) result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width]) result_rows.append(torch.cat(result_row, dim=4)) dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width] if not return_dict: return (dec,) return DecoderOutput(sample=dec) def forward( self, sample: torch.Tensor, sample_posterior: bool = False, return_dict: bool = True, generator: Optional[torch.Generator] = None, ) -> Union[torch.Tensor, torch.Tensor]: x = sample posterior = self.encode(x).latent_dist if sample_posterior: z = posterior.sample(generator=generator) else: z = posterior.mode() dec = self.decode(z) if not return_dict: return (dec,) return dec
class_definition
26,012
48,043
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl_mochi.py
null
1,188
class ConsistencyDecoderVAEOutput(BaseOutput): """ Output of encoding method. Args: latent_dist (`DiagonalGaussianDistribution`): Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`. `DiagonalGaussianDistribution` allows for sampling latents from the distribution. """ latent_dist: "DiagonalGaussianDistribution"
class_definition
1,349
1,761
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/consistency_decoder_vae.py
null
1,189
class ConsistencyDecoderVAE(ModelMixin, ConfigMixin): r""" The consistency decoder used with DALL-E 3. Examples: ```py >>> import torch >>> from diffusers import StableDiffusionPipeline, ConsistencyDecoderVAE >>> vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16) >>> pipe = StableDiffusionPipeline.from_pretrained( ... "stable-diffusion-v1-5/stable-diffusion-v1-5", vae=vae, torch_dtype=torch.float16 ... ).to("cuda") >>> image = pipe("horse", generator=torch.manual_seed(0)).images[0] >>> image ``` """ @register_to_config def __init__( self, scaling_factor: float = 0.18215, latent_channels: int = 4, sample_size: int = 32, encoder_act_fn: str = "silu", encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), encoder_double_z: bool = True, encoder_down_block_types: Tuple[str, ...] = ( "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", ), encoder_in_channels: int = 3, encoder_layers_per_block: int = 2, encoder_norm_num_groups: int = 32, encoder_out_channels: int = 4, decoder_add_attention: bool = False, decoder_block_out_channels: Tuple[int, ...] = (320, 640, 1024, 1024), decoder_down_block_types: Tuple[str, ...] = ( "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", ), decoder_downsample_padding: int = 1, decoder_in_channels: int = 7, decoder_layers_per_block: int = 3, decoder_norm_eps: float = 1e-05, decoder_norm_num_groups: int = 32, decoder_num_train_timesteps: int = 1024, decoder_out_channels: int = 6, decoder_resnet_time_scale_shift: str = "scale_shift", decoder_time_embedding_type: str = "learned", decoder_up_block_types: Tuple[str, ...] = ( "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ), ): super().__init__() self.encoder = Encoder( act_fn=encoder_act_fn, block_out_channels=encoder_block_out_channels, double_z=encoder_double_z, down_block_types=encoder_down_block_types, in_channels=encoder_in_channels, layers_per_block=encoder_layers_per_block, norm_num_groups=encoder_norm_num_groups, out_channels=encoder_out_channels, ) self.decoder_unet = UNet2DModel( add_attention=decoder_add_attention, block_out_channels=decoder_block_out_channels, down_block_types=decoder_down_block_types, downsample_padding=decoder_downsample_padding, in_channels=decoder_in_channels, layers_per_block=decoder_layers_per_block, norm_eps=decoder_norm_eps, norm_num_groups=decoder_norm_num_groups, num_train_timesteps=decoder_num_train_timesteps, out_channels=decoder_out_channels, resnet_time_scale_shift=decoder_resnet_time_scale_shift, time_embedding_type=decoder_time_embedding_type, up_block_types=decoder_up_block_types, ) self.decoder_scheduler = ConsistencyDecoderScheduler() self.register_to_config(block_out_channels=encoder_block_out_channels) self.register_to_config(force_upcast=False) self.register_buffer( "means", torch.tensor([0.38862467, 0.02253063, 0.07381133, -0.0171294])[None, :, None, None], persistent=False, ) self.register_buffer( "stds", torch.tensor([0.9654121, 1.0440036, 0.76147926, 0.77022034])[None, :, None, None], persistent=False ) self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) self.use_slicing = False self.use_tiling = False # only relevant if vae tiling is enabled self.tile_sample_min_size = self.config.sample_size sample_size = ( self.config.sample_size[0] if isinstance(self.config.sample_size, (list, tuple)) else self.config.sample_size ) self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) self.tile_overlap_factor = 0.25 # Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.enable_tiling def enable_tiling(self, use_tiling: bool = True): r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. """ self.use_tiling = use_tiling # Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.disable_tiling def disable_tiling(self): r""" Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.enable_tiling(False) # Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.enable_slicing def enable_slicing(self): r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.use_slicing = True # Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.disable_slicing def disable_slicing(self): r""" Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.use_slicing = False @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnAddedKVProcessor() elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnProcessor() else: raise ValueError( f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" ) self.set_attn_processor(processor) @apply_forward_hook def encode( self, x: torch.Tensor, return_dict: bool = True ) -> Union[ConsistencyDecoderVAEOutput, Tuple[DiagonalGaussianDistribution]]: """ Encode a batch of images into latents. Args: x (`torch.Tensor`): Input batch of images. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] instead of a plain tuple. Returns: The latent representations of the encoded images. If `return_dict` is True, a [`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] is returned, otherwise a plain `tuple` is returned. """ if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(x, return_dict=return_dict) if self.use_slicing and x.shape[0] > 1: encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)] h = torch.cat(encoded_slices) else: h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) if not return_dict: return (posterior,) return ConsistencyDecoderVAEOutput(latent_dist=posterior) @apply_forward_hook def decode( self, z: torch.Tensor, generator: Optional[torch.Generator] = None, return_dict: bool = True, num_inference_steps: int = 2, ) -> Union[DecoderOutput, Tuple[torch.Tensor]]: """ Decodes the input latent vector `z` using the consistency decoder VAE model. Args: z (torch.Tensor): The input latent vector. generator (Optional[torch.Generator]): The random number generator. Default is None. return_dict (bool): Whether to return the output as a dictionary. Default is True. num_inference_steps (int): The number of inference steps. Default is 2. Returns: Union[DecoderOutput, Tuple[torch.Tensor]]: The decoded output. """ z = (z * self.config.scaling_factor - self.means) / self.stds scale_factor = 2 ** (len(self.config.block_out_channels) - 1) z = F.interpolate(z, mode="nearest", scale_factor=scale_factor) batch_size, _, height, width = z.shape self.decoder_scheduler.set_timesteps(num_inference_steps, device=self.device) x_t = self.decoder_scheduler.init_noise_sigma * randn_tensor( (batch_size, 3, height, width), generator=generator, dtype=z.dtype, device=z.device ) for t in self.decoder_scheduler.timesteps: model_input = torch.concat([self.decoder_scheduler.scale_model_input(x_t, t), z], dim=1) model_output = self.decoder_unet(model_input, t).sample[:, :3, :, :] prev_sample = self.decoder_scheduler.step(model_output, t, x_t, generator).prev_sample x_t = prev_sample x_0 = x_t if not return_dict: return (x_0,) return DecoderOutput(sample=x_0) # Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.blend_v def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[2], b.shape[2], blend_extent) for y in range(blend_extent): b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b # Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.blend_h def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[3], b.shape[3], blend_extent) for x in range(blend_extent): b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def tiled_encode(self, x: torch.Tensor, return_dict: bool = True) -> Union[ConsistencyDecoderVAEOutput, Tuple]: r"""Encode a batch of images using a tiled encoder. When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the output, but they should be much less noticeable. Args: x (`torch.Tensor`): Input batch of images. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] instead of a plain tuple. Returns: [`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] or `tuple`: If return_dict is True, a [`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] is returned, otherwise a plain `tuple` is returned. """ overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor) row_limit = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. rows = [] for i in range(0, x.shape[2], overlap_size): row = [] for j in range(0, x.shape[3], overlap_size): tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] tile = self.encoder(tile) tile = self.quant_conv(tile) row.append(tile) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_extent) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_extent) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(result_row, dim=3)) moments = torch.cat(result_rows, dim=2) posterior = DiagonalGaussianDistribution(moments) if not return_dict: return (posterior,) return ConsistencyDecoderVAEOutput(latent_dist=posterior) def forward( self, sample: torch.Tensor, sample_posterior: bool = False, return_dict: bool = True, generator: Optional[torch.Generator] = None, ) -> Union[DecoderOutput, Tuple[torch.Tensor]]: r""" Args: sample (`torch.Tensor`): Input sample. sample_posterior (`bool`, *optional*, defaults to `False`): Whether to sample from the posterior. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`DecoderOutput`] instead of a plain tuple. generator (`torch.Generator`, *optional*, defaults to `None`): Generator to use for sampling. Returns: [`DecoderOutput`] or `tuple`: If return_dict is True, a [`DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ x = sample posterior = self.encode(x).latent_dist if sample_posterior: z = posterior.sample(generator=generator) else: z = posterior.mode() dec = self.decode(z, generator=generator).sample if not return_dict: return (dec,) return DecoderOutput(sample=dec)
