text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents def decode_latents(self, latents): deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) latents = 1 / self.vae.config.scaling_factor * latents image = self.vae.decode(latents, return_dict=False)[0] image = (image / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 image = image.cpu().permute(0, 2, 3, 1).float().numpy() return image def decode_latents_with_padding(self, latents: torch.Tensor, padding: int = 8) -> torch.Tensor: """ Decode the given latents with padding for circular inference.
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
Args: latents (torch.Tensor): The input latents to decode. padding (int, optional): The number of latents to add on each side for padding. Defaults to 8. Returns: torch.Tensor: The decoded image with padding removed. Notes: - The padding is added to remove boundary artifacts and improve the output quality. - This would slightly increase the memory usage. - The padding pixels are then removed from the decoded image. """ latents = 1 / self.vae.config.scaling_factor * latents latents_left = latents[..., :padding] latents_right = latents[..., -padding:] latents = torch.cat((latents_right, latents, latents_left), axis=-1) image = self.vae.decode(latents, return_dict=False)[0] padding_pix = self.vae_scale_factor * padding image = image[..., padding_pix:-padding_pix] return image
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.check_inputs def check_inputs( self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" )
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." )
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if ip_adapter_image is not None and ip_adapter_image_embeds is not None: raise ValueError( "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." )
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
if ip_adapter_image_embeds is not None: if not isinstance(ip_adapter_image_embeds, list): raise ValueError( f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" ) elif ip_adapter_image_embeds[0].ndim not in [3, 4]: raise ValueError( f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" )
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device)
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding def get_guidance_scale_embedding( self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 ) -> torch.Tensor: """ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
Args: w (`torch.Tensor`): Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. embedding_dim (`int`, *optional*, defaults to 512): Dimension of the embeddings to generate. dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): Data type of the generated embeddings. Returns: `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. """ assert len(w.shape) == 1 w = w * 1000.0
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
half_dim = embedding_dim // 2 emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) emb = w.to(dtype)[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1)) assert emb.shape == (w.shape[0], embedding_dim) return emb def get_views( self, panorama_height: int, panorama_width: int, window_size: int = 64, stride: int = 8, circular_padding: bool = False, ) -> List[Tuple[int, int, int, int]]: """ Generates a list of views based on the given parameters. Here, we define the mappings F_i (see Eq. 7 in the MultiDiffusion paper https://arxiv.org/abs/2302.08113). If panorama's height/width < window_size, num_blocks of height/width should return 1.
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
Args: panorama_height (int): The height of the panorama. panorama_width (int): The width of the panorama. window_size (int, optional): The size of the window. Defaults to 64. stride (int, optional): The stride value. Defaults to 8. circular_padding (bool, optional): Whether to apply circular padding. Defaults to False. Returns: List[Tuple[int, int, int, int]]: A list of tuples representing the views. Each tuple contains four integers representing the start and end coordinates of the window in the panorama.
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
""" panorama_height /= 8 panorama_width /= 8 num_blocks_height = (panorama_height - window_size) // stride + 1 if panorama_height > window_size else 1 if circular_padding: num_blocks_width = panorama_width // stride if panorama_width > window_size else 1 else: num_blocks_width = (panorama_width - window_size) // stride + 1 if panorama_width > window_size else 1 total_num_blocks = int(num_blocks_height * num_blocks_width) views = [] for i in range(total_num_blocks): h_start = int((i // num_blocks_width) * stride) h_end = h_start + window_size w_start = int((i % num_blocks_width) * stride) w_end = w_start + window_size views.append((h_start, h_end, w_start, w_end)) return views @property def guidance_scale(self): return self._guidance_scale @property def guidance_rescale(self): return self._guidance_rescale
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
@property def cross_attention_kwargs(self): return self._cross_attention_kwargs @property def clip_skip(self): return self._clip_skip @property def do_classifier_free_guidance(self): return False @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, height: Optional[int] = 512, width: Optional[int] = 2048, num_inference_steps: int = 50, timesteps: List[int] = None, guidance_scale: float = 7.5, view_batch_size: int = 1, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, output_type: Optional[str] = "pil", return_dict: bool = True,
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
cross_attention_kwargs: Optional[Dict[str, Any]] = None, guidance_rescale: float = 0.0, circular_padding: bool = False, clip_skip: Optional[int] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], **kwargs: Any, ): r""" The call function to the pipeline for generation.
