text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
# casting to int to avoid issues when num_inference_step is power of 3 timesteps = (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." )
1,338
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32) self.sigmas = torch.from_numpy(sigmas).to(device=device) self.timesteps = torch.from_numpy(timesteps).to(device=device) self._step_index = None self._begin_index = None self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep def index_for_timestep(self, timestep, schedule_timesteps=None): if schedule_timesteps is None: schedule_timesteps = self.timesteps indices = (schedule_timesteps == timestep).nonzero()
1,338
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py
# The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) pos = 1 if len(indices) > 1 else 0 return indices[pos].item() # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index def _init_step_index(self, timestep): if self.begin_index is None: if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) self._step_index = self.index_for_timestep(timestep) else: self._step_index = self._begin_index
1,338
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py
def step( self, model_output: torch.Tensor, timestep: Union[float, torch.Tensor], sample: torch.Tensor, generator: Optional[torch.Generator] = None, return_dict: bool = True, ) -> Union[EulerAncestralDiscreteSchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise).
1,338
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py
Args: model_output (`torch.Tensor`): The direct output from learned diffusion model. timestep (`float`): The current discrete timestep in the diffusion chain. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. generator (`torch.Generator`, *optional*): A random number generator. return_dict (`bool`): Whether or not to return a [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or tuple. Returns: [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_euler_ancestral_discrete.EulerAncestralDiscreteSchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor.
1,338
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py
""" if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)): raise ValueError( ( "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" " one of the `scheduler.timesteps` as a timestep." ), ) if not self.is_scale_input_called: logger.warning( "The `scale_model_input` function should be called before `step` to ensure correct denoising. " "See `StableDiffusionPipeline` for a usage example." ) if self.step_index is None: self._init_step_index(timestep) sigma = self.sigmas[self.step_index] # Upcast to avoid precision issues when computing prev_sample sample = sample.to(torch.float32)
1,338
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": pred_original_sample = sample - sigma * model_output elif self.config.prediction_type == "v_prediction": # * c_out + input * c_skip pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1)) elif self.config.prediction_type == "sample": raise NotImplementedError("prediction_type not implemented yet: sample") else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) sigma_from = self.sigmas[self.step_index] sigma_to = self.sigmas[self.step_index + 1] sigma_up = (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5 sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
1,338
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py
# 2. Convert to an ODE derivative derivative = (sample - pred_original_sample) / sigma dt = sigma_down - sigma prev_sample = sample + derivative * dt device = model_output.device noise = randn_tensor(model_output.shape, dtype=model_output.dtype, device=device, generator=generator) prev_sample = prev_sample + noise * sigma_up # Cast sample back to model compatible dtype prev_sample = prev_sample.to(model_output.dtype) # upon completion increase step index by one self._step_index += 1 if not return_dict: return ( prev_sample, pred_original_sample, ) return EulerAncestralDiscreteSchedulerOutput( prev_sample=prev_sample, pred_original_sample=pred_original_sample )
1,338
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise def add_noise( self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor, ) -> torch.Tensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): # mps does not support float64 schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) timesteps = timesteps.to(original_samples.device, dtype=torch.float32) else: schedule_timesteps = self.timesteps.to(original_samples.device) timesteps = timesteps.to(original_samples.device)
1,338
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index if self.begin_index is None: step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] elif self.step_index is not None: # add_noise is called after first denoising step (for inpainting) step_indices = [self.step_index] * timesteps.shape[0] else: # add noise is called before first denoising step to create initial latent(img2img) step_indices = [self.begin_index] * timesteps.shape[0] sigma = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): sigma = sigma.unsqueeze(-1) noisy_samples = original_samples + noise * sigma return noisy_samples def __len__(self): return self.config.num_train_timesteps
1,338
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_ancestral_discrete.py
class KarrasDiffusionSchedulers(Enum): DDIMScheduler = 1 DDPMScheduler = 2 PNDMScheduler = 3 LMSDiscreteScheduler = 4 EulerDiscreteScheduler = 5 HeunDiscreteScheduler = 6 EulerAncestralDiscreteScheduler = 7 DPMSolverMultistepScheduler = 8 DPMSolverSinglestepScheduler = 9 KDPM2DiscreteScheduler = 10 KDPM2AncestralDiscreteScheduler = 11 DEISMultistepScheduler = 12 UniPCMultistepScheduler = 13 DPMSolverSDEScheduler = 14 EDMEulerScheduler = 15
1,339
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_utils.py
