text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
# the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
806
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class CustomDiffusionXFormersAttnProcessor(nn.Module): r""" Processor for implementing memory efficient attention using xFormers for the Custom Diffusion method.
807
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
Args: train_kv (`bool`, defaults to `True`): Whether to newly train the key and value matrices corresponding to the text features. train_q_out (`bool`, defaults to `True`): Whether to newly train query matrices corresponding to the latent image features. hidden_size (`int`, *optional*, defaults to `None`): The hidden size of the attention layer. cross_attention_dim (`int`, *optional*, defaults to `None`): The number of channels in the `encoder_hidden_states`. out_bias (`bool`, defaults to `True`): Whether to include the bias parameter in `train_q_out`. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. attention_op (`Callable`, *optional*, defaults to `None`): The base [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use
807
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator. """
807
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
def __init__( self, train_kv: bool = True, train_q_out: bool = False, hidden_size: Optional[int] = None, cross_attention_dim: Optional[int] = None, out_bias: bool = True, dropout: float = 0.0, attention_op: Optional[Callable] = None, ): super().__init__() self.train_kv = train_kv self.train_q_out = train_q_out self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim self.attention_op = attention_op
807
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
# `_custom_diffusion` id for easy serialization and loading. if self.train_kv: self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) if self.train_q_out: self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False) self.to_out_custom_diffusion = nn.ModuleList([]) self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias)) self.to_out_custom_diffusion.append(nn.Dropout(dropout))
807
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if self.train_q_out: query = self.to_q_custom_diffusion(hidden_states).to(attn.to_q.weight.dtype) else: query = attn.to_q(hidden_states.to(attn.to_q.weight.dtype)) if encoder_hidden_states is None: crossattn = False encoder_hidden_states = hidden_states else: crossattn = True if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
807
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
if self.train_kv: key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype)) value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype)) key = key.to(attn.to_q.weight.dtype) value = value.to(attn.to_q.weight.dtype) else: key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) if crossattn: detach = torch.ones_like(key) detach[:, :1, :] = detach[:, :1, :] * 0.0 key = detach * key + (1 - detach) * key.detach() value = detach * value + (1 - detach) * value.detach() query = attn.head_to_batch_dim(query).contiguous() key = attn.head_to_batch_dim(key).contiguous() value = attn.head_to_batch_dim(value).contiguous()
807
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
hidden_states = xformers.ops.memory_efficient_attention( query, key, value, attn_bias=attention_mask, op=self.attention_op, scale=attn.scale ) hidden_states = hidden_states.to(query.dtype) hidden_states = attn.batch_to_head_dim(hidden_states) if self.train_q_out: # linear proj hidden_states = self.to_out_custom_diffusion[0](hidden_states) # dropout hidden_states = self.to_out_custom_diffusion[1](hidden_states) else: # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) return hidden_states
807
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class CustomDiffusionAttnProcessor2_0(nn.Module): r""" Processor for implementing attention for the Custom Diffusion method using PyTorch 2.0’s memory-efficient scaled dot-product attention. Args: train_kv (`bool`, defaults to `True`): Whether to newly train the key and value matrices corresponding to the text features. train_q_out (`bool`, defaults to `True`): Whether to newly train query matrices corresponding to the latent image features. hidden_size (`int`, *optional*, defaults to `None`): The hidden size of the attention layer. cross_attention_dim (`int`, *optional*, defaults to `None`): The number of channels in the `encoder_hidden_states`. out_bias (`bool`, defaults to `True`): Whether to include the bias parameter in `train_q_out`. dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. """
808
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
def __init__( self, train_kv: bool = True, train_q_out: bool = True, hidden_size: Optional[int] = None, cross_attention_dim: Optional[int] = None, out_bias: bool = True, dropout: float = 0.0, ): super().__init__() self.train_kv = train_kv self.train_q_out = train_q_out self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim
808
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
