text
stringlengths 1
1.02k
| class_index
int64 0
1.38k
| source
stringclasses 431
values |
---|---|---|
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
euler_at_final (`bool`, defaults to `False`):
Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail
richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference
steps, but sometimes may result in blurring.
final_sigmas_type (`str`, defaults to `"zero"`):
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
""" | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
_compatibles = []
order = 1
@register_to_config
def __init__(
self,
sigma_min: float = 0.3,
sigma_max: float = 500,
sigma_data: float = 1.0,
sigma_schedule: str = "exponential",
num_train_timesteps: int = 1000,
solver_order: int = 2,
prediction_type: str = "v_prediction",
rho: float = 7.0,
solver_type: str = "midpoint",
lower_order_final: bool = True,
euler_at_final: bool = False,
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
):
if solver_type not in ["midpoint", "heun"]:
if solver_type in ["logrho", "bh1", "bh2"]:
self.register_to_config(solver_type="midpoint")
else:
raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}") | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
ramp = torch.linspace(0, 1, num_train_timesteps)
if sigma_schedule == "karras":
sigmas = self._compute_karras_sigmas(ramp)
elif sigma_schedule == "exponential":
sigmas = self._compute_exponential_sigmas(ramp)
self.timesteps = self.precondition_noise(sigmas)
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
# setable values
self.num_inference_steps = None
self.model_outputs = [None] * solver_order
self.lower_order_nums = 0
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
@property
def init_noise_sigma(self):
# standard deviation of the initial noise distribution
return (self.config.sigma_max**2 + 1) ** 0.5 | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
@property
def step_index(self):
"""
The index counter for current timestep. It will increase 1 after each scheduler step.
"""
return self._step_index
@property
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_inputs
def precondition_inputs(self, sample, sigma):
c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5)
scaled_sample = sample * c_in
return scaled_sample
def precondition_noise(self, sigma):
if not isinstance(sigma, torch.Tensor):
sigma = torch.tensor([sigma])
return sigma.atan() / math.pi * 2
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.precondition_outputs
def precondition_outputs(self, sample, model_output, sigma):
sigma_data = self.config.sigma_data
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2) | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
if self.config.prediction_type == "epsilon":
c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
elif self.config.prediction_type == "v_prediction":
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5
else:
raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.")
denoised = c_skip * sample + c_out * model_output
return denoised
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler.scale_model_input
def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
Args:
sample (`torch.Tensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.Tensor`:
A scaled input sample.
"""
if self.step_index is None:
self._init_step_index(timestep)
sigma = self.sigmas[self.step_index]
sample = self.precondition_inputs(sample, sigma)
self.is_scale_input_called = True
return sample
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference). | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
"""
self.num_inference_steps = num_inference_steps
ramp = torch.linspace(0, 1, self.num_inference_steps)
if self.config.sigma_schedule == "karras":
sigmas = self._compute_karras_sigmas(ramp)
elif self.config.sigma_schedule == "exponential":
sigmas = self._compute_exponential_sigmas(ramp)
sigmas = sigmas.to(dtype=torch.float32, device=device)
self.timesteps = self.precondition_noise(sigmas) | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
if self.config.final_sigmas_type == "sigma_min":
sigma_last = self.config.sigma_min
elif self.config.final_sigmas_type == "zero":
sigma_last = 0
else:
raise ValueError(
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
)
self.sigmas = torch.cat([sigmas, torch.tensor([sigma_last], dtype=torch.float32, device=device)])
self.model_outputs = [
None,
] * self.config.solver_order
self.lower_order_nums = 0
# add an index counter for schedulers that allow duplicated timesteps
self._step_index = None
self._begin_index = None
self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
# if a noise sampler is used, reinitialise it
self.noise_sampler = None | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_karras_sigmas
def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
"""Constructs the noise schedule of Karras et al. (2022)."""