class SchedulerOutput(BaseOutput): """ Base class for the output of a scheduler's `step` function. Args: prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the denoising loop. """ prev_sample: torch.Tensor
1,340
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_utils.py
class SchedulerMixin(PushToHubMixin): """ Base class for all schedulers. [`SchedulerMixin`] contains common functions shared by all schedulers such as general loading and saving functionalities. [`ConfigMixin`] takes care of storing the configuration attributes (like `num_train_timesteps`) that are passed to the scheduler's `__init__` function, and the attributes can be accessed by `scheduler.config.num_train_timesteps`. Class attributes: - **_compatibles** (`List[str]`) -- A list of scheduler classes that are compatible with the parent scheduler class. Use [`~ConfigMixin.from_config`] to load a different compatible scheduler class (should be overridden by parent class). """ config_name = SCHEDULER_CONFIG_NAME _compatibles = [] has_compatibles = True
1,341
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_utils.py
@classmethod @validate_hf_hub_args def from_pretrained( cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None, subfolder: Optional[str] = None, return_unused_kwargs=False, **kwargs, ): r""" Instantiate a scheduler from a pre-defined JSON configuration file in a local directory or Hub repository. Parameters: pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): Can be either:
1,341
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_utils.py
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on the Hub. - A path to a *directory* (for example `./my_model_directory`) containing the scheduler configuration saved with [`~SchedulerMixin.save_pretrained`]. subfolder (`str`, *optional*): The subfolder location of a model file within a larger model repository on the Hub or locally. return_unused_kwargs (`bool`, *optional*, defaults to `False`): Whether kwargs that are not consumed by the Python class should be returned or not. cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory where a downloaded pretrained model configuration is cached if the standard cache is not used. force_download (`bool`, *optional*, defaults to `False`):
1,341
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_utils.py
Whether or not to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist.
1,341
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_utils.py
proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. output_loading_info(`bool`, *optional*, defaults to `False`): Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. local_files_only(`bool`, *optional*, defaults to `False`): Whether to only load local model weights and configuration files or not. If set to `True`, the model won't be downloaded from the Hub. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from `diffusers-cli login` (stored in `~/.huggingface`) is used. revision (`str`, *optional*, defaults to `"main"`):
1,341
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_utils.py
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier allowed by Git.
1,341
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_utils.py
<Tip> To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with `huggingface-cli login`. You can also activate the special ["offline-mode"](https://huggingface.co/diffusers/installation.html#offline-mode) to use this method in a firewalled environment. </Tip> """ config, kwargs, commit_hash = cls.load_config( pretrained_model_name_or_path=pretrained_model_name_or_path, subfolder=subfolder, return_unused_kwargs=True, return_commit_hash=True, **kwargs, ) return cls.from_config(config, return_unused_kwargs=return_unused_kwargs, **kwargs) def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs): """ Save a scheduler configuration object to a directory so that it can be reloaded using the [`~SchedulerMixin.from_pretrained`] class method.
1,341
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_utils.py
Args: save_directory (`str` or `os.PathLike`): Directory where the configuration JSON file will be saved (will be created if it does not exist). push_to_hub (`bool`, *optional*, defaults to `False`): Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the repository you want to push to with `repo_id` (will default to the name of `save_directory` in your namespace). kwargs (`Dict[str, Any]`, *optional*): Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. """ self.save_config(save_directory=save_directory, push_to_hub=push_to_hub, **kwargs) @property def compatibles(self): """ Returns all schedulers that are compatible with this scheduler
1,341
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_utils.py
Returns: `List[SchedulerMixin]`: List of compatible schedulers """ return self._get_compatibles() @classmethod def _get_compatibles(cls): compatible_classes_str = list(set([cls.__name__] + cls._compatibles)) diffusers_library = importlib.import_module(__name__.split(".")[0]) compatible_classes = [ getattr(diffusers_library, c) for c in compatible_classes_str if hasattr(diffusers_library, c) ] return compatible_classes
1,341
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_utils.py
class EDMEulerSchedulerOutput(BaseOutput): """ Output class for the scheduler's `step` function output. Args: prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample `(x_{0})` based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. """ prev_sample: torch.Tensor pred_original_sample: Optional[torch.Tensor] = None
1,342
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_euler.py
class EDMEulerScheduler(SchedulerMixin, ConfigMixin): """ Implements the Euler scheduler in EDM formulation as presented in Karras et al. 2022 [1]. [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364 This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving.