# `_custom_diffusion` id for easy serialization and loading. if self.train_kv: self.to_k_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) self.to_v_custom_diffusion = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) if self.train_q_out: self.to_q_custom_diffusion = nn.Linear(hidden_size, hidden_size, bias=False) self.to_out_custom_diffusion = nn.ModuleList([]) self.to_out_custom_diffusion.append(nn.Linear(hidden_size, hidden_size, bias=out_bias)) self.to_out_custom_diffusion.append(nn.Dropout(dropout))
808
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if self.train_q_out: query = self.to_q_custom_diffusion(hidden_states) else: query = attn.to_q(hidden_states) if encoder_hidden_states is None: crossattn = False encoder_hidden_states = hidden_states else: crossattn = True if attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
808
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
if self.train_kv: key = self.to_k_custom_diffusion(encoder_hidden_states.to(self.to_k_custom_diffusion.weight.dtype)) value = self.to_v_custom_diffusion(encoder_hidden_states.to(self.to_v_custom_diffusion.weight.dtype)) key = key.to(attn.to_q.weight.dtype) value = value.to(attn.to_q.weight.dtype) else: key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) if crossattn: detach = torch.ones_like(key) detach[:, :1, :] = detach[:, :1, :] * 0.0 key = detach * key + (1 - detach) * key.detach() value = detach * value + (1 - detach) * value.detach() inner_dim = hidden_states.shape[-1]
808
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype)
808
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
if self.train_q_out: # linear proj hidden_states = self.to_out_custom_diffusion[0](hidden_states) # dropout hidden_states = self.to_out_custom_diffusion[1](hidden_states) else: # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) return hidden_states
808
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class SlicedAttnProcessor: r""" Processor for implementing sliced attention. Args: slice_size (`int`, *optional*): The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and `attention_head_dim` must be a multiple of the `slice_size`. """ def __init__(self, slice_size: int): self.slice_size = slice_size def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: residual = hidden_states input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
809
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) dim = query.shape[-1] query = attn.head_to_batch_dim(query) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value)
809
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
batch_size_attention, query_tokens, _ = query.shape hidden_states = torch.zeros( (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype ) for i in range((batch_size_attention - 1) // self.slice_size + 1): start_idx = i * self.slice_size end_idx = (i + 1) * self.slice_size query_slice = query[start_idx:end_idx] key_slice = key[start_idx:end_idx] attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) hidden_states[start_idx:end_idx] = attn_slice hidden_states = attn.batch_to_head_dim(hidden_states)
809
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
# linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
809
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class SlicedAttnAddedKVProcessor: r""" Processor for implementing sliced attention with extra learnable key and value matrices for the text encoder. Args: slice_size (`int`, *optional*): The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and `attention_head_dim` must be a multiple of the `slice_size`. """ def __init__(self, slice_size): self.slice_size = slice_size def __call__( self, attn: "Attention", hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, ) -> torch.Tensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) hidden_states = hidden_states.view(hidden_states.shape[0], hidden_states.shape[1], -1).transpose(1, 2)
810
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
batch_size, sequence_length, _ = hidden_states.shape attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) dim = query.shape[-1] query = attn.head_to_batch_dim(query) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.head_to_batch_dim(encoder_hidden_states_key_proj) encoder_hidden_states_value_proj = attn.head_to_batch_dim(encoder_hidden_states_value_proj)
810
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
if not attn.only_cross_attention: key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) key = torch.cat([encoder_hidden_states_key_proj, key], dim=1) value = torch.cat([encoder_hidden_states_value_proj, value], dim=1) else: key = encoder_hidden_states_key_proj value = encoder_hidden_states_value_proj batch_size_attention, query_tokens, _ = query.shape hidden_states = torch.zeros( (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype ) for i in range((batch_size_attention - 1) // self.slice_size + 1): start_idx = i * self.slice_size end_idx = (i + 1) * self.slice_size
810
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
query_slice = query[start_idx:end_idx] key_slice = key[start_idx:end_idx] attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) hidden_states[start_idx:end_idx] = attn_slice hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) hidden_states = hidden_states.transpose(-1, -2).reshape(residual.shape) hidden_states = hidden_states + residual return hidden_states
