text
stringlengths 1
1.02k
| class_index
int64 0
1.38k
| source
stringclasses 431
values |
---|---|---|
def setup(self):
# self attention (or cross_attention if only_cross_attention is True)
self.attn1 = FlaxAttention(
self.dim,
self.n_heads,
self.d_head,
self.dropout,
self.use_memory_efficient_attention,
self.split_head_dim,
dtype=self.dtype,
)
# cross attention
self.attn2 = FlaxAttention(
self.dim,
self.n_heads,
self.d_head,
self.dropout,
self.use_memory_efficient_attention,
self.split_head_dim,
dtype=self.dtype,
)
self.ff = FlaxFeedForward(dim=self.dim, dropout=self.dropout, dtype=self.dtype)
self.norm1 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
self.norm2 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
self.norm3 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
self.dropout_layer = nn.Dropout(rate=self.dropout) | 853 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_flax.py |
def __call__(self, hidden_states, context, deterministic=True):
# self attention
residual = hidden_states
if self.only_cross_attention:
hidden_states = self.attn1(self.norm1(hidden_states), context, deterministic=deterministic)
else:
hidden_states = self.attn1(self.norm1(hidden_states), deterministic=deterministic)
hidden_states = hidden_states + residual
# cross attention
residual = hidden_states
hidden_states = self.attn2(self.norm2(hidden_states), context, deterministic=deterministic)
hidden_states = hidden_states + residual
# feed forward
residual = hidden_states
hidden_states = self.ff(self.norm3(hidden_states), deterministic=deterministic)
hidden_states = hidden_states + residual
return self.dropout_layer(hidden_states, deterministic=deterministic) | 853 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_flax.py |
class FlaxTransformer2DModel(nn.Module):
r"""
A Spatial Transformer layer with Gated Linear Unit (GLU) activation function as described in:
https://arxiv.org/pdf/1506.02025.pdf | 854 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_flax.py |
Parameters:
in_channels (:obj:`int`):
Input number of channels
n_heads (:obj:`int`):
Number of heads
d_head (:obj:`int`):
Hidden states dimension inside each head
depth (:obj:`int`, *optional*, defaults to 1):
Number of transformers block
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
use_linear_projection (`bool`, defaults to `False`): tbd
only_cross_attention (`bool`, defaults to `False`): tbd
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
enable memory efficient attention https://arxiv.org/abs/2112.05682
split_head_dim (`bool`, *optional*, defaults to `False`):
Whether to split the head dimension into a new axis for the self-attention computation. In most cases, | 854 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_flax.py |
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL.
""" | 854 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_flax.py |
in_channels: int
n_heads: int
d_head: int
depth: int = 1
dropout: float = 0.0
use_linear_projection: bool = False
only_cross_attention: bool = False
dtype: jnp.dtype = jnp.float32
use_memory_efficient_attention: bool = False
split_head_dim: bool = False
def setup(self):
self.norm = nn.GroupNorm(num_groups=32, epsilon=1e-5)
inner_dim = self.n_heads * self.d_head
if self.use_linear_projection:
self.proj_in = nn.Dense(inner_dim, dtype=self.dtype)
else:
self.proj_in = nn.Conv(
inner_dim,
kernel_size=(1, 1),
strides=(1, 1),
padding="VALID",
dtype=self.dtype,
) | 854 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_flax.py |
self.transformer_blocks = [
FlaxBasicTransformerBlock(
inner_dim,
self.n_heads,
self.d_head,
dropout=self.dropout,
only_cross_attention=self.only_cross_attention,
dtype=self.dtype,
use_memory_efficient_attention=self.use_memory_efficient_attention,
split_head_dim=self.split_head_dim,
)
for _ in range(self.depth)
]
if self.use_linear_projection:
self.proj_out = nn.Dense(inner_dim, dtype=self.dtype)
else:
self.proj_out = nn.Conv(
inner_dim,
kernel_size=(1, 1),
strides=(1, 1),
padding="VALID",
dtype=self.dtype,
)
self.dropout_layer = nn.Dropout(rate=self.dropout) | 854 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_flax.py |
def __call__(self, hidden_states, context, deterministic=True):
batch, height, width, channels = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
if self.use_linear_projection:
hidden_states = hidden_states.reshape(batch, height * width, channels)
hidden_states = self.proj_in(hidden_states)
else:
hidden_states = self.proj_in(hidden_states)
hidden_states = hidden_states.reshape(batch, height * width, channels)
for transformer_block in self.transformer_blocks:
hidden_states = transformer_block(hidden_states, context, deterministic=deterministic) | 854 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_flax.py |
if self.use_linear_projection:
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(batch, height, width, channels)
else:
hidden_states = hidden_states.reshape(batch, height, width, channels)
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states + residual
return self.dropout_layer(hidden_states, deterministic=deterministic) | 854 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_flax.py |
class FlaxFeedForward(nn.Module):
r"""
Flax module that encapsulates two Linear layers separated by a non-linearity. It is the counterpart of PyTorch's
[`FeedForward`] class, with the following simplifications:
- The activation function is currently hardcoded to a gated linear unit from:
https://arxiv.org/abs/2002.05202
- `dim_out` is equal to `dim`.
- The number of hidden dimensions is hardcoded to `dim * 4` in [`FlaxGELU`].
Parameters:
dim (:obj:`int`):
Inner hidden states dimension
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
dim: int
dropout: float = 0.0
dtype: jnp.dtype = jnp.float32 | 855 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_flax.py |
def setup(self):
# The second linear layer needs to be called
# net_2 for now to match the index of the Sequential layer
self.net_0 = FlaxGEGLU(self.dim, self.dropout, self.dtype)
self.net_2 = nn.Dense(self.dim, dtype=self.dtype)
def __call__(self, hidden_states, deterministic=True):
hidden_states = self.net_0(hidden_states, deterministic=deterministic)
hidden_states = self.net_2(hidden_states)
return hidden_states | 855 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_flax.py |
class FlaxGEGLU(nn.Module):
r"""
Flax implementation of a Linear layer followed by the variant of the gated linear unit activation function from
https://arxiv.org/abs/2002.05202.
