text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
"prev_timestep", "1.0.0", "Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", ) model_output_list = self.model_outputs sigma_t, sigma_s0 = ( self.sigmas[self.step_index + 1], self.sigmas[self.step_index], ) alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) lambda_t = torch.log(alpha_t) - torch.log(sigma_t) lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
gradient_part = torch.zeros_like(sample) h = lambda_t - lambda_s0 lambda_list = [] for i in range(order): si = self.step_index - i alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si]) lambda_si = torch.log(alpha_si) - torch.log(sigma_si) lambda_list.append(lambda_si) gradient_coefficients = self.get_coefficients_fn(order, lambda_s0, lambda_t, lambda_list, tau) x = sample
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
if self.predict_x0: if ( order == 2 ): ## if order = 2 we do a modification that does not influence the convergence order similar to unipc. Note: This is used only for few steps sampling. # The added term is O(h^3). Empirically we find it will slightly improve the image quality. # ODE case # gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2])) # gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h ** 2 / 2 - (h - 1 + torch.exp(-h))) / (ns.marginal_lambda(t_prev_list[-1]) - ns.marginal_lambda(t_prev_list[-2])) temp_sigma = self.sigmas[self.step_index - 1] temp_alpha_s, temp_sigma_s = self._sigma_to_alpha_sigma_t(temp_sigma) temp_lambda_s = torch.log(temp_alpha_s) - torch.log(temp_sigma_s)
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
gradient_coefficients[0] += ( 1.0 * torch.exp((1 + tau**2) * lambda_t) * (h**2 / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2)) / (lambda_s0 - temp_lambda_s) ) gradient_coefficients[1] -= ( 1.0 * torch.exp((1 + tau**2) * lambda_t) * (h**2 / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2)) / (lambda_s0 - temp_lambda_s) )
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
for i in range(order): if self.predict_x0: gradient_part += ( (1 + tau**2) * sigma_t * torch.exp(-(tau**2) * lambda_t) * gradient_coefficients[i] * model_output_list[-(i + 1)] ) else: gradient_part += -(1 + tau**2) * alpha_t * gradient_coefficients[i] * model_output_list[-(i + 1)] if self.predict_x0: noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau**2 * h)) * noise else: noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * noise if self.predict_x0: x_t = torch.exp(-(tau**2) * h) * (sigma_t / sigma_s0) * x + gradient_part + noise_part else: x_t = (alpha_t / alpha_s0) * x + gradient_part + noise_part x_t = x_t.to(x.dtype) return x_t
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
def stochastic_adams_moulton_update( self, this_model_output: torch.Tensor, *args, last_sample: torch.Tensor, last_noise: torch.Tensor, this_sample: torch.Tensor, order: int, tau: torch.Tensor, **kwargs, ) -> torch.Tensor: """ One step for the SA-Corrector. Args: this_model_output (`torch.Tensor`): The model outputs at `x_t`. this_timestep (`int`): The current timestep `t`. last_sample (`torch.Tensor`): The generated sample before the last predictor `x_{t-1}`. this_sample (`torch.Tensor`): The generated sample after the last predictor `x_{t}`. order (`int`): The order of SA-Corrector at this step. Returns: `torch.Tensor`: The corrected sample tensor at the current timestep. """
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
this_timestep = args[0] if len(args) > 0 else kwargs.pop("this_timestep", None) if last_sample is None: if len(args) > 1: last_sample = args[1] else: raise ValueError(" missing`last_sample` as a required keyward argument") if last_noise is None: if len(args) > 2: last_noise = args[2] else: raise ValueError(" missing`last_noise` as a required keyward argument") if this_sample is None: if len(args) > 3: this_sample = args[3] else: raise ValueError(" missing`this_sample` as a required keyward argument") if order is None: if len(args) > 4: order = args[4] else: raise ValueError(" missing`order` as a required keyward argument") if tau is None: if len(args) > 5: tau = args[5] else:
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
raise ValueError(" missing`tau` as a required keyward argument") if this_timestep is not None: deprecate( "this_timestep", "1.0.0", "Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`", )
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
model_output_list = self.model_outputs sigma_t, sigma_s0 = ( self.sigmas[self.step_index], self.sigmas[self.step_index - 1], ) alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) lambda_t = torch.log(alpha_t) - torch.log(sigma_t) lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) gradient_part = torch.zeros_like(this_sample) h = lambda_t - lambda_s0 lambda_list = [] for i in range(order): si = self.step_index - i alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si]) lambda_si = torch.log(alpha_si) - torch.log(sigma_si) lambda_list.append(lambda_si) model_prev_list = model_output_list + [this_model_output] gradient_coefficients = self.get_coefficients_fn(order, lambda_s0, lambda_t, lambda_list, tau) x = last_sample
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
if self.predict_x0: if ( order == 2 ): ## if order = 2 we do a modification that does not influence the convergence order similar to UniPC. Note: This is used only for few steps sampling. # The added term is O(h^3). Empirically we find it will slightly improve the image quality. # ODE case # gradient_coefficients[0] += 1.0 * torch.exp(lambda_t) * (h / 2 - (h - 1 + torch.exp(-h)) / h) # gradient_coefficients[1] -= 1.0 * torch.exp(lambda_t) * (h / 2 - (h - 1 + torch.exp(-h)) / h) gradient_coefficients[0] += ( 1.0 * torch.exp((1 + tau**2) * lambda_t) * (h / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2 * h)) ) gradient_coefficients[1] -= ( 1.0 * torch.exp((1 + tau**2) * lambda_t)
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
* (h / 2 - (h * (1 + tau**2) - 1 + torch.exp((1 + tau**2) * (-h))) / ((1 + tau**2) ** 2 * h)) )
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