810
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class SpatialNorm(nn.Module): """ Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002. Args: f_channels (`int`): The number of channels for input to group normalization layer, and output of the spatial norm layer. zq_channels (`int`): The number of channels for the quantized vector as described in the paper. """ def __init__( self, f_channels: int, zq_channels: int, ): super().__init__() self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=32, eps=1e-6, affine=True) self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)
811
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
def forward(self, f: torch.Tensor, zq: torch.Tensor) -> torch.Tensor: f_size = f.shape[-2:] zq = F.interpolate(zq, size=f_size, mode="nearest") norm_f = self.norm_layer(f) new_f = norm_f * self.conv_y(zq) + self.conv_b(zq) return new_f
811
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class IPAdapterAttnProcessor(nn.Module): r""" Attention processor for Multiple IP-Adapters. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`): The context length of the image features. scale (`float` or List[`float`], defaults to 1.0): the weight scale of image prompt. """ def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0): super().__init__() self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim if not isinstance(num_tokens, (tuple, list)): num_tokens = [num_tokens] self.num_tokens = num_tokens
812
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
if not isinstance(scale, list): scale = [scale] * len(num_tokens) if len(scale) != len(num_tokens): raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.") self.scale = scale self.to_k_ip = nn.ModuleList( [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] ) self.to_v_ip = nn.ModuleList( [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] ) def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, scale: float = 1.0, ip_adapter_masks: Optional[torch.Tensor] = None, ): residual = hidden_states
812
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
# separate ip_hidden_states from encoder_hidden_states if encoder_hidden_states is not None: if isinstance(encoder_hidden_states, tuple): encoder_hidden_states, ip_hidden_states = encoder_hidden_states else: deprecation_message = ( "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release." " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning." ) deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False) end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0] encoder_hidden_states, ip_hidden_states = ( encoder_hidden_states[:, :end_pos, :], [encoder_hidden_states[:, end_pos:, :]], )
812
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
812
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) attention_probs = attn.get_attention_scores(query, key, attention_mask) hidden_states = torch.bmm(attention_probs, value) hidden_states = attn.batch_to_head_dim(hidden_states)
812
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
if ip_adapter_masks is not None: if not isinstance(ip_adapter_masks, List): # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width] ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1)) if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)): raise ValueError( f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match " f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states " f"({len(ip_hidden_states)})" ) else: for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)): if mask is None: continue if not isinstance(mask, torch.Tensor) or mask.ndim != 4: raise ValueError(
812
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
"Each element of the ip_adapter_masks array should be a tensor with shape " "[1, num_images_for_ip_adapter, height, width]." " Please use `IPAdapterMaskProcessor` to preprocess your mask" ) if mask.shape[1] != ip_state.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of ip images ({ip_state.shape[1]}) at index {index}" ) if isinstance(scale, list) and not len(scale) == mask.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of scales ({len(scale)}) at index {index}" ) else: ip_adapter_masks = [None] * len(self.scale)
812
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
# for ip-adapter for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip( ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks ): skip = False if isinstance(scale, list): if all(s == 0 for s in scale): skip = True elif scale == 0: skip = True if not skip: if mask is not None: if not isinstance(scale, list): scale = [scale] * mask.shape[1] current_num_images = mask.shape[1] for i in range(current_num_images): ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :]) ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :]) ip_key = attn.head_to_batch_dim(ip_key) ip_value = attn.head_to_batch_dim(ip_value)
812
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