Parameters:
dim (:obj:`int`):
Input hidden states dimension
dropout (:obj:`float`, *optional*, defaults to 0.0):
Dropout rate
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
Parameters `dtype`
"""
dim: int
dropout: float = 0.0
dtype: jnp.dtype = jnp.float32
def setup(self):
inner_dim = self.dim * 4
self.proj = nn.Dense(inner_dim * 2, dtype=self.dtype)
self.dropout_layer = nn.Dropout(rate=self.dropout)
def __call__(self, hidden_states, deterministic=True):
hidden_states = self.proj(hidden_states)
hidden_linear, hidden_gelu = jnp.split(hidden_states, 2, axis=2)
return self.dropout_layer(hidden_linear * nn.gelu(hidden_gelu), deterministic=deterministic) | 856 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_flax.py |
class FlaxUpsample2D(nn.Module):
out_channels: int
dtype: jnp.dtype = jnp.float32
def setup(self):
self.conv = nn.Conv(
self.out_channels,
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
def __call__(self, hidden_states):
batch, height, width, channels = hidden_states.shape
hidden_states = jax.image.resize(
hidden_states,
shape=(batch, height * 2, width * 2, channels),
method="nearest",
)
hidden_states = self.conv(hidden_states)
return hidden_states | 857 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/resnet_flax.py |
class FlaxDownsample2D(nn.Module):
out_channels: int
dtype: jnp.dtype = jnp.float32
def setup(self):
self.conv = nn.Conv(
self.out_channels,
kernel_size=(3, 3),
strides=(2, 2),
padding=((1, 1), (1, 1)), # padding="VALID",
dtype=self.dtype,
)
def __call__(self, hidden_states):
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
hidden_states = self.conv(hidden_states)
return hidden_states | 858 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/resnet_flax.py |
class FlaxResnetBlock2D(nn.Module):
in_channels: int
out_channels: int = None
dropout_prob: float = 0.0
use_nin_shortcut: bool = None
dtype: jnp.dtype = jnp.float32
def setup(self):
out_channels = self.in_channels if self.out_channels is None else self.out_channels
self.norm1 = nn.GroupNorm(num_groups=32, epsilon=1e-5)
self.conv1 = nn.Conv(
out_channels,
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
)
self.time_emb_proj = nn.Dense(out_channels, dtype=self.dtype)
self.norm2 = nn.GroupNorm(num_groups=32, epsilon=1e-5)
self.dropout = nn.Dropout(self.dropout_prob)
self.conv2 = nn.Conv(
out_channels,
kernel_size=(3, 3),
strides=(1, 1),
padding=((1, 1), (1, 1)),
dtype=self.dtype,
) | 859 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/resnet_flax.py |
use_nin_shortcut = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
self.conv_shortcut = None
if use_nin_shortcut:
self.conv_shortcut = nn.Conv(
out_channels,
kernel_size=(1, 1),
strides=(1, 1),
padding="VALID",
dtype=self.dtype,
)
def __call__(self, hidden_states, temb, deterministic=True):
residual = hidden_states
hidden_states = self.norm1(hidden_states)
hidden_states = nn.swish(hidden_states)
hidden_states = self.conv1(hidden_states)
temb = self.time_emb_proj(nn.swish(temb))
temb = jnp.expand_dims(jnp.expand_dims(temb, 1), 1)
hidden_states = hidden_states + temb | 859 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/resnet_flax.py |
hidden_states = self.norm2(hidden_states)
hidden_states = nn.swish(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic)
hidden_states = self.conv2(hidden_states)
if self.conv_shortcut is not None:
residual = self.conv_shortcut(residual)
return hidden_states + residual | 859 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/resnet_flax.py |
class PatchEmbed(nn.Module):
"""
2D Image to Patch Embedding with support for SD3 cropping.
Args:
height (`int`, defaults to `224`): The height of the image.
width (`int`, defaults to `224`): The width of the image.
patch_size (`int`, defaults to `16`): The size of the patches.
in_channels (`int`, defaults to `3`): The number of input channels.
embed_dim (`int`, defaults to `768`): The output dimension of the embedding.
layer_norm (`bool`, defaults to `False`): Whether or not to use layer normalization.
flatten (`bool`, defaults to `True`): Whether or not to flatten the output.
bias (`bool`, defaults to `True`): Whether or not to use bias.
interpolation_scale (`float`, defaults to `1`): The scale of the interpolation.
pos_embed_type (`str`, defaults to `"sincos"`): The type of positional embedding.
pos_embed_max_size (`int`, defaults to `None`): The maximum size of the positional embedding.
""" | 860 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
def __init__(
self,
height=224,
width=224,
patch_size=16,
in_channels=3,
embed_dim=768,
layer_norm=False,
flatten=True,
bias=True,
interpolation_scale=1,
pos_embed_type="sincos",
pos_embed_max_size=None, # For SD3 cropping
):
super().__init__()
num_patches = (height // patch_size) * (width // patch_size)
self.flatten = flatten
self.layer_norm = layer_norm
self.pos_embed_max_size = pos_embed_max_size
self.proj = nn.Conv2d(
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
)
if layer_norm:
self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6)
else:
self.norm = None | 860 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
self.patch_size = patch_size
self.height, self.width = height // patch_size, width // patch_size
self.base_size = height // patch_size
self.interpolation_scale = interpolation_scale
# Calculate positional embeddings based on max size or default
if pos_embed_max_size:
grid_size = pos_embed_max_size
else:
grid_size = int(num_patches**0.5) | 860 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
if pos_embed_type is None:
self.pos_embed = None
elif pos_embed_type == "sincos":
pos_embed = get_2d_sincos_pos_embed(
embed_dim,
grid_size,
base_size=self.base_size,
interpolation_scale=self.interpolation_scale,
output_type="pt",
)
persistent = True if pos_embed_max_size else False
self.register_buffer("pos_embed", pos_embed.float().unsqueeze(0), persistent=persistent)
else:
raise ValueError(f"Unsupported pos_embed_type: {pos_embed_type}")
def cropped_pos_embed(self, height, width):
"""Crops positional embeddings for SD3 compatibility."""
if self.pos_embed_max_size is None:
raise ValueError("`pos_embed_max_size` must be set for cropping.") | 860 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
height = height // self.patch_size
width = width // self.patch_size
if height > self.pos_embed_max_size:
raise ValueError(
f"Height ({height}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
)
if width > self.pos_embed_max_size:
raise ValueError(
f"Width ({width}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
)
top = (self.pos_embed_max_size - height) // 2
left = (self.pos_embed_max_size - width) // 2
spatial_pos_embed = self.pos_embed.reshape(1, self.pos_embed_max_size, self.pos_embed_max_size, -1)
spatial_pos_embed = spatial_pos_embed[:, top : top + height, left : left + width, :]
spatial_pos_embed = spatial_pos_embed.reshape(1, -1, spatial_pos_embed.shape[-1])
return spatial_pos_embed | 860 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
def forward(self, latent):
if self.pos_embed_max_size is not None:
height, width = latent.shape[-2:]
else:
height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size
latent = self.proj(latent)
if self.flatten:
latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC
if self.layer_norm:
latent = self.norm(latent)
if self.pos_embed is None:
return latent.to(latent.dtype)
# Interpolate or crop positional embeddings as needed
if self.pos_embed_max_size:
pos_embed = self.cropped_pos_embed(height, width)
else:
if self.height != height or self.width != width:
pos_embed = get_2d_sincos_pos_embed(
embed_dim=self.pos_embed.shape[-1],
grid_size=(height, width),
base_size=self.base_size,
interpolation_scale=self.interpolation_scale, | 860 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
device=latent.device,
output_type="pt",
)
pos_embed = pos_embed.float().unsqueeze(0)
else:
pos_embed = self.pos_embed | 860 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
return (latent + pos_embed).to(latent.dtype) | 860 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class LuminaPatchEmbed(nn.Module):
"""
2D Image to Patch Embedding with support for Lumina-T2X
Args:
patch_size (`int`, defaults to `2`): The size of the patches.