class_definition
1,764
19,720
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/consistency_decoder_vae.py
null
1,190
class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalModelMixin, PeftAdapterMixin): r""" A VAE model with KL loss for encoding images into latents and decoding latent representations into images. This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented for all models (such as downloading or saving). Parameters: in_channels (int, *optional*, defaults to 3): Number of channels in the input image. out_channels (int, *optional*, defaults to 3): Number of channels in the output. down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): Tuple of downsample block types. up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`): Tuple of upsample block types. block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): Tuple of block output channels. act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space. sample_size (`int`, *optional*, defaults to `32`): Sample input size. scaling_factor (`float`, *optional*, defaults to 0.18215): The component-wise standard deviation of the trained latent space computed using the first batch of the training set. This is used to scale the latent space to have unit variance when training the diffusion model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 / scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. force_upcast (`bool`, *optional*, default to `True`): If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE can be fine-tuned / trained to a lower range without loosing too much precision in which case `force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix mid_block_add_attention (`bool`, *optional*, default to `True`): If enabled, the mid_block of the Encoder and Decoder will have attention blocks. If set to false, the mid_block will only have resnet blocks """ _supports_gradient_checkpointing = True _no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D"] @register_to_config def __init__( self, in_channels: int = 3, out_channels: int = 3, down_block_types: Tuple[str] = ("DownEncoderBlock2D",), up_block_types: Tuple[str] = ("UpDecoderBlock2D",), block_out_channels: Tuple[int] = (64,), layers_per_block: int = 1, act_fn: str = "silu", latent_channels: int = 4, norm_num_groups: int = 32, sample_size: int = 32, scaling_factor: float = 0.18215, shift_factor: Optional[float] = None, latents_mean: Optional[Tuple[float]] = None, latents_std: Optional[Tuple[float]] = None, force_upcast: float = True, use_quant_conv: bool = True, use_post_quant_conv: bool = True, mid_block_add_attention: bool = True, ): super().__init__() # pass init params to Encoder self.encoder = Encoder( in_channels=in_channels, out_channels=latent_channels, down_block_types=down_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, act_fn=act_fn, norm_num_groups=norm_num_groups, double_z=True, mid_block_add_attention=mid_block_add_attention, ) # pass init params to Decoder self.decoder = Decoder( in_channels=latent_channels, out_channels=out_channels, up_block_types=up_block_types, block_out_channels=block_out_channels, layers_per_block=layers_per_block, norm_num_groups=norm_num_groups, act_fn=act_fn, mid_block_add_attention=mid_block_add_attention, ) self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) if use_quant_conv else None self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1) if use_post_quant_conv else None self.use_slicing = False self.use_tiling = False # only relevant if vae tiling is enabled self.tile_sample_min_size = self.config.sample_size sample_size = ( self.config.sample_size[0] if isinstance(self.config.sample_size, (list, tuple)) else self.config.sample_size ) self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) self.tile_overlap_factor = 0.25 def _set_gradient_checkpointing(self, module, value=False): if isinstance(module, (Encoder, Decoder)): module.gradient_checkpointing = value def enable_tiling(self, use_tiling: bool = True): r""" Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images. """ self.use_tiling = use_tiling def disable_tiling(self): r""" Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing decoding in one step. """ self.enable_tiling(False) def enable_slicing(self): r""" Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. """ self.use_slicing = True def disable_slicing(self): r""" Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing decoding in one step. """ self.use_slicing = False @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnAddedKVProcessor() elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): processor = AttnProcessor() else: raise ValueError( f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" ) self.set_attn_processor(processor) def _encode(self, x: torch.Tensor) -> torch.Tensor: batch_size, num_channels, height, width = x.shape if self.use_tiling and (width > self.tile_sample_min_size or height > self.tile_sample_min_size): return self._tiled_encode(x) enc = self.encoder(x) if self.quant_conv is not None: enc = self.quant_conv(enc) return enc @apply_forward_hook def encode( self, x: torch.Tensor, return_dict: bool = True ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: """ Encode a batch of images into latents. Args: x (`torch.Tensor`): Input batch of images. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. Returns: The latent representations of the encoded images. If `return_dict` is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. """ if self.use_slicing and x.shape[0] > 1: encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)] h = torch.cat(encoded_slices) else: h = self._encode(x) posterior = DiagonalGaussianDistribution(h) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=posterior) def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(z, return_dict=return_dict) if self.post_quant_conv is not None: z = self.post_quant_conv(z) dec = self.decoder(z) if not return_dict: return (dec,) return DecoderOutput(sample=dec) @apply_forward_hook def decode( self, z: torch.FloatTensor, return_dict: bool = True, generator=None ) -> Union[DecoderOutput, torch.FloatTensor]: """ Decode a batch of images. Args: z (`torch.Tensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to `True`): Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ if self.use_slicing and z.shape[0] > 1: decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] decoded = torch.cat(decoded_slices) else: decoded = self._decode(z).sample if not return_dict: return (decoded,) return DecoderOutput(sample=decoded) def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[2], b.shape[2], blend_extent) for y in range(blend_extent): b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: blend_extent = min(a.shape[3], b.shape[3], blend_extent) for x in range(blend_extent): b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def _tiled_encode(self, x: torch.Tensor) -> torch.Tensor: r"""Encode a batch of images using a tiled encoder. When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the output, but they should be much less noticeable. Args: x (`torch.Tensor`): Input batch of images. Returns: `torch.Tensor`: The latent representation of the encoded videos. """ overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor) row_limit = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. rows = [] for i in range(0, x.shape[2], overlap_size): row = [] for j in range(0, x.shape[3], overlap_size): tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] tile = self.encoder(tile) if self.config.use_quant_conv: tile = self.quant_conv(tile) row.append(tile) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_extent) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_extent) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(result_row, dim=3)) enc = torch.cat(result_rows, dim=2) return enc def tiled_encode(self, x: torch.Tensor, return_dict: bool = True) -> AutoencoderKLOutput: r"""Encode a batch of images using a tiled encoder. When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the output, but they should be much less noticeable. Args: x (`torch.Tensor`): Input batch of images. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. Returns: [`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`: If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. """ deprecation_message = ( "The tiled_encode implementation supporting the `return_dict` parameter is deprecated. In the future, the " "implementation of this method will be replaced with that of `_tiled_encode` and you will no longer be able " "to pass `return_dict`. You will also have to create a `DiagonalGaussianDistribution()` from the returned value." ) deprecate("tiled_encode", "1.0.0", deprecation_message, standard_warn=False) overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor) row_limit = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. rows = [] for i in range(0, x.shape[2], overlap_size): row = [] for j in range(0, x.shape[3], overlap_size): tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] tile = self.encoder(tile) if self.config.use_quant_conv: tile = self.quant_conv(tile) row.append(tile) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_extent) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_extent) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(result_row, dim=3)) moments = torch.cat(result_rows, dim=2) posterior = DiagonalGaussianDistribution(moments) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=posterior) def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: r""" Decode a batch of images using a