for i in range(order): if self.predict_x0: gradient_part += ( (1 + tau**2) * sigma_t * torch.exp(-(tau**2) * lambda_t) * gradient_coefficients[i] * model_prev_list[-(i + 1)] ) else: gradient_part += -(1 + tau**2) * alpha_t * gradient_coefficients[i] * model_prev_list[-(i + 1)] if self.predict_x0: noise_part = sigma_t * torch.sqrt(1 - torch.exp(-2 * tau**2 * h)) * last_noise else: noise_part = tau * sigma_t * torch.sqrt(torch.exp(2 * h) - 1) * last_noise if self.predict_x0: x_t = torch.exp(-(tau**2) * h) * (sigma_t / sigma_s0) * x + gradient_part + noise_part else: x_t = (alpha_t / alpha_s0) * x + gradient_part + noise_part x_t = x_t.to(x.dtype) return x_t
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.index_for_timestep def index_for_timestep(self, timestep, schedule_timesteps=None): if schedule_timesteps is None: schedule_timesteps = self.timesteps index_candidates = (schedule_timesteps == timestep).nonzero() if len(index_candidates) == 0: step_index = len(self.timesteps) - 1 # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) elif len(index_candidates) > 1: step_index = index_candidates[1].item() else: step_index = index_candidates[0].item() return step_index
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index def _init_step_index(self, timestep): """ Initialize the step_index counter for the scheduler. """ if self.begin_index is None: if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) self._step_index = self.index_for_timestep(timestep) else: self._step_index = self._begin_index def step( self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, generator=None, return_dict: bool = True, ) -> Union[SchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with the SA-Solver.
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
Args: model_output (`torch.Tensor`): The direct output from learned diffusion model. timestep (`int`): The current discrete timestep in the diffusion chain. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. generator (`torch.Generator`, *optional*): A random number generator. return_dict (`bool`): Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`. Returns: [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor.
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
""" if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) if self.step_index is None: self._init_step_index(timestep) use_corrector = self.step_index > 0 and self.last_sample is not None model_output_convert = self.convert_model_output(model_output, sample=sample) if use_corrector: current_tau = self.tau_func(self.timestep_list[-1]) sample = self.stochastic_adams_moulton_update( this_model_output=model_output_convert, last_sample=self.last_sample, last_noise=self.last_noise, this_sample=sample, order=self.this_corrector_order, tau=current_tau, )
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
for i in range(max(self.config.predictor_order, self.config.corrector_order - 1) - 1): self.model_outputs[i] = self.model_outputs[i + 1] self.timestep_list[i] = self.timestep_list[i + 1] self.model_outputs[-1] = model_output_convert self.timestep_list[-1] = timestep noise = randn_tensor( model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype, ) if self.config.lower_order_final: this_predictor_order = min(self.config.predictor_order, len(self.timesteps) - self.step_index) this_corrector_order = min(self.config.corrector_order, len(self.timesteps) - self.step_index + 1) else: this_predictor_order = self.config.predictor_order this_corrector_order = self.config.corrector_order
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
self.this_predictor_order = min(this_predictor_order, self.lower_order_nums + 1) # warmup for multistep self.this_corrector_order = min(this_corrector_order, self.lower_order_nums + 2) # warmup for multistep assert self.this_predictor_order > 0 assert self.this_corrector_order > 0 self.last_sample = sample self.last_noise = noise current_tau = self.tau_func(self.timestep_list[-1]) prev_sample = self.stochastic_adams_bashforth_update( model_output=model_output_convert, sample=sample, noise=noise, order=self.this_predictor_order, tau=current_tau, ) if self.lower_order_nums < max(self.config.predictor_order, self.config.corrector_order - 1): self.lower_order_nums += 1 # upon completion increase step index by one self._step_index += 1 if not return_dict: return (prev_sample,)
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
return SchedulerOutput(prev_sample=prev_sample) def scale_model_input(self, sample: torch.Tensor, *args, **kwargs) -> torch.Tensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.Tensor`): The input sample. Returns: `torch.Tensor`: A scaled input sample. """ return sample
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise def add_noise( self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor, ) -> torch.Tensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples # Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement # for the subsequent add_noise calls self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device) alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype) timesteps = timesteps.to(original_samples.device) sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __len__(self): return self.config.num_train_timesteps
1,278
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_sasolver.py
class KarrasVeSchedulerState: # setable values num_inference_steps: Optional[int] = None timesteps: Optional[jnp.ndarray] = None schedule: Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def create(cls): return cls()
1,279
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_karras_ve_flax.py
class FlaxKarrasVeOutput(BaseOutput): """ Output class for the scheduler's step function output. Args: prev_sample (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. derivative (`jnp.ndarray` of shape `(batch_size, num_channels, height, width)` for images): Derivative of predicted original image sample (x_0). state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class. """ prev_sample: jnp.ndarray derivative: jnp.ndarray state: KarrasVeSchedulerState
1,280
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_karras_ve_flax.py
class FlaxKarrasVeScheduler(FlaxSchedulerMixin, ConfigMixin): """ Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and the VE column of Table 1 from [1] for reference. [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." https://arxiv.org/abs/2011.13456 [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions.
