text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device)
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
# scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents def prepare_image_latents( self, image, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None ): if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" ) image = image.to(device=device, dtype=dtype) batch_size = batch_size * num_images_per_prompt if image.shape[1] == 4: image_latents = image else: image_latents = retrieve_latents(self.vae.encode(image), sample_mode="argmax")
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0: # expand image_latents for batch_size deprecation_message = ( f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial" " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" " your script to pass as many initial images as text prompts to suppress this warning." ) deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) additional_image_per_prompt = batch_size // image_latents.shape[0] image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0) elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
raise ValueError( f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts." ) else: image_latents = torch.cat([image_latents], dim=0)
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
if do_classifier_free_guidance: uncond_image_latents = torch.zeros_like(image_latents) image_latents = torch.cat([image_latents, image_latents, uncond_image_latents], dim=0) return image_latents @property def guidance_scale(self): return self._guidance_scale @property def image_guidance_scale(self): return self._image_guidance_scale @property def num_timesteps(self): return self._num_timesteps # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self.guidance_scale > 1.0 and self.image_guidance_scale >= 1.0
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
class OnnxStableDiffusionImg2ImgPipeline(DiffusionPipeline): r""" Pipeline for text-guided image to image generation using Stable Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful. Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details. feature_extractor ([`CLIPImageProcessor`]): Model that extracts features from generated images to be used as inputs for the `safety_checker`. """
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
vae_encoder: OnnxRuntimeModel vae_decoder: OnnxRuntimeModel text_encoder: OnnxRuntimeModel tokenizer: CLIPTokenizer unet: OnnxRuntimeModel scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] safety_checker: OnnxRuntimeModel feature_extractor: CLIPImageProcessor _optional_components = ["safety_checker", "feature_extractor"] _is_onnx = True def __init__( self, vae_encoder: OnnxRuntimeModel, vae_decoder: OnnxRuntimeModel, text_encoder: OnnxRuntimeModel, tokenizer: CLIPTokenizer, unet: OnnxRuntimeModel, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], safety_checker: OnnxRuntimeModel, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, ): super().__init__()
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config)
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config)
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." )
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( vae_encoder=vae_encoder, vae_decoder=vae_decoder, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.register_to_config(requires_safety_checker=requires_safety_checker)
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_onnx_stable_diffusion.OnnxStableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt: Union[str, List[str]], num_images_per_prompt: Optional[int], do_classifier_free_guidance: bool, negative_prompt: Optional[str], prompt_embeds: Optional[np.ndarray] = None, negative_prompt_embeds: Optional[np.ndarray] = None, ): r""" Encodes the prompt into text encoder hidden states.
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
Args: prompt (`str` or `List[str]`): prompt to be encoded num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`np.ndarray`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`np.ndarray`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. """ if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0]
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
if prompt_embeds is None: # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="np", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="np").input_ids if not np.array_equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" )
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0] prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0)
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
# get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] * batch_size elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`."
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
) else: uncond_tokens = negative_prompt
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="np", ) negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0] if do_classifier_free_guidance: negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds]) return prompt_embeds
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
def check_inputs( self, prompt: Union[str, List[str]], callback_steps: int, negative_prompt: Optional[Union[str, List[str]]] = None, prompt_embeds: Optional[np.ndarray] = None, negative_prompt_embeds: Optional[np.ndarray] = None, ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." )
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." )
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." )
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
def __call__( self, prompt: Union[str, List[str]], image: Union[np.ndarray, PIL.Image.Image] = None, strength: float = 0.8, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: Optional[float] = 0.0, generator: Optional[np.random.RandomState] = None, prompt_embeds: Optional[np.ndarray] = None, negative_prompt_embeds: Optional[np.ndarray] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, np.ndarray], None]] = None, callback_steps: int = 1, ): r""" Function invoked when calling the pipeline for generation.
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. image (`np.ndarray` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. strength (`float`, *optional*, defaults to 0.8): Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores `image`. num_inference_steps (`int`, *optional*, defaults to 50):
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter will be modulated by `strength`. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`np.random.RandomState`, *optional*): A np.random.RandomState to make generation deterministic. prompt_embeds (`np.ndarray`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`np.ndarray`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. callback_steps (`int`, *optional*, defaults to 1):
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step.
