text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
# scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @staticmethod def _compute_max_attention_per_index( attention_maps: torch.Tensor, indices: List[int], ) -> List[torch.Tensor]: """Computes the maximum attention value for each of the tokens we wish to alter.""" attention_for_text = attention_maps[:, :, 1:-1] attention_for_text *= 100 attention_for_text = torch.nn.functional.softmax(attention_for_text, dim=-1) # Shift indices since we removed the first token indices = [index - 1 for index in indices]
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
# Extract the maximum values max_indices_list = [] for i in indices: image = attention_for_text[:, :, i] smoothing = GaussianSmoothing().to(attention_maps.device) input = F.pad(image.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode="reflect") image = smoothing(input).squeeze(0).squeeze(0) max_indices_list.append(image.max()) return max_indices_list def _aggregate_and_get_max_attention_per_token( self, indices: List[int], ): """Aggregates the attention for each token and computes the max activation value for each token to alter.""" attention_maps = self.attention_store.aggregate_attention( from_where=("up", "down", "mid"), ) max_attention_per_index = self._compute_max_attention_per_index( attention_maps=attention_maps, indices=indices, ) return max_attention_per_index
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
@staticmethod def _compute_loss(max_attention_per_index: List[torch.Tensor]) -> torch.Tensor: """Computes the attend-and-excite loss using the maximum attention value for each token.""" losses = [max(0, 1.0 - curr_max) for curr_max in max_attention_per_index] loss = max(losses) return loss @staticmethod def _update_latent(latents: torch.Tensor, loss: torch.Tensor, step_size: float) -> torch.Tensor: """Update the latent according to the computed loss.""" grad_cond = torch.autograd.grad(loss.requires_grad_(True), [latents], retain_graph=True)[0] latents = latents - step_size * grad_cond return latents
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
def _perform_iterative_refinement_step( self, latents: torch.Tensor, indices: List[int], loss: torch.Tensor, threshold: float, text_embeddings: torch.Tensor, step_size: float, t: int, max_refinement_steps: int = 20, ): """ Performs the iterative latent refinement introduced in the paper. Here, we continuously update the latent code according to our loss objective until the given threshold is reached for all tokens. """ iteration = 0 target_loss = max(0, 1.0 - threshold) while loss > target_loss: iteration += 1 latents = latents.clone().detach().requires_grad_(True) self.unet(latents, t, encoder_hidden_states=text_embeddings).sample self.unet.zero_grad()
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
# Get max activation value for each subject token max_attention_per_index = self._aggregate_and_get_max_attention_per_token( indices=indices, ) loss = self._compute_loss(max_attention_per_index) if loss != 0: latents = self._update_latent(latents, loss, step_size) logger.info(f"\t Try {iteration}. loss: {loss}") if iteration >= max_refinement_steps: logger.info(f"\t Exceeded max number of iterations ({max_refinement_steps})! ") break # Run one more time but don't compute gradients and update the latents. # We just need to compute the new loss - the grad update will occur below latents = latents.clone().detach().requires_grad_(True) _ = self.unet(latents, t, encoder_hidden_states=text_embeddings).sample self.unet.zero_grad()
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
# Get max activation value for each subject token max_attention_per_index = self._aggregate_and_get_max_attention_per_token( indices=indices, ) loss = self._compute_loss(max_attention_per_index) logger.info(f"\t Finished with loss of: {loss}") return loss, latents, max_attention_per_index def register_attention_control(self): attn_procs = {} cross_att_count = 0 for name in self.unet.attn_processors.keys(): if name.startswith("mid_block"): place_in_unet = "mid" elif name.startswith("up_blocks"): place_in_unet = "up" elif name.startswith("down_blocks"): place_in_unet = "down" else: continue cross_att_count += 1 attn_procs[name] = AttendExciteAttnProcessor(attnstore=self.attention_store, place_in_unet=place_in_unet)
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
self.unet.set_attn_processor(attn_procs) self.attention_store.num_att_layers = cross_att_count def get_indices(self, prompt: str) -> Dict[str, int]: """Utility function to list the indices of the tokens you wish to alte""" ids = self.tokenizer(prompt).input_ids indices = {i: tok for tok, i in zip(self.tokenizer.convert_ids_to_tokens(ids), range(len(ids)))} return indices
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]], token_indices: Union[List[int], List[List[int]]], height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: int = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, max_iter_to_alter: int = 25,
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
thresholds: dict = {0: 0.05, 10: 0.5, 20: 0.8}, scale_factor: int = 20, attn_res: Optional[Tuple[int]] = (16, 16), clip_skip: Optional[int] = None, ): r""" The call function to the pipeline for generation.