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 2048): The width in pixels of the generated image. The width is kept high because the pipeline is supposed generate panorama-like images. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. timesteps (`List[int]`, *optional*): The timesteps at which to generate the images. If not specified, then the default timestep spacing strategy of the scheduler is used.
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. view_batch_size (`int`, *optional*, defaults to 1): The batch size to denoise split views. For some GPUs with high performance, higher view batch size can speedup the generation and increase the VRAM usage. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt.
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*):
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not provided, embeddings are computed from the `ip_adapter_image` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). guidance_rescale (`float`, *optional*, defaults to 0.0):
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
A rescaling factor for the guidance embeddings. A value of 0.0 means no rescaling is applied. circular_padding (`bool`, *optional*, defaults to `False`): If set to `True`, circular padding is applied to ensure there are no stitching artifacts. Circular padding allows the model to seamlessly generate a transition from the rightmost part of the image to the leftmost part, maintaining consistency in a 360-degree sense. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List[str]`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. Examples:
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ callback = kwargs.pop("callback", None) callback_steps = kwargs.pop("callback_steps", None)
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
if callback is not None: deprecate( "callback", "1.0.0", "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", ) if callback_steps is not None: deprecate( "callback_steps", "1.0.0", "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", ) # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ip_adapter_image, ip_adapter_image_embeds, callback_on_step_end_tensor_inputs, ) self._guidance_scale = guidance_scale self._guidance_rescale = guidance_rescale self._clip_skip = clip_skip self._cross_attention_kwargs = cross_attention_kwargs self._interrupt = False # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0]
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 if ip_adapter_image is not None or ip_adapter_image_embeds is not None: image_embeds = self.prepare_ip_adapter_image_embeds( ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance, )
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Define panorama grid and initialize views for synthesis. # prepare batch grid views = self.get_views(height, width, circular_padding=circular_padding) views_batch = [views[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)] views_scheduler_status = [copy.deepcopy(self.scheduler.__dict__)] * len(views_batch) count = torch.zeros_like(latents) value = torch.zeros_like(latents)
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7.1 Add image embeds for IP-Adapter added_cond_kwargs = ( {"image_embeds": image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None ) # 7.2 Optionally get Guidance Scale Embedding timestep_cond = None if self.unet.config.time_cond_proj_dim is not None: guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) timestep_cond = self.get_guidance_scale_embedding( guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim ).to(device=device, dtype=latents.dtype)
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# 8. Denoising loop # Each denoising step also includes refinement of the latents with respect to the # views. num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue count.zero_() value.zero_()
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# generate views # Here, we iterate through different spatial crops of the latents and denoise them. These # denoised (latent) crops are then averaged to produce the final latent # for the current timestep via MultiDiffusion. Please see Sec. 4.1 in the # MultiDiffusion paper for more details: https://arxiv.org/abs/2302.08113 # Batch views denoise for j, batch_view in enumerate(views_batch): vb_size = len(batch_view) # get the latents corresponding to the current view coordinates if circular_padding: latents_for_view = [] for h_start, h_end, w_start, w_end in batch_view: if w_end > latents.shape[3]: # Add circular horizontal padding latent_view = torch.cat( (
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
latents[:, :, h_start:h_end, w_start:], latents[:, :, h_start:h_end, : w_end - latents.shape[3]], ), axis=-1, ) else: latent_view = latents[:, :, h_start:h_end, w_start:w_end] latents_for_view.append(latent_view) latents_for_view = torch.cat(latents_for_view) else: latents_for_view = torch.cat( [ latents[:, :, h_start:h_end, w_start:w_end] for h_start, h_end, w_start, w_end in batch_view ] )
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# rematch block's scheduler status self.scheduler.__dict__.update(views_scheduler_status[j]) # expand the latents if we are doing classifier free guidance latent_model_input = ( latents_for_view.repeat_interleave(2, dim=0) if do_classifier_free_guidance else latents_for_view ) latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # repeat prompt_embeds for batch prompt_embeds_input = torch.cat([prompt_embeds] * vb_size)
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds_input, timestep_cond=timestep_cond, cross_attention_kwargs=cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, ).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2] noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg( noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale ) # compute the previous noisy sample x_t -> x_t-1 latents_denoised_batch = self.scheduler.step( noise_pred, t, latents_for_view, **extra_step_kwargs ).prev_sample # save views scheduler status after sample views_scheduler_status[j] = copy.deepcopy(self.scheduler.__dict__)