ip_attention_probs = attn.get_attention_scores(query, ip_key, None) _current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) _current_ip_hidden_states = attn.batch_to_head_dim(_current_ip_hidden_states) mask_downsample = IPAdapterMaskProcessor.downsample( mask[:, i, :, :], batch_size, _current_ip_hidden_states.shape[1], _current_ip_hidden_states.shape[2], ) mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device) hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample) else: ip_key = to_k_ip(current_ip_hidden_states) ip_value = to_v_ip(current_ip_hidden_states)
812
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
ip_key = attn.head_to_batch_dim(ip_key) ip_value = attn.head_to_batch_dim(ip_value) ip_attention_probs = attn.get_attention_scores(query, ip_key, None) current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value) current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states) hidden_states = hidden_states + scale * current_ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
812
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class IPAdapterAttnProcessor2_0(torch.nn.Module): r""" Attention processor for IP-Adapter for PyTorch 2.0. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`): The context length of the image features. scale (`float` or `List[float]`, defaults to 1.0): the weight scale of image prompt. """ def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0): super().__init__() if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim
813
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
if not isinstance(num_tokens, (tuple, list)): num_tokens = [num_tokens] self.num_tokens = num_tokens if not isinstance(scale, list): scale = [scale] * len(num_tokens) if len(scale) != len(num_tokens): raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.") self.scale = scale self.to_k_ip = nn.ModuleList( [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] ) self.to_v_ip = nn.ModuleList( [nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))] )
813
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, scale: float = 1.0, ip_adapter_masks: Optional[torch.Tensor] = None, ): residual = hidden_states
813
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
# separate ip_hidden_states from encoder_hidden_states if encoder_hidden_states is not None: if isinstance(encoder_hidden_states, tuple): encoder_hidden_states, ip_hidden_states = encoder_hidden_states else: deprecation_message = ( "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release." " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning." ) deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False) end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0] encoder_hidden_states, ip_hidden_states = ( encoder_hidden_states[:, :end_pos, :], [encoder_hidden_states[:, end_pos:, :]], )
813
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
813
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False )
813
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype)
813
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
if ip_adapter_masks is not None: if not isinstance(ip_adapter_masks, List): # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width] ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1)) if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)): raise ValueError( f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match " f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states " f"({len(ip_hidden_states)})" ) else: for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)): if mask is None: continue if not isinstance(mask, torch.Tensor) or mask.ndim != 4: raise ValueError(
813
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
"Each element of the ip_adapter_masks array should be a tensor with shape " "[1, num_images_for_ip_adapter, height, width]." " Please use `IPAdapterMaskProcessor` to preprocess your mask" ) if mask.shape[1] != ip_state.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of ip images ({ip_state.shape[1]}) at index {index}" ) if isinstance(scale, list) and not len(scale) == mask.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of scales ({len(scale)}) at index {index}" ) else: ip_adapter_masks = [None] * len(self.scale)
813
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
# for ip-adapter for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip( ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks ): skip = False if isinstance(scale, list): if all(s == 0 for s in scale): skip = True elif scale == 0: skip = True if not skip: if mask is not None: if not isinstance(scale, list): scale = [scale] * mask.shape[1] current_num_images = mask.shape[1] for i in range(current_num_images): ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :]) ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :])
813
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 _current_ip_hidden_states = F.scaled_dot_product_attention( query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False ) _current_ip_hidden_states = _current_ip_hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) _current_ip_hidden_states = _current_ip_hidden_states.to(query.dtype)
813
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