sigma_min = sigma_min or self.config.sigma_min
sigma_max = sigma_max or self.config.sigma_max
rho = self.config.rho
min_inv_rho = sigma_min ** (1 / rho)
max_inv_rho = sigma_max ** (1 / rho)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
# Copied from diffusers.schedulers.scheduling_edm_euler.EDMEulerScheduler._compute_exponential_sigmas
def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor:
"""Implementation closely follows k-diffusion. | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26
"""
sigma_min = sigma_min or self.config.sigma_min
sigma_max = sigma_max or self.config.sigma_max
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0)
return sigmas
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
def _sigma_to_t(self, sigma, log_sigmas):
# get log sigma
log_sigma = np.log(np.maximum(sigma, 1e-10))
# get distribution
dists = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
high_idx = low_idx + 1
low = log_sigmas[low_idx]
high = log_sigmas[high_idx]
# interpolate sigmas
w = (low - log_sigma) / (low - high)
w = np.clip(w, 0, 1) | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
# transform interpolation to time range
t = (1 - w) * low_idx + w * high_idx
t = t.reshape(sigma.shape)
return t
def _sigma_to_alpha_sigma_t(self, sigma):
alpha_t = torch.tensor(1) # Inputs are pre-scaled before going into unet, so alpha_t = 1
sigma_t = sigma
return alpha_t, sigma_t
def convert_model_output(
self,
model_output: torch.Tensor,
sample: torch.Tensor = None,
) -> torch.Tensor:
"""
Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is
designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an
integral of the data prediction model.
<Tip>
The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise
prediction and data prediction models.
</Tip> | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
Returns:
`torch.Tensor`:
The converted model output.
"""
sigma = self.sigmas[self.step_index]
x0_pred = self.precondition_outputs(sample, model_output, sigma)
return x0_pred
def dpm_solver_first_order_update(
self,
model_output: torch.Tensor,
sample: torch.Tensor = None,
noise: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
One step for the first-order DPMSolver (equivalent to DDIM).
Args:
model_output (`torch.Tensor`):
The direct output from the learned diffusion model.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process. | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
Returns:
`torch.Tensor`:
The sample tensor at the previous timestep.
"""
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index]
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
lambda_s = torch.log(alpha_s) - torch.log(sigma_s)
h = lambda_t - lambda_s
assert noise is not None
x_t = (
(sigma_t / sigma_s * torch.exp(-h)) * sample
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
)
return x_t | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
def multistep_dpm_solver_second_order_update(
self,
model_output_list: List[torch.Tensor],
sample: torch.Tensor = None,
noise: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
One step for the second-order multistep DPMSolver.
Args:
model_output_list (`List[torch.Tensor]`):
The direct outputs from learned diffusion model at current and latter timesteps.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
Returns:
`torch.Tensor`:
The sample tensor at the previous timestep.
"""
sigma_t, sigma_s0, sigma_s1 = (
self.sigmas[self.step_index + 1],
self.sigmas[self.step_index],
self.sigmas[self.step_index - 1],
) | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1)
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1)
m0, m1 = model_output_list[-1], model_output_list[-2]
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1
r0 = h_0 / h
D0, D1 = m0, (1.0 / r0) * (m0 - m1) | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
# sde-dpmsolver++
assert noise is not None
if self.config.solver_type == "midpoint":
x_t = (
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
+ 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
)
elif self.config.solver_type == "heun":
x_t = (
(sigma_t / sigma_s0 * torch.exp(-h)) * sample
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise
)
return x_t | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
index_candidates = (schedule_timesteps == timestep).nonzero()
if len(index_candidates) == 0:
step_index = len(self.timesteps) - 1
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
elif len(index_candidates) > 1:
step_index = index_candidates[1].item()
else:
step_index = index_candidates[0].item()
return step_index | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
def _init_step_index(self, timestep):
"""
Initialize the step_index counter for the scheduler.