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# extract value from batch for latents_view_denoised, (h_start, h_end, w_start, w_end) in zip( latents_denoised_batch.chunk(vb_size), batch_view ): if circular_padding and w_end > latents.shape[3]: # Case for circular padding value[:, :, h_start:h_end, w_start:] += latents_view_denoised[ :, :, h_start:h_end, : latents.shape[3] - w_start ] value[:, :, h_start:h_end, : w_end - latents.shape[3]] += latents_view_denoised[ :, :, h_start:h_end, latents.shape[3] - w_start : ] count[:, :, h_start:h_end, w_start:] += 1 count[:, :, h_start:h_end, : w_end - latents.shape[3]] += 1 else:
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
value[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised count[:, :, h_start:h_end, w_start:w_end] += 1
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# take the MultiDiffusion step. Eq. 5 in MultiDiffusion paper: https://arxiv.org/abs/2302.08113 latents = torch.where(count > 0, value / count, value) if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() if output_type != "latent": if circular_padding: image = self.decode_latents_with_padding(latents) else: image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) self.maybe_free_model_hooks() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
class AnimateDiffVideoToVideoPipeline( DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, IPAdapterMixin, StableDiffusionLoraLoaderMixin, FreeInitMixin, AnimateDiffFreeNoiseMixin, ): r""" Pipeline for video-to-video generation. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer (`CLIPTokenizer`): A [`~transformers.CLIPTokenizer`] to tokenize text. unet ([`UNet2DConditionModel`]): A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents. motion_adapter ([`MotionAdapter`]): A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. """
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" _optional_components = ["feature_extractor", "image_encoder", "motion_adapter"] _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, motion_adapter: MotionAdapter, scheduler: Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ], feature_extractor: CLIPImageProcessor = None, image_encoder: CLIPVisionModelWithProjection = None, ): super().__init__() if isinstance(unet, UNet2DConditionModel): unet = UNetMotionModel.from_unet2d(unet, motion_adapter)
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, motion_adapter=motion_adapter, scheduler=scheduler, feature_extractor=feature_extractor, image_encoder=image_encoder, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor) def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states.
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
# dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, (str, dict)): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" )
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer.
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
# get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
" the batch size of `prompt`." ) else: uncond_tokens = negative_prompt
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
# textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0]
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): dtype = next(self.image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = self.feature_extractor(image, return_tensors="pt").pixel_values
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
image = image.to(device=device, dtype=dtype) if output_hidden_states: image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_enc_hidden_states = self.image_encoder( torch.zeros_like(image), output_hidden_states=True ).hidden_states[-2] uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( num_images_per_prompt, dim=0 ) return image_enc_hidden_states, uncond_image_enc_hidden_states else: image_embeds = self.image_encoder(image).image_embeds image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_embeds = torch.zeros_like(image_embeds) return image_embeds, uncond_image_embeds
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds def prepare_ip_adapter_image_embeds( self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance ): image_embeds = [] if do_classifier_free_guidance: negative_image_embeds = [] if ip_adapter_image_embeds is None: if not isinstance(ip_adapter_image, list): ip_adapter_image = [ip_adapter_image] if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): raise ValueError( f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." )
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
for single_ip_adapter_image, image_proj_layer in zip( ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers ): output_hidden_state = not isinstance(image_proj_layer, ImageProjection) single_image_embeds, single_negative_image_embeds = self.encode_image( single_ip_adapter_image, device, 1, output_hidden_state ) image_embeds.append(single_image_embeds[None, :]) if do_classifier_free_guidance: negative_image_embeds.append(single_negative_image_embeds[None, :]) else: for single_image_embeds in ip_adapter_image_embeds: if do_classifier_free_guidance: single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) negative_image_embeds.append(single_negative_image_embeds) image_embeds.append(single_image_embeds)
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
ip_adapter_image_embeds = [] for i, single_image_embeds in enumerate(image_embeds): single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) if do_classifier_free_guidance: single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) single_image_embeds = single_image_embeds.to(device=device) ip_adapter_image_embeds.append(single_image_embeds) return ip_adapter_image_embeds