1,343
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_euler.py
Args: sigma_min (`float`, *optional*, defaults to 0.002): Minimum noise magnitude in the sigma schedule. This was set to 0.002 in the EDM paper [1]; a reasonable range is [0, 10]. sigma_max (`float`, *optional*, defaults to 80.0): Maximum noise magnitude in the sigma schedule. This was set to 80.0 in the EDM paper [1]; a reasonable range is [0.2, 80.0]. sigma_data (`float`, *optional*, defaults to 0.5): The standard deviation of the data distribution. This is set to 0.5 in the EDM paper [1]. sigma_schedule (`str`, *optional*, defaults to `karras`): Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper (https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was incorporated in this model: https://huggingface.co/stabilityai/cosxl. num_train_timesteps (`int`, defaults to 1000):
1,343
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_euler.py
The number of diffusion steps to train the model. prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen Video](https://imagen.research.google/video/paper.pdf) paper). rho (`float`, *optional*, defaults to 7.0): The rho parameter used for calculating the Karras sigma schedule, which is set to 7.0 in the EDM paper [1]. """
1,343
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_euler.py
_compatibles = [] order = 1 @register_to_config def __init__( self, sigma_min: float = 0.002, sigma_max: float = 80.0, sigma_data: float = 0.5, sigma_schedule: str = "karras", num_train_timesteps: int = 1000, prediction_type: str = "epsilon", rho: float = 7.0, ): if sigma_schedule not in ["karras", "exponential"]: raise ValueError(f"Wrong value for provided for `{sigma_schedule=}`.`") # setable values self.num_inference_steps = None ramp = torch.linspace(0, 1, num_train_timesteps) if sigma_schedule == "karras": sigmas = self._compute_karras_sigmas(ramp) elif sigma_schedule == "exponential": sigmas = self._compute_exponential_sigmas(ramp) self.timesteps = self.precondition_noise(sigmas) self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) self.is_scale_input_called = False
1,343
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_euler.py
self._step_index = None self._begin_index = None self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication @property def init_noise_sigma(self): # standard deviation of the initial noise distribution return (self.config.sigma_max**2 + 1) ** 0.5 @property def step_index(self): """ The index counter for current timestep. It will increase 1 after each scheduler step. """ return self._step_index @property def begin_index(self): """ The index for the first timestep. It should be set from pipeline with `set_begin_index` method. """ return self._begin_index # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index def set_begin_index(self, begin_index: int = 0): """ Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
1,343
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_euler.py
Args: begin_index (`int`): The begin index for the scheduler. """ self._begin_index = begin_index def precondition_inputs(self, sample, sigma): c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5) scaled_sample = sample * c_in return scaled_sample def precondition_noise(self, sigma): if not isinstance(sigma, torch.Tensor): sigma = torch.tensor([sigma]) c_noise = 0.25 * torch.log(sigma) return c_noise def precondition_outputs(self, sample, model_output, sigma): sigma_data = self.config.sigma_data c_skip = sigma_data**2 / (sigma**2 + sigma_data**2)
1,343
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_euler.py
if self.config.prediction_type == "epsilon": c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 elif self.config.prediction_type == "v_prediction": c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 else: raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.") denoised = c_skip * sample + c_out * model_output return denoised def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. Args: sample (`torch.Tensor`): The input sample. timestep (`int`, *optional*): The current timestep in the diffusion chain.
1,343
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_euler.py
Returns: `torch.Tensor`: A scaled input sample. """ if self.step_index is None: self._init_step_index(timestep) sigma = self.sigmas[self.step_index] sample = self.precondition_inputs(sample, sigma) self.is_scale_input_called = True return sample def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): """ Sets the discrete timesteps used for the diffusion chain (to be run before inference). Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ self.num_inference_steps = num_inference_steps
1,343
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_euler.py
ramp = torch.linspace(0, 1, self.num_inference_steps) if self.config.sigma_schedule == "karras": sigmas = self._compute_karras_sigmas(ramp) elif self.config.sigma_schedule == "exponential": sigmas = self._compute_exponential_sigmas(ramp) sigmas = sigmas.to(dtype=torch.float32, device=device) self.timesteps = self.precondition_noise(sigmas) self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) self._step_index = None self._begin_index = None self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
1,343
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_euler.py
# Taken from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17 def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor: """Constructs the noise schedule of Karras et al. (2022).""" sigma_min = sigma_min or self.config.sigma_min sigma_max = sigma_max or self.config.sigma_max rho = self.config.rho min_inv_rho = sigma_min ** (1 / rho) max_inv_rho = sigma_max ** (1 / rho) sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor: """Implementation closely follows k-diffusion.