"""
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
def step(
self,
model_output: torch.Tensor,
timestep: Union[int, torch.Tensor],
sample: torch.Tensor,
generator=None,
return_dict: bool = True,
) -> Union[SchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
the multistep DPMSolver. | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`int`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`):
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor. | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
"""
if self.num_inference_steps is None:
raise ValueError(
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
)
if self.step_index is None:
self._init_step_index(timestep)
# Improve numerical stability for small number of steps
lower_order_final = (self.step_index == len(self.timesteps) - 1) and (
self.config.euler_at_final
or (self.config.lower_order_final and len(self.timesteps) < 15)
or self.config.final_sigmas_type == "zero"
)
lower_order_second = (
(self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15
) | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
model_output = self.convert_model_output(model_output, sample=sample)
for i in range(self.config.solver_order - 1):
self.model_outputs[i] = self.model_outputs[i + 1]
self.model_outputs[-1] = model_output
if self.noise_sampler is None:
seed = None
if generator is not None:
seed = (
[g.initial_seed() for g in generator] if isinstance(generator, list) else generator.initial_seed()
)
self.noise_sampler = BrownianTreeNoiseSampler(
model_output, sigma_min=self.config.sigma_min, sigma_max=self.config.sigma_max, seed=seed
)
noise = self.noise_sampler(self.sigmas[self.step_index], self.sigmas[self.step_index + 1]).to(
model_output.device
) | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final:
prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise)
elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second:
prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise)
if self.lower_order_nums < self.config.solver_order:
self.lower_order_nums += 1
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=prev_sample) | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
timesteps: torch.Tensor,
) -> torch.Tensor:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
# mps does not support float64
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
else:
schedule_timesteps = self.timesteps.to(original_samples.device)
timesteps = timesteps.to(original_samples.device) | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
if self.begin_index is None:
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
elif self.step_index is not None:
# add_noise is called after first denoising step (for inpainting)
step_indices = [self.step_index] * timesteps.shape[0]
else:
# add noise is called before first denoising step to create initial latent(img2img)
step_indices = [self.begin_index] * timesteps.shape[0]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < len(original_samples.shape):
sigma = sigma.unsqueeze(-1)
noisy_samples = original_samples + noise * sigma
return noisy_samples
def __len__(self):
return self.config.num_train_timesteps | 1,286 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py |
class LCMSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.Tensor
denoised: Optional[torch.Tensor] = None | 1,287 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
class LCMScheduler(SchedulerMixin, ConfigMixin):
"""
`LCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
non-Markovian guidance.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. [`~ConfigMixin`] takes care of storing all config
attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be
accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving
functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions. | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.0001):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, *optional*):
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
original_inference_steps (`int`, *optional*, defaults to 50):
The default number of inference steps used to generate a linearly-spaced timestep schedule, from which we
will ultimately take `num_inference_steps` evenly spaced timesteps to form the final timestep schedule. | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
clip_sample (`bool`, defaults to `True`):
Clip the predicted sample for numerical stability.
clip_sample_range (`float`, defaults to 1.0):
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
set_alpha_to_one (`bool`, defaults to `True`):
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
otherwise it uses the alpha value at step 0.
steps_offset (`int`, defaults to 0):
An offset added to the inference steps, as required by some model families.
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
dynamic_thresholding_ratio (`float`, defaults to 0.995):
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
sample_max_value (`float`, defaults to 1.0):
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
timestep_spacing (`str`, defaults to `"leading"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
timestep_scaling (`float`, defaults to 10.0): | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
The factor the timesteps will be multiplied by when calculating the consistency model boundary conditions
`c_skip` and `c_out`. Increasing this will decrease the approximation error (although the approximation
error at the default of `10.0` is already pretty small).
rescale_betas_zero_snr (`bool`, defaults to `False`):
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
dark samples instead of limiting it to samples with medium brightness. Loosely related to
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
""" | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
order = 1 | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.00085,
beta_end: float = 0.012,
beta_schedule: str = "scaled_linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
original_inference_steps: int = 50,
clip_sample: bool = False,
clip_sample_range: float = 1.0,
set_alpha_to_one: bool = True,
steps_offset: int = 0,
prediction_type: str = "epsilon",
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
sample_max_value: float = 1.0,
timestep_spacing: str = "leading",
timestep_scaling: float = 10.0,
rescale_betas_zero_snr: bool = False,
):
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear": | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
else:
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}") | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
# Rescale for zero SNR
if rescale_betas_zero_snr:
self.betas = rescale_zero_terminal_snr(self.betas)