tiled decoder. Args: z (`torch.Tensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. Returns: [`~models.vae.DecoderOutput`] or `tuple`: If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is returned. """ overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor) row_limit = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. rows = [] for i in range(0, z.shape[2], overlap_size): row = [] for j in range(0, z.shape[3], overlap_size): tile = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] if self.config.use_post_quant_conv: tile = self.post_quant_conv(tile) decoded = self.decoder(tile) row.append(decoded) rows.append(row) result_rows = [] for i, row in enumerate(rows): result_row = [] for j, tile in enumerate(row): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: tile = self.blend_v(rows[i - 1][j], tile, blend_extent) if j > 0: tile = self.blend_h(row[j - 1], tile, blend_extent) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(result_row, dim=3)) dec = torch.cat(result_rows, dim=2) if not return_dict: return (dec,) return DecoderOutput(sample=dec) def forward( self, sample: torch.Tensor, sample_posterior: bool = False, return_dict: bool = True, generator: Optional[torch.Generator] = None, ) -> Union[DecoderOutput, torch.Tensor]: r""" Args: sample (`torch.Tensor`): Input sample. sample_posterior (`bool`, *optional*, defaults to `False`): Whether to sample from the posterior. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`DecoderOutput`] instead of a plain tuple. """ x = sample posterior = self.encode(x).latent_dist if sample_posterior: z = posterior.sample(generator=generator) else: z = posterior.mode() dec = self.decode(z).sample if not return_dict: return (dec,) return DecoderOutput(sample=dec) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections def fuse_qkv_projections(self): """ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) are fused. For cross-attention modules, key and value projection matrices are fused. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ self.original_attn_processors = None for _, attn_processor in self.attn_processors.items(): if "Added" in str(attn_processor.__class__.__name__): raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") self.original_attn_processors = self.attn_processors for module in self.modules(): if isinstance(module, Attention): module.fuse_projections(fuse=True) self.set_attn_processor(FusedAttnProcessor2_0()) # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections def unfuse_qkv_projections(self): """Disables the fused QKV projection if enabled. <Tip warning={true}> This API is 🧪 experimental. </Tip> """ if self.original_attn_processors is not None: self.set_attn_processor(self.original_attn_processors)
class_definition
1,338
25,237
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_kl.py
null
1,191
class Snake1d(nn.Module): """ A 1-dimensional Snake activation function module. """ def __init__(self, hidden_dim, logscale=True): super().__init__() self.alpha = nn.Parameter(torch.zeros(1, hidden_dim, 1)) self.beta = nn.Parameter(torch.zeros(1, hidden_dim, 1)) self.alpha.requires_grad = True self.beta.requires_grad = True self.logscale = logscale def forward(self, hidden_states): shape = hidden_states.shape alpha = self.alpha if not self.logscale else torch.exp(self.alpha) beta = self.beta if not self.logscale else torch.exp(self.beta) hidden_states = hidden_states.reshape(shape[0], shape[1], -1) hidden_states = hidden_states + (beta + 1e-9).reciprocal() * torch.sin(alpha * hidden_states).pow(2) hidden_states = hidden_states.reshape(shape) return hidden_states
class_definition
1,033
1,934
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_oobleck.py
null
1,192
class OobleckResidualUnit(nn.Module): """ A residual unit composed of Snake1d and weight-normalized Conv1d layers with dilations. """ def __init__(self, dimension: int = 16, dilation: int = 1): super().__init__() pad = ((7 - 1) * dilation) // 2 self.snake1 = Snake1d(dimension) self.conv1 = weight_norm(nn.Conv1d(dimension, dimension, kernel_size=7, dilation=dilation, padding=pad)) self.snake2 = Snake1d(dimension) self.conv2 = weight_norm(nn.Conv1d(dimension, dimension, kernel_size=1)) def forward(self, hidden_state): """ Forward pass through the residual unit. Args: hidden_state (`torch.Tensor` of shape `(batch_size, channels, time_steps)`): Input tensor . Returns: output_tensor (`torch.Tensor` of shape `(batch_size, channels, time_steps)`) Input tensor after passing through the residual unit. """ output_tensor = hidden_state output_tensor = self.conv1(self.snake1(output_tensor)) output_tensor = self.conv2(self.snake2(output_tensor)) padding = (hidden_state.shape[-1] - output_tensor.shape[-1]) // 2 if padding > 0: hidden_state = hidden_state[..., padding:-padding] output_tensor = hidden_state + output_tensor return output_tensor
class_definition
1,937
3,320
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_oobleck.py
null
1,193
