text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_embeds is not None and pooled_prompt_embeds is None: raise ValueError( "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." )
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: raise ValueError( "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." ) if max_sequence_length is not None and max_sequence_length > 512: raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_latents def prepare_latents( self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, ): if latents is not None: return latents.to(device=device, dtype=dtype)
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) return latents
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
def prepare_image( self, image, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False, ): if isinstance(image, torch.Tensor): pass else: image = self.image_processor.preprocess(image, height=height, width=width) image_batch_size = image.shape[0] if image_batch_size == 1: repeat_by = batch_size else: # image batch size is the same as prompt batch size repeat_by = num_images_per_prompt image = image.repeat_interleave(repeat_by, dim=0) image = image.to(device=device, dtype=dtype) if do_classifier_free_guidance and not guess_mode: image = torch.cat([image] * 2) return image @property def guidance_scale(self): return self._guidance_scale
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
@property def clip_skip(self): return self._clip_skip # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def joint_attention_kwargs(self): return self._joint_attention_kwargs @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_image def encode_image(self, image: PipelineImageInput, device: torch.device) -> torch.Tensor: """Encodes the given image into a feature representation using a pre-trained image encoder.
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
Args: image (`PipelineImageInput`): Input image to be encoded. device: (`torch.device`): Torch device. Returns: `torch.Tensor`: The encoded image feature representation. """ if not isinstance(image, torch.Tensor): image = self.feature_extractor(image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=self.dtype) return self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_ip_adapter_image_embeds def prepare_ip_adapter_image_embeds( self, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[torch.Tensor] = None, device: Optional[torch.device] = None, num_images_per_prompt: int = 1, do_classifier_free_guidance: bool = True, ) -> torch.Tensor: """Prepares image embeddings for use in the IP-Adapter. Either `ip_adapter_image` or `ip_adapter_image_embeds` must be passed.
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
Args: ip_adapter_image (`PipelineImageInput`, *optional*): The input image to extract features from for IP-Adapter. ip_adapter_image_embeds (`torch.Tensor`, *optional*): Precomputed image embeddings. device: (`torch.device`, *optional*): Torch device. num_images_per_prompt (`int`, defaults to 1): Number of images that should be generated per prompt. do_classifier_free_guidance (`bool`, defaults to True): Whether to use classifier free guidance or not. """ device = device or self._execution_device
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
if ip_adapter_image_embeds is not None: if do_classifier_free_guidance: single_negative_image_embeds, single_image_embeds = ip_adapter_image_embeds.chunk(2) else: single_image_embeds = ip_adapter_image_embeds elif ip_adapter_image is not None: single_image_embeds = self.encode_image(ip_adapter_image, device) if do_classifier_free_guidance: single_negative_image_embeds = torch.zeros_like(single_image_embeds) else: raise ValueError("Neither `ip_adapter_image_embeds` or `ip_adapter_image_embeds` were provided.") image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) if do_classifier_free_guidance: negative_image_embeds = torch.cat([single_negative_image_embeds] * num_images_per_prompt, dim=0) image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0) return image_embeds.to(device=device)
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.enable_sequential_cpu_offload def enable_sequential_cpu_offload(self, *args, **kwargs): if self.image_encoder is not None and "image_encoder" not in self._exclude_from_cpu_offload: logger.warning( "`pipe.enable_sequential_cpu_offload()` might fail for `image_encoder` if it uses " "`torch.nn.MultiheadAttention`. You can exclude `image_encoder` from CPU offloading by calling " "`pipe._exclude_from_cpu_offload.append('image_encoder')` before `pipe.enable_sequential_cpu_offload()`." ) super().enable_sequential_cpu_offload(*args, **kwargs)
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, prompt_3: Optional[Union[str, List[str]]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 28, sigmas: Optional[List[float]] = None, guidance_scale: float = 7.0, control_guidance_start: Union[float, List[float]] = 0.0, control_guidance_end: Union[float, List[float]] = 1.0, control_image: PipelineImageInput = None, controlnet_conditioning_scale: Union[float, List[float]] = 1.0, controlnet_pooled_projections: Optional[torch.FloatTensor] = None, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, negative_prompt_3: Optional[Union[str, List[str]]] = None,
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, joint_attention_kwargs: Optional[Dict[str, Any]] = None, clip_skip: Optional[int] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 256, ): r"""
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
Function invoked when calling the pipeline for generation.