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # check inputs. Raise error if not correct self.check_inputs(prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) # define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0]
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") if generator is None: generator = np.random # set timesteps self.scheduler.set_timesteps(num_inference_steps) image = preprocess(image).cpu().numpy() # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 prompt_embeds = self._encode_prompt( prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, )
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
latents_dtype = prompt_embeds.dtype image = image.astype(latents_dtype) # encode the init image into latents and scale the latents init_latents = self.vae_encoder(sample=image)[0] init_latents = 0.18215 * init_latents
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
if isinstance(prompt, str): prompt = [prompt] if len(prompt) > init_latents.shape[0] and len(prompt) % init_latents.shape[0] == 0: # expand init_latents for batch_size deprecation_message = ( f"You have passed {len(prompt)} text prompts (`prompt`), but only {init_latents.shape[0]} initial" " images (`image`). Initial images are now duplicating to match the number of text prompts. Note" " that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" " your script to pass as many initial images as text prompts to suppress this warning." ) deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False) additional_image_per_prompt = len(prompt) // init_latents.shape[0] init_latents = np.concatenate([init_latents] * additional_image_per_prompt * num_images_per_prompt, axis=0)
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
elif len(prompt) > init_latents.shape[0] and len(prompt) % init_latents.shape[0] != 0: raise ValueError( f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {len(prompt)} text prompts." ) else: init_latents = np.concatenate([init_latents] * num_images_per_prompt, axis=0)
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
# get the original timestep using init_timestep offset = self.scheduler.config.get("steps_offset", 0) init_timestep = int(num_inference_steps * strength) + offset init_timestep = min(init_timestep, num_inference_steps) timesteps = self.scheduler.timesteps.numpy()[-init_timestep] timesteps = np.array([timesteps] * batch_size * num_images_per_prompt) # add noise to latents using the timesteps noise = generator.randn(*init_latents.shape).astype(latents_dtype) init_latents = self.scheduler.add_noise( torch.from_numpy(init_latents), torch.from_numpy(noise), torch.from_numpy(timesteps) ) init_latents = init_latents.numpy()
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta latents = init_latents t_start = max(num_inference_steps - init_timestep + offset, 0) timesteps = self.scheduler.timesteps[t_start:].numpy() timestep_dtype = next( (input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)" ) timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
for i, t in enumerate(self.progress_bar(timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t) latent_model_input = latent_model_input.cpu().numpy() # predict the noise residual timestep = np.array([t], dtype=timestep_dtype) noise_pred = self.unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds)[ 0 ] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
# compute the previous noisy sample x_t -> x_t-1 scheduler_output = self.scheduler.step( torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs ) latents = scheduler_output.prev_sample.numpy() # call the callback, if provided if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) latents = 1 / 0.18215 * latents # image = self.vae_decoder(latent_sample=latents)[0] # it seems likes there is a strange result for using half-precision vae decoder if batchsize>1 image = np.concatenate( [self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])] ) image = np.clip(image / 2 + 0.5, 0, 1) image = image.transpose((0, 2, 3, 1))
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
if self.safety_checker is not None: safety_checker_input = self.feature_extractor( self.numpy_to_pil(image), return_tensors="np" ).pixel_values.astype(image.dtype) # safety_checker does not support batched inputs yet images, has_nsfw_concept = [], [] for i in range(image.shape[0]): image_i, has_nsfw_concept_i = self.safety_checker( clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1] ) images.append(image_i) has_nsfw_concept.append(has_nsfw_concept_i[0]) image = np.concatenate(images) else: has_nsfw_concept = None if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
299
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
class OnnxStableDiffusionUpscalePipeline(DiffusionPipeline): vae: OnnxRuntimeModel text_encoder: OnnxRuntimeModel tokenizer: CLIPTokenizer unet: OnnxRuntimeModel low_res_scheduler: DDPMScheduler scheduler: KarrasDiffusionSchedulers safety_checker: OnnxRuntimeModel feature_extractor: CLIPImageProcessor _optional_components = ["safety_checker", "feature_extractor"] _is_onnx = True def __init__( self, vae: OnnxRuntimeModel, text_encoder: OnnxRuntimeModel, tokenizer: Any, unet: OnnxRuntimeModel, low_res_scheduler: DDPMScheduler, scheduler: KarrasDiffusionSchedulers, safety_checker: Optional[OnnxRuntimeModel] = None, feature_extractor: Optional[CLIPImageProcessor] = None, max_noise_level: int = 350, num_latent_channels=4, num_unet_input_channels=7, requires_safety_checker: bool = True, ): super().__init__()