mask_downsample = IPAdapterMaskProcessor.downsample( mask[:, i, :, :], batch_size, _current_ip_hidden_states.shape[1], _current_ip_hidden_states.shape[2], ) mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device) hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample) else: ip_key = to_k_ip(current_ip_hidden_states) ip_value = to_v_ip(current_ip_hidden_states) ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
813
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
# the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 current_ip_hidden_states = F.scaled_dot_product_attention( query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False ) current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) current_ip_hidden_states = current_ip_hidden_states.to(query.dtype) hidden_states = hidden_states + scale * current_ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
813
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
813
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class IPAdapterXFormersAttnProcessor(torch.nn.Module): r""" Attention processor for IP-Adapter using xFormers. Args: hidden_size (`int`): The hidden size of the attention layer. cross_attention_dim (`int`): The number of channels in the `encoder_hidden_states`. num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`): The context length of the image features. scale (`float` or `List[float]`, defaults to 1.0): the weight scale of image prompt. attention_op (`Callable`, *optional*, defaults to `None`): The base [operator](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.AttentionOpBase) to use as the attention operator. It is recommended to set to `None`, and allow xFormers to choose the best operator. """
814
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
def __init__( self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0, attention_op: Optional[Callable] = None, ): super().__init__() self.hidden_size = hidden_size self.cross_attention_dim = cross_attention_dim self.attention_op = attention_op if not isinstance(num_tokens, (tuple, list)): num_tokens = [num_tokens] self.num_tokens = num_tokens if not isinstance(scale, list): scale = [scale] * len(num_tokens) if len(scale) != len(num_tokens): raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.") self.scale = scale
814
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
self.to_k_ip = nn.ModuleList( [nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) for _ in range(len(num_tokens))] ) self.to_v_ip = nn.ModuleList( [nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False) for _ in range(len(num_tokens))] ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, temb: Optional[torch.FloatTensor] = None, scale: float = 1.0, ip_adapter_masks: Optional[torch.FloatTensor] = None, ): residual = hidden_states
814
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
# separate ip_hidden_states from encoder_hidden_states if encoder_hidden_states is not None: if isinstance(encoder_hidden_states, tuple): encoder_hidden_states, ip_hidden_states = encoder_hidden_states else: deprecation_message = ( "You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release." " Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning." ) deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False) end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0] encoder_hidden_states, ip_hidden_states = ( encoder_hidden_states[:, :end_pos, :], [encoder_hidden_states[:, end_pos:, :]], )
814
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape )
814
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # expand our mask's singleton query_tokens dimension: # [batch*heads, 1, key_tokens] -> # [batch*heads, query_tokens, key_tokens] # so that it can be added as a bias onto the attention scores that xformers computes: # [batch*heads, query_tokens, key_tokens] # we do this explicitly because xformers doesn't broadcast the singleton dimension for us. _, query_tokens, _ = hidden_states.shape attention_mask = attention_mask.expand(-1, query_tokens, -1) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states)
814
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = attn.head_to_batch_dim(query).contiguous() key = attn.head_to_batch_dim(key).contiguous() value = attn.head_to_batch_dim(value).contiguous() hidden_states = xformers.ops.memory_efficient_attention( query, key, value, attn_bias=attention_mask, op=self.attention_op ) hidden_states = hidden_states.to(query.dtype) hidden_states = attn.batch_to_head_dim(hidden_states)
814
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
if ip_hidden_states: if ip_adapter_masks is not None: if not isinstance(ip_adapter_masks, List): # for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width] ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1)) if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)): raise ValueError( f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match " f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states " f"({len(ip_hidden_states)})" ) else: for index, (mask, scale, ip_state) in enumerate( zip(ip_adapter_masks, self.scale, ip_hidden_states) ): if mask is None: continue
814
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