1,281
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_karras_ve_flax.py
For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper. Args: sigma_min (`float`): minimum noise magnitude sigma_max (`float`): maximum noise magnitude s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000, 1.011]. s_churn (`float`): the parameter controlling the overall amount of stochasticity. A reasonable range is [0, 100]. s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity). A reasonable range is [0, 10]. s_max (`float`): the end value of the sigma range where we add noise. A reasonable range is [0.2, 80]. """
1,281
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_karras_ve_flax.py
@property def has_state(self): return True @register_to_config def __init__( self, sigma_min: float = 0.02, sigma_max: float = 100, s_noise: float = 1.007, s_churn: float = 80, s_min: float = 0.05, s_max: float = 50, ): pass def create_state(self): return KarrasVeSchedulerState.create() def set_timesteps( self, state: KarrasVeSchedulerState, num_inference_steps: int, shape: Tuple = () ) -> KarrasVeSchedulerState: """ Sets the continuous timesteps used for the diffusion chain. Supporting function to be run before inference. Args: state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class. num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model.
1,281
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_karras_ve_flax.py
""" timesteps = jnp.arange(0, num_inference_steps)[::-1].copy() schedule = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=num_inference_steps, schedule=jnp.array(schedule, dtype=jnp.float32), timesteps=timesteps, ) def add_noise_to_input( self, state: KarrasVeSchedulerState, sample: jnp.ndarray, sigma: float, key: jax.Array, ) -> Tuple[jnp.ndarray, float]: """ Explicit Langevin-like "churn" step of adding noise to the sample according to a factor gamma_i ≥ 0 to reach a higher noise level sigma_hat = sigma_i + gamma_i*sigma_i.
1,281
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_karras_ve_flax.py
TODO Args: """ if self.config.s_min <= sigma <= self.config.s_max: gamma = min(self.config.s_churn / state.num_inference_steps, 2**0.5 - 1) else: gamma = 0 # sample eps ~ N(0, S_noise^2 * I) key = random.split(key, num=1) eps = self.config.s_noise * random.normal(key=key, shape=sample.shape) sigma_hat = sigma + gamma * sigma sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def step( self, state: KarrasVeSchedulerState, model_output: jnp.ndarray, sigma_hat: float, sigma_prev: float, sample_hat: jnp.ndarray, return_dict: bool = True, ) -> Union[FlaxKarrasVeOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise).
1,281
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_karras_ve_flax.py
Args: state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class. model_output (`torch.Tensor` or `np.ndarray`): direct output from learned diffusion model. sigma_hat (`float`): TODO sigma_prev (`float`): TODO sample_hat (`torch.Tensor` or `np.ndarray`): TODO return_dict (`bool`): option for returning tuple rather than FlaxKarrasVeOutput class Returns: [`~schedulers.scheduling_karras_ve_flax.FlaxKarrasVeOutput`] or `tuple`: Updated sample in the diffusion chain and derivative. [`~schedulers.scheduling_karras_ve_flax.FlaxKarrasVeOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ pred_original_sample = sample_hat + sigma_hat * model_output derivative = (sample_hat - pred_original_sample) / sigma_hat sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative
1,281
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_karras_ve_flax.py
if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=sample_prev, derivative=derivative, state=state) def step_correct( self, state: KarrasVeSchedulerState, model_output: jnp.ndarray, sigma_hat: float, sigma_prev: float, sample_hat: jnp.ndarray, sample_prev: jnp.ndarray, derivative: jnp.ndarray, return_dict: bool = True, ) -> Union[FlaxKarrasVeOutput, Tuple]: """ Correct the predicted sample based on the output model_output of the network. TODO complete description
1,281
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_karras_ve_flax.py
Args: state (`KarrasVeSchedulerState`): the `FlaxKarrasVeScheduler` state data class. model_output (`torch.Tensor` or `np.ndarray`): direct output from learned diffusion model. sigma_hat (`float`): TODO sigma_prev (`float`): TODO sample_hat (`torch.Tensor` or `np.ndarray`): TODO sample_prev (`torch.Tensor` or `np.ndarray`): TODO derivative (`torch.Tensor` or `np.ndarray`): TODO return_dict (`bool`): option for returning tuple rather than FlaxKarrasVeOutput class Returns: prev_sample (TODO): updated sample in the diffusion chain. derivative (TODO): TODO """ pred_original_sample = sample_prev + sigma_prev * model_output derivative_corr = (sample_prev - pred_original_sample) / sigma_prev sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
1,281
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_karras_ve_flax.py
if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=sample_prev, derivative=derivative, state=state) def add_noise(self, state: KarrasVeSchedulerState, original_samples, noise, timesteps): raise NotImplementedError()
1,281
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_karras_ve_flax.py
class FlowMatchEulerDiscreteSchedulerOutput(BaseOutput): """ Output class for the scheduler's `step` function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the denoising loop. """ prev_sample: torch.FloatTensor
1,282
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
class FlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin): """ Euler scheduler. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving.