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. token_indices (`List[int]`): The token indices to alter with attend-and-excite. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5):
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. cross_attention_kwargs (`dict`, *optional*):
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). max_iter_to_alter (`int`, *optional*, defaults to `25`): Number of denoising steps to apply attend-and-excite. The `max_iter_to_alter` denoising steps are when attend-and-excite is applied. For example, if `max_iter_to_alter` is `25` and there are a total of `30` denoising steps, the first `25` denoising steps applies attend-and-excite and the last `5` will not. thresholds (`dict`, *optional*, defaults to `{0: 0.05, 10: 0.5, 20: 0.8}`): Dictionary defining the iterations and desired thresholds to apply iterative latent refinement in. scale_factor (`int`, *optional*, default to 20): Scale factor to control the step size of each attend-and-excite update.
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
attn_res (`tuple`, *optional*, default computed from width and height): The 2D resolution of the semantic attention map. clip_skip (`int`, *optional*): Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
# 1. Check inputs. Raise error if not correct self.check_inputs( prompt, token_indices, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
# 3. Encode input prompt prompt_embeds, negative_prompt_embeds = self.encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, clip_skip=clip_skip, ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
# 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) if attn_res is None: attn_res = int(np.ceil(width / 32)), int(np.ceil(height / 32)) self.attention_store = AttentionStore(attn_res) original_attn_proc = self.unet.attn_processors self.register_attention_control() # default config for step size from original repo scale_range = np.linspace(1.0, 0.5, len(self.scheduler.timesteps)) step_size = scale_factor * np.sqrt(scale_range)
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
text_embeddings = ( prompt_embeds[batch_size * num_images_per_prompt :] if do_classifier_free_guidance else prompt_embeds ) if isinstance(token_indices[0], int): token_indices = [token_indices] indices = [] for ind in token_indices: indices = indices + [ind] * num_images_per_prompt
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
# 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # Attend and excite process with torch.enable_grad(): latents = latents.clone().detach().requires_grad_(True) updated_latents = [] for latent, index, text_embedding in zip(latents, indices, text_embeddings): # Forward pass of denoising with text conditioning latent = latent.unsqueeze(0) text_embedding = text_embedding.unsqueeze(0)
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
self.unet( latent, t, encoder_hidden_states=text_embedding, cross_attention_kwargs=cross_attention_kwargs, ).sample self.unet.zero_grad() # Get max activation value for each subject token max_attention_per_index = self._aggregate_and_get_max_attention_per_token( indices=index, ) loss = self._compute_loss(max_attention_per_index=max_attention_per_index)
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
# If this is an iterative refinement step, verify we have reached the desired threshold for all if i in thresholds.keys() and loss > 1.0 - thresholds[i]: loss, latent, max_attention_per_index = self._perform_iterative_refinement_step( latents=latent, indices=index, loss=loss, threshold=thresholds[i], text_embeddings=text_embedding, step_size=step_size[i], t=t, )
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
# Perform gradient update if i < max_iter_to_alter: if loss != 0: latent = self._update_latent( latents=latent, loss=loss, step_size=step_size[i], ) logger.info(f"Iteration {i} | Loss: {loss:0.4f}") updated_latents.append(latent) latents = torch.cat(updated_latents, dim=0) # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
# predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, ).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
# call the callback, if provided if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() # 8. Post-processing if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) self.maybe_free_model_hooks() # make sure to set the original attention processors back self.unet.set_attn_processor(original_attn_proc) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
70
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
class GaussianSmoothing(torch.nn.Module): """ Arguments: Apply gaussian smoothing on a 1d, 2d or 3d tensor. Filtering is performed seperately for each channel in the input using a depthwise convolution. channels (int, sequence): Number of channels of the input tensors. Output will have this number of channels as well. kernel_size (int, sequence): Size of the gaussian kernel. sigma (float, sequence): Standard deviation of the gaussian kernel. dim (int, optional): The number of dimensions of the data. Default value is 2 (spatial). """ # channels=1, kernel_size=kernel_size, sigma=sigma, dim=2 def __init__( self, channels: int = 1, kernel_size: int = 3, sigma: float = 0.5, dim: int = 2, ): super().__init__() if isinstance(kernel_size, int): kernel_size = [kernel_size] * dim if isinstance(sigma, float): sigma = [sigma] * dim