1,343
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_euler.py
https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26 """ sigma_min = sigma_min or self.config.sigma_min sigma_max = sigma_max or self.config.sigma_max sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0) return sigmas # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep def index_for_timestep(self, timestep, schedule_timesteps=None): if schedule_timesteps is None: schedule_timesteps = self.timesteps indices = (schedule_timesteps == timestep).nonzero()
1,343
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_euler.py
# The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) pos = 1 if len(indices) > 1 else 0 return indices[pos].item() # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index def _init_step_index(self, timestep): if self.begin_index is None: if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) self._step_index = self.index_for_timestep(timestep) else: self._step_index = self._begin_index
1,343
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_euler.py
def step( self, model_output: torch.Tensor, timestep: Union[float, torch.Tensor], sample: torch.Tensor, s_churn: float = 0.0, s_tmin: float = 0.0, s_tmax: float = float("inf"), s_noise: float = 1.0, generator: Optional[torch.Generator] = None, return_dict: bool = True, ) -> Union[EDMEulerSchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise).
1,343
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_euler.py
Args: model_output (`torch.Tensor`): The direct output from learned diffusion model. timestep (`float`): The current discrete timestep in the diffusion chain. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. s_churn (`float`): s_tmin (`float`): s_tmax (`float`): s_noise (`float`, defaults to 1.0): Scaling factor for noise added to the sample. generator (`torch.Generator`, *optional*): A random number generator. return_dict (`bool`): Whether or not to return a [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or tuple.
1,343
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_euler.py
Returns: [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EDMEulerSchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)): raise ValueError( ( "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" " `EDMEulerScheduler.step()` is not supported. Make sure to pass" " one of the `scheduler.timesteps` as a timestep." ), ) if not self.is_scale_input_called: logger.warning( "The `scale_model_input` function should be called before `step` to ensure correct denoising. " "See `StableDiffusionPipeline` for a usage example." )
1,343
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_euler.py
if self.step_index is None: self._init_step_index(timestep) # Upcast to avoid precision issues when computing prev_sample sample = sample.to(torch.float32) sigma = self.sigmas[self.step_index] gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 sigma_hat = sigma * (gamma + 1) if gamma > 0: noise = randn_tensor( model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator ) eps = noise * s_noise sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5 # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise pred_original_sample = self.precondition_outputs(sample, model_output, sigma_hat) # 2. Convert to an ODE derivative derivative = (sample - pred_original_sample) / sigma_hat dt = self.sigmas[self.step_index + 1] - sigma_hat
1,343
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_euler.py
prev_sample = sample + derivative * dt # Cast sample back to model compatible dtype prev_sample = prev_sample.to(model_output.dtype) # upon completion increase step index by one self._step_index += 1 if not return_dict: return ( prev_sample, pred_original_sample, ) return EDMEulerSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
1,343
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_euler.py
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise def add_noise( self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor, ) -> torch.Tensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): # mps does not support float64 schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) timesteps = timesteps.to(original_samples.device, dtype=torch.float32) else: schedule_timesteps = self.timesteps.to(original_samples.device) timesteps = timesteps.to(original_samples.device)
1,343
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_euler.py
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index if self.begin_index is None: step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] elif self.step_index is not None: # add_noise is called after first denoising step (for inpainting) step_indices = [self.step_index] * timesteps.shape[0] else: # add noise is called before first denoising step to create initial latent(img2img) step_indices = [self.begin_index] * timesteps.shape[0] sigma = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): sigma = sigma.unsqueeze(-1) noisy_samples = original_samples + noise * sigma return noisy_samples def __len__(self): return self.config.num_train_timesteps
1,343
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_edm_euler.py
class DDPMParallelSchedulerOutput(BaseOutput): """ Output class for the scheduler's `step` function output. Args: prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample `(x_{0})` based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. """ prev_sample: torch.Tensor pred_original_sample: Optional[torch.Tensor] = None
1,344
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
class DDPMParallelScheduler(SchedulerMixin, ConfigMixin): """ Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and Langevin dynamics sampling. [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions. For more details, see the original paper: https://arxiv.org/abs/2006.11239
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, `squaredcos_cap_v2` or `sigmoid`. trained_betas (`np.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. variance_type (`str`): options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`, `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`. clip_sample (`bool`, default `True`): option to clip predicted sample for numerical stability. clip_sample_range (`float`, default `1.0`):
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
the maximum magnitude for sample clipping. Valid only when `clip_sample=True`. prediction_type (`str`, default `epsilon`, optional): prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf) thresholding (`bool`, default `False`): whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487). Note that the thresholding method is unsuitable for latent-space diffusion models (such as stable-diffusion). dynamic_thresholding_ratio (`float`, default `0.995`): the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen (https://arxiv.org/abs/2205.11487). Valid only when `thresholding=True`.