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
Args: num_train_timesteps (`int`, defaults to 1000): The number of diffusion steps to train the model. shift (`float`, defaults to 1.0): The shift value for the timestep schedule. use_dynamic_shifting (`bool`, defaults to False): Whether to apply timestep shifting on-the-fly based on the image resolution. base_shift (`float`, defaults to 0.5): Value to stabilize image generation. Increasing `base_shift` reduces variation and image is more consistent with desired output. max_shift (`float`, defaults to 1.15): Value change allowed to latent vectors. Increasing `max_shift` encourages more variation and image may be more exaggerated or stylized. base_image_seq_len (`int`, defaults to 256): The base image sequence length. max_image_seq_len (`int`, defaults to 4096): The maximum image sequence length.
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
invert_sigmas (`bool`, defaults to False): Whether to invert the sigmas. shift_terminal (`float`, defaults to None): The end value of the shifted timestep schedule. use_karras_sigmas (`bool`, defaults to False): Whether to use Karras sigmas for step sizes in the noise schedule during sampling. use_exponential_sigmas (`bool`, defaults to False): Whether to use exponential sigmas for step sizes in the noise schedule during sampling. use_beta_sigmas (`bool`, defaults to False): Whether to use beta sigmas for step sizes in the noise schedule during sampling. """
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
_compatibles = [] order = 1
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
@register_to_config def __init__( self, num_train_timesteps: int = 1000, shift: float = 1.0, use_dynamic_shifting=False, base_shift: Optional[float] = 0.5, max_shift: Optional[float] = 1.15, base_image_seq_len: Optional[int] = 256, max_image_seq_len: Optional[int] = 4096, invert_sigmas: bool = False, shift_terminal: Optional[float] = None, use_karras_sigmas: Optional[bool] = False, use_exponential_sigmas: Optional[bool] = False, use_beta_sigmas: Optional[bool] = False, ): if self.config.use_beta_sigmas and not is_scipy_available(): raise ImportError("Make sure to install scipy if you want to use beta sigmas.") if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1: raise ValueError(
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used." ) timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy() timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
sigmas = timesteps / num_train_timesteps if not use_dynamic_shifting: # when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution sigmas = shift * sigmas / (1 + (shift - 1) * sigmas) self.timesteps = sigmas * num_train_timesteps self._step_index = None self._begin_index = None self._shift = shift self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication self.sigma_min = self.sigmas[-1].item() self.sigma_max = self.sigmas[0].item() @property def shift(self): """ The value used for shifting. """ return self._shift @property def step_index(self): """ The index counter for current timestep. It will increase 1 after each scheduler step. """ return self._step_index
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
@property def begin_index(self): """ The index for the first timestep. It should be set from pipeline with `set_begin_index` method. """ return self._begin_index # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index def set_begin_index(self, begin_index: int = 0): """ Sets the begin index for the scheduler. This function should be run from pipeline before the inference. Args: begin_index (`int`): The begin index for the scheduler. """ self._begin_index = begin_index def set_shift(self, shift: float): self._shift = shift def scale_noise( self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], noise: Optional[torch.FloatTensor] = None, ) -> torch.FloatTensor: """ Forward process in flow-matching
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
Args: sample (`torch.FloatTensor`): The input sample. timestep (`int`, *optional*): The current timestep in the diffusion chain. Returns: `torch.FloatTensor`: A scaled input sample. """ # Make sure sigmas and timesteps have the same device and dtype as original_samples sigmas = self.sigmas.to(device=sample.device, dtype=sample.dtype) if sample.device.type == "mps" and torch.is_floating_point(timestep): # mps does not support float64 schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32) timestep = timestep.to(sample.device, dtype=torch.float32) else: schedule_timesteps = self.timesteps.to(sample.device) timestep = timestep.to(sample.device)
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index if self.begin_index is None: step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timestep] elif self.step_index is not None: # add_noise is called after first denoising step (for inpainting) step_indices = [self.step_index] * timestep.shape[0] else: # add noise is called before first denoising step to create initial latent(img2img) step_indices = [self.begin_index] * timestep.shape[0] sigma = sigmas[step_indices].flatten() while len(sigma.shape) < len(sample.shape): sigma = sigma.unsqueeze(-1) sample = sigma * noise + (1.0 - sigma) * sample return sample def _sigma_to_t(self, sigma): return sigma * self.config.num_train_timesteps
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
def time_shift(self, mu: float, sigma: float, t: torch.Tensor): return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) def stretch_shift_to_terminal(self, t: torch.Tensor) -> torch.Tensor: r""" Stretches and shifts the timestep schedule to ensure it terminates at the configured `shift_terminal` config value. Reference: https://github.com/Lightricks/LTX-Video/blob/a01a171f8fe3d99dce2728d60a73fecf4d4238ae/ltx_video/schedulers/rf.py#L51 Args: t (`torch.Tensor`): A tensor of timesteps to be stretched and shifted. Returns: `torch.Tensor`: A tensor of adjusted timesteps such that the final value equals `self.config.shift_terminal`. """ one_minus_z = 1 - t scale_factor = one_minus_z[-1] / (1 - self.config.shift_terminal) stretched_t = 1 - (one_minus_z / scale_factor) return stretched_t
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
def set_timesteps( self, num_inference_steps: int = None, device: Union[str, torch.device] = None, sigmas: Optional[List[float]] = None, mu: Optional[float] = None, ): """ Sets the discrete timesteps used for the diffusion chain (to be run before inference). Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. """ if self.config.use_dynamic_shifting and mu is None: raise ValueError(" you have a pass a value for `mu` when `use_dynamic_shifting` is set to be `True`") if sigmas is None: timesteps = np.linspace( self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps )
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
sigmas = timesteps / self.config.num_train_timesteps else: sigmas = np.array(sigmas).astype(np.float32) num_inference_steps = len(sigmas) self.num_inference_steps = num_inference_steps if self.config.use_dynamic_shifting: sigmas = self.time_shift(mu, 1.0, sigmas) else: sigmas = self.shift * sigmas / (1 + (self.shift - 1) * sigmas) if self.config.shift_terminal: sigmas = self.stretch_shift_to_terminal(sigmas) if self.config.use_karras_sigmas: sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps) elif self.config.use_exponential_sigmas: sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps) elif self.config.use_beta_sigmas: sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) timesteps = sigmas * self.config.num_train_timesteps if self.config.invert_sigmas: sigmas = 1.0 - sigmas timesteps = sigmas * self.config.num_train_timesteps sigmas = torch.cat([sigmas, torch.ones(1, device=sigmas.device)]) else: sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) self.timesteps = timesteps.to(device=device) self.sigmas = sigmas self._step_index = None self._begin_index = None def index_for_timestep(self, timestep, schedule_timesteps=None): if schedule_timesteps is None: schedule_timesteps = self.timesteps indices = (schedule_timesteps == timestep).nonzero()
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
# The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) pos = 1 if len(indices) > 1 else 0 return indices[pos].item() def _init_step_index(self, timestep): if self.begin_index is None: if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) self._step_index = self.index_for_timestep(timestep) else: self._step_index = self._begin_index
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
def step( self, model_output: torch.FloatTensor, timestep: Union[float, torch.FloatTensor], sample: torch.FloatTensor, s_churn: float = 0.0, s_tmin: float = 0.0, s_tmax: float = float("inf"), s_noise: float = 1.0, generator: Optional[torch.Generator] = None, return_dict: bool = True, ) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise).
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
Args: model_output (`torch.FloatTensor`): The direct output from learned diffusion model. timestep (`float`): The current discrete timestep in the diffusion chain. sample (`torch.FloatTensor`): A current instance of a sample created by the diffusion process. s_churn (`float`): s_tmin (`float`): s_tmax (`float`): s_noise (`float`, defaults to 1.0): Scaling factor for noise added to the sample. generator (`torch.Generator`, *optional*): A random number generator. return_dict (`bool`): Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or tuple.
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
Returns: [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ if ( isinstance(timestep, int) or isinstance(timestep, torch.IntTensor) or isinstance(timestep, torch.LongTensor) ): raise ValueError( ( "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" " one of the `scheduler.timesteps` as a timestep." ), ) if self.step_index is None: self._init_step_index(timestep)
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
# Upcast to avoid precision issues when computing prev_sample sample = sample.to(torch.float32) sigma = self.sigmas[self.step_index] sigma_next = self.sigmas[self.step_index + 1] prev_sample = sample + (sigma_next - sigma) * model_output # Cast sample back to model compatible dtype prev_sample = prev_sample.to(model_output.dtype) # upon completion increase step index by one self._step_index += 1 if not return_dict: return (prev_sample,) return FlowMatchEulerDiscreteSchedulerOutput(prev_sample=prev_sample) # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor: """Constructs the noise schedule of Karras et al. (2022)."""
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
# Hack to make sure that other schedulers which copy this function don't break # TODO: Add this logic to the other schedulers if hasattr(self.config, "sigma_min"): sigma_min = self.config.sigma_min else: sigma_min = None if hasattr(self.config, "sigma_max"): sigma_max = self.config.sigma_max else: sigma_max = None sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() rho = 7.0 # 7.0 is the value used in the paper ramp = np.linspace(0, 1, num_inference_steps) min_inv_rho = sigma_min ** (1 / rho) max_inv_rho = sigma_max ** (1 / rho) sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor: """Constructs an exponential noise schedule.""" # Hack to make sure that other schedulers which copy this function don't break # TODO: Add this logic to the other schedulers if hasattr(self.config, "sigma_min"): sigma_min = self.config.sigma_min else: sigma_min = None if hasattr(self.config, "sigma_max"): sigma_max = self.config.sigma_max else: sigma_max = None sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps)) return sigmas
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta def _convert_to_beta( self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6 ) -> torch.Tensor: """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)""" # Hack to make sure that other schedulers which copy this function don't break # TODO: Add this logic to the other schedulers if hasattr(self.config, "sigma_min"): sigma_min = self.config.sigma_min else: sigma_min = None if hasattr(self.config, "sigma_max"): sigma_max = self.config.sigma_max else: sigma_max = None sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
sigmas = np.array( [ sigma_min + (ppf * (sigma_max - sigma_min)) for ppf in [ scipy.stats.beta.ppf(timestep, alpha, beta) for timestep in 1 - np.linspace(0, 1, num_inference_steps) ] ] ) return sigmas def __len__(self): return self.config.num_train_timesteps
1,283
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
class EulerDiscreteSchedulerOutput(BaseOutput): """ Output class for the scheduler's `step` function output. Args: prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample `(x_{0})` based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. """ prev_sample: torch.Tensor pred_original_sample: Optional[torch.Tensor] = None
1,284
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin): """ Euler scheduler. This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving.