if not isinstance(mask, torch.Tensor) or mask.ndim != 4: raise ValueError( "Each element of the ip_adapter_masks array should be a tensor with shape " "[1, num_images_for_ip_adapter, height, width]." " Please use `IPAdapterMaskProcessor` to preprocess your mask" ) if mask.shape[1] != ip_state.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match " f"number of ip images ({ip_state.shape[1]}) at index {index}" ) if isinstance(scale, list) and not len(scale) == mask.shape[1]: raise ValueError( f"Number of masks ({mask.shape[1]}) does not match "
814
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
f"number of scales ({len(scale)}) at index {index}" ) else: ip_adapter_masks = [None] * len(self.scale)
814
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
# for ip-adapter for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip( ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks ): skip = False if isinstance(scale, list): if all(s == 0 for s in scale): skip = True elif scale == 0: skip = True if not skip: if mask is not None: mask = mask.to(torch.float16) if not isinstance(scale, list): scale = [scale] * mask.shape[1] current_num_images = mask.shape[1] for i in range(current_num_images): ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :]) ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :])
814
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
ip_key = attn.head_to_batch_dim(ip_key).contiguous() ip_value = attn.head_to_batch_dim(ip_value).contiguous() _current_ip_hidden_states = xformers.ops.memory_efficient_attention( query, ip_key, ip_value, op=self.attention_op ) _current_ip_hidden_states = _current_ip_hidden_states.to(query.dtype) _current_ip_hidden_states = attn.batch_to_head_dim(_current_ip_hidden_states) mask_downsample = IPAdapterMaskProcessor.downsample( mask[:, i, :, :], batch_size, _current_ip_hidden_states.shape[1], _current_ip_hidden_states.shape[2], )
814
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device) hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample) else: ip_key = to_k_ip(current_ip_hidden_states) ip_value = to_v_ip(current_ip_hidden_states) ip_key = attn.head_to_batch_dim(ip_key).contiguous() ip_value = attn.head_to_batch_dim(ip_value).contiguous() current_ip_hidden_states = xformers.ops.memory_efficient_attention( query, ip_key, ip_value, op=self.attention_op ) current_ip_hidden_states = current_ip_hidden_states.to(query.dtype) current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states) hidden_states = hidden_states + scale * current_ip_hidden_states
814
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
# linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
814
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class SD3IPAdapterJointAttnProcessor2_0(torch.nn.Module): """ Attention processor for IP-Adapter used typically in processing the SD3-like self-attention projections, with additional image-based information and timestep embeddings. Args: hidden_size (`int`): The number of hidden channels. ip_hidden_states_dim (`int`): The image feature dimension. head_dim (`int`): The number of head channels. timesteps_emb_dim (`int`, defaults to 1280): The number of input channels for timestep embedding. scale (`float`, defaults to 0.5): IP-Adapter scale. """ def __init__( self, hidden_size: int, ip_hidden_states_dim: int, head_dim: int, timesteps_emb_dim: int = 1280, scale: float = 0.5, ): super().__init__() # To prevent circular import from .normalization import AdaLayerNorm, RMSNorm
815
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
self.norm_ip = AdaLayerNorm(timesteps_emb_dim, output_dim=ip_hidden_states_dim * 2, norm_eps=1e-6, chunk_dim=1) self.to_k_ip = nn.Linear(ip_hidden_states_dim, hidden_size, bias=False) self.to_v_ip = nn.Linear(ip_hidden_states_dim, hidden_size, bias=False) self.norm_q = RMSNorm(head_dim, 1e-6) self.norm_k = RMSNorm(head_dim, 1e-6) self.norm_ip_k = RMSNorm(head_dim, 1e-6) self.scale = scale def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, ip_hidden_states: torch.FloatTensor = None, temb: torch.FloatTensor = None, ) -> torch.FloatTensor: """ Perform the attention computation, integrating image features (if provided) and timestep embeddings. If `ip_hidden_states` is `None`, this is equivalent to using JointAttnProcessor2_0.
815
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
Args: attn (`Attention`): Attention instance. hidden_states (`torch.FloatTensor`): Input `hidden_states`. encoder_hidden_states (`torch.FloatTensor`, *optional*): The encoder hidden states. attention_mask (`torch.FloatTensor`, *optional*): Attention mask. ip_hidden_states (`torch.FloatTensor`, *optional*): Image embeddings. temb (`torch.FloatTensor`, *optional*): Timestep embeddings. Returns: `torch.FloatTensor`: Output hidden states. """ residual = hidden_states batch_size = hidden_states.shape[0] # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads
815
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) img_query = query img_key = key img_value = value if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # `context` projections. if encoder_hidden_states is not None: encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
815
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
815
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