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["steps_offset"] = 1 scheduler._internal_dict = FrozenDict(new_config)
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True: deprecation_message = ( f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." " `clip_sample` should be set to False in the configuration file. Please make sure to update the" " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" ) deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) new_config = dict(scheduler.config) new_config["clip_sample"] = False scheduler._internal_dict = FrozenDict(new_config)
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." )
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, low_res_scheduler=low_res_scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, ) self.register_to_config( max_noise_level=max_noise_level, num_latent_channels=num_latent_channels, num_unet_input_channels=num_unet_input_channels, )
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
def check_inputs( self, prompt: Union[str, List[str]], image, noise_level, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." )
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." )
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if ( not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image) and not isinstance(image, np.ndarray) and not isinstance(image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `np.ndarray`, `PIL.Image.Image` or `list` but is {type(image)}" )
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
# verify batch size of prompt and image are same if image is a list or tensor or numpy array if isinstance(image, (list, np.ndarray)): if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if isinstance(image, list): image_batch_size = len(image) else: image_batch_size = image.shape[0] if batch_size != image_batch_size: raise ValueError( f"`prompt` has batch size {batch_size} and `image` has batch size {image_batch_size}." " Please make sure that passed `prompt` matches the batch size of `image`." )
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
# check noise level if noise_level > self.config.max_noise_level: raise ValueError(f"`noise_level` has to be <= {self.config.max_noise_level} but is {noise_level}") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, generator, latents=None): shape = (batch_size, num_channels_latents, height, width) if latents is None: latents = generator.randn(*shape).astype(dtype) elif latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") return latents
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
def decode_latents(self, latents): latents = 1 / 0.08333 * latents image = self.vae(latent_sample=latents)[0] image = np.clip(image / 2 + 0.5, 0, 1) image = image.transpose((0, 2, 3, 1)) return image def _encode_prompt( self, prompt: Union[str, List[str]], num_images_per_prompt: Optional[int], do_classifier_free_guidance: bool, negative_prompt: Optional[str], prompt_embeds: Optional[np.ndarray] = None, negative_prompt_embeds: Optional[np.ndarray] = None, ): r""" Encodes the prompt into text encoder hidden states.
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
Args: prompt (`str` or `List[str]`): prompt to be encoded num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`np.ndarray`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`np.ndarray`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. """ if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0]
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
if prompt_embeds is None: # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="np", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="np").input_ids if not np.array_equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" )
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
prompt_embeds = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0] prompt_embeds = np.repeat(prompt_embeds, num_images_per_prompt, axis=0)
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
# get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] * batch_size elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`."
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
) else: uncond_tokens = negative_prompt
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="np", ) negative_prompt_embeds = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0] if do_classifier_free_guidance: negative_prompt_embeds = np.repeat(negative_prompt_embeds, num_images_per_prompt, axis=0) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = np.concatenate([negative_prompt_embeds, prompt_embeds]) return prompt_embeds
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
def __call__( self, prompt: Union[str, List[str]], image: Union[np.ndarray, PIL.Image.Image, List[PIL.Image.Image]], num_inference_steps: int = 75, guidance_scale: float = 9.0, noise_level: int = 20, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[np.random.RandomState, List[np.random.RandomState]]] = None, latents: Optional[np.ndarray] = None, prompt_embeds: Optional[np.ndarray] = None, negative_prompt_embeds: Optional[np.ndarray] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, np.ndarray], None]] = None, callback_steps: Optional[int] = 1, ): r""" Function invoked when calling the pipeline for generation.