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
Args: num_train_timesteps (`int`, defaults to 1000): The number of diffusion steps to train the model. beta_start (`float`, defaults to 0.0001): The starting `beta` value of inference. beta_end (`float`, defaults to 0.02): The final `beta` value. beta_schedule (`str`, defaults to `"linear"`): The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear` or `scaled_linear`. trained_betas (`np.ndarray`, *optional*): Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. prediction_type (`str`, defaults to `epsilon`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
Video](https://imagen.research.google/video/paper.pdf) paper). interpolation_type(`str`, defaults to `"linear"`, *optional*): The interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be on of `"linear"` or `"log_linear"`. use_karras_sigmas (`bool`, *optional*, defaults to `False`): Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`, the sigmas are determined according to a sequence of noise levels {σi}. use_exponential_sigmas (`bool`, *optional*, defaults to `False`): Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process. use_beta_sigmas (`bool`, *optional*, defaults to `False`): Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information. timestep_spacing (`str`, defaults to `"linspace"`): The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. steps_offset (`int`, defaults to 0): An offset added to the inference steps, as required by some model families. rescale_betas_zero_snr (`bool`, defaults to `False`): Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and dark samples instead of limiting it to samples with medium brightness. Loosely related to [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506). final_sigmas_type (`str`, defaults to `"zero"`):
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0. """
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
_compatibles = [e.name for e in KarrasDiffusionSchedulers] order = 1
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
@register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[Union[np.ndarray, List[float]]] = None, prediction_type: str = "epsilon", interpolation_type: str = "linear", use_karras_sigmas: Optional[bool] = False, use_exponential_sigmas: Optional[bool] = False, use_beta_sigmas: Optional[bool] = False, sigma_min: Optional[float] = None, sigma_max: Optional[float] = None, timestep_spacing: str = "linspace", timestep_type: str = "discrete", # can be "discrete" or "continuous" steps_offset: int = 0, rescale_betas_zero_snr: bool = False, final_sigmas_type: str = "zero", # can be "zero" or "sigma_min" ): if self.config.use_beta_sigmas and not is_scipy_available():
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
raise ImportError("Make sure to install scipy if you want to use beta sigmas.") if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1: raise ValueError( "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used." ) if trained_betas is not None: self.betas = torch.tensor(trained_betas, dtype=torch.float32) elif beta_schedule == "linear": self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
if rescale_betas_zero_snr: self.betas = rescale_zero_terminal_snr(self.betas) self.alphas = 1.0 - self.betas self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) if rescale_betas_zero_snr: # Close to 0 without being 0 so first sigma is not inf # FP16 smallest positive subnormal works well here self.alphas_cumprod[-1] = 2**-24 sigmas = (((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5).flip(0) timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy() timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32) # setable values self.num_inference_steps = None
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
# TODO: Support the full EDM scalings for all prediction types and timestep types if timestep_type == "continuous" and prediction_type == "v_prediction": self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas]) else: self.timesteps = timesteps self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) self.is_scale_input_called = False self.use_karras_sigmas = use_karras_sigmas self.use_exponential_sigmas = use_exponential_sigmas self.use_beta_sigmas = use_beta_sigmas self._step_index = None self._begin_index = None self.sigmas = self.sigmas.to("cpu") # to avoid too much CPU/GPU communication
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
@property def init_noise_sigma(self): # standard deviation of the initial noise distribution max_sigma = max(self.sigmas) if isinstance(self.sigmas, list) else self.sigmas.max() if self.config.timestep_spacing in ["linspace", "trailing"]: return max_sigma return (max_sigma**2 + 1) ** 0.5 @property def step_index(self): """ The index counter for current timestep. It will increase 1 after each scheduler step. """ return self._step_index @property def begin_index(self): """ The index for the first timestep. It should be set from pipeline with `set_begin_index` method. """ return self._begin_index
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index def set_begin_index(self, begin_index: int = 0): """ Sets the begin index for the scheduler. This function should be run from pipeline before the inference. Args: begin_index (`int`): The begin index for the scheduler. """ self._begin_index = begin_index def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. Args: sample (`torch.Tensor`): The input sample. timestep (`int`, *optional*): The current timestep in the diffusion chain.
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
Returns: `torch.Tensor`: A scaled input sample. """ if self.step_index is None: self._init_step_index(timestep) sigma = self.sigmas[self.step_index] sample = sample / ((sigma**2 + 1) ** 0.5) self.is_scale_input_called = True return sample def set_timesteps( self, num_inference_steps: int = None, device: Union[str, torch.device] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, ): """ Sets the discrete timesteps used for the diffusion chain (to be run before inference).
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
Args: num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to support arbitrary timesteps schedule. If `None`, timesteps will be generated based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps` and `sigmas` must be `None`, and `timestep_spacing` attribute will be ignored. sigmas (`List[float]`, *optional*): Custom sigmas used to support arbitrary timesteps schedule schedule. If `None`, timesteps and sigmas will be generated based on the relevant scheduler attributes. If `sigmas` is passed,
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
`num_inference_steps` and `timesteps` must be `None`, and the timesteps will be generated based on the custom sigmas schedule. """
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
if timesteps is not None and sigmas is not None: raise ValueError("Only one of `timesteps` or `sigmas` should be set.") if num_inference_steps is None and timesteps is None and sigmas is None: raise ValueError("Must pass exactly one of `num_inference_steps` or `timesteps` or `sigmas.") if num_inference_steps is not None and (timesteps is not None or sigmas is not None): raise ValueError("Can only pass one of `num_inference_steps` or `timesteps` or `sigmas`.") if timesteps is not None and self.config.use_karras_sigmas: raise ValueError("Cannot set `timesteps` with `config.use_karras_sigmas = True`.") if timesteps is not None and self.config.use_exponential_sigmas: raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.") if timesteps is not None and self.config.use_beta_sigmas: raise ValueError("Cannot set `timesteps` with `config.use_beta_sigmas = True`.")