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is will be used instead prompt_3 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is will be used instead height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. This is set to 1024 by default for the best results. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
The width in pixels of the generated image. This is set to 1024 by default for the best results. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. guidance_scale (`float`, *optional*, defaults to 5.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): The percentage of total steps at which the ControlNet starts applying. control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): The percentage of total steps at which the ControlNet stops applying. control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`, images must be passed as a list such that each element of the list can be correctly batched for input to a single ControlNet. controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set the corresponding scale as a list. controlnet_pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`):
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
Embeddings projected from the embeddings of controlnet input conditions. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used instead negative_prompt_3 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `negative_prompt` is used instead num_images_per_prompt (`int`, *optional*, defaults to 1):
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. ip_adapter_image (`PipelineImageInput`, *optional*):
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
Optional image input to work with IP Adapters. ip_adapter_image_embeds (`torch.Tensor`, *optional*): Pre-generated image embeddings for IP-Adapter. Should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not provided, embeddings are computed from the `ip_adapter_image` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead of a plain tuple. joint_attention_kwargs (`dict`, *optional*):
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). callback_on_step_end (`Callable`, *optional*): A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
Examples: Returns: [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor controlnet_config = ( self.controlnet.config if isinstance(self.controlnet, SD3ControlNetModel) else self.controlnet.nets[0].config )
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
# align format for control guidance if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): control_guidance_start = len(control_guidance_end) * [control_guidance_start] elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): control_guidance_end = len(control_guidance_start) * [control_guidance_end] elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): mult = len(self.controlnet.nets) if isinstance(self.controlnet, SD3MultiControlNetModel) else 1 control_guidance_start, control_guidance_end = ( mult * [control_guidance_start], mult * [control_guidance_end], )
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
# 1. Check inputs. Raise error if not correct self.check_inputs( prompt, prompt_2, prompt_3, height, width, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length, ) self._guidance_scale = guidance_scale self._clip_skip = clip_skip self._joint_attention_kwargs = joint_attention_kwargs self._interrupt = False
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
# 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device dtype = self.transformer.dtype
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
( prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds, ) = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, prompt_3=prompt_3, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, do_classifier_free_guidance=self.do_classifier_free_guidance, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, device=device, clip_skip=self.clip_skip, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, )
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
# 3. Prepare control image if controlnet_config.force_zeros_for_pooled_projection: # instantx sd3 controlnet does not apply shift factor vae_shift_factor = 0 else: vae_shift_factor = self.vae.config.shift_factor if isinstance(self.controlnet, SD3ControlNetModel): control_image = self.prepare_image( image=control_image, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=False, ) height, width = control_image.shape[-2:]
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
control_image = self.vae.encode(control_image).latent_dist.sample() control_image = (control_image - vae_shift_factor) * self.vae.config.scaling_factor elif isinstance(self.controlnet, SD3MultiControlNetModel): control_images = [] for control_image_ in control_image: control_image_ = self.prepare_image( image=control_image_, width=width, height=height, batch_size=batch_size * num_images_per_prompt, num_images_per_prompt=num_images_per_prompt, device=device, dtype=dtype, do_classifier_free_guidance=self.do_classifier_free_guidance, guess_mode=False, ) control_image_ = self.vae.encode(control_image_).latent_dist.sample() control_image_ = (control_image_ - vae_shift_factor) * self.vae.config.scaling_factor
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
