text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. image (`PIL.Image.Image`): `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will be masked out with `mask_image` and repainted according to `prompt`. mask_image (`PIL.Image.Image`): `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512):
296
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py
The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*):
296
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`np.random.RandomState`, *optional*): A np.random.RandomState to make generation deterministic. latents (`np.ndarray`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
296
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py
tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`np.ndarray`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`np.ndarray`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`):
296
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step.
296
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py
Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # check inputs. Raise error if not correct self.check_inputs( prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds ) # define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0]
296
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py
if generator is None: generator = np.random # set timesteps self.scheduler.set_timesteps(num_inference_steps) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 prompt_embeds = self._encode_prompt( prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, )
296
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py
num_channels_latents = NUM_LATENT_CHANNELS latents_shape = (batch_size * num_images_per_prompt, num_channels_latents, height // 8, width // 8) latents_dtype = prompt_embeds.dtype if latents is None: latents = generator.randn(*latents_shape).astype(latents_dtype) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") # prepare mask and masked_image mask, masked_image = prepare_mask_and_masked_image(image, mask_image, latents_shape[-2:]) mask = mask.astype(latents.dtype) masked_image = masked_image.astype(latents.dtype) masked_image_latents = self.vae_encoder(sample=masked_image)[0] masked_image_latents = 0.18215 * masked_image_latents
296
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py
# duplicate mask and masked_image_latents for each generation per prompt mask = mask.repeat(batch_size * num_images_per_prompt, 0) masked_image_latents = masked_image_latents.repeat(batch_size * num_images_per_prompt, 0) mask = np.concatenate([mask] * 2) if do_classifier_free_guidance else mask masked_image_latents = ( np.concatenate([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents ) num_channels_mask = mask.shape[1] num_channels_masked_image = masked_image_latents.shape[1]
296
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py
unet_input_channels = NUM_UNET_INPUT_CHANNELS if num_channels_latents + num_channels_mask + num_channels_masked_image != unet_input_channels: raise ValueError( "Incorrect configuration settings! The config of `pipeline.unet` expects" f" {unet_input_channels} but received `num_channels_latents`: {num_channels_latents} +" f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" " `pipeline.unet` or your `mask_image` or `image` input." ) # set timesteps self.scheduler.set_timesteps(num_inference_steps) # scale the initial noise by the standard deviation required by the scheduler latents = latents * np.float64(self.scheduler.init_noise_sigma)
296
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta timestep_dtype = next( (input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)" ) timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype]
296
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents # concat latents, mask, masked_image_latnets in the channel dimension latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t) latent_model_input = latent_model_input.cpu().numpy() latent_model_input = np.concatenate([latent_model_input, mask, masked_image_latents], axis=1) # predict the noise residual timestep = np.array([t], dtype=timestep_dtype) noise_pred = self.unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds)[ 0 ]
296
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py
# perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 scheduler_output = self.scheduler.step( torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs ) latents = scheduler_output.prev_sample.numpy() # call the callback, if provided if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents)
296
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py
latents = 1 / 0.18215 * latents # image = self.vae_decoder(latent_sample=latents)[0] # it seems likes there is a strange result for using half-precision vae decoder if batchsize>1 image = np.concatenate( [self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])] ) image = np.clip(image / 2 + 0.5, 0, 1) image = image.transpose((0, 2, 3, 1))
296
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py
if self.safety_checker is not None: safety_checker_input = self.feature_extractor( self.numpy_to_pil(image), return_tensors="np" ).pixel_values.astype(image.dtype) # safety_checker does not support batched inputs yet images, has_nsfw_concept = [], [] for i in range(image.shape[0]): image_i, has_nsfw_concept_i = self.safety_checker( clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1] ) images.append(image_i) has_nsfw_concept.append(has_nsfw_concept_i[0]) image = np.concatenate(images) else: has_nsfw_concept = None if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
296
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py
class StableDiffusionLatentUpscalePipeline(DiffusionPipeline, StableDiffusionMixin, FromSingleFileMixin): r""" Pipeline for upscaling Stable Diffusion output image resolution by a factor of 2. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A [`EulerDiscreteScheduler`] to be used in combination with `unet` to denoise the encoded image latents. """ model_cpu_offload_seq = "text_encoder->unet->vae" def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: EulerDiscreteScheduler, ): super().__init__()
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, resample="bicubic")
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
def _encode_prompt( self, prompt, device, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, pooled_prompt_embeds: Optional[torch.Tensor] = None, negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.encode_prompt( prompt=prompt, device=device, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, **kwargs, ) prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds]) return prompt_embeds, pooled_prompt_embeds
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
def encode_prompt( self, prompt, device, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, pooled_prompt_embeds: Optional[torch.Tensor] = None, negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, ): r""" Encodes the prompt into text encoder hidden states.