in_channels (`int`, defaults to `4`): The number of input channels.
embed_dim (`int`, defaults to `768`): The output dimension of the embedding.
bias (`bool`, defaults to `True`): Whether or not to use bias.
"""
def __init__(self, patch_size=2, in_channels=4, embed_dim=768, bias=True):
super().__init__()
self.patch_size = patch_size
self.proj = nn.Linear(
in_features=patch_size * patch_size * in_channels,
out_features=embed_dim,
bias=bias,
)
def forward(self, x, freqs_cis):
"""
Patchifies and embeds the input tensor(s).
Args:
x (List[torch.Tensor] | torch.Tensor): The input tensor(s) to be patchified and embedded. | 861 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
Returns:
Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], torch.Tensor]: A tuple containing the patchified
and embedded tensor(s), the mask indicating the valid patches, the original image size(s), and the
frequency tensor(s).
"""
freqs_cis = freqs_cis.to(x[0].device)
patch_height = patch_width = self.patch_size
batch_size, channel, height, width = x.size()
height_tokens, width_tokens = height // patch_height, width // patch_width
x = x.view(batch_size, channel, height_tokens, patch_height, width_tokens, patch_width).permute(
0, 2, 4, 1, 3, 5
)
x = x.flatten(3)
x = self.proj(x)
x = x.flatten(1, 2)
mask = torch.ones(x.shape[0], x.shape[1], dtype=torch.int32, device=x.device)
return (
x,
mask,
[(height, width)] * batch_size,
freqs_cis[:height_tokens, :width_tokens].flatten(0, 1).unsqueeze(0),
) | 861 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class CogVideoXPatchEmbed(nn.Module):
def __init__(
self,
patch_size: int = 2,
patch_size_t: Optional[int] = None,
in_channels: int = 16,
embed_dim: int = 1920,
text_embed_dim: int = 4096,
bias: bool = True,
sample_width: int = 90,
sample_height: int = 60,
sample_frames: int = 49,
temporal_compression_ratio: int = 4,
max_text_seq_length: int = 226,
spatial_interpolation_scale: float = 1.875,
temporal_interpolation_scale: float = 1.0,
use_positional_embeddings: bool = True,
use_learned_positional_embeddings: bool = True,
) -> None:
super().__init__() | 862 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
self.patch_size = patch_size
self.patch_size_t = patch_size_t
self.embed_dim = embed_dim
self.sample_height = sample_height
self.sample_width = sample_width
self.sample_frames = sample_frames
self.temporal_compression_ratio = temporal_compression_ratio
self.max_text_seq_length = max_text_seq_length
self.spatial_interpolation_scale = spatial_interpolation_scale
self.temporal_interpolation_scale = temporal_interpolation_scale
self.use_positional_embeddings = use_positional_embeddings
self.use_learned_positional_embeddings = use_learned_positional_embeddings | 862 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
if patch_size_t is None:
# CogVideoX 1.0 checkpoints
self.proj = nn.Conv2d(
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
)
else:
# CogVideoX 1.5 checkpoints
self.proj = nn.Linear(in_channels * patch_size * patch_size * patch_size_t, embed_dim)
self.text_proj = nn.Linear(text_embed_dim, embed_dim)
if use_positional_embeddings or use_learned_positional_embeddings:
persistent = use_learned_positional_embeddings
pos_embedding = self._get_positional_embeddings(sample_height, sample_width, sample_frames)
self.register_buffer("pos_embedding", pos_embedding, persistent=persistent) | 862 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
def _get_positional_embeddings(
self, sample_height: int, sample_width: int, sample_frames: int, device: Optional[torch.device] = None
) -> torch.Tensor:
post_patch_height = sample_height // self.patch_size
post_patch_width = sample_width // self.patch_size
post_time_compression_frames = (sample_frames - 1) // self.temporal_compression_ratio + 1
num_patches = post_patch_height * post_patch_width * post_time_compression_frames | 862 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
pos_embedding = get_3d_sincos_pos_embed(
self.embed_dim,
(post_patch_width, post_patch_height),
post_time_compression_frames,
self.spatial_interpolation_scale,
self.temporal_interpolation_scale,
device=device,
output_type="pt",
)
pos_embedding = pos_embedding.flatten(0, 1)
joint_pos_embedding = pos_embedding.new_zeros(
1, self.max_text_seq_length + num_patches, self.embed_dim, requires_grad=False
)
joint_pos_embedding.data[:, self.max_text_seq_length :].copy_(pos_embedding)
return joint_pos_embedding | 862 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
r"""
Args:
text_embeds (`torch.Tensor`):
Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim).
image_embeds (`torch.Tensor`):
Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width).
"""
text_embeds = self.text_proj(text_embeds)
batch_size, num_frames, channels, height, width = image_embeds.shape | 862 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
if self.patch_size_t is None:
image_embeds = image_embeds.reshape(-1, channels, height, width)
image_embeds = self.proj(image_embeds)
image_embeds = image_embeds.view(batch_size, num_frames, *image_embeds.shape[1:])
image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels]
image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels]
else:
p = self.patch_size
p_t = self.patch_size_t
image_embeds = image_embeds.permute(0, 1, 3, 4, 2)
image_embeds = image_embeds.reshape(
batch_size, num_frames // p_t, p_t, height // p, p, width // p, p, channels
)
image_embeds = image_embeds.permute(0, 1, 3, 5, 7, 2, 4, 6).flatten(4, 7).flatten(1, 3)
image_embeds = self.proj(image_embeds) | 862 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
embeds = torch.cat(
[text_embeds, image_embeds], dim=1
).contiguous() # [batch, seq_length + num_frames x height x width, channels]
if self.use_positional_embeddings or self.use_learned_positional_embeddings:
if self.use_learned_positional_embeddings and (self.sample_width != width or self.sample_height != height):
raise ValueError(
"It is currently not possible to generate videos at a different resolution that the defaults. This should only be the case with 'THUDM/CogVideoX-5b-I2V'."