class OobleckEncoderBlock(nn.Module): """Encoder block used in Oobleck encoder.""" def __init__(self, input_dim, output_dim, stride: int = 1): super().__init__() self.res_unit1 = OobleckResidualUnit(input_dim, dilation=1) self.res_unit2 = OobleckResidualUnit(input_dim, dilation=3) self.res_unit3 = OobleckResidualUnit(input_dim, dilation=9) self.snake1 = Snake1d(input_dim) self.conv1 = weight_norm( nn.Conv1d(input_dim, output_dim, kernel_size=2 * stride, stride=stride, padding=math.ceil(stride / 2)) ) def forward(self, hidden_state): hidden_state = self.res_unit1(hidden_state) hidden_state = self.res_unit2(hidden_state) hidden_state = self.snake1(self.res_unit3(hidden_state)) hidden_state = self.conv1(hidden_state) return hidden_state
class_definition
3,323
4,190
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_oobleck.py
null
1,194
class OobleckDecoderBlock(nn.Module): """Decoder block used in Oobleck decoder.""" def __init__(self, input_dim, output_dim, stride: int = 1): super().__init__() self.snake1 = Snake1d(input_dim) self.conv_t1 = weight_norm( nn.ConvTranspose1d( input_dim, output_dim, kernel_size=2 * stride, stride=stride, padding=math.ceil(stride / 2), ) ) self.res_unit1 = OobleckResidualUnit(output_dim, dilation=1) self.res_unit2 = OobleckResidualUnit(output_dim, dilation=3) self.res_unit3 = OobleckResidualUnit(output_dim, dilation=9) def forward(self, hidden_state): hidden_state = self.snake1(hidden_state) hidden_state = self.conv_t1(hidden_state) hidden_state = self.res_unit1(hidden_state) hidden_state = self.res_unit2(hidden_state) hidden_state = self.res_unit3(hidden_state) return hidden_state
class_definition
4,193
5,207
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_oobleck.py
null
1,195
class OobleckDiagonalGaussianDistribution(object): def __init__(self, parameters: torch.Tensor, deterministic: bool = False): self.parameters = parameters self.mean, self.scale = parameters.chunk(2, dim=1) self.std = nn.functional.softplus(self.scale) + 1e-4 self.var = self.std * self.std self.logvar = torch.log(self.var) self.deterministic = deterministic def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor: # make sure sample is on the same device as the parameters and has same dtype sample = randn_tensor( self.mean.shape, generator=generator, device=self.parameters.device, dtype=self.parameters.dtype, ) x = self.mean + self.std * sample return x def kl(self, other: "OobleckDiagonalGaussianDistribution" = None) -> torch.Tensor: if self.deterministic: return torch.Tensor([0.0]) else: if other is None: return (self.mean * self.mean + self.var - self.logvar - 1.0).sum(1).mean() else: normalized_diff = torch.pow(self.mean - other.mean, 2) / other.var var_ratio = self.var / other.var logvar_diff = self.logvar - other.logvar kl = normalized_diff + var_ratio + logvar_diff - 1 kl = kl.sum(1).mean() return kl def mode(self) -> torch.Tensor: return self.mean
class_definition
5,210
6,732
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_oobleck.py
null
1,196
class AutoencoderOobleckOutput(BaseOutput): """ Output of AutoencoderOobleck encoding method. Args: latent_dist (`OobleckDiagonalGaussianDistribution`): Encoded outputs of `Encoder` represented as the mean and standard deviation of `OobleckDiagonalGaussianDistribution`. `OobleckDiagonalGaussianDistribution` allows for sampling latents from the distribution. """ latent_dist: "OobleckDiagonalGaussianDistribution" # noqa: F821
class_definition
6,746
7,240
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_oobleck.py
null
1,197
class OobleckDecoderOutput(BaseOutput): r""" Output of decoding method. Args: sample (`torch.Tensor` of shape `(batch_size, audio_channels, sequence_length)`): The decoded output sample from the last layer of the model. """ sample: torch.Tensor
class_definition
7,254
7,540
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_oobleck.py
null
1,198
class OobleckEncoder(nn.Module): """Oobleck Encoder""" def __init__(self, encoder_hidden_size, audio_channels, downsampling_ratios, channel_multiples): super().__init__() strides = downsampling_ratios channel_multiples = [1] + channel_multiples # Create first convolution self.conv1 = weight_norm(nn.Conv1d(audio_channels, encoder_hidden_size, kernel_size=7, padding=3)) self.block = [] # Create EncoderBlocks that double channels as they downsample by `stride` for stride_index, stride in enumerate(strides): self.block += [ OobleckEncoderBlock( input_dim=encoder_hidden_size * channel_multiples[stride_index], output_dim=encoder_hidden_size * channel_multiples[stride_index + 1], stride=stride, ) ] self.block = nn.ModuleList(self.block) d_model = encoder_hidden_size * channel_multiples[-1] self.snake1 = Snake1d(d_model) self.conv2 = weight_norm(nn.Conv1d(d_model, encoder_hidden_size, kernel_size=3, padding=1)) def forward(self, hidden_state): hidden_state = self.conv1(hidden_state) for module in self.block: hidden_state = module(hidden_state) hidden_state = self.snake1(hidden_state) hidden_state = self.conv2(hidden_state) return hidden_state
class_definition
7,543
8,980
0
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/autoencoders/autoencoder_oobleck.py
null
1,199