text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" )
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer.
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
# get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
" the batch size of `prompt`." ) else: uncond_tokens = negative_prompt
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
# textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0]
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
# Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents def decode_latents(self, latents): latents = 1 / self.vae.config.scaling_factor * latents batch_size, channels, num_frames, height, width = latents.shape latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) image = self.vae.decode(latents).sample video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 video = video.float() return video
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
def check_inputs( self, prompt, strength, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, ): if strength < 0 or strength > 1: raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." )
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." )
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps def get_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] if hasattr(self.scheduler, "set_begin_index"): self.scheduler.set_begin_index(t_start * self.scheduler.order) return timesteps, num_inference_steps - t_start def prepare_latents(self, video, timestep, batch_size, dtype, device, generator=None): video = video.to(device=device, dtype=dtype)
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
# change from (b, c, f, h, w) -> (b * f, c, w, h) bsz, channel, frames, width, height = video.shape video = video.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
if video.shape[1] == 4: init_latents = video else: if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) elif isinstance(generator, list): init_latents = [ retrieve_latents(self.vae.encode(video[i : i + 1]), generator=generator[i]) for i in range(batch_size) ] init_latents = torch.cat(init_latents, dim=0) else: init_latents = retrieve_latents(self.vae.encode(video), generator=generator) init_latents = self.vae.config.scaling_factor * init_latents
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: raise ValueError( f"Cannot duplicate `video` of batch size {init_latents.shape[0]} to {batch_size} text prompts." ) else: init_latents = torch.cat([init_latents], dim=0) shape = init_latents.shape noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) # get latents init_latents = self.scheduler.add_noise(init_latents, noise, timestep) latents = init_latents latents = latents[None, :].reshape((bsz, frames, latents.shape[1]) + latents.shape[2:]).permute(0, 2, 1, 3, 4) return latents
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, video: Union[List[np.ndarray], torch.Tensor] = None, strength: float = 0.6, num_inference_steps: int = 50, guidance_scale: float = 15.0, negative_prompt: Optional[Union[str, List[str]]] = None, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "np", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, clip_skip: Optional[int] = None, ): r"""
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
The call function to the pipeline for generation.
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. video (`List[np.ndarray]` or `torch.Tensor`): `video` frames or tensor representing a video batch to be used as the starting point for the process. Can also accept video latents as `image`, if passing latents directly, it will not be encoded again. strength (`float`, *optional*, defaults to 0.8): Indicates extent to transform the reference `video`. Must be between 0 and 1. `video` is used as a starting point, adding more noise to it the larger the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising process runs for the full number of iterations specified in `num_inference_steps`. A value of
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
1 essentially ignores `video`. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality videos at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in video generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). eta (`float`, *optional*, defaults to 0.0):
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. Latents should be of shape `(batch_size, num_channel, num_frames, height, width)`. prompt_embeds (`torch.Tensor`, *optional*):
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"np"`): The output format of the generated video. Choose between `torch.Tensor` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*):
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. Examples:
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
Returns: [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. """ # 0. Default height and width to unet num_images_per_prompt = 1 # 1. Check inputs. Raise error if not correct self.check_inputs(prompt, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0]
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
# 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # 4. Preprocess video video = self.video_processor.preprocess_video(video)
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
# 5. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) # 6. Prepare latent variables latents = self.prepare_latents(video, latent_timestep, batch_size, prompt_embeds.dtype, device, generator) # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
# 8. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0]
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
# perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # reshape latents bsz, channel, frames, width, height = latents.shape latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height) noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # reshape latents back latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4)
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
# call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() # manually for max memory savings if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.unet.to("cpu") # 9. Post processing if output_type == "latent": video = latents else: video_tensor = self.decode_latents(latents) video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type) # 10. Offload all models self.maybe_free_model_hooks()
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
if not return_dict: return (video,) return TextToVideoSDPipelineOutput(frames=video)
142
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth_img2img.py
class TextToVideoSDPipeline( DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin ): r""" Pipeline for text-to-video generation. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer (`CLIPTokenizer`): A [`~transformers.CLIPTokenizer`] to tokenize text. unet ([`UNet3DConditionModel`]): A [`UNet3DConditionModel`] to denoise the encoded video latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. """ model_cpu_offload_seq = "text_encoder->unet->vae"
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet3DConditionModel, scheduler: KarrasDiffusionSchedulers, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.video_processor = VideoProcessor(do_resize=False, vae_scale_factor=self.vae_scale_factor)
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
prompt_embeds_tuple = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs, ) # concatenate for backwards comp prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) return prompt_embeds
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states.