71
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
# The gaussian kernel is the product of the # gaussian function of each dimension. kernel = 1 meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size]) for size, std, mgrid in zip(kernel_size, sigma, meshgrids): mean = (size - 1) / 2 kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2)) # Make sure sum of values in gaussian kernel equals 1. kernel = kernel / torch.sum(kernel) # Reshape to depthwise convolutional weight kernel = kernel.view(1, 1, *kernel.size()) kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1)) self.register_buffer("weight", kernel) self.groups = channels
71
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
if dim == 1: self.conv = F.conv1d elif dim == 2: self.conv = F.conv2d elif dim == 3: self.conv = F.conv3d else: raise RuntimeError("Only 1, 2 and 3 dimensions are supported. Received {}.".format(dim)) def forward(self, input): """ Arguments: Apply gaussian filter to input. input (torch.Tensor): Input to apply gaussian filter on. Returns: filtered (torch.Tensor): Filtered output. """ return self.conv(input, weight=self.weight.to(input.dtype), groups=self.groups)
71
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/stable_diffusion_attend_and_excite/pipeline_stable_diffusion_attend_and_excite.py
class KandinskyImg2ImgPipeline(DiffusionPipeline): """ Pipeline for image-to-image generation using Kandinsky This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: text_encoder ([`MultilingualCLIP`]): Frozen text-encoder. tokenizer ([`XLMRobertaTokenizer`]): Tokenizer of class scheduler ([`DDIMScheduler`]): A scheduler to be used in combination with `unet` to generate image latents. unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the image embedding. movq ([`VQModel`]): MoVQ image encoder and decoder """ model_cpu_offload_seq = "text_encoder->unet->movq"
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
def __init__( self, text_encoder: MultilingualCLIP, movq: VQModel, tokenizer: XLMRobertaTokenizer, unet: UNet2DConditionModel, scheduler: DDIMScheduler, ): super().__init__() self.register_modules( text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler, movq=movq, ) self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) def get_timesteps(self, num_inference_steps, strength, device): # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
def prepare_latents(self, latents, latent_timestep, shape, dtype, device, generator, scheduler): if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma shape = latents.shape noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) latents = self.add_noise(latents, noise, latent_timestep) return latents
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, ): batch_size = len(prompt) if isinstance(prompt, list) else 1 # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=77, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids.to(device) text_mask = text_inputs.attention_mask.to(device) prompt_embeds, text_encoder_hidden_states = self.text_encoder( input_ids=text_input_ids, attention_mask=text_mask ) prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=77, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt", ) uncond_text_input_ids = uncond_input.input_ids.to(device) uncond_text_mask = uncond_input.attention_mask.to(device) negative_prompt_embeds, uncond_text_encoder_hidden_states = self.text_encoder( input_ids=uncond_text_input_ids, attention_mask=uncond_text_mask ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len)
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
seq_len = uncond_text_encoder_hidden_states.shape[1] uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt, seq_len, -1 ) uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) text_mask = torch.cat([uncond_text_mask, text_mask])
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
return prompt_embeds, text_encoder_hidden_states, text_mask # add_noise method to overwrite the one in schedule because it use a different beta schedule for adding noise vs sampling def add_noise( self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor, ) -> torch.Tensor: betas = torch.linspace(0.0001, 0.02, 1000, dtype=torch.float32) alphas = 1.0 - betas alphas_cumprod = torch.cumprod(alphas, dim=0) alphas_cumprod = alphas_cumprod.to(device=original_samples.device, dtype=original_samples.dtype) timesteps = timesteps.to(original_samples.device) sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]], image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]], image_embeds: torch.Tensor, negative_image_embeds: torch.Tensor, negative_prompt: Optional[Union[str, List[str]]] = None, height: int = 512, width: int = 512, num_inference_steps: int = 100, strength: float = 0.3, guidance_scale: float = 7.0, num_images_per_prompt: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, output_type: Optional[str] = "pil", callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, return_dict: bool = True, ): """ Function invoked when calling the pipeline for generation.