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. image (`np.ndarray` or `PIL.Image.Image`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter will be modulated by `strength`. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. noise_level (`float`, defaults to 0.2): Deteremines the amount of noise to add to the initial image before performing upscaling. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`np.random.RandomState`, *optional*):
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
A np.random.RandomState to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`np.ndarray`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`np.ndarray`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step.
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # 1. Check inputs self.check_inputs( prompt, image, noise_level, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, )
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
# 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if generator is None: generator = np.random # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 prompt_embeds = self._encode_prompt( prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, )
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
latents_dtype = prompt_embeds.dtype image = preprocess(image).cpu().numpy() height, width = image.shape[2:] latents = self.prepare_latents( batch_size * num_images_per_prompt, self.config.num_latent_channels, height, width, latents_dtype, generator, ) image = image.astype(latents_dtype) self.scheduler.set_timesteps(num_inference_steps) timesteps = self.scheduler.timesteps # Scale the initial noise by the standard deviation required by the scheduler latents = latents * np.float64(self.scheduler.init_noise_sigma) # 5. Add noise to image noise_level = np.array([noise_level]).astype(np.int64) noise = generator.randn(*image.shape).astype(latents_dtype) image = self.low_res_scheduler.add_noise( torch.from_numpy(image), torch.from_numpy(noise), torch.from_numpy(noise_level) ) image = image.numpy()
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
batch_multiplier = 2 if do_classifier_free_guidance else 1 image = np.concatenate([image] * batch_multiplier * num_images_per_prompt) noise_level = np.concatenate([noise_level] * image.shape[0]) # 7. Check that sizes of image and latents match num_channels_image = image.shape[1] if self.config.num_latent_channels + num_channels_image != self.config.num_unet_input_channels: raise ValueError( "Incorrect configuration settings! The config of `pipeline.unet` expects" f" {self.config.num_unet_input_channels} but received `num_channels_latents`: {self.config.num_latent_channels} +" f" `num_channels_image`: {num_channels_image} " f" = {self.config.num_latent_channels + num_channels_image}. Please verify the config of" " `pipeline.unet` or your `image` input." )
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta timestep_dtype = next( (input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)" ) timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] # 9. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
# concat latents, mask, masked_image_latents in the channel dimension latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) latent_model_input = np.concatenate([latent_model_input, image], axis=1) # timestep to tensor timestep = np.array([t], dtype=timestep_dtype) # predict the noise residual noise_pred = self.unet( sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds, class_labels=noise_level, )[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
# compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs ).prev_sample latents = latents.numpy() # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) # 10. Post-processing image = self.decode_latents(latents) if self.safety_checker is not None: safety_checker_input = self.feature_extractor( self.numpy_to_pil(image), return_tensors="np" ).pixel_values.astype(image.dtype)
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
images, has_nsfw_concept = [], [] for i in range(image.shape[0]): image_i, has_nsfw_concept_i = self.safety_checker( clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1] ) images.append(image_i) has_nsfw_concept.append(has_nsfw_concept_i[0]) image = np.concatenate(images) else: has_nsfw_concept = None if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
300
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_upscale.py
class StableUnCLIPImg2ImgPipeline( DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin ): """ Pipeline for text-guided image-to-image generation using stable unCLIP. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
Args: feature_extractor ([`CLIPImageProcessor`]): Feature extractor for image pre-processing before being encoded. image_encoder ([`CLIPVisionModelWithProjection`]): CLIP vision model for encoding images. image_normalizer ([`StableUnCLIPImageNormalizer`]): Used to normalize the predicted image embeddings before the noise is applied and un-normalize the image embeddings after the noise has been applied. image_noising_scheduler ([`KarrasDiffusionSchedulers`]): Noise schedule for adding noise to the predicted image embeddings. The amount of noise to add is determined by the `noise_level`. tokenizer (`~transformers.CLIPTokenizer`): A [`~transformers.CLIPTokenizer`)]. text_encoder ([`~transformers.CLIPTextModel`]): Frozen [`~transformers.CLIPTextModel`] text-encoder. unet ([`UNet2DConditionModel`]):
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
A [`UNet2DConditionModel`] to denoise the encoded image latents. scheduler ([`KarrasDiffusionSchedulers`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. """