query = torch.cat([query, encoder_hidden_states_query_proj], dim=2) key = torch.cat([key, encoder_hidden_states_key_proj], dim=2) value = torch.cat([value, encoder_hidden_states_value_proj], dim=2) hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: # Split the attention outputs. hidden_states, encoder_hidden_states = ( hidden_states[:, : residual.shape[1]], hidden_states[:, residual.shape[1] :], ) if not attn.context_pre_only: encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
815
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
# IP Adapter if self.scale != 0 and ip_hidden_states is not None: # Norm image features norm_ip_hidden_states = self.norm_ip(ip_hidden_states, temb=temb) # To k and v ip_key = self.to_k_ip(norm_ip_hidden_states) ip_value = self.to_v_ip(norm_ip_hidden_states) # Reshape ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # Norm query = self.norm_q(img_query) img_key = self.norm_k(img_key) ip_key = self.norm_ip_k(ip_key) # cat img key = torch.cat([img_key, ip_key], dim=2) value = torch.cat([img_value, ip_value], dim=2)
815
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
ip_hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) ip_hidden_states = ip_hidden_states.transpose(1, 2).view(batch_size, -1, attn.heads * head_dim) ip_hidden_states = ip_hidden_states.to(query.dtype) hidden_states = hidden_states + ip_hidden_states * self.scale # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if encoder_hidden_states is not None: return hidden_states, encoder_hidden_states else: return hidden_states
815
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class PAGIdentitySelfAttnProcessor2_0: r""" Processor for implementing PAG using scaled dot-product attention (enabled by default if you're using PyTorch 2.0). PAG reference: https://arxiv.org/abs/2403.17377 """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "PAGIdentitySelfAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, temb: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb)
816
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) # chunk hidden_states_org, hidden_states_ptb = hidden_states.chunk(2) # original path batch_size, sequence_length, _ = hidden_states_org.shape if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2)
816
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
query = attn.to_q(hidden_states_org) key = attn.to_k(hidden_states_org) value = attn.to_v(hidden_states_org) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states_org = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states_org = hidden_states_org.to(query.dtype)
816
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
# linear proj hidden_states_org = attn.to_out[0](hidden_states_org) # dropout hidden_states_org = attn.to_out[1](hidden_states_org) if input_ndim == 4: hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) # perturbed path (identity attention) batch_size, sequence_length, _ = hidden_states_ptb.shape if attn.group_norm is not None: hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) hidden_states_ptb = attn.to_v(hidden_states_ptb) hidden_states_ptb = hidden_states_ptb.to(query.dtype) # linear proj hidden_states_ptb = attn.to_out[0](hidden_states_ptb) # dropout hidden_states_ptb = attn.to_out[1](hidden_states_ptb) if input_ndim == 4: hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width)
816
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
# cat hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
816
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class PAGCFGIdentitySelfAttnProcessor2_0: r""" Processor for implementing PAG using scaled dot-product attention (enabled by default if you're using PyTorch 2.0). PAG reference: https://arxiv.org/abs/2403.17377 """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "PAGCFGIdentitySelfAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." ) def __call__( self, attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, temb: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb)
817
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) # chunk hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3) hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org]) # original path batch_size, sequence_length, _ = hidden_states_org.shape if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
817
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
if attn.group_norm is not None: hidden_states_org = attn.group_norm(hidden_states_org.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states_org) key = attn.to_k(hidden_states_org) value = attn.to_v(hidden_states_org) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states_org = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False )
817
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
hidden_states_org = hidden_states_org.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states_org = hidden_states_org.to(query.dtype) # linear proj hidden_states_org = attn.to_out[0](hidden_states_org) # dropout hidden_states_org = attn.to_out[1](hidden_states_org) if input_ndim == 4: hidden_states_org = hidden_states_org.transpose(-1, -2).reshape(batch_size, channel, height, width) # perturbed path (identity attention) batch_size, sequence_length, _ = hidden_states_ptb.shape if attn.group_norm is not None: hidden_states_ptb = attn.group_norm(hidden_states_ptb.transpose(1, 2)).transpose(1, 2) value = attn.to_v(hidden_states_ptb) hidden_states_ptb = value hidden_states_ptb = hidden_states_ptb.to(query.dtype)