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
sample_max_value (`float`, default `1.0`): the threshold value for dynamic thresholding. Valid only when `thresholding=True`. timestep_spacing (`str`, default `"leading"`): The way the timesteps should be scaled. Refer to Table 2. of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/abs/2305.08891) for more information. steps_offset (`int`, default `0`): An offset added to the inference steps, as required by some model families. rescale_betas_zero_snr (`bool`, defaults to `False`): Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and dark samples instead of limiting it to samples with medium brightness. Loosely related to [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506). """
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
_compatibles = [e.name for e in KarrasDiffusionSchedulers] order = 1 _is_ode_scheduler = False
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
@register_to_config # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.__init__ def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[Union[np.ndarray, List[float]]] = None, variance_type: str = "fixed_small", clip_sample: bool = True, prediction_type: str = "epsilon", thresholding: bool = False, dynamic_thresholding_ratio: float = 0.995, clip_sample_range: float = 1.0, sample_max_value: float = 1.0, timestep_spacing: str = "leading", steps_offset: int = 0, rescale_betas_zero_snr: bool = False, ): if trained_betas is not None: self.betas = torch.tensor(trained_betas, dtype=torch.float32) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) elif beta_schedule == "sigmoid": # GeoDiff sigmoid schedule betas = torch.linspace(-6, 6, num_train_timesteps) self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start else: raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
# Rescale for zero SNR if rescale_betas_zero_snr: self.betas = rescale_zero_terminal_snr(self.betas) self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) self.one = torch.tensor(1.0) # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 # setable values self.custom_timesteps = False self.num_inference_steps = None self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy()) self.variance_type = variance_type # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.scale_model_input def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep.
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
Args: sample (`torch.Tensor`): The input sample. timestep (`int`, *optional*): The current timestep in the diffusion chain. Returns: `torch.Tensor`: A scaled input sample. """ return sample # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.set_timesteps def set_timesteps( self, num_inference_steps: Optional[int] = None, device: Union[str, torch.device] = None, timesteps: Optional[List[int]] = None, ): """ Sets the discrete timesteps used for the diffusion chain (to be run before inference).
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed, `num_inference_steps` must be `None`. """ if num_inference_steps is not None and timesteps is not None: raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
if timesteps is not None: for i in range(1, len(timesteps)): if timesteps[i] >= timesteps[i - 1]: raise ValueError("`custom_timesteps` must be in descending order.") if timesteps[0] >= self.config.num_train_timesteps: raise ValueError( f"`timesteps` must start before `self.config.train_timesteps`:" f" {self.config.num_train_timesteps}." )
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
timesteps = np.array(timesteps, dtype=np.int64) self.custom_timesteps = True else: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" f" maximal {self.config.num_train_timesteps} timesteps." ) self.num_inference_steps = num_inference_steps self.custom_timesteps = False
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": timesteps = ( np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps) .round()[::-1] .copy() .astype(np.int64) ) elif self.config.timestep_spacing == "leading": step_ratio = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing":
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
step_ratio = self.config.num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." )
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
self.timesteps = torch.from_numpy(timesteps).to(device) # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._get_variance def _get_variance(self, t, predicted_variance=None, variance_type=None): prev_t = self.previous_timestep(t) alpha_prod_t = self.alphas_cumprod[t] alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t # we always take the log of variance, so clamp it to ensure it's not 0 variance = torch.clamp(variance, min=1e-20) if variance_type is None: variance_type = self.config.variance_type