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. image (`torch.Tensor`, `PIL.Image.Image`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. image_embeds (`torch.Tensor` or `List[torch.Tensor]`): The clip image embeddings for text prompt, that will be used to condition the image generation. negative_image_embeds (`torch.Tensor` or `List[torch.Tensor]`): The clip image embeddings for negative text prompt, will be used to condition the image generation. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). height (`int`, *optional*, defaults to 512):
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. strength (`float`, *optional*, defaults to 0.3): Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the `strength`. The number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. output_type (`str`, *optional*, defaults to `"pil"`):
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
Examples: Returns: [`~pipelines.ImagePipelineOutput`] or `tuple` """ # 1. Define call parameters if isinstance(prompt, str): batch_size = 1 elif isinstance(prompt, list): batch_size = len(prompt) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") device = self._execution_device batch_size = batch_size * num_images_per_prompt do_classifier_free_guidance = guidance_scale > 1.0 # 2. get text and image embeddings prompt_embeds, text_encoder_hidden_states, _ = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) if isinstance(image_embeds, list): image_embeds = torch.cat(image_embeds, dim=0) if isinstance(negative_image_embeds, list): negative_image_embeds = torch.cat(negative_image_embeds, dim=0)
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
if do_classifier_free_guidance: image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to( dtype=prompt_embeds.dtype, device=device ) # 3. pre-processing initial image if not isinstance(image, list): image = [image] if not all(isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image): raise ValueError( f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support PIL image and pytorch tensor" ) image = torch.cat([prepare_image(i, width, height) for i in image], dim=0) image = image.to(dtype=prompt_embeds.dtype, device=device)
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
latents = self.movq.encode(image)["latents"] latents = latents.repeat_interleave(num_images_per_prompt, dim=0) # 4. set timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps_tensor, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) # the formular to calculate timestep for add_noise is taken from the original kandinsky repo latent_timestep = int(self.scheduler.config.num_train_timesteps * strength) - 2 latent_timestep = torch.tensor([latent_timestep] * batch_size, dtype=timesteps_tensor.dtype, device=device) num_channels_latents = self.unet.config.in_channels height, width = get_new_h_w(height, width, self.movq_scale_factor)
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
# 5. Create initial latent latents = self.prepare_latents( latents, latent_timestep, (batch_size, num_channels_latents, height, width), text_encoder_hidden_states.dtype, device, generator, self.scheduler, ) # 6. Denoising loop for i, t in enumerate(self.progress_bar(timesteps_tensor)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents added_cond_kwargs = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} noise_pred = self.unet( sample=latent_model_input, timestep=t, encoder_hidden_states=text_encoder_hidden_states, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0]
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
if do_classifier_free_guidance: noise_pred, variance_pred = noise_pred.split(latents.shape[1], dim=1) noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) _, variance_pred_text = variance_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) noise_pred = torch.cat([noise_pred, variance_pred_text], dim=1) if not ( hasattr(self.scheduler.config, "variance_type") and self.scheduler.config.variance_type in ["learned", "learned_range"] ): noise_pred, _ = noise_pred.split(latents.shape[1], dim=1) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t, latents, generator=generator, ).prev_sample
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
if callback is not None and i % callback_steps == 0: step_idx = i // getattr(self.scheduler, "order", 1) callback(step_idx, t, latents) if XLA_AVAILABLE: xm.mark_step() # 7. post-processing image = self.movq.decode(latents, force_not_quantize=True)["sample"] self.maybe_free_model_hooks() if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: image = image * 0.5 + 0.5 image = image.clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).float().numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image)
72
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_img2img.py