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
Args: prompt (`str` or `list(int)`): prompt to be encoded device: (`torch.device`): torch device do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. pooled_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. """ if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0]
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
if prompt_embeds is None or pooled_prompt_embeds is None: text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_length=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_encoder_out = self.text_encoder( text_input_ids.to(device), output_hidden_states=True, ) prompt_embeds = text_encoder_out.hidden_states[-1] pooled_prompt_embeds = text_encoder_out.pooler_output
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
# get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: if negative_prompt_embeds is None or negative_pooled_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
max_length = text_input_ids.shape[-1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_length=True, return_tensors="pt", ) uncond_encoder_out = self.text_encoder( uncond_input.input_ids.to(device), output_hidden_states=True, ) negative_prompt_embeds = uncond_encoder_out.hidden_states[-1] negative_pooled_prompt_embeds = uncond_encoder_out.pooler_output return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
def check_inputs( self, prompt, image, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, ): if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and not isinstance(prompt, str) and not isinstance(prompt, list): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." )
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
if prompt_embeds is not None and pooled_prompt_embeds is None: raise ValueError( "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." ) if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: raise ValueError( "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." )
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
if ( not isinstance(image, torch.Tensor) and not isinstance(image, np.ndarray) and not isinstance(image, PIL.Image.Image) and not isinstance(image, list) ): raise ValueError( f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or `list` but is {type(image)}" ) # verify batch size of prompt and image are same if image is a list or tensor if isinstance(image, (list, torch.Tensor)): if prompt is not None: if isinstance(prompt, str): batch_size = 1 else: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0]
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
if isinstance(image, list): image_batch_size = len(image) else: image_batch_size = image.shape[0] if image.ndim == 4 else 1 if batch_size != image_batch_size: raise ValueError( f"`prompt` has batch size {batch_size} and `image` has batch size {image_batch_size}." " Please make sure that passed `prompt` matches the batch size of `image`." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." )
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = (batch_size, num_channels_latents, height, width) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
@torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, image: PipelineImageInput = None, num_inference_steps: int = 75, guidance_scale: float = 9.0, negative_prompt: Optional[Union[str, List[str]]] = None, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, pooled_prompt_embeds: Optional[torch.Tensor] = None, negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, ): r""" The call function to the pipeline for generation.
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
Args: prompt (`str` or `List[str]`): The prompt or prompts to guide image upscaling. image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image` or tensor representing an image batch to be upscaled. If it's a tensor, it can be either a latent output from a Stable Diffusion model or an image tensor in the range `[-1, 1]`. It is considered a `latent` if `image.shape[1]` is `4`; otherwise, it is considered to be an image representation and encoded using this pipeline's `vae` encoder. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5):
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic.
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step.