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
# dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" )
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer.
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
# get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
" the batch size of `prompt`." ) else: uncond_tokens = negative_prompt
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
# textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0]
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds def decode_latents(self, latents): latents = 1 / self.vae.config.scaling_factor * latents
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
batch_size, channels, num_frames, height, width = latents.shape latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) image = self.vae.decode(latents).sample video = image[None, :].reshape((batch_size, num_frames, -1) + image.shape[2:]).permute(0, 2, 1, 3, 4) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 video = video.float() return video # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1]
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
# Copied from diffusers.pipelines.stable_diffusion_k_diffusion.pipeline_stable_diffusion_k_diffusion.StableDiffusionKDiffusionPipeline.check_inputs def check_inputs( self, prompt, height, width, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" )
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." )
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." )
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
def prepare_latents( self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None ): shape = ( batch_size, num_channels_latents, num_frames, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device)
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
# scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, num_frames: int = 16, num_inference_steps: int = 50, guidance_scale: float = 9.0, negative_prompt: Optional[Union[str, List[str]]] = None, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "np", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, clip_skip: Optional[int] = None, ): r"""
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
The call function to the pipeline for generation.
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated video. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated video. num_frames (`int`, *optional*, defaults to 16): The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds amounts to 2 seconds of video. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality videos at the expense of slower inference.
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. Latents should be of shape `(batch_size, num_channel, num_frames, height, width)`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument.
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"np"`): The output format of the generated video. Choose between `torch.Tensor` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1):
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. Examples:
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
Returns: [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor num_images_per_prompt = 1 # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds )
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
# 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
# 3. Encode input prompt text_encoder_lora_scale = ( cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None ) prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=text_encoder_lora_scale, clip_skip=clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
# 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, num_frames, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
# 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, return_dict=False, )[0]
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
# perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # reshape latents bsz, channel, frames, width, height = latents.shape latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height) noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample # reshape latents back latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4)
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
# call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() # 8. Post processing if output_type == "latent": video = latents else: video_tensor = self.decode_latents(latents) video = self.video_processor.postprocess_video(video=video_tensor, output_type=output_type) # 9. Offload all models self.maybe_free_model_hooks() if not return_dict: return (video,) return TextToVideoSDPipelineOutput(frames=video)
143
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/text_to_video_synthesis/pipeline_text_to_video_synth.py
class StableDiffusionPanoramaPipeline( DiffusionPipeline, StableDiffusionMixin, TextualInversionLoaderMixin, StableDiffusionLoraLoaderMixin, IPAdapterMixin, ): r""" Pipeline for text-to-image generation using MultiDiffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). The pipeline also inherits the following loading methods: - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. unet ([`UNet2DConditionModel`]): A `UNet2DConditionModel` to denoise the encoded image latents. scheduler ([`SchedulerMixin`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. safety_checker ([`StableDiffusionSafetyChecker`]): Classification module that estimates whether generated images could be considered offensive or harmful.