class KandinskyPriorPipelineOutput(BaseOutput): """ Output class for KandinskyPriorPipeline. Args: image_embeds (`torch.Tensor`) clip image embeddings for text prompt negative_image_embeds (`List[PIL.Image.Image]` or `np.ndarray`) clip image embeddings for unconditional tokens """ image_embeds: Union[torch.Tensor, np.ndarray] negative_image_embeds: Union[torch.Tensor, np.ndarray]
73
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
class KandinskyPriorPipeline(DiffusionPipeline): """ Pipeline for generating image prior for Kandinsky This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: prior ([`PriorTransformer`]): The canonical unCLIP prior to approximate the image embedding from the text embedding. image_encoder ([`CLIPVisionModelWithProjection`]): Frozen image-encoder. text_encoder ([`CLIPTextModelWithProjection`]): Frozen text-encoder. tokenizer (`CLIPTokenizer`): Tokenizer of class [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). scheduler ([`UnCLIPScheduler`]): A scheduler to be used in combination with `prior` to generate image embedding. """
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
_exclude_from_cpu_offload = ["prior"] model_cpu_offload_seq = "text_encoder->prior" def __init__( self, prior: PriorTransformer, image_encoder: CLIPVisionModelWithProjection, text_encoder: CLIPTextModelWithProjection, tokenizer: CLIPTokenizer, scheduler: UnCLIPScheduler, image_processor: CLIPImageProcessor, ): super().__init__() self.register_modules( prior=prior, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler, image_encoder=image_encoder, image_processor=image_processor, )
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_INTERPOLATE_DOC_STRING) def interpolate( self, images_and_prompts: List[Union[str, PIL.Image.Image, torch.Tensor]], weights: List[float], num_images_per_prompt: int = 1, num_inference_steps: int = 25, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, negative_prior_prompt: Optional[str] = None, negative_prompt: str = "", guidance_scale: float = 4.0, device=None, ): """ Function invoked when using the prior pipeline for interpolation.
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
Args: images_and_prompts (`List[Union[str, PIL.Image.Image, torch.Tensor]]`): list of prompts and images to guide the image generation. weights: (`List[float]`): list of weights for each condition in `images_and_prompts` num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. num_inference_steps (`int`, *optional*, defaults to 25): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*):
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. negative_prior_prompt (`str`, *optional*): The prompt not to guide the prior diffusion process. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). negative_prompt (`str` or `List[str]`, *optional*): The prompt not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
`guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality.
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
Examples: Returns: [`KandinskyPriorPipelineOutput`] or `tuple` """ device = device or self.device if len(images_and_prompts) != len(weights): raise ValueError( f"`images_and_prompts` contains {len(images_and_prompts)} items and `weights` contains {len(weights)} items - they should be lists of same length" ) image_embeddings = [] for cond, weight in zip(images_and_prompts, weights): if isinstance(cond, str): image_emb = self( cond, num_inference_steps=num_inference_steps, num_images_per_prompt=num_images_per_prompt, generator=generator, latents=latents, negative_prompt=negative_prior_prompt, guidance_scale=guidance_scale, ).image_embeds
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
elif isinstance(cond, (PIL.Image.Image, torch.Tensor)): if isinstance(cond, PIL.Image.Image): cond = ( self.image_processor(cond, return_tensors="pt") .pixel_values[0] .unsqueeze(0) .to(dtype=self.image_encoder.dtype, device=device) ) image_emb = self.image_encoder(cond)["image_embeds"] else: raise ValueError( f"`images_and_prompts` can only contains elements to be of type `str`, `PIL.Image.Image` or `torch.Tensor` but is {type(cond)}" ) image_embeddings.append(image_emb * weight) image_emb = torch.cat(image_embeddings).sum(dim=0, keepdim=True)
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
out_zero = self( negative_prompt, num_inference_steps=num_inference_steps, num_images_per_prompt=num_images_per_prompt, generator=generator, latents=latents, negative_prompt=negative_prior_prompt, guidance_scale=guidance_scale, ) zero_image_emb = out_zero.negative_image_embeds if negative_prompt == "" else out_zero.image_embeds return KandinskyPriorPipelineOutput(image_embeds=image_emb, negative_image_embeds=zero_image_emb)
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents def get_zero_embed(self, batch_size=1, device=None): device = device or self.device zero_img = torch.zeros(1, 3, self.image_encoder.config.image_size, self.image_encoder.config.image_size).to( device=device, dtype=self.image_encoder.dtype ) zero_image_emb = self.image_encoder(zero_img)["image_embeds"] zero_image_emb = zero_image_emb.repeat(batch_size, 1) return zero_image_emb