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
# At every step in ddim, we are looking into the previous alphas_cumprod
# For the final step, there is no previous alphas_cumprod because we are already at 0
# `set_alpha_to_one` decides whether we set this parameter simply to one or
# whether we use the final alpha of the "non-previous" one.
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# setable values
self.num_inference_steps = None
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
self.custom_timesteps = False | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
self._step_index = None
self._begin_index = None
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
def index_for_timestep(self, timestep, schedule_timesteps=None):
if schedule_timesteps is None:
schedule_timesteps = self.timesteps
indices = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
pos = 1 if len(indices) > 1 else 0
return indices[pos].item() | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
def _init_step_index(self, timestep):
if self.begin_index is None:
if isinstance(timestep, torch.Tensor):
timestep = timestep.to(self.timesteps.device)
self._step_index = self.index_for_timestep(timestep)
else:
self._step_index = self._begin_index
@property
def step_index(self):
return self._step_index
@property
def begin_index(self):
"""
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
"""
return self._begin_index
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
def set_begin_index(self, begin_index: int = 0):
"""
Sets the begin index for the scheduler. This function should be run from pipeline before the inference. | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
Args:
begin_index (`int`):
The begin index for the scheduler.
"""
self._begin_index = begin_index
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.Tensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.Tensor`:
A scaled input sample.
"""
return sample | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
"""
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
photorealism as well as better image-text alignment, especially when using very large guidance weights."
https://arxiv.org/abs/2205.11487
"""
dtype = sample.dtype
batch_size, channels, *remaining_dims = sample.shape | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
if dtype not in (torch.float32, torch.float64):
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
# Flatten sample for doing quantile calculation along each image
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
s = torch.clamp(
s, min=1, max=self.config.sample_max_value
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
sample = sample.reshape(batch_size, channels, *remaining_dims)
sample = sample.to(dtype)
return sample | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
def set_timesteps(
self,
num_inference_steps: Optional[int] = None,
device: Union[str, torch.device] = None,
original_inference_steps: Optional[int] = None,
timesteps: Optional[List[int]] = None,
strength: int = 1.0,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference). | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
Args:
num_inference_steps (`int`, *optional*):
The number of diffusion steps used when generating samples with a pre-trained model. If used,
`timesteps` must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
original_inference_steps (`int`, *optional*):
The original number of inference steps, which will be used to generate a linearly-spaced timestep
schedule (which is different from the standard `diffusers` implementation). We will then take
`num_inference_steps` timesteps from this schedule, evenly spaced in terms of indices, and use that as
our final timestep schedule. If not set, this will default to the `original_inference_steps` attribute.
timesteps (`List[int]`, *optional*): | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
timestep spacing strategy of equal spacing between timesteps on the training/distillation timestep
schedule is used. If `timesteps` is passed, `num_inference_steps` must be `None`.
"""
# 0. Check inputs
if num_inference_steps is None and timesteps is None:
raise ValueError("Must pass exactly one of `num_inference_steps` or `custom_timesteps`.") | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
if num_inference_steps is not None and timesteps is not None:
raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
# 1. Calculate the LCM original training/distillation timestep schedule.
original_steps = (
original_inference_steps if original_inference_steps is not None else self.config.original_inference_steps
)
if original_steps > self.config.num_train_timesteps:
raise ValueError(
f"`original_steps`: {original_steps} cannot be larger than `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
f" maximal {self.config.num_train_timesteps} timesteps."
) | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
# LCM Timesteps Setting
# The skipping step parameter k from the paper.
k = self.config.num_train_timesteps // original_steps
# LCM Training/Distillation Steps Schedule
# Currently, only a linearly-spaced schedule is supported (same as in the LCM distillation scripts).
lcm_origin_timesteps = np.asarray(list(range(1, int(original_steps * strength) + 1))) * k - 1
# 2. Calculate the LCM inference timestep schedule.
if timesteps is not None:
# 2.1 Handle custom timestep schedules.
train_timesteps = set(lcm_origin_timesteps)
non_train_timesteps = []
for i in range(1, len(timesteps)):
if timesteps[i] >= timesteps[i - 1]:
raise ValueError("`custom_timesteps` must be in descending order.")
if timesteps[i] not in train_timesteps:
non_train_timesteps.append(timesteps[i]) | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
if timesteps[0] >= self.config.num_train_timesteps:
raise ValueError(
f"`timesteps` must start before `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps}."