"If you think this is incorrect, please open an issue at https://github.com/huggingface/diffusers/issues."
)
pre_time_compression_frames = (num_frames - 1) * self.temporal_compression_ratio + 1 | 862 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
if (
self.sample_height != height
or self.sample_width != width
or self.sample_frames != pre_time_compression_frames
):
pos_embedding = self._get_positional_embeddings(
height, width, pre_time_compression_frames, device=embeds.device
)
else:
pos_embedding = self.pos_embedding
pos_embedding = pos_embedding.to(dtype=embeds.dtype)
embeds = embeds + pos_embedding
return embeds | 862 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class CogView3PlusPatchEmbed(nn.Module):
def __init__(
self,
in_channels: int = 16,
hidden_size: int = 2560,
patch_size: int = 2,
text_hidden_size: int = 4096,
pos_embed_max_size: int = 128,
):
super().__init__()
self.in_channels = in_channels
self.hidden_size = hidden_size
self.patch_size = patch_size
self.text_hidden_size = text_hidden_size
self.pos_embed_max_size = pos_embed_max_size
# Linear projection for image patches
self.proj = nn.Linear(in_channels * patch_size**2, hidden_size)
# Linear projection for text embeddings
self.text_proj = nn.Linear(text_hidden_size, hidden_size) | 863 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
pos_embed = get_2d_sincos_pos_embed(
hidden_size, pos_embed_max_size, base_size=pos_embed_max_size, output_type="pt"
)
pos_embed = pos_embed.reshape(pos_embed_max_size, pos_embed_max_size, hidden_size)
self.register_buffer("pos_embed", pos_embed.float(), persistent=False)
def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, channel, height, width = hidden_states.shape
if height % self.patch_size != 0 or width % self.patch_size != 0:
raise ValueError("Height and width must be divisible by patch size") | 863 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
height = height // self.patch_size
width = width // self.patch_size
hidden_states = hidden_states.view(batch_size, channel, height, self.patch_size, width, self.patch_size)
hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5).contiguous()
hidden_states = hidden_states.view(batch_size, height * width, channel * self.patch_size * self.patch_size)
# Project the patches
hidden_states = self.proj(hidden_states)
encoder_hidden_states = self.text_proj(encoder_hidden_states)
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
# Calculate text_length
text_length = encoder_hidden_states.shape[1] | 863 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
image_pos_embed = self.pos_embed[:height, :width].reshape(height * width, -1)
text_pos_embed = torch.zeros(
(text_length, self.hidden_size), dtype=image_pos_embed.dtype, device=image_pos_embed.device
)
pos_embed = torch.cat([text_pos_embed, image_pos_embed], dim=0)[None, ...]
return (hidden_states + pos_embed).to(hidden_states.dtype) | 863 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class FluxPosEmbed(nn.Module):
# modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11
def __init__(self, theta: int, axes_dim: List[int]):
super().__init__()
self.theta = theta
self.axes_dim = axes_dim | 864 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
def forward(self, ids: torch.Tensor) -> torch.Tensor:
n_axes = ids.shape[-1]
cos_out = []
sin_out = []
pos = ids.float()
is_mps = ids.device.type == "mps"
is_npu = ids.device.type == "npu"
freqs_dtype = torch.float32 if (is_mps or is_npu) else torch.float64
for i in range(n_axes):
cos, sin = get_1d_rotary_pos_embed(
self.axes_dim[i],
pos[:, i],
theta=self.theta,
repeat_interleave_real=True,
use_real=True,
freqs_dtype=freqs_dtype,
)
cos_out.append(cos)
sin_out.append(sin)
freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device)
freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device)
return freqs_cos, freqs_sin | 864 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class TimestepEmbedding(nn.Module):
def __init__(
self,
in_channels: int,
time_embed_dim: int,
act_fn: str = "silu",
out_dim: int = None,
post_act_fn: Optional[str] = None,
cond_proj_dim=None,
sample_proj_bias=True,
):
super().__init__()
self.linear_1 = nn.Linear(in_channels, time_embed_dim, sample_proj_bias)
if cond_proj_dim is not None:
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
else:
self.cond_proj = None
self.act = get_activation(act_fn)
if out_dim is not None:
time_embed_dim_out = out_dim
else:
time_embed_dim_out = time_embed_dim
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias)
if post_act_fn is None:
self.post_act = None
else:
self.post_act = get_activation(post_act_fn) | 865 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
def forward(self, sample, condition=None):
if condition is not None:
sample = sample + self.cond_proj(condition)
sample = self.linear_1(sample)
if self.act is not None:
sample = self.act(sample)
sample = self.linear_2(sample)
if self.post_act is not None:
sample = self.post_act(sample)
return sample | 865 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class Timesteps(nn.Module):
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1):
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
self.scale = scale
def forward(self, timesteps):
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift,
scale=self.scale,
)
return t_emb | 866 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class GaussianFourierProjection(nn.Module):
"""Gaussian Fourier embeddings for noise levels."""
def __init__(
self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False
):
super().__init__()
self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
self.log = log
self.flip_sin_to_cos = flip_sin_to_cos
if set_W_to_weight:
# to delete later
del self.weight
self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
self.weight = self.W
del self.W
def forward(self, x):
if self.log:
x = torch.log(x)
x_proj = x[:, None] * self.weight[None, :] * 2 * np.pi | 867 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
if self.flip_sin_to_cos:
out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1)
else:
out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
return out | 867 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class SinusoidalPositionalEmbedding(nn.Module):
"""Apply positional information to a sequence of embeddings.
Takes in a sequence of embeddings with shape (batch_size, seq_length, embed_dim) and adds positional embeddings to
them
Args:
embed_dim: (int): Dimension of the positional embedding.
max_seq_length: Maximum sequence length to apply positional embeddings
"""
def __init__(self, embed_dim: int, max_seq_length: int = 32):
super().__init__()
position = torch.arange(max_seq_length).unsqueeze(1)
div_term = torch.exp(torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim))
pe = torch.zeros(1, max_seq_length, embed_dim)
pe[0, :, 0::2] = torch.sin(position * div_term)
pe[0, :, 1::2] = torch.cos(position * div_term)
self.register_buffer("pe", pe)
def forward(self, x):
_, seq_length, _ = x.shape
x = x + self.pe[:, :seq_length]
return x | 868 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class ImagePositionalEmbeddings(nn.Module):
"""
Converts latent image classes into vector embeddings. Sums the vector embeddings with positional embeddings for the
height and width of the latent space.