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
Examples: ```py >>> from diffusers import StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline >>> import torch >>> pipeline = StableDiffusionPipeline.from_pretrained( ... "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16 ... ) >>> pipeline.to("cuda") >>> model_id = "stabilityai/sd-x2-latent-upscaler" >>> upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) >>> upscaler.to("cuda") >>> prompt = "a photo of an astronaut high resolution, unreal engine, ultra realistic" >>> generator = torch.manual_seed(33) >>> low_res_latents = pipeline(prompt, generator=generator, output_type="latent").images >>> with torch.no_grad(): ... image = pipeline.decode_latents(low_res_latents) >>> image = pipeline.numpy_to_pil(image)[0] >>> image.save("../images/a1.png")
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
>>> upscaled_image = upscaler( ... prompt=prompt, ... image=low_res_latents, ... num_inference_steps=20, ... guidance_scale=0, ... generator=generator, ... ).images[0] >>> upscaled_image.save("../images/a2.png") ``` Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ # 1. Check inputs self.check_inputs( prompt, image, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, )
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
# 2. Define call parameters if prompt is not None: batch_size = 1 if isinstance(prompt, str) else len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 if guidance_scale == 0: prompt = [""] * batch_size
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
# 3. Encode input prompt ( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.encode_prompt( prompt, device, do_classifier_free_guidance, negative_prompt, prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds])
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
# 4. Preprocess image image = self.image_processor.preprocess(image) image = image.to(dtype=prompt_embeds.dtype, device=device) if image.shape[1] == 3: # encode image if not in latent-space yet image = retrieve_latents(self.vae.encode(image), generator=generator) * self.vae.config.scaling_factor # 5. set timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps batch_multiplier = 2 if do_classifier_free_guidance else 1 image = image[None, :] if image.ndim == 3 else image image = torch.cat([image] * batch_multiplier)
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
# 5. Add noise to image (set to be 0): # (see below notes from the author): # "the This step theoretically can make the model work better on out-of-distribution inputs, but mostly just seems to make it match the input less, so it's turned off by default." noise_level = torch.tensor([0.0], dtype=torch.float32, device=device) noise_level = torch.cat([noise_level] * image.shape[0]) inv_noise_level = (noise_level**2 + 1) ** (-0.5) image_cond = F.interpolate(image, scale_factor=2, mode="nearest") * inv_noise_level[:, None, None, None] image_cond = image_cond.to(prompt_embeds.dtype) noise_level_embed = torch.cat( [ torch.ones(pooled_prompt_embeds.shape[0], 64, dtype=pooled_prompt_embeds.dtype, device=device), torch.zeros(pooled_prompt_embeds.shape[0], 64, dtype=pooled_prompt_embeds.dtype, device=device), ], dim=1, )
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
timestep_condition = torch.cat([noise_level_embed, pooled_prompt_embeds], dim=1) # 6. Prepare latent variables height, width = image.shape[2:] num_channels_latents = self.vae.config.latent_channels latents = self.prepare_latents( batch_size, num_channels_latents, height * 2, # 2x upscale width * 2, prompt_embeds.dtype, device, generator, latents, )
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
# 7. Check that sizes of image and latents match num_channels_image = image.shape[1] if num_channels_latents + num_channels_image != self.unet.config.in_channels: raise ValueError( f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" f" `num_channels_image`: {num_channels_image} " f" = {num_channels_latents+num_channels_image}. Please verify the config of" " `pipeline.unet` or your `image` input." ) # 9. Denoising loop num_warmup_steps = 0
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): sigma = self.scheduler.sigmas[i] # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents scaled_model_input = self.scheduler.scale_model_input(latent_model_input, t) scaled_model_input = torch.cat([scaled_model_input, image_cond], dim=1) # preconditioning parameter based on Karras et al. (2022) (table 1) timestep = torch.log(sigma) * 0.25 noise_pred = self.unet( scaled_model_input, timestep, encoder_hidden_states=prompt_embeds, timestep_cond=timestep_condition, ).sample
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
# in original repo, the output contains a variance channel that's not used noise_pred = noise_pred[:, :-1] # apply preconditioning, based on table 1 in Karras et al. (2022) inv_sigma = 1 / (sigma**2 + 1) noise_pred = inv_sigma * latent_model_input + self.scheduler.scale_model_input(sigma, t) * noise_pred # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents).prev_sample
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
# call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] else: image = latents image = self.image_processor.postprocess(image, output_type=output_type) self.maybe_free_model_hooks() if not return_dict: return (image,) return ImagePipelineOutput(images=image)
297
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
class StableDiffusionInstructPix2PixPipeline( DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin, ): r""" Pipeline for pixel-level image editing by following text instructions (based on Stable Diffusion). This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful.