)
# Raise warning if timestep schedule does not start with self.config.num_train_timesteps - 1
if strength == 1.0 and timesteps[0] != self.config.num_train_timesteps - 1:
logger.warning(
f"The first timestep on the custom timestep schedule is {timesteps[0]}, not"
f" `self.config.num_train_timesteps - 1`: {self.config.num_train_timesteps - 1}. You may get"
f" unexpected results when using this timestep schedule."
) | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
# Raise warning if custom timestep schedule contains timesteps not on original timestep schedule
if non_train_timesteps:
logger.warning(
f"The custom timestep schedule contains the following timesteps which are not on the original"
f" training/distillation timestep schedule: {non_train_timesteps}. You may get unexpected results"
f" when using this timestep schedule."
)
# Raise warning if custom timestep schedule is longer than original_steps
if len(timesteps) > original_steps:
logger.warning(
f"The number of timesteps in the custom timestep schedule is {len(timesteps)}, which exceeds the"
f" the length of the timestep schedule used for training: {original_steps}. You may get some"
f" unexpected results when using this timestep schedule."
) | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
timesteps = np.array(timesteps, dtype=np.int64)
self.num_inference_steps = len(timesteps)
self.custom_timesteps = True | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
# Apply strength (e.g. for img2img pipelines) (see StableDiffusionImg2ImgPipeline.get_timesteps)
init_timestep = min(int(self.num_inference_steps * strength), self.num_inference_steps)
t_start = max(self.num_inference_steps - init_timestep, 0)
timesteps = timesteps[t_start * self.order :]
# TODO: also reset self.num_inference_steps?
else:
# 2.2 Create the "standard" LCM inference timestep schedule.
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
f" maximal {self.config.num_train_timesteps} timesteps."
)
skipping_step = len(lcm_origin_timesteps) // num_inference_steps | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
if skipping_step < 1:
raise ValueError(
f"The combination of `original_steps x strength`: {original_steps} x {strength} is smaller than `num_inference_steps`: {num_inference_steps}. Make sure to either reduce `num_inference_steps` to a value smaller than {int(original_steps * strength)} or increase `strength` to a value higher than {float(num_inference_steps / original_steps)}."
)
self.num_inference_steps = num_inference_steps
if num_inference_steps > original_steps:
raise ValueError(
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `original_inference_steps`:"
f" {original_steps} because the final timestep schedule will be a subset of the"
f" `original_inference_steps`-sized initial timestep schedule."
) | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
# LCM Inference Steps Schedule
lcm_origin_timesteps = lcm_origin_timesteps[::-1].copy()
# Select (approximately) evenly spaced indices from lcm_origin_timesteps.
inference_indices = np.linspace(0, len(lcm_origin_timesteps), num=num_inference_steps, endpoint=False)
inference_indices = np.floor(inference_indices).astype(np.int64)
timesteps = lcm_origin_timesteps[inference_indices]
self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.long)
self._step_index = None
self._begin_index = None
def get_scalings_for_boundary_condition_discrete(self, timestep):
self.sigma_data = 0.5 # Default: 0.5
scaled_timestep = timestep * self.config.timestep_scaling
c_skip = self.sigma_data**2 / (scaled_timestep**2 + self.sigma_data**2)
c_out = scaled_timestep / (scaled_timestep**2 + self.sigma_data**2) ** 0.5
return c_skip, c_out | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
def step(
self,
model_output: torch.Tensor,
timestep: int,
sample: torch.Tensor,
generator: Optional[torch.Generator] = None,
return_dict: bool = True,
) -> Union[LCMSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise). | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.