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
if ( timesteps is not None and self.config.timestep_type == "continuous" and self.config.prediction_type == "v_prediction" ): raise ValueError( "Cannot set `timesteps` with `config.timestep_type = 'continuous'` and `config.prediction_type = 'v_prediction'`." )
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
if num_inference_steps is None: num_inference_steps = len(timesteps) if timesteps is not None else len(sigmas) - 1 self.num_inference_steps = num_inference_steps if sigmas is not None: log_sigmas = np.log(np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)) sigmas = np.array(sigmas).astype(np.float32) timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas[:-1]])
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
else: if timesteps is not None: timesteps = np.array(timesteps).astype(np.float32) else: # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": timesteps = np.linspace( 0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32 )[::-1].copy() elif self.config.timestep_spacing == "leading": step_ratio = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = ( (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32) )
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": step_ratio = self.config.num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 timesteps = ( (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32) ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." )
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) log_sigmas = np.log(sigmas) if self.config.interpolation_type == "linear": sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) elif self.config.interpolation_type == "log_linear": sigmas = torch.linspace(np.log(sigmas[-1]), np.log(sigmas[0]), num_inference_steps + 1).exp().numpy() else: raise ValueError( f"{self.config.interpolation_type} is not implemented. Please specify interpolation_type to either" " 'linear' or 'log_linear'" ) if self.config.use_karras_sigmas: sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps) timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
elif self.config.use_exponential_sigmas: sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps) timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) elif self.config.use_beta_sigmas: sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps) timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) if self.config.final_sigmas_type == "sigma_min": sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5 elif self.config.final_sigmas_type == "zero": sigma_last = 0 else: raise ValueError( f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}" )
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32) sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) # TODO: Support the full EDM scalings for all prediction types and timestep types if self.config.timestep_type == "continuous" and self.config.prediction_type == "v_prediction": self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas[:-1]]).to(device=device) else: self.timesteps = torch.from_numpy(timesteps.astype(np.float32)).to(device=device) self._step_index = None self._begin_index = None self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication def _sigma_to_t(self, sigma, log_sigmas): # get log sigma log_sigma = np.log(np.maximum(sigma, 1e-10)) # get distribution dists = log_sigma - log_sigmas[:, np.newaxis]
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
# get sigmas range low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) high_idx = low_idx + 1 low = log_sigmas[low_idx] high = log_sigmas[high_idx] # interpolate sigmas w = (low - log_sigma) / (low - high) w = np.clip(w, 0, 1) # transform interpolation to time range t = (1 - w) * low_idx + w * high_idx t = t.reshape(sigma.shape) return t # Copied from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17 def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor: """Constructs the noise schedule of Karras et al. (2022)."""
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
# Hack to make sure that other schedulers which copy this function don't break # TODO: Add this logic to the other schedulers if hasattr(self.config, "sigma_min"): sigma_min = self.config.sigma_min else: sigma_min = None if hasattr(self.config, "sigma_max"): sigma_max = self.config.sigma_max else: sigma_max = None sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() rho = 7.0 # 7.0 is the value used in the paper ramp = np.linspace(0, 1, num_inference_steps) min_inv_rho = sigma_min ** (1 / rho) max_inv_rho = sigma_max ** (1 / rho) sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
# Copied from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L26 def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor: """Constructs an exponential noise schedule.""" # Hack to make sure that other schedulers which copy this function don't break # TODO: Add this logic to the other schedulers if hasattr(self.config, "sigma_min"): sigma_min = self.config.sigma_min else: sigma_min = None if hasattr(self.config, "sigma_max"): sigma_max = self.config.sigma_max else: sigma_max = None sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps)) return sigmas
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
def _convert_to_beta( self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6 ) -> torch.Tensor: """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)""" # Hack to make sure that other schedulers which copy this function don't break # TODO: Add this logic to the other schedulers if hasattr(self.config, "sigma_min"): sigma_min = self.config.sigma_min else: sigma_min = None if hasattr(self.config, "sigma_max"): sigma_max = self.config.sigma_max else: sigma_max = None sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
sigmas = np.array( [ sigma_min + (ppf * (sigma_max - sigma_min)) for ppf in [ scipy.stats.beta.ppf(timestep, alpha, beta) for timestep in 1 - np.linspace(0, 1, num_inference_steps) ] ] ) return sigmas def index_for_timestep(self, timestep, schedule_timesteps=None): if schedule_timesteps is None: schedule_timesteps = self.timesteps indices = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) pos = 1 if len(indices) > 1 else 0 return indices[pos].item()
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
def _init_step_index(self, timestep): if self.begin_index is None: if isinstance(timestep, torch.Tensor): timestep = timestep.to(self.timesteps.device) self._step_index = self.index_for_timestep(timestep) else: self._step_index = self._begin_index def step( self, model_output: torch.Tensor, timestep: Union[float, torch.Tensor], sample: torch.Tensor, s_churn: float = 0.0, s_tmin: float = 0.0, s_tmax: float = float("inf"), s_noise: float = 1.0, generator: Optional[torch.Generator] = None, return_dict: bool = True, ) -> Union[EulerDiscreteSchedulerOutput, Tuple]: """ Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion process from the learned model outputs (most often the predicted noise).