For more details, see figure 10 of the dall-e paper: https://arxiv.org/abs/2102.12092
For VQ-diffusion:
Output vector embeddings are used as input for the transformer.
Note that the vector embeddings for the transformer are different than the vector embeddings from the VQVAE.
Args:
num_embed (`int`):
Number of embeddings for the latent pixels embeddings.
height (`int`):
Height of the latent image i.e. the number of height embeddings.
width (`int`):
Width of the latent image i.e. the number of width embeddings.
embed_dim (`int`):
Dimension of the produced vector embeddings. Used for the latent pixel, height, and width embeddings.
""" | 869 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
def __init__(
self,
num_embed: int,
height: int,
width: int,
embed_dim: int,
):
super().__init__()
self.height = height
self.width = width
self.num_embed = num_embed
self.embed_dim = embed_dim
self.emb = nn.Embedding(self.num_embed, embed_dim)
self.height_emb = nn.Embedding(self.height, embed_dim)
self.width_emb = nn.Embedding(self.width, embed_dim)
def forward(self, index):
emb = self.emb(index)
height_emb = self.height_emb(torch.arange(self.height, device=index.device).view(1, self.height))
# 1 x H x D -> 1 x H x 1 x D
height_emb = height_emb.unsqueeze(2)
width_emb = self.width_emb(torch.arange(self.width, device=index.device).view(1, self.width))
# 1 x W x D -> 1 x 1 x W x D
width_emb = width_emb.unsqueeze(1)
pos_emb = height_emb + width_emb | 869 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
# 1 x H x W x D -> 1 x L xD
pos_emb = pos_emb.view(1, self.height * self.width, -1)
emb = emb + pos_emb[:, : emb.shape[1], :]
return emb | 869 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class LabelEmbedding(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
Args:
num_classes (`int`): The number of classes.
hidden_size (`int`): The size of the vector embeddings.
dropout_prob (`float`): The probability of dropping a label.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob | 870 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
else:
drop_ids = torch.tensor(force_drop_ids == 1)
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels: torch.LongTensor, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (self.training and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings | 870 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class TextImageProjection(nn.Module):
def __init__(
self,
text_embed_dim: int = 1024,
image_embed_dim: int = 768,
cross_attention_dim: int = 768,
num_image_text_embeds: int = 10,
):
super().__init__()
self.num_image_text_embeds = num_image_text_embeds
self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
self.text_proj = nn.Linear(text_embed_dim, cross_attention_dim)
def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
batch_size = text_embeds.shape[0]
# image
image_text_embeds = self.image_embeds(image_embeds)
image_text_embeds = image_text_embeds.reshape(batch_size, self.num_image_text_embeds, -1)
# text
text_embeds = self.text_proj(text_embeds)
return torch.cat([image_text_embeds, text_embeds], dim=1) | 871 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class ImageProjection(nn.Module):
def __init__(
self,
image_embed_dim: int = 768,
cross_attention_dim: int = 768,
num_image_text_embeds: int = 32,
):
super().__init__()
self.num_image_text_embeds = num_image_text_embeds
self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
self.norm = nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds: torch.Tensor):
batch_size = image_embeds.shape[0]
# image
image_embeds = self.image_embeds(image_embeds.to(self.image_embeds.weight.dtype))
image_embeds = image_embeds.reshape(batch_size, self.num_image_text_embeds, -1)
image_embeds = self.norm(image_embeds)
return image_embeds | 872 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class IPAdapterFullImageProjection(nn.Module):
def __init__(self, image_embed_dim=1024, cross_attention_dim=1024):
super().__init__()
from .attention import FeedForward
self.ff = FeedForward(image_embed_dim, cross_attention_dim, mult=1, activation_fn="gelu")
self.norm = nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds: torch.Tensor):
return self.norm(self.ff(image_embeds)) | 873 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class IPAdapterFaceIDImageProjection(nn.Module):
def __init__(self, image_embed_dim=1024, cross_attention_dim=1024, mult=1, num_tokens=1):
super().__init__()
from .attention import FeedForward
self.num_tokens = num_tokens
self.cross_attention_dim = cross_attention_dim
self.ff = FeedForward(image_embed_dim, cross_attention_dim * num_tokens, mult=mult, activation_fn="gelu")
self.norm = nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds: torch.Tensor):
x = self.ff(image_embeds)
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
return self.norm(x) | 874 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class CombinedTimestepLabelEmbeddings(nn.Module):
def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=1)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.class_embedder = LabelEmbedding(num_classes, embedding_dim, class_dropout_prob)
def forward(self, timestep, class_labels, hidden_dtype=None):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
class_labels = self.class_embedder(class_labels) # (N, D)
conditioning = timesteps_emb + class_labels # (N, D)
return conditioning | 875 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class CombinedTimestepTextProjEmbeddings(nn.Module):
def __init__(self, embedding_dim, pooled_projection_dim):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
def forward(self, timestep, pooled_projection):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D)
pooled_projections = self.text_embedder(pooled_projection)
conditioning = timesteps_emb + pooled_projections
return conditioning | 876 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module):
def __init__(self, embedding_dim, pooled_projection_dim):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
def forward(self, timestep, guidance, pooled_projection):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D)
guidance_proj = self.time_proj(guidance)
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype)) # (N, D)
time_guidance_emb = timesteps_emb + guidance_emb | 877 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
pooled_projections = self.text_embedder(pooled_projection)
conditioning = time_guidance_emb + pooled_projections
return conditioning | 877 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class CogView3CombinedTimestepSizeEmbeddings(nn.Module):
def __init__(self, embedding_dim: int, condition_dim: int, pooled_projection_dim: int, timesteps_dim: int = 256):
super().__init__()
self.time_proj = Timesteps(num_channels=timesteps_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
self.condition_proj = Timesteps(num_channels=condition_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=timesteps_dim, time_embed_dim=embedding_dim)
self.condition_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
def forward(
self,
timestep: torch.Tensor,
original_size: torch.Tensor,
target_size: torch.Tensor,
crop_coords: torch.Tensor,
hidden_dtype: torch.dtype,
) -> torch.Tensor:
timesteps_proj = self.time_proj(timestep) | 878 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
original_size_proj = self.condition_proj(original_size.flatten()).view(original_size.size(0), -1)
crop_coords_proj = self.condition_proj(crop_coords.flatten()).view(crop_coords.size(0), -1)
target_size_proj = self.condition_proj(target_size.flatten()).view(target_size.size(0), -1)
# (B, 3 * condition_dim)
condition_proj = torch.cat([original_size_proj, crop_coords_proj, target_size_proj], dim=1)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (B, embedding_dim)
condition_emb = self.condition_embedder(condition_proj.to(dtype=hidden_dtype)) # (B, embedding_dim)
conditioning = timesteps_emb + condition_emb
return conditioning | 878 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class HunyuanDiTAttentionPool(nn.Module):
# Copied from https://github.com/Tencent/HunyuanDiT/blob/cb709308d92e6c7e8d59d0dff41b74d35088db6a/hydit/modules/poolers.py#L6
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
super().__init__()
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim + 1, embed_dim) / embed_dim**0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads | 879 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
def forward(self, x):
x = x.permute(1, 0, 2) # NLC -> LNC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (L+1)NC
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (L+1)NC
x, _ = F.multi_head_attention_forward(
query=x[:1],
key=x,
value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False,
) | 879 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
return x.squeeze(0) | 879 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class HunyuanCombinedTimestepTextSizeStyleEmbedding(nn.Module):
def __init__(
self,
embedding_dim,
pooled_projection_dim=1024,
seq_len=256,
cross_attention_dim=2048,
use_style_cond_and_image_meta_size=True,
):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.size_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.pooler = HunyuanDiTAttentionPool(