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, ): batch_size = len(prompt) if isinstance(prompt, list) else 1 # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids text_mask = text_inputs.attention_mask.bool().to(device) untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] text_encoder_output = self.text_encoder(text_input_ids.to(device)) prompt_embeds = text_encoder_output.text_embeds text_encoder_hidden_states = text_encoder_output.last_hidden_state
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) uncond_text_mask = uncond_input.attention_mask.bool().to(device) negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len)
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
seq_len = uncond_text_encoder_hidden_states.shape[1] uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt, seq_len, -1 ) uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) text_mask = torch.cat([uncond_text_mask, text_mask])
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
return prompt_embeds, text_encoder_hidden_states, text_mask @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]], negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: int = 1, num_inference_steps: int = 25, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, guidance_scale: float = 4.0, output_type: Optional[str] = "pt", return_dict: bool = True, ): """ Function invoked when calling the pipeline for generation.
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. num_inference_steps (`int`, *optional*, defaults to 25): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic.
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. output_type (`str`, *optional*, defaults to `"pt"`):
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
The output format of the generate image. Choose between: `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
Examples: Returns: [`KandinskyPriorPipelineOutput`] or `tuple` """ if isinstance(prompt, str): prompt = [prompt] elif not isinstance(prompt, list): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if isinstance(negative_prompt, str): negative_prompt = [negative_prompt] elif not isinstance(negative_prompt, list) and negative_prompt is not None: raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}") # if the negative prompt is defined we double the batch size to # directly retrieve the negative prompt embedding if negative_prompt is not None: prompt = prompt + negative_prompt negative_prompt = 2 * negative_prompt device = self._execution_device batch_size = len(prompt) batch_size = batch_size * num_images_per_prompt
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
do_classifier_free_guidance = guidance_scale > 1.0 prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) # prior self.scheduler.set_timesteps(num_inference_steps, device=device) prior_timesteps_tensor = self.scheduler.timesteps embedding_dim = self.prior.config.embedding_dim latents = self.prepare_latents( (batch_size, embedding_dim), prompt_embeds.dtype, device, generator, latents, self.scheduler, ) for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
predicted_image_embedding = self.prior( latent_model_input, timestep=t, proj_embedding=prompt_embeds, encoder_hidden_states=text_encoder_hidden_states, attention_mask=text_mask, ).predicted_image_embedding if do_classifier_free_guidance: predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2) predicted_image_embedding = predicted_image_embedding_uncond + guidance_scale * ( predicted_image_embedding_text - predicted_image_embedding_uncond ) if i + 1 == prior_timesteps_tensor.shape[0]: prev_timestep = None else: prev_timestep = prior_timesteps_tensor[i + 1]
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
latents = self.scheduler.step( predicted_image_embedding, timestep=t, sample=latents, generator=generator, prev_timestep=prev_timestep, ).prev_sample if XLA_AVAILABLE: xm.mark_step() latents = self.prior.post_process_latents(latents) image_embeddings = latents # if negative prompt has been defined, we retrieve split the image embedding into two if negative_prompt is None: zero_embeds = self.get_zero_embed(latents.shape[0], device=latents.device) self.maybe_free_model_hooks() else: image_embeddings, zero_embeds = image_embeddings.chunk(2) if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.prior_hook.offload()
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
if output_type not in ["pt", "np"]: raise ValueError(f"Only the output types `pt` and `np` are supported not output_type={output_type}") if output_type == "np": image_embeddings = image_embeddings.cpu().numpy() zero_embeds = zero_embeds.cpu().numpy() if not return_dict: return (image_embeddings, zero_embeds) return KandinskyPriorPipelineOutput(image_embeds=image_embeddings, negative_image_embeds=zero_embeds)
74
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_prior.py