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
# hacks - were probably added for training stability if variance_type == "fixed_small": variance = variance # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": variance = torch.log(variance) variance = torch.exp(0.5 * variance) elif variance_type == "fixed_large": variance = current_beta_t elif variance_type == "fixed_large_log": # Glide max_log variance = torch.log(current_beta_t) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": min_log = torch.log(variance) max_log = torch.log(current_beta_t) frac = (predicted_variance + 1) / 2 variance = frac * max_log + (1 - frac) * min_log return variance
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: """ "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing pixels from saturation at each step. We find that dynamic thresholding results in significantly better photorealism as well as better image-text alignment, especially when using very large guidance weights." https://arxiv.org/abs/2205.11487 """ dtype = sample.dtype batch_size, channels, *remaining_dims = sample.shape
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
if dtype not in (torch.float32, torch.float64): sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half # Flatten sample for doing quantile calculation along each image sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) abs_sample = sample.abs() # "a certain percentile absolute pixel value" s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) s = torch.clamp( s, min=1, max=self.config.sample_max_value ) # When clamped to min=1, equivalent to standard clipping to [-1, 1] s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0 sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s" sample = sample.reshape(batch_size, channels, *remaining_dims) sample = sample.to(dtype) return sample
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
def step( self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, generator=None, return_dict: bool = True, ) -> Union[DDPMParallelSchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.Tensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`torch.Tensor`): current instance of sample being created by diffusion process. generator: random number generator. return_dict (`bool`): option for returning tuple rather than DDPMParallelSchedulerOutput class
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
Returns: [`~schedulers.scheduling_utils.DDPMParallelSchedulerOutput`] or `tuple`: [`~schedulers.scheduling_utils.DDPMParallelSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ t = timestep prev_t = self.previous_timestep(t) if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1) else: predicted_variance = None # 1. compute alphas, betas alpha_prod_t = self.alphas_cumprod[t] alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev current_alpha_t = alpha_prod_t / alpha_prod_t_prev current_beta_t = 1 - current_alpha_t
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
# 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) elif self.config.prediction_type == "sample": pred_original_sample = model_output elif self.config.prediction_type == "v_prediction": pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or" " `v_prediction` for the DDPMScheduler." )
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
# 3. Clip or threshold "predicted x_0" if self.config.thresholding: pred_original_sample = self._threshold_sample(pred_original_sample) elif self.config.clip_sample: pred_original_sample = pred_original_sample.clamp( -self.config.clip_sample_range, self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
# 6. Add noise variance = 0 if t > 0: device = model_output.device variance_noise = randn_tensor( model_output.shape, generator=generator, device=device, dtype=model_output.dtype ) if self.variance_type == "fixed_small_log": variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise elif self.variance_type == "learned_range": variance = self._get_variance(t, predicted_variance=predicted_variance) variance = torch.exp(0.5 * variance) * variance_noise else: variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise pred_prev_sample = pred_prev_sample + variance if not return_dict: return ( pred_prev_sample, pred_original_sample, )
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
return DDPMParallelSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample) def batch_step_no_noise( self, model_output: torch.Tensor, timesteps: List[int], sample: torch.Tensor, ) -> torch.Tensor: """ Batched version of the `step` function, to be able to reverse the SDE for multiple samples/timesteps at once. Also, does not add any noise to the predicted sample, which is necessary for parallel sampling where the noise is pre-sampled by the pipeline. Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise).