seq_len, cross_attention_dim, num_heads=8, output_dim=pooled_projection_dim
) | 880 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
# Here we use a default learned embedder layer for future extension.
self.use_style_cond_and_image_meta_size = use_style_cond_and_image_meta_size
if use_style_cond_and_image_meta_size:
self.style_embedder = nn.Embedding(1, embedding_dim)
extra_in_dim = 256 * 6 + embedding_dim + pooled_projection_dim
else:
extra_in_dim = pooled_projection_dim
self.extra_embedder = PixArtAlphaTextProjection(
in_features=extra_in_dim,
hidden_size=embedding_dim * 4,
out_features=embedding_dim,
act_fn="silu_fp32",
)
def forward(self, timestep, encoder_hidden_states, image_meta_size, style, hidden_dtype=None):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, 256)
# extra condition1: text
pooled_projections = self.pooler(encoder_hidden_states) # (N, 1024) | 880 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
if self.use_style_cond_and_image_meta_size:
# extra condition2: image meta size embedding
image_meta_size = self.size_proj(image_meta_size.view(-1))
image_meta_size = image_meta_size.to(dtype=hidden_dtype)
image_meta_size = image_meta_size.view(-1, 6 * 256) # (N, 1536)
# extra condition3: style embedding
style_embedding = self.style_embedder(style) # (N, embedding_dim)
# Concatenate all extra vectors
extra_cond = torch.cat([pooled_projections, image_meta_size, style_embedding], dim=1)
else:
extra_cond = torch.cat([pooled_projections], dim=1)
conditioning = timesteps_emb + self.extra_embedder(extra_cond) # [B, D]
return conditioning | 880 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class LuminaCombinedTimestepCaptionEmbedding(nn.Module):
def __init__(self, hidden_size=4096, cross_attention_dim=2048, frequency_embedding_size=256):
super().__init__()
self.time_proj = Timesteps(
num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0.0
)
self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=hidden_size)
self.caption_embedder = nn.Sequential(
nn.LayerNorm(cross_attention_dim),
nn.Linear(
cross_attention_dim,
hidden_size,
bias=True,
),
)
def forward(self, timestep, caption_feat, caption_mask):
# timestep embedding:
time_freq = self.time_proj(timestep)
time_embed = self.timestep_embedder(time_freq.to(dtype=self.timestep_embedder.linear_1.weight.dtype)) | 881 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
# caption condition embedding:
caption_mask_float = caption_mask.float().unsqueeze(-1)
caption_feats_pool = (caption_feat * caption_mask_float).sum(dim=1) / caption_mask_float.sum(dim=1)
caption_feats_pool = caption_feats_pool.to(caption_feat)
caption_embed = self.caption_embedder(caption_feats_pool)
conditioning = time_embed + caption_embed
return conditioning | 881 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class MochiCombinedTimestepCaptionEmbedding(nn.Module):
def __init__(
self,
embedding_dim: int,
pooled_projection_dim: int,
text_embed_dim: int,
time_embed_dim: int = 256,
num_attention_heads: int = 8,
) -> None:
super().__init__()
self.time_proj = Timesteps(num_channels=time_embed_dim, flip_sin_to_cos=True, downscale_freq_shift=0.0)
self.timestep_embedder = TimestepEmbedding(in_channels=time_embed_dim, time_embed_dim=embedding_dim)
self.pooler = MochiAttentionPool(
num_attention_heads=num_attention_heads, embed_dim=text_embed_dim, output_dim=embedding_dim
)
self.caption_proj = nn.Linear(text_embed_dim, pooled_projection_dim) | 882 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
def forward(
self,
timestep: torch.LongTensor,
encoder_hidden_states: torch.Tensor,
encoder_attention_mask: torch.Tensor,
hidden_dtype: Optional[torch.dtype] = None,
):
time_proj = self.time_proj(timestep)
time_emb = self.timestep_embedder(time_proj.to(dtype=hidden_dtype))
pooled_projections = self.pooler(encoder_hidden_states, encoder_attention_mask)
caption_proj = self.caption_proj(encoder_hidden_states)
conditioning = time_emb + pooled_projections
return conditioning, caption_proj | 882 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class TextTimeEmbedding(nn.Module):
def __init__(self, encoder_dim: int, time_embed_dim: int, num_heads: int = 64):
super().__init__()
self.norm1 = nn.LayerNorm(encoder_dim)
self.pool = AttentionPooling(num_heads, encoder_dim)
self.proj = nn.Linear(encoder_dim, time_embed_dim)
self.norm2 = nn.LayerNorm(time_embed_dim)
def forward(self, hidden_states):
hidden_states = self.norm1(hidden_states)
hidden_states = self.pool(hidden_states)
hidden_states = self.proj(hidden_states)
hidden_states = self.norm2(hidden_states)
return hidden_states | 883 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class TextImageTimeEmbedding(nn.Module):
def __init__(self, text_embed_dim: int = 768, image_embed_dim: int = 768, time_embed_dim: int = 1536):
super().__init__()
self.text_proj = nn.Linear(text_embed_dim, time_embed_dim)
self.text_norm = nn.LayerNorm(time_embed_dim)
self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
# text
time_text_embeds = self.text_proj(text_embeds)
time_text_embeds = self.text_norm(time_text_embeds)
# image
time_image_embeds = self.image_proj(image_embeds)
return time_image_embeds + time_text_embeds | 884 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class ImageTimeEmbedding(nn.Module):
def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536):
super().__init__()
self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
self.image_norm = nn.LayerNorm(time_embed_dim)
def forward(self, image_embeds: torch.Tensor):
# image
time_image_embeds = self.image_proj(image_embeds)
time_image_embeds = self.image_norm(time_image_embeds)