control_images.append(control_image_) control_image = control_images else: assert False # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, sigmas=sigmas) num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) self._num_timesteps = len(timesteps) # 5. Prepare latent variables num_channels_latents = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, )
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
# 6. Create tensor stating which controlnets to keep controlnet_keep = [] for i in range(len(timesteps)): keeps = [ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) for s, e in zip(control_guidance_start, control_guidance_end) ] controlnet_keep.append(keeps[0] if isinstance(self.controlnet, SD3ControlNetModel) else keeps) if controlnet_config.force_zeros_for_pooled_projection: # instantx sd3 controlnet used zero pooled projection controlnet_pooled_projections = torch.zeros_like(pooled_prompt_embeds) else: controlnet_pooled_projections = controlnet_pooled_projections or pooled_prompt_embeds
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
if controlnet_config.joint_attention_dim is not None: controlnet_encoder_hidden_states = prompt_embeds else: # SD35 official 8b controlnet does not use encoder_hidden_states controlnet_encoder_hidden_states = None # 7. Prepare image embeddings if (ip_adapter_image is not None and self.is_ip_adapter_active) or ip_adapter_image_embeds is not None: ip_adapter_image_embeds = self.prepare_ip_adapter_image_embeds( ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_images_per_prompt, self.do_classifier_free_guidance, ) if self.joint_attention_kwargs is None: self._joint_attention_kwargs = {"ip_adapter_image_embeds": ip_adapter_image_embeds} else: self._joint_attention_kwargs.update(ip_adapter_image_embeds=ip_adapter_image_embeds)
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
# 8. Denoising loop with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latent_model_input.shape[0])
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
if isinstance(controlnet_keep[i], list): cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] else: controlnet_cond_scale = controlnet_conditioning_scale if isinstance(controlnet_cond_scale, list): controlnet_cond_scale = controlnet_cond_scale[0] cond_scale = controlnet_cond_scale * controlnet_keep[i]
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
# controlnet(s) inference control_block_samples = self.controlnet( hidden_states=latent_model_input, timestep=timestep, encoder_hidden_states=controlnet_encoder_hidden_states, pooled_projections=controlnet_pooled_projections, joint_attention_kwargs=self.joint_attention_kwargs, controlnet_cond=control_image, conditioning_scale=cond_scale, return_dict=False, )[0]
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
noise_pred = self.transformer( hidden_states=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds, pooled_projections=pooled_prompt_embeds, block_controlnet_hidden_states=control_block_samples, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False, )[0] # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents_dtype = latents.dtype latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
if latents.dtype != latents_dtype: if torch.backends.mps.is_available(): # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 latents = latents.to(latents_dtype) if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) negative_pooled_prompt_embeds = callback_outputs.pop( "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds ) # call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step() if output_type == "latent": image = latents else: latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
image = self.vae.decode(latents, return_dict=False)[0] image = self.image_processor.postprocess(image, output_type=output_type) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image,) return StableDiffusion3PipelineOutput(images=image)
82
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet.py
class StableDiffusion3ControlNetInpaintingPipeline( DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin, SD3IPAdapterMixin ): r""" Args: transformer ([`SD3Transformer2DModel`]): Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. scheduler ([`FlowMatchEulerDiscreteScheduler`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. text_encoder ([`CLIPTextModelWithProjection`]): [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant, with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
as its dimension. text_encoder_2 ([`CLIPTextModelWithProjection`]): [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), specifically the [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) variant. text_encoder_3 ([`T5EncoderModel`]): Frozen text-encoder. Stable Diffusion 3 uses [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the [t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). tokenizer_2 (`CLIPTokenizer`): Second Tokenizer of class
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). tokenizer_3 (`T5TokenizerFast`): Tokenizer of class [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). controlnet ([`SD3ControlNetModel`] or `List[SD3ControlNetModel]` or [`SD3MultiControlNetModel`]): Provides additional conditioning to the `transformer` during the denoising process. If you set multiple ControlNets as a list, the outputs from each ControlNet are added together to create one combined additional conditioning. image_encoder (`PreTrainedModel`, *optional*): Pre-trained Vision Model for IP Adapter. feature_extractor (`BaseImageProcessor`, *optional*): Image processor for IP Adapter. """