"""
if self.num_inference_steps is None:
raise ValueError( | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
) | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
if self.step_index is None:
self._init_step_index(timestep)
# 1. get previous step value
prev_step_index = self.step_index + 1
if prev_step_index < len(self.timesteps):
prev_timestep = self.timesteps[prev_step_index]
else:
prev_timestep = timestep
# 2. compute alphas, betas
alpha_prod_t = self.alphas_cumprod[timestep]
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
# 3. Get scalings for boundary conditions
c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep) | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
# 4. Compute the predicted original sample x_0 based on the model parameterization
if self.config.prediction_type == "epsilon": # noise-prediction
predicted_original_sample = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt()
elif self.config.prediction_type == "sample": # x-prediction
predicted_original_sample = model_output
elif self.config.prediction_type == "v_prediction": # v-prediction
predicted_original_sample = alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
" `v_prediction` for `LCMScheduler`."
) | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
# 5. Clip or threshold "predicted x_0"
if self.config.thresholding:
predicted_original_sample = self._threshold_sample(predicted_original_sample)
elif self.config.clip_sample:
predicted_original_sample = predicted_original_sample.clamp(
-self.config.clip_sample_range, self.config.clip_sample_range
)
# 6. Denoise model output using boundary conditions
denoised = c_out * predicted_original_sample + c_skip * sample | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
# 7. Sample and inject noise z ~ N(0, I) for MultiStep Inference
# Noise is not used on the final timestep of the timestep schedule.
# This also means that noise is not used for one-step sampling.
if self.step_index != self.num_inference_steps - 1:
noise = randn_tensor(
model_output.shape, generator=generator, device=model_output.device, dtype=denoised.dtype
)
prev_sample = alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise
else:
prev_sample = denoised
# upon completion increase step index by one
self._step_index += 1
if not return_dict:
return (prev_sample, denoised)
return LCMSchedulerOutput(prev_sample=prev_sample, denoised=denoised) | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
timesteps: torch.IntTensor,
) -> torch.Tensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
# for the subsequent add_noise calls
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
timesteps = timesteps.to(original_samples.device)
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
# Make sure alphas_cumprod and timestep have same device and dtype as sample
self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
timesteps = timesteps.to(sample.device) | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(sample.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
def __len__(self):
return self.config.num_train_timesteps | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.previous_timestep
def previous_timestep(self, timestep):
if self.custom_timesteps or self.num_inference_steps:
index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
if index == self.timesteps.shape[0] - 1:
prev_t = torch.tensor(-1)
else:
prev_t = self.timesteps[index + 1]
else:
prev_t = timestep - 1
return prev_t | 1,288 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_lcm.py |
class DDPMSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.Tensor
pred_original_sample: Optional[torch.Tensor] = None | 1,289 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
class DDPMScheduler(SchedulerMixin, ConfigMixin):
"""
`DDPMScheduler` explores the connections between denoising score matching and Langevin dynamics sampling.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving. | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.0001):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
trained_betas (`np.ndarray`, *optional*):
An array of betas to pass directly to the constructor without using `beta_start` and `beta_end`.
variance_type (`str`, defaults to `"fixed_small"`):
Clip the variance when adding noise to the denoised sample. Choose from `fixed_small`, `fixed_small_log`,
`fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
clip_sample (`bool`, defaults to `True`): | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
Clip the predicted sample for numerical stability.
clip_sample_range (`float`, defaults to 1.0):
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
Video](https://imagen.research.google/video/paper.pdf) paper).
thresholding (`bool`, defaults to `False`):
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
as Stable Diffusion.
dynamic_thresholding_ratio (`float`, defaults to 0.995):
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
sample_max_value (`float`, defaults to 1.0): | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
timestep_spacing (`str`, defaults to `"leading"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
steps_offset (`int`, defaults to 0):
An offset added to the inference steps, as required by some model families.