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
Args: model_output (`torch.Tensor`): direct output from learned diffusion model. timesteps (`List[int]`): current discrete timesteps in the diffusion chain. This is now a list of integers. sample (`torch.Tensor`): current instance of sample being created by diffusion process. Returns: `torch.Tensor`: sample tensor at previous timestep. """ t = timesteps num_inference_steps = self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps prev_t = t - self.config.num_train_timesteps // num_inference_steps t = t.view(-1, *([1] * (model_output.ndim - 1))) prev_t = prev_t.view(-1, *([1] * (model_output.ndim - 1)))
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1) else: pass # 1. compute alphas, betas self.alphas_cumprod = self.alphas_cumprod.to(model_output.device) alpha_prod_t = self.alphas_cumprod[t] alpha_prod_t_prev = self.alphas_cumprod[torch.clip(prev_t, min=0)] alpha_prod_t_prev[prev_t < 0] = torch.tensor(1.0) beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev current_alpha_t = alpha_prod_t / alpha_prod_t_prev current_beta_t = 1 - current_alpha_t
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
# 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) elif self.config.prediction_type == "sample": pred_original_sample = model_output elif self.config.prediction_type == "v_prediction": pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or" " `v_prediction` for the DDPMParallelScheduler." )
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
# 3. Clip or threshold "predicted x_0" if self.config.thresholding: pred_original_sample = self._threshold_sample(pred_original_sample) elif self.config.clip_sample: pred_original_sample = pred_original_sample.clamp( -self.config.clip_sample_range, self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample return pred_prev_sample
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise def add_noise( self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor, ) -> torch.Tensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement # for the subsequent add_noise calls self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) timesteps = timesteps.to(original_samples.device) sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples # Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor: # Make sure alphas_cumprod and timestep have same device and dtype as sample self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device) alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype) timesteps = timesteps.to(sample.device)
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(sample.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity def __len__(self): return self.config.num_train_timesteps
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.previous_timestep def previous_timestep(self, timestep): if self.custom_timesteps or self.num_inference_steps: index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0] if index == self.timesteps.shape[0] - 1: prev_t = torch.tensor(-1) else: prev_t = self.timesteps[index + 1] else: prev_t = timestep - 1 return prev_t
1,345
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm_parallel.py
class DDIMParallelSchedulerOutput(BaseOutput): """ Output class for the scheduler's `step` function output. Args: prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample `(x_{0})` based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. """ prev_sample: torch.Tensor pred_original_sample: Optional[torch.Tensor] = None
1,346
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
class DDIMParallelScheduler(SchedulerMixin, ConfigMixin): """ Denoising diffusion implicit models is a scheduler that extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with non-Markovian guidance. [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions. For more details, see the original paper: https://arxiv.org/abs/2010.02502
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`np.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. clip_sample (`bool`, default `True`): option to clip predicted sample for numerical stability. clip_sample_range (`float`, default `1.0`): the maximum magnitude for sample clipping. Valid only when `clip_sample=True`. set_alpha_to_one (`bool`, default `True`): each diffusion step uses the value of alphas product at that step and at the previous one. For the final
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`, otherwise it uses the value of alpha at step 0. steps_offset (`int`, default `0`): An offset added to the inference steps, as required by some model families. prediction_type (`str`, default `epsilon`, optional): prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf) thresholding (`bool`, default `False`): whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487). Note that the thresholding method is unsuitable for latent-space diffusion models (such as stable-diffusion). dynamic_thresholding_ratio (`float`, default `0.995`):
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen (https://arxiv.org/abs/2205.11487). Valid only when `thresholding=True`. sample_max_value (`float`, default `1.0`): the threshold value for dynamic thresholding. Valid only when `thresholding=True`. timestep_spacing (`str`, default `"leading"`): The way the timesteps should be scaled. Refer to Table 2. of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/abs/2305.08891) for more information. rescale_betas_zero_snr (`bool`, default `False`): whether to rescale the betas to have zero terminal SNR (proposed by https://arxiv.org/pdf/2305.08891.pdf). This can enable the model to generate very bright and dark samples instead of limiting it to samples with medium brightness. Loosely related to
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506). """
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
_compatibles = [e.name for e in KarrasDiffusionSchedulers] order = 1 _is_ode_scheduler = True
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
@register_to_config # Copied from diffusers.schedulers.scheduling_ddim.DDIMScheduler.__init__ def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[Union[np.ndarray, List[float]]] = None, clip_sample: bool = True, set_alpha_to_one: bool = True, steps_offset: int = 0, prediction_type: str = "epsilon", thresholding: bool = False, dynamic_thresholding_ratio: float = 0.995, clip_sample_range: float = 1.0, sample_max_value: float = 1.0, timestep_spacing: str = "leading", rescale_betas_zero_snr: bool = False, ): if trained_betas is not None: self.betas = torch.tensor(trained_betas, dtype=torch.float32) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