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->image_encoder->transformer->vae" _optional_components = ["image_encoder", "feature_extractor"] _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds", "negative_pooled_prompt_embeds"] def __init__( self, transformer: SD3Transformer2DModel, scheduler: FlowMatchEulerDiscreteScheduler, vae: AutoencoderKL, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, text_encoder_2: CLIPTextModelWithProjection, tokenizer_2: CLIPTokenizer, text_encoder_3: T5EncoderModel, tokenizer_3: T5TokenizerFast, controlnet: Union[ SD3ControlNetModel, List[SD3ControlNetModel], Tuple[SD3ControlNetModel], SD3MultiControlNetModel ], image_encoder: PreTrainedModel = None, feature_extractor: BaseImageProcessor = None, ): super().__init__()
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
self.register_modules( vae=vae, text_encoder=text_encoder, text_encoder_2=text_encoder_2, text_encoder_3=text_encoder_3, tokenizer=tokenizer, tokenizer_2=tokenizer_2, tokenizer_3=tokenizer_3, transformer=transformer, scheduler=scheduler, controlnet=controlnet, image_encoder=image_encoder, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 self.image_processor = VaeImageProcessor( vae_scale_factor=self.vae_scale_factor, do_resize=True, do_convert_rgb=True, do_normalize=True ) self.mask_processor = VaeImageProcessor( vae_scale_factor=self.vae_scale_factor, do_resize=True, do_convert_grayscale=True, do_normalize=False, do_binarize=True, )
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
self.tokenizer_max_length = ( self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 ) self.default_sample_size = ( self.transformer.config.sample_size if hasattr(self, "transformer") and self.transformer is not None else 128 ) self.patch_size = ( self.transformer.config.patch_size if hasattr(self, "transformer") and self.transformer is not None else 2 )
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_t5_prompt_embeds def _get_t5_prompt_embeds( self, prompt: Union[str, List[str]] = None, num_images_per_prompt: int = 1, max_sequence_length: int = 256, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None, ): device = device or self._execution_device dtype = dtype or self.text_encoder.dtype prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) if self.text_encoder_3 is None: return torch.zeros( ( batch_size * num_images_per_prompt, self.tokenizer_max_length, self.transformer.config.joint_attention_dim, ), device=device, dtype=dtype, )
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
text_inputs = self.tokenizer_3( prompt, padding="max_length", max_length=max_sequence_length, truncation=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because `max_sequence_length` is set to " f" {max_sequence_length} tokens: {removed_text}" ) prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
dtype = self.text_encoder_3.dtype prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) _, seq_len, _ = prompt_embeds.shape # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) return prompt_embeds # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_clip_prompt_embeds def _get_clip_prompt_embeds( self, prompt: Union[str, List[str]], num_images_per_prompt: int = 1, device: Optional[torch.device] = None, clip_skip: Optional[int] = None, clip_model_index: int = 0, ): device = device or self._execution_device
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
clip_tokenizers = [self.tokenizer, self.tokenizer_2] clip_text_encoders = [self.text_encoder, self.text_encoder_2] tokenizer = clip_tokenizers[clip_model_index] text_encoder = clip_text_encoders[clip_model_index] prompt = [prompt] if isinstance(prompt, str) else prompt batch_size = len(prompt) text_inputs = tokenizer( prompt, padding="max_length", max_length=self.tokenizer_max_length, truncation=True, return_tensors="pt", )
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
text_input_ids = text_inputs.input_ids untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer_max_length} tokens: {removed_text}" ) prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) pooled_prompt_embeds = prompt_embeds[0] if clip_skip is None: prompt_embeds = prompt_embeds.hidden_states[-2] else: prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
_, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1) pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1) return prompt_embeds, pooled_prompt_embeds
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_prompt def encode_prompt( self, prompt: Union[str, List[str]], prompt_2: Union[str, List[str]], prompt_3: Union[str, List[str]], device: Optional[torch.device] = None, num_images_per_prompt: int = 1, do_classifier_free_guidance: bool = True, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None, negative_prompt_3: Optional[Union[str, List[str]]] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, clip_skip: Optional[int] = None, max_sequence_length: int = 256, lora_scale: Optional[float] = None, ):
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
r"""
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is used in all text-encoders prompt_3 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is used in all text-encoders device: (`torch.device`): torch device num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders. negative_prompt_3 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `negative_prompt` is used in all the text-encoders. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument.