return time_image_embeds | 885 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class ImageHintTimeEmbedding(nn.Module):
def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536):
super().__init__()
self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
self.image_norm = nn.LayerNorm(time_embed_dim)
self.input_hint_block = nn.Sequential(
nn.Conv2d(3, 16, 3, padding=1),
nn.SiLU(),
nn.Conv2d(16, 16, 3, padding=1),
nn.SiLU(),
nn.Conv2d(16, 32, 3, padding=1, stride=2),
nn.SiLU(),
nn.Conv2d(32, 32, 3, padding=1),
nn.SiLU(),
nn.Conv2d(32, 96, 3, padding=1, stride=2),
nn.SiLU(),
nn.Conv2d(96, 96, 3, padding=1),
nn.SiLU(),
nn.Conv2d(96, 256, 3, padding=1, stride=2),
nn.SiLU(),
nn.Conv2d(256, 4, 3, padding=1),
) | 886 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
def forward(self, image_embeds: torch.Tensor, hint: torch.Tensor):
# image
time_image_embeds = self.image_proj(image_embeds)
time_image_embeds = self.image_norm(time_image_embeds)
hint = self.input_hint_block(hint)
return time_image_embeds, hint | 886 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class AttentionPooling(nn.Module):
# Copied from https://github.com/deep-floyd/IF/blob/2f91391f27dd3c468bf174be5805b4cc92980c0b/deepfloyd_if/model/nn.py#L54
def __init__(self, num_heads, embed_dim, dtype=None):
super().__init__()
self.dtype = dtype
self.positional_embedding = nn.Parameter(torch.randn(1, embed_dim) / embed_dim**0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
self.q_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
self.v_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
self.num_heads = num_heads
self.dim_per_head = embed_dim // self.num_heads
def forward(self, x):
bs, length, width = x.size() | 887 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
def shape(x):
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, -1, self.num_heads, self.dim_per_head)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
x = x.transpose(1, 2)
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
x = x.reshape(bs * self.num_heads, -1, self.dim_per_head)
# (bs*n_heads, length, dim_per_head) --> (bs*n_heads, dim_per_head, length)
x = x.transpose(1, 2)
return x
class_token = x.mean(dim=1, keepdim=True) + self.positional_embedding.to(x.dtype)
x = torch.cat([class_token, x], dim=1) # (bs, length+1, width)
# (bs*n_heads, class_token_length, dim_per_head)
q = shape(self.q_proj(class_token))
# (bs*n_heads, length+class_token_length, dim_per_head)
k = shape(self.k_proj(x))
v = shape(self.v_proj(x)) | 887 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
# (bs*n_heads, class_token_length, length+class_token_length):
scale = 1 / math.sqrt(math.sqrt(self.dim_per_head))
weight = torch.einsum("bct,bcs->bts", q * scale, k * scale) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
# (bs*n_heads, dim_per_head, class_token_length)
a = torch.einsum("bts,bcs->bct", weight, v)
# (bs, length+1, width)
a = a.reshape(bs, -1, 1).transpose(1, 2)
return a[:, 0, :] # cls_token | 887 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class MochiAttentionPool(nn.Module):
def __init__(
self,
num_attention_heads: int,
embed_dim: int,
output_dim: Optional[int] = None,
) -> None:
super().__init__()
self.output_dim = output_dim or embed_dim
self.num_attention_heads = num_attention_heads
self.to_kv = nn.Linear(embed_dim, 2 * embed_dim)
self.to_q = nn.Linear(embed_dim, embed_dim)
self.to_out = nn.Linear(embed_dim, self.output_dim)
@staticmethod
def pool_tokens(x: torch.Tensor, mask: torch.Tensor, *, keepdim=False) -> torch.Tensor:
"""
Pool tokens in x using mask.
NOTE: We assume x does not require gradients.
Args:
x: (B, L, D) tensor of tokens.
mask: (B, L) boolean tensor indicating which tokens are not padding. | 888 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
Returns:
pooled: (B, D) tensor of pooled tokens.
"""
assert x.size(1) == mask.size(1) # Expected mask to have same length as tokens.
assert x.size(0) == mask.size(0) # Expected mask to have same batch size as tokens.
mask = mask[:, :, None].to(dtype=x.dtype)
mask = mask / mask.sum(dim=1, keepdim=True).clamp(min=1)
pooled = (x * mask).sum(dim=1, keepdim=keepdim)
return pooled
def forward(self, x: torch.Tensor, mask: torch.BoolTensor) -> torch.Tensor:
r"""
Args:
x (`torch.Tensor`):
Tensor of shape `(B, S, D)` of input tokens.
mask (`torch.Tensor`):
Boolean ensor of shape `(B, S)` indicating which tokens are not padding.
Returns:
`torch.Tensor`:
`(B, D)` tensor of pooled tokens.
"""
D = x.size(2) | 888 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
# Construct attention mask, shape: (B, 1, num_queries=1, num_keys=1+L).
attn_mask = mask[:, None, None, :].bool() # (B, 1, 1, L).
attn_mask = F.pad(attn_mask, (1, 0), value=True) # (B, 1, 1, 1+L).
# Average non-padding token features. These will be used as the query.
x_pool = self.pool_tokens(x, mask, keepdim=True) # (B, 1, D)
# Concat pooled features to input sequence.
x = torch.cat([x_pool, x], dim=1) # (B, L+1, D)
# Compute queries, keys, values. Only the mean token is used to create a query.
kv = self.to_kv(x) # (B, L+1, 2 * D)
q = self.to_q(x[:, 0]) # (B, D) | 888 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
# Extract heads.
head_dim = D // self.num_attention_heads
kv = kv.unflatten(2, (2, self.num_attention_heads, head_dim)) # (B, 1+L, 2, H, head_dim)
kv = kv.transpose(1, 3) # (B, H, 2, 1+L, head_dim)
k, v = kv.unbind(2) # (B, H, 1+L, head_dim)
q = q.unflatten(1, (self.num_attention_heads, head_dim)) # (B, H, head_dim)
q = q.unsqueeze(2) # (B, H, 1, head_dim)
# Compute attention.
x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=0.0) # (B, H, 1, head_dim)