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" _exclude_from_cpu_offload = ["image_normalizer"] # image encoding components feature_extractor: CLIPImageProcessor image_encoder: CLIPVisionModelWithProjection # image noising components image_normalizer: StableUnCLIPImageNormalizer image_noising_scheduler: KarrasDiffusionSchedulers # regular denoising components tokenizer: CLIPTokenizer text_encoder: CLIPTextModel unet: UNet2DConditionModel scheduler: KarrasDiffusionSchedulers vae: AutoencoderKL
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
def __init__( self, # image encoding components feature_extractor: CLIPImageProcessor, image_encoder: CLIPVisionModelWithProjection, # image noising components image_normalizer: StableUnCLIPImageNormalizer, image_noising_scheduler: KarrasDiffusionSchedulers, # regular denoising components tokenizer: CLIPTokenizer, text_encoder: CLIPTextModel, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, # vae vae: AutoencoderKL, ): super().__init__() self.register_modules( feature_extractor=feature_extractor, image_encoder=image_encoder, image_normalizer=image_normalizer, image_noising_scheduler=image_noising_scheduler, tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, vae=vae, )
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
prompt_embeds_tuple = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs, ) # concatenate for backwards comp prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) return prompt_embeds def _encode_image( self, image, device, batch_size, num_images_per_prompt, do_classifier_free_guidance, noise_level, generator, image_embeds, ): dtype = next(self.image_encoder.parameters()).dtype
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
if isinstance(image, PIL.Image.Image): # the image embedding should repeated so it matches the total batch size of the prompt repeat_by = batch_size else: # assume the image input is already properly batched and just needs to be repeated so # it matches the num_images_per_prompt. # # NOTE(will) this is probably missing a few number of side cases. I.e. batched/non-batched # `image_embeds`. If those happen to be common use cases, let's think harder about # what the expected dimensions of inputs should be and how we handle the encoding. repeat_by = num_images_per_prompt if image_embeds is None: if not isinstance(image, torch.Tensor): image = self.feature_extractor(images=image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=dtype) image_embeds = self.image_encoder(image).image_embeds
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
image_embeds = self.noise_image_embeddings( image_embeds=image_embeds, noise_level=noise_level, generator=generator, ) # duplicate image embeddings for each generation per prompt, using mps friendly method image_embeds = image_embeds.unsqueeze(1) bs_embed, seq_len, _ = image_embeds.shape image_embeds = image_embeds.repeat(1, repeat_by, 1) image_embeds = image_embeds.view(bs_embed * repeat_by, seq_len, -1) image_embeds = image_embeds.squeeze(1) if do_classifier_free_guidance: negative_prompt_embeds = torch.zeros_like(image_embeds) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes image_embeds = torch.cat([negative_prompt_embeds, image_embeds]) return image_embeds
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states.
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
# dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" )
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer.
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
# get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
" the batch size of `prompt`." ) else: uncond_tokens = negative_prompt
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
# textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0]
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
def check_inputs( self, prompt, image, height, width, callback_steps, noise_level, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, image_embeds=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if prompt is not None and prompt_embeds is not None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Please make sure to define only one of the two." )
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
if prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) if prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( "Provide either `negative_prompt` or `negative_prompt_embeds`. Cannot leave both `negative_prompt` and `negative_prompt_embeds` undefined." ) if prompt is not None and negative_prompt is not None: if type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." )
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if noise_level < 0 or noise_level >= self.image_noising_scheduler.config.num_train_timesteps: raise ValueError( f"`noise_level` must be between 0 and {self.image_noising_scheduler.config.num_train_timesteps - 1}, inclusive." ) if image is not None and image_embeds is not None: raise ValueError( "Provide either `image` or `image_embeds`. Please make sure to define only one of the two." )
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
if image is None and image_embeds is None: raise ValueError( "Provide either `image` or `image_embeds`. Cannot leave both `image` and `image_embeds` undefined." ) if image is not None: if ( not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image) and not isinstance(image, list) ): raise ValueError( "`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" f" {type(image)}" )
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device)
301
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_unclip_img2img.py