rescale_betas_zero_snr (`bool`, defaults to `False`):
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
dark samples instead of limiting it to samples with medium brightness. Loosely related to
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
""" | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 1 | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
variance_type: str = "fixed_small",
clip_sample: bool = True,
prediction_type: str = "epsilon",
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
clip_sample_range: float = 1.0,
sample_max_value: float = 1.0,
timestep_spacing: str = "leading",
steps_offset: int = 0,
rescale_betas_zero_snr: bool = False,
):
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear": | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
elif beta_schedule == "sigmoid":
# GeoDiff sigmoid schedule
betas = torch.linspace(-6, 6, num_train_timesteps)
self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
else:
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}") | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
# Rescale for zero SNR
if rescale_betas_zero_snr:
self.betas = rescale_zero_terminal_snr(self.betas)
self.alphas = 1.0 - self.betas
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
self.one = torch.tensor(1.0)
# standard deviation of the initial noise distribution
self.init_noise_sigma = 1.0
# setable values
self.custom_timesteps = False
self.num_inference_steps = None
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
self.variance_type = variance_type
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep. | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
Args:
sample (`torch.Tensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.Tensor`:
A scaled input sample.
"""
return sample
def set_timesteps(
self,
num_inference_steps: Optional[int] = None,
device: Union[str, torch.device] = None,
timesteps: Optional[List[int]] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference). | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used,
`timesteps` must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
`num_inference_steps` must be `None`.
"""
if num_inference_steps is not None and timesteps is not None:
raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.") | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
if timesteps is not None:
for i in range(1, len(timesteps)):
if timesteps[i] >= timesteps[i - 1]:
raise ValueError("`custom_timesteps` must be in descending order.")
if timesteps[0] >= self.config.num_train_timesteps:
raise ValueError(
f"`timesteps` must start before `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps}."
) | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
timesteps = np.array(timesteps, dtype=np.int64)
self.custom_timesteps = True
else:
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
f" maximal {self.config.num_train_timesteps} timesteps."
)
self.num_inference_steps = num_inference_steps
self.custom_timesteps = False | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
timesteps = (
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
.round()[::-1]
.copy()
.astype(np.int64)
)
elif self.config.timestep_spacing == "leading":
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing": | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
step_ratio = self.config.num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
timesteps -= 1
else:
raise ValueError(
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
) | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
self.timesteps = torch.from_numpy(timesteps).to(device)
def _get_variance(self, t, predicted_variance=None, variance_type=None):
prev_t = self.previous_timestep(t)
alpha_prod_t = self.alphas_cumprod[t]
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t
# we always take the log of variance, so clamp it to ensure it's not 0
variance = torch.clamp(variance, min=1e-20)
if variance_type is None:
variance_type = self.config.variance_type | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
# hacks - were probably added for training stability
if variance_type == "fixed_small":
variance = variance
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
variance = torch.log(variance)
variance = torch.exp(0.5 * variance)
elif variance_type == "fixed_large":
variance = current_beta_t
elif variance_type == "fixed_large_log":
# Glide max_log
variance = torch.log(current_beta_t)
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
min_log = torch.log(variance)
max_log = torch.log(current_beta_t)
frac = (predicted_variance + 1) / 2
variance = frac * max_log + (1 - frac) * min_log
return variance | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
"""
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
photorealism as well as better image-text alignment, especially when using very large guidance weights."
https://arxiv.org/abs/2205.11487
"""
dtype = sample.dtype
batch_size, channels, *remaining_dims = sample.shape
if dtype not in (torch.float32, torch.float64):
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
# Flatten sample for doing quantile calculation along each image
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
s = torch.clamp(
s, min=1, max=self.config.sample_max_value
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
sample = sample.reshape(batch_size, channels, *remaining_dims)
sample = sample.to(dtype)
return sample | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
def step(
self,
model_output: torch.Tensor,
timestep: int,
sample: torch.Tensor,
generator=None,
return_dict: bool = True,
) -> Union[DDPMSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise). | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.
"""
t = timestep
prev_t = self.previous_timestep(t) | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
else:
predicted_variance = None
# 1. compute alphas, betas
alpha_prod_t = self.alphas_cumprod[t]
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
beta_prod_t = 1 - alpha_prod_t
beta_prod_t_prev = 1 - alpha_prod_t_prev
current_alpha_t = alpha_prod_t / alpha_prod_t_prev
current_beta_t = 1 - current_alpha_t | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
elif self.config.prediction_type == "sample":
pred_original_sample = model_output
elif self.config.prediction_type == "v_prediction":
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
" `v_prediction` for the DDPMScheduler."
) | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
# 3. Clip or threshold "predicted x_0"
if self.config.thresholding:
pred_original_sample = self._threshold_sample(pred_original_sample)
elif self.config.clip_sample:
pred_original_sample = pred_original_sample.clamp(
-self.config.clip_sample_range, self.config.clip_sample_range
)
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
# 6. Add noise
variance = 0
if t > 0:
device = model_output.device
variance_noise = randn_tensor(
model_output.shape, generator=generator, device=device, dtype=model_output.dtype
)
if self.variance_type == "fixed_small_log":
variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
elif self.variance_type == "learned_range":
variance = self._get_variance(t, predicted_variance=predicted_variance)
variance = torch.exp(0.5 * variance) * variance_noise
else:
variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
pred_prev_sample = pred_prev_sample + variance
if not return_dict:
return (
pred_prev_sample,
pred_original_sample,
) | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
def add_noise(
self,
original_samples: torch.Tensor,
noise: torch.Tensor,
timesteps: torch.IntTensor,
) -> torch.Tensor:
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
# for the subsequent add_noise calls
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
timesteps = timesteps.to(original_samples.device)
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
# Make sure alphas_cumprod and timestep have same device and dtype as sample
self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
timesteps = timesteps.to(sample.device) | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape) < len(sample.shape):
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
return velocity
def __len__(self):
return self.config.num_train_timesteps | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
def previous_timestep(self, timestep):
if self.custom_timesteps or self.num_inference_steps:
index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
if index == self.timesteps.shape[0] - 1:
prev_t = torch.tensor(-1)
else:
prev_t = self.timesteps[index + 1]
else:
prev_t = timestep - 1
return prev_t | 1,290 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_ddpm.py |
class HeunDiscreteSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.Tensor
pred_original_sample: Optional[torch.Tensor] = None | 1,291 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_heun_discrete.py |
class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
"""
Scheduler with Heun steps for discrete beta schedules.
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
methods the library implements for all schedulers such as loading and saving. | 1,292 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_heun_discrete.py |
Args:
num_train_timesteps (`int`, defaults to 1000):
The number of diffusion steps to train the model.
beta_start (`float`, defaults to 0.0001):
The starting `beta` value of inference.
beta_end (`float`, defaults to 0.02):
The final `beta` value.
beta_schedule (`str`, defaults to `"linear"`):
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
`linear` or `scaled_linear`.
trained_betas (`np.ndarray`, *optional*):
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
prediction_type (`str`, defaults to `epsilon`, *optional*):
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen | 1,292 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_heun_discrete.py |
Video](https://imagen.research.google/video/paper.pdf) paper).
clip_sample (`bool`, defaults to `True`):
Clip the predicted sample for numerical stability.
clip_sample_range (`float`, defaults to 1.0):
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
the sigmas are determined according to a sequence of noise levels {σi}.
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
use_beta_sigmas (`bool`, *optional*, defaults to `False`):
Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta | 1,292 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_heun_discrete.py |
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
timestep_spacing (`str`, defaults to `"linspace"`):
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
steps_offset (`int`, defaults to 0):
An offset added to the inference steps, as required by some model families.
""" | 1,292 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_heun_discrete.py |
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
order = 2 | 1,292 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_heun_discrete.py |
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.00085, # sensible defaults
beta_end: float = 0.012,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
prediction_type: str = "epsilon",
use_karras_sigmas: Optional[bool] = False,
use_exponential_sigmas: Optional[bool] = False,
use_beta_sigmas: Optional[bool] = False,
clip_sample: Optional[bool] = False,
clip_sample_range: float = 1.0,
timestep_spacing: str = "linspace",
steps_offset: int = 0,
):
if self.config.use_beta_sigmas and not is_scipy_available():
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
raise ValueError( | 1,292 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_heun_discrete.py |
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
)
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="cosine")
elif beta_schedule == "exp":
self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="exp")
else: | 1,292 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_heun_discrete.py |
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}") | 1,292 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_heun_discrete.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.