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. clip_skip (`int`, *optional*):
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings. lora_scale (`float`, *optional*): A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. """ device = device or self._execution_device
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
# set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(self, SD3LoraLoaderMixin): self._lora_scale = lora_scale # dynamically adjust the LoRA scale if self.text_encoder is not None and USE_PEFT_BACKEND: scale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None and USE_PEFT_BACKEND: scale_lora_layers(self.text_encoder_2, lora_scale) prompt = [prompt] if isinstance(prompt, str) else prompt if prompt is not None: batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: prompt_2 = prompt_2 or prompt prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 prompt_3 = prompt_3 or prompt prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds( prompt=prompt, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=clip_skip, clip_model_index=0, ) prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds( prompt=prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=clip_skip, clip_model_index=1, ) clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1) t5_prompt_embed = self._get_t5_prompt_embeds( prompt=prompt_3, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device, )
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
clip_prompt_embeds = torch.nn.functional.pad( clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1]) ) prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2) pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1) if do_classifier_free_guidance and negative_prompt_embeds is None: negative_prompt = negative_prompt or "" negative_prompt_2 = negative_prompt_2 or negative_prompt negative_prompt_3 = negative_prompt_3 or negative_prompt
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
# normalize str to list negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt negative_prompt_2 = ( batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 ) negative_prompt_3 = ( batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3 )
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
if prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." )
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
negative_prompt_embed, negative_pooled_prompt_embed = self._get_clip_prompt_embeds( negative_prompt, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=None, clip_model_index=0, ) negative_prompt_2_embed, negative_pooled_prompt_2_embed = self._get_clip_prompt_embeds( negative_prompt_2, device=device, num_images_per_prompt=num_images_per_prompt, clip_skip=None, clip_model_index=1, ) negative_clip_prompt_embeds = torch.cat([negative_prompt_embed, negative_prompt_2_embed], dim=-1) t5_negative_prompt_embed = self._get_t5_prompt_embeds( prompt=negative_prompt_3, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, device=device, )
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
negative_clip_prompt_embeds = torch.nn.functional.pad( negative_clip_prompt_embeds, (0, t5_negative_prompt_embed.shape[-1] - negative_clip_prompt_embeds.shape[-1]), ) negative_prompt_embeds = torch.cat([negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2) negative_pooled_prompt_embeds = torch.cat( [negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1 ) if self.text_encoder is not None: if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder, lora_scale) if self.text_encoder_2 is not None: if isinstance(self, SD3LoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(self.text_encoder_2, lora_scale)
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.check_inputs def check_inputs( self, prompt, prompt_2, prompt_3, height, width, negative_prompt=None, negative_prompt_2=None, negative_prompt_3=None, prompt_embeds=None, negative_prompt_embeds=None, pooled_prompt_embeds=None, negative_pooled_prompt_embeds=None, callback_on_step_end_tensor_inputs=None, max_sequence_length=None, ): if ( height % (self.vae_scale_factor * self.patch_size) != 0 or width % (self.vae_scale_factor * self.patch_size) != 0 ): raise ValueError( f"`height` and `width` have to be divisible by {self.vae_scale_factor * self.patch_size} but are {height} and {width}."