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
model_cpu_offload_seq = "text_encoder->unet->vae" _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] _exclude_from_cpu_offload = ["safety_checker"] _callback_tensor_inputs = ["latents", "prompt_embeds", "image_latents"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: KarrasDiffusionSchedulers, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: Optional[CLIPVisionModelWithProjection] = None, requires_safety_checker: bool = True, ): super().__init__()
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." )
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker)
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
@torch.no_grad() def __call__( self, prompt: Union[str, List[str]] = None, image: PipelineImageInput = None, num_inference_steps: int = 100, guidance_scale: float = 7.5, image_guidance_scale: float = 1.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback_on_step_end: Optional[ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] ] = None,
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
callback_on_step_end_tensor_inputs: List[str] = ["latents"], cross_attention_kwargs: Optional[Dict[str, Any]] = None, **kwargs, ): r""" The call function to the pipeline for generation.
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. image (`torch.Tensor` `np.ndarray`, `PIL.Image.Image`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): `Image` or tensor representing an image batch to be repainted according to `prompt`. Can also accept image latents as `image`, but if passing latents directly it is not encoded again. num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. image_guidance_scale (`float`, *optional*, defaults to 1.5): Push the generated image towards the initial `image`. Image guidance scale is enabled by setting `image_guidance_scale > 1`. Higher image guidance scale encourages generated images that are closely linked to the source `image`, usually at the expense of lower image quality. This pipeline requires a value of at least `1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt.
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of each denoising step during the inference. with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
Examples: ```py >>> import PIL >>> import requests >>> import torch >>> from io import BytesIO >>> from diffusers import StableDiffusionInstructPix2PixPipeline >>> def download_image(url): ... response = requests.get(url) ... return PIL.Image.open(BytesIO(response.content)).convert("RGB") >>> img_url = "https://huggingface.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" >>> image = download_image(img_url).resize((512, 512)) >>> pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained( ... "timbrooks/instruct-pix2pix", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> prompt = "make the mountains snowy" >>> image = pipe(prompt=prompt, image=image).images[0] ```
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ callback = kwargs.pop("callback", None) callback_steps = kwargs.pop("callback_steps", None)
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
if callback is not None: deprecate( "callback", "1.0.0", "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if callback_steps is not None: deprecate( "callback_steps", "1.0.0", "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", ) if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
# 0. Check inputs self.check_inputs( prompt, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs, ) self._guidance_scale = guidance_scale self._image_guidance_scale = image_guidance_scale device = self._execution_device if image is None: raise ValueError("`image` input cannot be undefined.") # 1. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
# 2. Encode input prompt prompt_embeds = self._encode_prompt( prompt, device, num_images_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) if ip_adapter_image is not None or ip_adapter_image_embeds is not None: image_embeds = self.prepare_ip_adapter_image_embeds( ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance, ) # 3. Preprocess image image = self.image_processor.preprocess(image) # 4. set timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
# 5. Prepare Image latents image_latents = self.prepare_image_latents( image, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, self.do_classifier_free_guidance, ) height, width = image_latents.shape[-2:] height = height * self.vae_scale_factor width = width * self.vae_scale_factor # 6. Prepare latent variables num_channels_latents = self.vae.config.latent_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, )
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
# 7. Check that shapes of latents and image match the UNet channels num_channels_image = image_latents.shape[1] if num_channels_latents + num_channels_image != self.unet.config.in_channels: raise ValueError( f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" f" `num_channels_image`: {num_channels_image} " f" = {num_channels_latents+num_channels_image}. Please verify the config of" " `pipeline.unet` or your `image` input." ) # 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 8.1 Add image embeds for IP-Adapter added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
# 9. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # Expand the latents if we are doing classifier free guidance. # The latents are expanded 3 times because for pix2pix the guidance\ # is applied for both the text and the input image. latent_model_input = torch.cat([latents] * 3) if self.do_classifier_free_guidance else latents # concat latents, image_latents in the channel dimension scaled_latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) scaled_latent_model_input = torch.cat([scaled_latent_model_input, image_latents], dim=1)
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
# predict the noise residual noise_pred = self.unet( scaled_latent_model_input, t, encoder_hidden_states=prompt_embeds, added_cond_kwargs=added_cond_kwargs, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0] # perform guidance if self.do_classifier_free_guidance: noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3) noise_pred = ( noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_image) + self.image_guidance_scale * (noise_pred_image - noise_pred_uncond) )
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
# compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) image_latents = callback_outputs.pop("image_latents", image_latents)