class KandinskyInpaintPipeline(DiffusionPipeline): """ Pipeline for text-guided image inpainting using Kandinsky2.1 This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) Args: text_encoder ([`MultilingualCLIP`]): Frozen text-encoder. tokenizer ([`XLMRobertaTokenizer`]): Tokenizer of class scheduler ([`DDIMScheduler`]): A scheduler to be used in combination with `unet` to generate image latents. unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the image embedding. movq ([`VQModel`]): MoVQ image encoder and decoder """ model_cpu_offload_seq = "text_encoder->unet->movq"
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
def __init__( self, text_encoder: MultilingualCLIP, movq: VQModel, tokenizer: XLMRobertaTokenizer, unet: UNet2DConditionModel, scheduler: DDIMScheduler, ): super().__init__() self.register_modules( text_encoder=text_encoder, movq=movq, tokenizer=tokenizer, unet=unet, scheduler=scheduler, ) self.movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) self._warn_has_been_called = False
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
# Copied from diffusers.pipelines.unclip.pipeline_unclip.UnCLIPPipeline.prepare_latents def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") latents = latents.to(device) latents = latents * scheduler.init_noise_sigma return latents
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
def _encode_prompt( self, prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt=None, ): batch_size = len(prompt) if isinstance(prompt, list) else 1 # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=77, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids.to(device) text_mask = text_inputs.attention_mask.to(device) prompt_embeds, text_encoder_hidden_states = self.text_encoder( input_ids=text_input_ids, attention_mask=text_mask ) prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0)
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
if do_classifier_free_guidance: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=77, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors="pt", ) uncond_text_input_ids = uncond_input.input_ids.to(device) uncond_text_mask = uncond_input.attention_mask.to(device) negative_prompt_embeds, uncond_text_encoder_hidden_states = self.text_encoder( input_ids=uncond_text_input_ids, attention_mask=uncond_text_mask ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len)
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
seq_len = uncond_text_encoder_hidden_states.shape[1] uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt, seq_len, -1 ) uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) text_mask = torch.cat([uncond_text_mask, text_mask])
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
return prompt_embeds, text_encoder_hidden_states, text_mask
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
@torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]], image: Union[torch.Tensor, PIL.Image.Image], mask_image: Union[torch.Tensor, PIL.Image.Image, np.ndarray], image_embeds: torch.Tensor, negative_image_embeds: torch.Tensor, negative_prompt: Optional[Union[str, List[str]]] = None, height: int = 512, width: int = 512, num_inference_steps: int = 100, guidance_scale: float = 4.0, num_images_per_prompt: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, return_dict: bool = True, ): """ Function invoked when calling the pipeline for generation.
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. image (`torch.Tensor`, `PIL.Image.Image` or `np.ndarray`): `Image`, or tensor representing an image batch, that will be used as the starting point for the process. mask_image (`PIL.Image.Image`,`torch.Tensor` or `np.ndarray`): `Image`, or a tensor representing an image batch, to mask `image`. White pixels in the mask will be repainted, while black pixels will be preserved. You can pass a pytorch tensor as mask only if the image you passed is a pytorch tensor, and it should contain one color channel (L) instead of 3, so the expected shape would be either `(B, 1, H, W,)`, `(B, H, W)`, `(1, H, W)` or `(H, W)` If image is an PIL image or numpy array, mask should also be a either PIL image or numpy array. If it is a PIL image, it
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
will be converted to a single channel (luminance) before use. If it is a nummpy array, the expected shape is `(H, W)`. image_embeds (`torch.Tensor` or `List[torch.Tensor]`): The clip image embeddings for text prompt, that will be used to condition the image generation. negative_image_embeds (`torch.Tensor` or `List[torch.Tensor]`): The clip image embeddings for negative text prompt, will be used to condition the image generation. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). height (`int`, *optional*, defaults to 512): The height in pixels of the generated image. width (`int`, *optional*, defaults to 512): The width in pixels of the generated image.