# Concatenate heads and run output.
x = x.squeeze(2).flatten(1, 2) # (B, D = H * head_dim)
x = self.to_out(x)
return x | 888 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class GLIGENTextBoundingboxProjection(nn.Module):
def __init__(self, positive_len, out_dim, feature_type="text-only", fourier_freqs=8):
super().__init__()
self.positive_len = positive_len
self.out_dim = out_dim
self.fourier_embedder_dim = fourier_freqs
self.position_dim = fourier_freqs * 2 * 4 # 2: sin/cos, 4: xyxy
if isinstance(out_dim, tuple):
out_dim = out_dim[0]
if feature_type == "text-only":
self.linears = nn.Sequential(
nn.Linear(self.positive_len + self.position_dim, 512),
nn.SiLU(),
nn.Linear(512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
)
self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) | 889 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
elif feature_type == "text-image":
self.linears_text = nn.Sequential(
nn.Linear(self.positive_len + self.position_dim, 512),
nn.SiLU(),
nn.Linear(512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
)
self.linears_image = nn.Sequential(
nn.Linear(self.positive_len + self.position_dim, 512),
nn.SiLU(),
nn.Linear(512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
)
self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim])) | 889 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
def forward(
self,
boxes,
masks,
positive_embeddings=None,
phrases_masks=None,
image_masks=None,
phrases_embeddings=None,
image_embeddings=None,
):
masks = masks.unsqueeze(-1)
# embedding position (it may includes padding as placeholder)
xyxy_embedding = get_fourier_embeds_from_boundingbox(self.fourier_embedder_dim, boxes) # B*N*4 -> B*N*C
# learnable null embedding
xyxy_null = self.null_position_feature.view(1, 1, -1)
# replace padding with learnable null embedding
xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null
# positionet with text only information
if positive_embeddings is not None:
# learnable null embedding
positive_null = self.null_positive_feature.view(1, 1, -1) | 889 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
# replace padding with learnable null embedding
positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null
objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1))
# positionet with text and image information
else:
phrases_masks = phrases_masks.unsqueeze(-1)
image_masks = image_masks.unsqueeze(-1)
# learnable null embedding
text_null = self.null_text_feature.view(1, 1, -1)
image_null = self.null_image_feature.view(1, 1, -1)
# replace padding with learnable null embedding
phrases_embeddings = phrases_embeddings * phrases_masks + (1 - phrases_masks) * text_null
image_embeddings = image_embeddings * image_masks + (1 - image_masks) * image_null | 889 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
objs_text = self.linears_text(torch.cat([phrases_embeddings, xyxy_embedding], dim=-1))
objs_image = self.linears_image(torch.cat([image_embeddings, xyxy_embedding], dim=-1))
objs = torch.cat([objs_text, objs_image], dim=1)
return objs | 889 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
"""
For PixArt-Alpha.
Reference:
https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29
"""
def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False):
super().__init__()
self.outdim = size_emb_dim
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) | 890 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
self.use_additional_conditions = use_additional_conditions
if use_additional_conditions:
self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D) | 890 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
if self.use_additional_conditions:
resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype)
resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1)
aspect_ratio_emb = self.additional_condition_proj(aspect_ratio.flatten()).to(hidden_dtype)
aspect_ratio_emb = self.aspect_ratio_embedder(aspect_ratio_emb).reshape(batch_size, -1)
conditioning = timesteps_emb + torch.cat([resolution_emb, aspect_ratio_emb], dim=1)
else:
conditioning = timesteps_emb
return conditioning | 890 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class PixArtAlphaTextProjection(nn.Module):
"""
Projects caption embeddings. Also handles dropout for classifier-free guidance.
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
"""
def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh"):
super().__init__()
if out_features is None:
out_features = hidden_size
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
if act_fn == "gelu_tanh":
self.act_1 = nn.GELU(approximate="tanh")
elif act_fn == "silu":
self.act_1 = nn.SiLU()
elif act_fn == "silu_fp32":
self.act_1 = FP32SiLU()
else:
raise ValueError(f"Unknown activation function: {act_fn}")
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True) | 891 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
def forward(self, caption):
hidden_states = self.linear_1(caption)
hidden_states = self.act_1(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states | 891 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class IPAdapterPlusImageProjectionBlock(nn.Module):
def __init__(
self,
embed_dims: int = 768,
dim_head: int = 64,
heads: int = 16,
ffn_ratio: float = 4,
) -> None:
super().__init__()
from .attention import FeedForward
self.ln0 = nn.LayerNorm(embed_dims)
self.ln1 = nn.LayerNorm(embed_dims)
self.attn = Attention(
query_dim=embed_dims,
dim_head=dim_head,
heads=heads,
out_bias=False,
)
self.ff = nn.Sequential(
nn.LayerNorm(embed_dims),
FeedForward(embed_dims, embed_dims, activation_fn="gelu", mult=ffn_ratio, bias=False),
) | 892 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
def forward(self, x, latents, residual):
encoder_hidden_states = self.ln0(x)
latents = self.ln1(latents)
encoder_hidden_states = torch.cat([encoder_hidden_states, latents], dim=-2)
latents = self.attn(latents, encoder_hidden_states) + residual
latents = self.ff(latents) + latents
return latents | 892 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
class IPAdapterPlusImageProjection(nn.Module):
"""Resampler of IP-Adapter Plus.
Args:
embed_dims (int): The feature dimension. Defaults to 768. output_dims (int): The number of output channels,
that is the same
number of the channels in the `unet.config.cross_attention_dim`. Defaults to 1024.
hidden_dims (int):
The number of hidden channels. Defaults to 1280. depth (int): The number of blocks. Defaults
to 8. dim_head (int): The number of head channels. Defaults to 64. heads (int): Parallel attention heads.
Defaults to 16. num_queries (int):
The number of queries. Defaults to 8. ffn_ratio (float): The expansion ratio
of feedforward network hidden
layer channels. Defaults to 4.
""" | 893 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
def __init__(
self,
embed_dims: int = 768,
output_dims: int = 1024,
hidden_dims: int = 1280,
depth: int = 4,
dim_head: int = 64,
heads: int = 16,
num_queries: int = 8,
ffn_ratio: float = 4,
) -> None:
super().__init__()
self.latents = nn.Parameter(torch.randn(1, num_queries, hidden_dims) / hidden_dims**0.5)
self.proj_in = nn.Linear(embed_dims, hidden_dims)
self.proj_out = nn.Linear(hidden_dims, output_dims)
self.norm_out = nn.LayerNorm(output_dims)
self.layers = nn.ModuleList(
[IPAdapterPlusImageProjectionBlock(hidden_dims, dim_head, heads, ffn_ratio) for _ in range(depth)]
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass.
Args:
x (torch.Tensor): Input Tensor.
Returns:
torch.Tensor: Output Tensor.
"""
latents = self.latents.repeat(x.size(0), 1, 1) | 893 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
x = self.proj_in(x)
for block in self.layers:
residual = latents
latents = block(x, latents, residual)
latents = self.proj_out(latents)
return self.norm_out(latents) | 893 | /Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/embeddings.py |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.