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
Args: model_output (`torch.Tensor`): The direct output from learned diffusion model. timestep (`float`): The current discrete timestep in the diffusion chain. sample (`torch.Tensor`): A current instance of a sample created by the diffusion process. s_churn (`float`): s_tmin (`float`): s_tmax (`float`): s_noise (`float`, defaults to 1.0): Scaling factor for noise added to the sample. generator (`torch.Generator`, *optional*): A random number generator. return_dict (`bool`): Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or tuple.
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
Returns: [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`: If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is returned, otherwise a tuple is returned where the first element is the sample tensor. """ if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)): raise ValueError( ( "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" " one of the `scheduler.timesteps` as a timestep." ), )
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
if not self.is_scale_input_called: logger.warning( "The `scale_model_input` function should be called before `step` to ensure correct denoising. " "See `StableDiffusionPipeline` for a usage example." ) if self.step_index is None: self._init_step_index(timestep) # Upcast to avoid precision issues when computing prev_sample sample = sample.to(torch.float32) sigma = self.sigmas[self.step_index] gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 sigma_hat = sigma * (gamma + 1) if gamma > 0: noise = randn_tensor( model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator ) eps = noise * s_noise sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise # NOTE: "original_sample" should not be an expected prediction_type but is left in for # backwards compatibility if self.config.prediction_type == "original_sample" or self.config.prediction_type == "sample": pred_original_sample = model_output elif self.config.prediction_type == "epsilon": pred_original_sample = sample - sigma_hat * model_output elif self.config.prediction_type == "v_prediction": # denoised = model_output * c_out + input * c_skip pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1)) else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) # 2. Convert to an ODE derivative derivative = (sample - pred_original_sample) / sigma_hat
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
dt = self.sigmas[self.step_index + 1] - sigma_hat prev_sample = sample + derivative * dt # Cast sample back to model compatible dtype prev_sample = prev_sample.to(model_output.dtype) # upon completion increase step index by one self._step_index += 1 if not return_dict: return ( prev_sample, pred_original_sample, ) return EulerDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
def add_noise( self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor, ) -> torch.Tensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): # mps does not support float64 schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) timesteps = timesteps.to(original_samples.device, dtype=torch.float32) else: schedule_timesteps = self.timesteps.to(original_samples.device) timesteps = timesteps.to(original_samples.device)
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index if self.begin_index is None: step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] elif self.step_index is not None: # add_noise is called after first denoising step (for inpainting) step_indices = [self.step_index] * timesteps.shape[0] else: # add noise is called before first denoising step to create initial latent(img2img) step_indices = [self.begin_index] * timesteps.shape[0] sigma = sigmas[step_indices].flatten() while len(sigma.shape) < len(original_samples.shape): sigma = sigma.unsqueeze(-1) noisy_samples = original_samples + noise * sigma return noisy_samples
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor: if ( isinstance(timesteps, int) or isinstance(timesteps, torch.IntTensor) or isinstance(timesteps, torch.LongTensor) ): raise ValueError( ( "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" " `EulerDiscreteScheduler.get_velocity()` is not supported. Make sure to pass" " one of the `scheduler.timesteps` as a timestep." ), )
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
if sample.device.type == "mps" and torch.is_floating_point(timesteps): # mps does not support float64 schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32) timesteps = timesteps.to(sample.device, dtype=torch.float32) else: schedule_timesteps = self.timesteps.to(sample.device) timesteps = timesteps.to(sample.device) step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] alphas_cumprod = self.alphas_cumprod.to(sample) sqrt_alpha_prod = alphas_cumprod[step_indices] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(sample.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[step_indices]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity def __len__(self): return self.config.num_train_timesteps
1,285
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_euler_discrete.py
class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin): """ Implements a variant of `DPMSolverMultistepScheduler` with cosine schedule, proposed by Nichol and Dhariwal (2021). This scheduler was used in Stable Audio Open [1]. [1] Evans, Parker, et al. "Stable Audio Open" https://arxiv.org/abs/2407.14358 This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic methods the library implements for all schedulers such as loading and saving.
1,286
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py
Args: sigma_min (`float`, *optional*, defaults to 0.3): Minimum noise magnitude in the sigma schedule. This was set to 0.3 in Stable Audio Open [1]. sigma_max (`float`, *optional*, defaults to 500): Maximum noise magnitude in the sigma schedule. This was set to 500 in Stable Audio Open [1]. sigma_data (`float`, *optional*, defaults to 1.0): The standard deviation of the data distribution. This is set to 1.0 in Stable Audio Open [1]. sigma_schedule (`str`, *optional*, defaults to `exponential`): Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper (https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was incorporated in this model: https://huggingface.co/stabilityai/cosxl. num_train_timesteps (`int`, defaults to 1000): The number of diffusion steps to train the model.
1,286
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py
solver_order (`int`, defaults to 2): The DPMSolver order which can be `1` or `2`. It is recommended to use `solver_order=2`. prediction_type (`str`, defaults to `v_prediction`, *optional*): Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen Video](https://imagen.research.google/video/paper.pdf) paper). solver_type (`str`, defaults to `midpoint`): Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers. lower_order_final (`bool`, defaults to `True`): Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
1,286
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/schedulers/scheduling_cosine_dpmsolver_multistep.py