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 4.0): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between: `"pil"` (`PIL.Image.Image`), `"np"` (`np.array`) or `"pt"` (`torch.Tensor`). callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
Examples:
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
Returns: [`~pipelines.ImagePipelineOutput`] or `tuple` """ if not self._warn_has_been_called and version.parse(version.parse(__version__).base_version) < version.parse( "0.23.0.dev0" ): logger.warning( "Please note that the expected format of `mask_image` has recently been changed. " "Before diffusers == 0.19.0, Kandinsky Inpainting pipelines repainted black pixels and preserved black pixels. " "As of diffusers==0.19.0 this behavior has been inverted. Now white pixels are repainted and black pixels are preserved. " "This way, Kandinsky's masking behavior is aligned with Stable Diffusion. " "THIS means that you HAVE to invert the input mask to have the same behavior as before as explained in https://github.com/huggingface/diffusers/pull/4207. " "This warning will be surpressed after the first inference call and will be removed in diffusers>0.23.0"
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
) self._warn_has_been_called = True
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
# Define call parameters if isinstance(prompt, str): batch_size = 1 elif isinstance(prompt, list): batch_size = len(prompt) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") device = self._execution_device batch_size = batch_size * num_images_per_prompt do_classifier_free_guidance = guidance_scale > 1.0 prompt_embeds, text_encoder_hidden_states, _ = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt ) if isinstance(image_embeds, list): image_embeds = torch.cat(image_embeds, dim=0) if isinstance(negative_image_embeds, list): negative_image_embeds = torch.cat(negative_image_embeds, dim=0)
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
if do_classifier_free_guidance: image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) negative_image_embeds = negative_image_embeds.repeat_interleave(num_images_per_prompt, dim=0) image_embeds = torch.cat([negative_image_embeds, image_embeds], dim=0).to( dtype=prompt_embeds.dtype, device=device ) # preprocess image and mask mask_image, image = prepare_mask_and_masked_image(image, mask_image, height, width) image = image.to(dtype=prompt_embeds.dtype, device=device) image = self.movq.encode(image)["latents"] mask_image = mask_image.to(dtype=prompt_embeds.dtype, device=device) image_shape = tuple(image.shape[-2:]) mask_image = F.interpolate( mask_image, image_shape, mode="nearest", ) mask_image = prepare_mask(mask_image) masked_image = image * mask_image
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
mask_image = mask_image.repeat_interleave(num_images_per_prompt, dim=0) masked_image = masked_image.repeat_interleave(num_images_per_prompt, dim=0) if do_classifier_free_guidance: mask_image = mask_image.repeat(2, 1, 1, 1) masked_image = masked_image.repeat(2, 1, 1, 1) self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps_tensor = self.scheduler.timesteps num_channels_latents = self.movq.config.latent_channels # get h, w for latents sample_height, sample_width = get_new_h_w(height, width, self.movq_scale_factor) # create initial latent latents = self.prepare_latents( (batch_size, num_channels_latents, sample_height, sample_width), text_encoder_hidden_states.dtype, device, generator, latents, self.scheduler, )
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
# Check that sizes of mask, masked image and latents match with expected num_channels_mask = mask_image.shape[1] num_channels_masked_image = masked_image.shape[1] if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: raise ValueError( f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" " `pipeline.unet` or your `mask_image` or `image` input." )
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py
for i, t in enumerate(self.progress_bar(timesteps_tensor)): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = torch.cat([latent_model_input, masked_image, mask_image], dim=1) added_cond_kwargs = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} noise_pred = self.unet( sample=latent_model_input, timestep=t, encoder_hidden_states=text_encoder_hidden_states, added_cond_kwargs=added_cond_kwargs, return_dict=False, )[0]
75
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/kandinsky/pipeline_kandinsky_inpaint.py