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
f"You can use height {height - height % (self.vae_scale_factor * self.patch_size)} and width {width - width % (self.vae_scale_factor * self.patch_size)}." )
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" )
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt_2 is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt_3 is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError(
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") elif prompt_3 is not None and (not isinstance(prompt_3, str) and not isinstance(prompt_3, list)): raise ValueError(f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}")
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) elif negative_prompt_2 is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) elif negative_prompt_3 is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." )
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_embeds is not None and pooled_prompt_embeds is None: raise ValueError( "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." )
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: raise ValueError( "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." ) if max_sequence_length is not None and max_sequence_length > 512: raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_latents def prepare_latents( self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None, ): if latents is not None: return latents.to(device=device, dtype=dtype)
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) return latents
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
def prepare_image_with_mask( self, image, mask, width, height, batch_size, num_images_per_prompt, device, dtype, do_classifier_free_guidance=False, guess_mode=False, ): if isinstance(image, torch.Tensor): pass else: image = self.image_processor.preprocess(image, height=height, width=width) image_batch_size = image.shape[0] # Prepare image if image_batch_size == 1: repeat_by = batch_size else: # image batch size is the same as prompt batch size repeat_by = num_images_per_prompt image = image.repeat_interleave(repeat_by, dim=0) image = image.to(device=device, dtype=dtype)
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
# Prepare mask if isinstance(mask, torch.Tensor): pass else: mask = self.mask_processor.preprocess(mask, height=height, width=width) mask = mask.repeat_interleave(repeat_by, dim=0) mask = mask.to(device=device, dtype=dtype) # Get masked image masked_image = image.clone() masked_image[(mask > 0.5).repeat(1, 3, 1, 1)] = -1 # Encode to latents image_latents = self.vae.encode(masked_image).latent_dist.sample() image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor image_latents = image_latents.to(dtype) mask = torch.nn.functional.interpolate( mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor) ) mask = 1 - mask control_image = torch.cat([image_latents, mask], dim=1) if do_classifier_free_guidance and not guess_mode: control_image = torch.cat([control_image] * 2)
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
return control_image @property def guidance_scale(self): return self._guidance_scale @property def clip_skip(self): return self._clip_skip # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def joint_attention_kwargs(self): return self._joint_attention_kwargs @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_image def encode_image(self, image: PipelineImageInput, device: torch.device) -> torch.Tensor: """Encodes the given image into a feature representation using a pre-trained image encoder. Args: image (`PipelineImageInput`): Input image to be encoded. device: (`torch.device`): Torch device. Returns: `torch.Tensor`: The encoded image feature representation. """ if not isinstance(image, torch.Tensor): image = self.feature_extractor(image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=self.dtype) return self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_ip_adapter_image_embeds def prepare_ip_adapter_image_embeds( self, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[torch.Tensor] = None, device: Optional[torch.device] = None, num_images_per_prompt: int = 1, do_classifier_free_guidance: bool = True, ) -> torch.Tensor: """Prepares image embeddings for use in the IP-Adapter. Either `ip_adapter_image` or `ip_adapter_image_embeds` must be passed.
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
Args: ip_adapter_image (`PipelineImageInput`, *optional*): The input image to extract features from for IP-Adapter. ip_adapter_image_embeds (`torch.Tensor`, *optional*): Precomputed image embeddings. device: (`torch.device`, *optional*): Torch device. num_images_per_prompt (`int`, defaults to 1): Number of images that should be generated per prompt. do_classifier_free_guidance (`bool`, defaults to True): Whether to use classifier free guidance or not. """ device = device or self._execution_device
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
if ip_adapter_image_embeds is not None: if do_classifier_free_guidance: single_negative_image_embeds, single_image_embeds = ip_adapter_image_embeds.chunk(2) else: single_image_embeds = ip_adapter_image_embeds elif ip_adapter_image is not None: single_image_embeds = self.encode_image(ip_adapter_image, device) if do_classifier_free_guidance: single_negative_image_embeds = torch.zeros_like(single_image_embeds) else: raise ValueError("Neither `ip_adapter_image_embeds` or `ip_adapter_image_embeds` were provided.") image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) if do_classifier_free_guidance: negative_image_embeds = torch.cat([single_negative_image_embeds] * num_images_per_prompt, dim=0) image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0) return image_embeds.to(device=device)
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.enable_sequential_cpu_offload def enable_sequential_cpu_offload(self, *args, **kwargs): if self.image_encoder is not None and "image_encoder" not in self._exclude_from_cpu_offload: logger.warning( "`pipe.enable_sequential_cpu_offload()` might fail for `image_encoder` if it uses " "`torch.nn.MultiheadAttention`. You can exclude `image_encoder` from CPU offloading by calling " "`pipe._exclude_from_cpu_offload.append('image_encoder')` before `pipe.enable_sequential_cpu_offload()`." ) super().enable_sequential_cpu_offload(*args, **kwargs)
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, prompt_3: Optional[Union[str, List[str]]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 28, sigmas: Optional[List[float]] = None, guidance_scale: float = 7.0, control_guidance_start: Union[float, List[float]] = 0.0, control_guidance_end: Union[float, List[float]] = 1.0, control_image: PipelineImageInput = None, control_mask: PipelineImageInput = None, controlnet_conditioning_scale: Union[float, List[float]] = 1.0, controlnet_pooled_projections: Optional[torch.FloatTensor] = None, negative_prompt: Optional[Union[str, List[str]]] = None, negative_prompt_2: Optional[Union[str, List[str]]] = None,
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
negative_prompt_3: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, ip_adapter_image: Optional[PipelineImageInput] = None, ip_adapter_image_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, joint_attention_kwargs: Optional[Dict[str, Any]] = None, clip_skip: Optional[int] = None, callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], max_sequence_length: int = 256,
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
): r""" Function invoked when calling the pipeline for generation.