# Rescale for zero SNR if rescale_betas_zero_snr: self.betas = rescale_zero_terminal_snr(self.betas) self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) # At every step in ddim, we are looking into the previous alphas_cumprod # For the final step, there is no previous alphas_cumprod because we are already at 0 # `set_alpha_to_one` decides whether we set this parameter simply to one or # whether we use the final alpha of the "non-previous" one. self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 # setable values self.num_inference_steps = None self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
# Copied from diffusers.schedulers.scheduling_ddim.DDIMScheduler.scale_model_input def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.Tensor`): The input sample. timestep (`int`, *optional*): The current timestep in the diffusion chain. Returns: `torch.Tensor`: A scaled input sample. """ return sample def _get_variance(self, timestep, prev_timestep=None): if prev_timestep is None: prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
alpha_prod_t = self.alphas_cumprod[timestep] alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) return variance def _batch_get_variance(self, t, prev_t): alpha_prod_t = self.alphas_cumprod[t] alpha_prod_t_prev = self.alphas_cumprod[torch.clip(prev_t, min=0)] alpha_prod_t_prev[prev_t < 0] = torch.tensor(1.0) beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev) return variance
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor: """ "Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing pixels from saturation at each step. We find that dynamic thresholding results in significantly better photorealism as well as better image-text alignment, especially when using very large guidance weights." https://arxiv.org/abs/2205.11487 """ dtype = sample.dtype batch_size, channels, *remaining_dims = sample.shape
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
if dtype not in (torch.float32, torch.float64): sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half # Flatten sample for doing quantile calculation along each image sample = sample.reshape(batch_size, channels * np.prod(remaining_dims)) abs_sample = sample.abs() # "a certain percentile absolute pixel value" s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1) s = torch.clamp( s, min=1, max=self.config.sample_max_value ) # When clamped to min=1, equivalent to standard clipping to [-1, 1] s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0 sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s" sample = sample.reshape(batch_size, channels, *remaining_dims) sample = sample.to(dtype) return sample
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
# Copied from diffusers.schedulers.scheduling_ddim.DDIMScheduler.set_timesteps def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): """ Sets the discrete timesteps used for the diffusion chain (to be run before inference). Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. """ if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" f" maximal {self.config.num_train_timesteps} timesteps." ) self.num_inference_steps = num_inference_steps
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": timesteps = ( np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps) .round()[::-1] .copy() .astype(np.int64) ) elif self.config.timestep_spacing == "leading": step_ratio = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": step_ratio = self.config.num_train_timesteps / self.num_inference_steps
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
# creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'." )
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
self.timesteps = torch.from_numpy(timesteps).to(device) def step( self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, eta: float = 0.0, use_clipped_model_output: bool = False, generator=None, variance_noise: Optional[torch.Tensor] = None, return_dict: bool = True, ) -> Union[DDIMParallelSchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise).
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
Args: model_output (`torch.Tensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`torch.Tensor`): current instance of sample being created by diffusion process. eta (`float`): weight of noise for added noise in diffusion step. use_clipped_model_output (`bool`): if `True`, compute "corrected" `model_output` from the clipped predicted original sample. Necessary because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no clipping has happened, "corrected" `model_output` would coincide with the one provided as input and `use_clipped_model_output` will have not effect. generator: random number generator. variance_noise (`torch.Tensor`): instead of generating noise for the variance using `generator`, we
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
can directly provide the noise for the variance itself. This is useful for methods such as CycleDiffusion. (https://arxiv.org/abs/2210.05559) return_dict (`bool`): option for returning tuple rather than DDIMParallelSchedulerOutput class
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
Returns: [`~schedulers.scheduling_utils.DDIMParallelSchedulerOutput`] or `tuple`: [`~schedulers.scheduling_utils.DDIMParallelSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1"
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
# 1. get previous step value (=t-1) prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas alpha_prod_t = self.alphas_cumprod[timestep] alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
# 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) pred_epsilon = model_output elif self.config.prediction_type == "sample": pred_original_sample = model_output pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) elif self.config.prediction_type == "v_prediction": pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" " `v_prediction`"
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
)
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
# 4. Clip or threshold "predicted x_0" if self.config.thresholding: pred_original_sample = self._threshold_sample(pred_original_sample) elif self.config.clip_sample: pred_original_sample = pred_original_sample.clamp( -self.config.clip_sample_range, self.config.clip_sample_range ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) variance = self._get_variance(timestep, prev_timestep) std_dev_t = eta * variance ** (0.5) if use_clipped_model_output: # the pred_epsilon is always re-derived from the clipped x_0 in Glide pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction if eta > 0: if variance_noise is not None and generator is not None: raise ValueError( "Cannot pass both generator and variance_noise. Please make sure that either `generator` or" " `variance_noise` stays `None`." ) if variance_noise is None: variance_noise = randn_tensor( model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype ) variance = std_dev_t * variance_noise
1,347
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddim_parallel.py