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details about a model's potential harms. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. """
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
model_cpu_offload_seq = "text_encoder->unet->vae" _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] _exclude_from_cpu_offload = ["safety_checker"] _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] def __init__( self, vae: AutoencoderKL, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, unet: UNet2DConditionModel, scheduler: DDIMScheduler, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, image_encoder: Optional[CLIPVisionModelWithProjection] = None, requires_safety_checker: bool = True, ): super().__init__()
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." )
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, image_encoder=image_encoder, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker)
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, **kwargs, ): deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
prompt_embeds_tuple = self.encode_prompt( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, lora_scale=lora_scale, **kwargs, ) # concatenate for backwards comp prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) return prompt_embeds
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt def encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, lora_scale: Optional[float] = None, clip_skip: Optional[int] = None, ): r""" Encodes the prompt into text encoder hidden states.
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. lora_scale (`float`, *optional*): A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. """ # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): self._lora_scale = lora_scale
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# dynamically adjust the LoRA scale if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) else: scale_lora_layers(self.text_encoder, lora_scale) if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: # textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = self.tokenizer.batch_decode( untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" )
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = text_inputs.attention_mask.to(device) else: attention_mask = None
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
if clip_skip is None: prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) prompt_embeds = prompt_embeds[0] else: prompt_embeds = self.text_encoder( text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True ) # Access the `hidden_states` first, that contains a tuple of # all the hidden states from the encoder layers. Then index into # the tuple to access the hidden states from the desired layer. prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] # We also need to apply the final LayerNorm here to not mess with the # representations. The `last_hidden_states` that we typically use for # obtaining the final prompt representations passes through the LayerNorm # layer.
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet is not None: prompt_embeds_dtype = self.unet.dtype else: prompt_embeds_dtype = prompt_embeds.dtype prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
" the batch size of `prompt`." ) else: uncond_tokens = negative_prompt
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# textual inversion: process multi-vector tokens if necessary if isinstance(self, TextualInversionLoaderMixin): uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) max_length = prompt_embeds.shape[1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: attention_mask = uncond_input.attention_mask.to(device) else: attention_mask = None negative_prompt_embeds = self.text_encoder( uncond_input.input_ids.to(device), attention_mask=attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0]
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) if self.text_encoder is not None: if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) return prompt_embeds, negative_prompt_embeds
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): dtype = next(self.image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = self.feature_extractor(image, return_tensors="pt").pixel_values
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
image = image.to(device=device, dtype=dtype) if output_hidden_states: image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_enc_hidden_states = self.image_encoder( torch.zeros_like(image), output_hidden_states=True ).hidden_states[-2] uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( num_images_per_prompt, dim=0 ) return image_enc_hidden_states, uncond_image_enc_hidden_states else: image_embeds = self.image_encoder(image).image_embeds image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_embeds = torch.zeros_like(image_embeds) return image_embeds, uncond_image_embeds
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds def prepare_ip_adapter_image_embeds( self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance ): image_embeds = [] if do_classifier_free_guidance: negative_image_embeds = [] if ip_adapter_image_embeds is None: if not isinstance(ip_adapter_image, list): ip_adapter_image = [ip_adapter_image] if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): raise ValueError( f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." )
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
for single_ip_adapter_image, image_proj_layer in zip( ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers ): output_hidden_state = not isinstance(image_proj_layer, ImageProjection) single_image_embeds, single_negative_image_embeds = self.encode_image( single_ip_adapter_image, device, 1, output_hidden_state ) image_embeds.append(single_image_embeds[None, :]) if do_classifier_free_guidance: negative_image_embeds.append(single_negative_image_embeds[None, :]) else: for single_image_embeds in ip_adapter_image_embeds: if do_classifier_free_guidance: single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) negative_image_embeds.append(single_negative_image_embeds) image_embeds.append(single_image_embeds)
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py
ip_adapter_image_embeds = [] for i, single_image_embeds in enumerate(image_embeds): single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) if do_classifier_free_guidance: single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) single_image_embeds = single_image_embeds.to(device=device) ip_adapter_image_embeds.append(single_image_embeds) return ip_adapter_image_embeds
144
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_panorama/pipeline_stable_diffusion_panorama.py