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is will be used instead prompt_3 (`str` or `List[str]`, *optional*): The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is will be used instead height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. This is set to 1024 by default for the best results. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
The width in pixels of the generated image. This is set to 1024 by default for the best results. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. guidance_scale (`float`, *optional*, defaults to 5.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): The percentage of total steps at which the ControlNet starts applying. control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): The percentage of total steps at which the ControlNet stops applying. control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`): `Image`, numpy array or tensor representing an image batch to be inpainted (which parts of the image to
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
be masked out with `control_mask` and repainted according to `prompt`). For both numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list or tensors, the expected shape should be `(B, C, H, W)`. If it is a numpy array or a list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`. control_mask (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`): `Image`, numpy array or tensor representing an image batch to mask `image`. White pixels in the mask are repainted while black pixels are preserved. If `mask_image` is a PIL image, it is converted to a single channel (luminance) before use. If it's a numpy array or pytorch tensor, it should contain one color channel (L) instead of 3, so the expected shape for pytorch tensor would be `(B, 1, H, W)`. And
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
for numpy array would be for `(B, H, W, 1)`, `(B, H, W)`, `(H, W, 1)`, or `(H, W)`. controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set the corresponding scale as a list. controlnet_pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected from the embeddings of controlnet input conditions. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
negative_prompt_2 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `negative_prompt` is used instead negative_prompt_3 (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `negative_prompt` is used instead num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*):
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled text embeddings will be generated from `prompt` input argument. negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` input argument. ip_adapter_image (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. ip_adapter_image_embeds (`torch.Tensor`, *optional*): Pre-generated image embeddings for IP-Adapter. Should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding if `do_classifier_free_guidance` is set to
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
`True`. If not provided, embeddings are computed from the `ip_adapter_image` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead of a plain tuple. joint_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). callback_on_step_end (`Callable`, *optional*):
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. max_sequence_length (`int` defaults to 256): Maximum sequence length to use with the `prompt`.
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
Examples: Returns: [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated images. """ height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
# align format for control guidance if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): control_guidance_start = len(control_guidance_end) * [control_guidance_start] elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): control_guidance_end = len(control_guidance_start) * [control_guidance_end] elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): mult = len(self.controlnet.nets) if isinstance(self.controlnet, SD3MultiControlNetModel) else 1 control_guidance_start, control_guidance_end = ( mult * [control_guidance_start], mult * [control_guidance_end], )
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py
# 1. Check inputs. Raise error if not correct self.check_inputs( prompt, prompt_2, prompt_3, height, width, negative_prompt=negative_prompt, negative_prompt_2=negative_prompt_2, negative_prompt_3=negative_prompt_3, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, max_sequence_length=max_sequence_length, ) self._guidance_scale = guidance_scale self._clip_skip = clip_skip self._joint_attention_kwargs = joint_attention_kwargs self._interrupt = False
83
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/controlnet_sd3/pipeline_stable_diffusion_3_controlnet_inpainting.py