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
def encode_video(self, video, generator, decode_chunk_size: int = 16) -> torch.Tensor: latents = [] for i in range(0, len(video), decode_chunk_size): batch_video = video[i : i + decode_chunk_size] batch_video = retrieve_latents(self.vae.encode(batch_video), generator=generator) latents.append(batch_video) return torch.cat(latents) # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.AnimateDiffPipeline.decode_latents def decode_latents(self, latents, decode_chunk_size: int = 16): latents = 1 / self.vae.config.scaling_factor * latents batch_size, channels, num_frames, height, width = latents.shape latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width)
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
video = [] for i in range(0, latents.shape[0], decode_chunk_size): batch_latents = latents[i : i + decode_chunk_size] batch_latents = self.vae.decode(batch_latents).sample video.append(batch_latents) video = torch.cat(video) video = video[None, :].reshape((batch_size, num_frames, -1) + video.shape[2:]).permute(0, 2, 1, 3, 4) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 video = video.float() return video
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
def check_inputs( self, prompt, strength, height, width, video=None, latents=None, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, ip_adapter_image=None, ip_adapter_image_embeds=None, callback_on_step_end_tensor_inputs=None, ): if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" )
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and not isinstance(prompt, (str, list, dict)): raise ValueError(f"`prompt` has to be of type `str`, `list` or `dict` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." )
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if video is not None and latents is not None: raise ValueError("Only one of `video` or `latents` should be provided") if ip_adapter_image is not None and ip_adapter_image_embeds is not None: raise ValueError( "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." )
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
if ip_adapter_image_embeds is not None: if not isinstance(ip_adapter_image_embeds, list): raise ValueError( f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" ) elif ip_adapter_image_embeds[0].ndim not in [3, 4]: raise ValueError( f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" ) def get_timesteps(self, num_inference_steps, timesteps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = timesteps[t_start * self.scheduler.order :] return timesteps, num_inference_steps - t_start
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
def prepare_latents( self, video: Optional[torch.Tensor] = None, height: int = 64, width: int = 64, num_channels_latents: int = 4, batch_size: int = 1, timestep: Optional[int] = None, dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, decode_chunk_size: int = 16, add_noise: bool = False, ) -> torch.Tensor: num_frames = video.shape[1] if latents is None else latents.shape[2] shape = ( batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor, )
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: # make sure the VAE is in float32 mode, as it overflows in float16 if self.vae.config.force_upcast: video = video.float() self.vae.to(dtype=torch.float32) if isinstance(generator, list): init_latents = [ self.encode_video(video[i], generator[i], decode_chunk_size).unsqueeze(0) for i in range(batch_size) ] else: init_latents = [self.encode_video(vid, generator, decode_chunk_size).unsqueeze(0) for vid in video] init_latents = torch.cat(init_latents, dim=0)
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
# restore vae to original dtype if self.vae.config.force_upcast: self.vae.to(dtype) init_latents = init_latents.to(dtype) init_latents = self.vae.config.scaling_factor * init_latents
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: # expand init_latents for batch_size error_message = ( f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" " images (`image`). Please make sure to update your script to pass as many initial images as text prompts" ) raise ValueError(error_message) elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: raise ValueError( f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." ) else: init_latents = torch.cat([init_latents], dim=0)
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
noise = randn_tensor(init_latents.shape, generator=generator, device=device, dtype=dtype) latents = self.scheduler.add_noise(init_latents, noise, timestep).permute(0, 2, 1, 3, 4) else: if shape != latents.shape: # [B, C, F, H, W] raise ValueError(f"`latents` expected to have {shape=}, but found {latents.shape=}") latents = latents.to(device, dtype=dtype) if add_noise: noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) latents = self.scheduler.add_noise(latents, noise, timestep) return latents @property def guidance_scale(self): return self._guidance_scale @property def clip_skip(self): return self._clip_skip
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def cross_attention_kwargs(self): return self._cross_attention_kwargs @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
@torch.no_grad() def __call__( self, video: List[List[PipelineImageInput]] = None, prompt: Optional[Union[str, List[str]]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, enforce_inference_steps: bool = False, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, guidance_scale: float = 7.5, strength: float = 0.8, negative_prompt: Optional[Union[str, List[str]]] = None, num_videos_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
output_type: Optional[str] = "pil", return_dict: bool = True, cross_attention_kwargs: Optional[Dict[str, Any]] = None, clip_skip: Optional[int] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], decode_chunk_size: int = 16, ): r""" The call function to the pipeline for generation.