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
# call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, ): r""" Encodes the prompt into text encoder hidden states.
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_ prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. """ if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0]
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer) text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0]
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype else: prompt_embeds_dtype = self.unet.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
# get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." )
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
else: uncond_tokens = negative_prompt
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
# textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0]
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes # pix2pix has two negative embeddings, and unlike in other pipelines latents are ordered [prompt_embeds, negative_prompt_embeds, negative_prompt_embeds] prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds])
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
return prompt_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): dtype = next(self.image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = self.feature_extractor(image, return_tensors="pt").pixel_values
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
image = image.to(device=device, dtype=dtype) if output_hidden_states: image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_enc_hidden_states = self.image_encoder( torch.zeros_like(image), output_hidden_states=True ).hidden_states[-2] uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( num_images_per_prompt, dim=0 ) return image_enc_hidden_states, uncond_image_enc_hidden_states else: image_embeds = self.image_encoder(image).image_embeds image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_embeds = torch.zeros_like(image_embeds) return image_embeds, uncond_image_embeds
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
def prepare_ip_adapter_image_embeds( self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance ): if ip_adapter_image_embeds is None: if not isinstance(ip_adapter_image, list): ip_adapter_image = [ip_adapter_image] if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): raise ValueError( f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." )
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
image_embeds = [] for single_ip_adapter_image, image_proj_layer in zip( ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers ): output_hidden_state = not isinstance(image_proj_layer, ImageProjection) single_image_embeds, single_negative_image_embeds = self.encode_image( single_ip_adapter_image, device, 1, output_hidden_state ) single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) single_negative_image_embeds = torch.stack( [single_negative_image_embeds] * num_images_per_prompt, dim=0 )
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
if do_classifier_free_guidance: single_image_embeds = torch.cat( [single_image_embeds, single_negative_image_embeds, single_negative_image_embeds] ) single_image_embeds = single_image_embeds.to(device)
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
image_embeds.append(single_image_embeds) else: repeat_dims = [1] image_embeds = [] for single_image_embeds in ip_adapter_image_embeds: if do_classifier_free_guidance: ( single_image_embeds, single_negative_image_embeds, single_negative_image_embeds, ) = single_image_embeds.chunk(3) single_image_embeds = single_image_embeds.repeat( num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) ) single_negative_image_embeds = single_negative_image_embeds.repeat( num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])) ) single_image_embeds = torch.cat(
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
[single_image_embeds, single_negative_image_embeds, single_negative_image_embeds] ) else: single_image_embeds = single_image_embeds.repeat( num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) ) image_embeds.append(single_image_embeds)
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
return image_embeds # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
def check_inputs( self, prompt, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, ): if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" )
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." )
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if ip_adapter_image is not None and ip_adapter_image_embeds is not None: raise ValueError( "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." )
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py
if ip_adapter_image_embeds is not None: if not isinstance(ip_adapter_image_embeds, list): raise ValueError( f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" ) elif ip_adapter_image_embeds[0].ndim not in [3, 4]: raise ValueError( f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" )
298
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_instruct_pix2pix.py