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
Args: video (`List[PipelineImageInput]`): The input video to condition the generation on. Must be a list of images/frames of the video. prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated video. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated video. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality videos at the expense of slower inference. timesteps (`List[int]`, *optional*):
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. Must be in descending order. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. strength (`float`, *optional*, defaults to 0.8): Higher strength leads to more differences between original video and generated video. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*):
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. Latents should be of shape `(batch_size, num_channel, num_frames, height, width)`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not provided, embeddings are computed from the `ip_adapter_image` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`AnimateDiffPipelineOutput`] instead of a plain tuple.
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
`callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. decode_chunk_size (`int`, defaults to `16`): The number of frames to decode at a time when calling `decode_latents` method.
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
Examples: Returns: [`pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor num_videos_per_prompt = 1
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
# 1. Check inputs. Raise error if not correct self.check_inputs( prompt=prompt, strength=strength, height=height, width=width, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, video=video, latents=latents, ip_adapter_image=ip_adapter_image, ip_adapter_image_embeds=ip_adapter_image_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, ) self._guidance_scale = guidance_scale self._clip_skip = clip_skip self._cross_attention_kwargs = cross_attention_kwargs self._interrupt = False
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
# 2. Define call parameters if prompt is not None and isinstance(prompt, (str, dict)): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device dtype = self.dtype
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
# 3. Prepare timesteps if not enforce_inference_steps: timesteps, num_inference_steps = retrieve_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas ) timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, timesteps, strength, device) latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt) else: denoising_inference_steps = int(num_inference_steps / strength) timesteps, denoising_inference_steps = retrieve_timesteps( self.scheduler, denoising_inference_steps, device, timesteps, sigmas ) timesteps = timesteps[-num_inference_steps:] latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt)
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
# 4. Prepare latent variables if latents is None: video = self.video_processor.preprocess_video(video, height=height, width=width) # Move the number of frames before the number of channels. video = video.permute(0, 2, 1, 3, 4) video = video.to(device=device, dtype=dtype) num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( video=video, height=height, width=width, num_channels_latents=num_channels_latents, batch_size=batch_size * num_videos_per_prompt, timestep=latent_timestep, dtype=dtype, device=device, generator=generator, latents=latents, decode_chunk_size=decode_chunk_size, add_noise=enforce_inference_steps, )
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
# 5. Encode input prompt text_encoder_lora_scale = ( self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None ) num_frames = latents.shape[2] if self.free_noise_enabled: prompt_embeds, negative_prompt_embeds = self._encode_prompt_free_noise( prompt=prompt, num_frames=num_frames, device=device, num_videos_per_prompt=num_videos_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip, ) else: prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device,
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
num_videos_per_prompt, self.do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=self.clip_skip, )
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
# For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) prompt_embeds = prompt_embeds.repeat_interleave(repeats=num_frames, dim=0) # 6. Prepare IP-Adapter embeddings if ip_adapter_image is not None or ip_adapter_image_embeds is not None: image_embeds = self.prepare_ip_adapter_image_embeds( ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_videos_per_prompt, self.do_classifier_free_guidance, ) # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
# 8. Add image embeds for IP-Adapter added_cond_kwargs = ( {"image_embeds": image_embeds} if ip_adapter_image is not None or ip_adapter_image_embeds is not None else None ) num_free_init_iters = self._free_init_num_iters if self.free_init_enabled else 1 for free_init_iter in range(num_free_init_iters): if self.free_init_enabled: latents, timesteps = self._apply_free_init( latents, free_init_iter, num_inference_steps, device, latents.dtype, generator ) num_inference_steps = len(timesteps) # make sure to readjust timesteps based on strength timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, timesteps, strength, device) self._num_timesteps = len(timesteps) num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
# 9. Denoising loop with self.progress_bar(total=self._num_timesteps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=self.cross_attention_kwargs, added_cond_kwargs=added_cond_kwargs, ).sample
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
# perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step() # 10. Post-processing if output_type == "latent": video = latents else: video_tensor = self.decode_latents(latents, decode_chunk_size) video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type) # 11. Offload all models self.maybe_free_model_hooks() if not return_dict: return (video,)
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py
return AnimateDiffPipelineOutput(frames=video)
145
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/animatediff/pipeline_animatediff_video2video.py