817
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
# linear proj hidden_states_ptb = attn.to_out[0](hidden_states_ptb) # dropout hidden_states_ptb = attn.to_out[1](hidden_states_ptb) if input_ndim == 4: hidden_states_ptb = hidden_states_ptb.transpose(-1, -2).reshape(batch_size, channel, height, width) # cat hidden_states = torch.cat([hidden_states_org, hidden_states_ptb]) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states
817
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class SanaMultiscaleAttnProcessor2_0: r""" Processor for implementing multiscale quadratic attention. """ def __call__(self, attn: SanaMultiscaleLinearAttention, hidden_states: torch.Tensor) -> torch.Tensor: height, width = hidden_states.shape[-2:] if height * width > attn.attention_head_dim: use_linear_attention = True else: use_linear_attention = False residual = hidden_states batch_size, _, height, width = list(hidden_states.size()) original_dtype = hidden_states.dtype hidden_states = hidden_states.movedim(1, -1) query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) hidden_states = torch.cat([query, key, value], dim=3) hidden_states = hidden_states.movedim(-1, 1) multi_scale_qkv = [hidden_states] for block in attn.to_qkv_multiscale: multi_scale_qkv.append(block(hidden_states))
818
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
hidden_states = torch.cat(multi_scale_qkv, dim=1) if use_linear_attention: # for linear attention upcast hidden_states to float32 hidden_states = hidden_states.to(dtype=torch.float32) hidden_states = hidden_states.reshape(batch_size, -1, 3 * attn.attention_head_dim, height * width) query, key, value = hidden_states.chunk(3, dim=2) query = attn.nonlinearity(query) key = attn.nonlinearity(key) if use_linear_attention: hidden_states = attn.apply_linear_attention(query, key, value) hidden_states = hidden_states.to(dtype=original_dtype) else: hidden_states = attn.apply_quadratic_attention(query, key, value) hidden_states = torch.reshape(hidden_states, (batch_size, -1, height, width)) hidden_states = attn.to_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
818
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
if attn.norm_type == "rms_norm": hidden_states = attn.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1) else: hidden_states = attn.norm_out(hidden_states) if attn.residual_connection: hidden_states = hidden_states + residual return hidden_states
818
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class LoRAAttnProcessor: r""" Processor for implementing attention with LoRA. """ def __init__(self): pass
819
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class LoRAAttnProcessor2_0: r""" Processor for implementing attention with LoRA (enabled by default if you're using PyTorch 2.0). """ def __init__(self): pass
820
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class LoRAXFormersAttnProcessor: r""" Processor for implementing attention with LoRA using xFormers. """ def __init__(self): pass
821
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class LoRAAttnAddedKVProcessor: r""" Processor for implementing attention with LoRA with extra learnable key and value matrices for the text encoder. """ def __init__(self): pass
822
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class FluxSingleAttnProcessor2_0(FluxAttnProcessor2_0): r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self): deprecation_message = "`FluxSingleAttnProcessor2_0` is deprecated and will be removed in a future version. Please use `FluxAttnProcessor2_0` instead." deprecate("FluxSingleAttnProcessor2_0", "0.32.0", deprecation_message) super().__init__()
823
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class SanaLinearAttnProcessor2_0: r""" Processor for implementing scaled dot-product linear attention. """ def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: original_dtype = hidden_states.dtype if encoder_hidden_states is None: encoder_hidden_states = hidden_states query = attn.to_q(hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) query = query.transpose(1, 2).unflatten(1, (attn.heads, -1)) key = key.transpose(1, 2).unflatten(1, (attn.heads, -1)).transpose(2, 3) value = value.transpose(1, 2).unflatten(1, (attn.heads, -1)) query = F.relu(query) key = F.relu(key) query, key, value = query.float(), key.float(), value.float()
824
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1.0) scores = torch.matmul(value, key) hidden_states = torch.matmul(scores, query) hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + 1e-15) hidden_states = hidden_states.flatten(1, 2).transpose(1, 2) hidden_states = hidden_states.to(original_dtype) hidden_states = attn.to_out[0](hidden_states) hidden_states = attn.to_out[1](hidden_states) if original_dtype == torch.float16: hidden_states = hidden_states.clip(-65504, 65504) return hidden_states
824
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class PAGCFGSanaLinearAttnProcessor2_0: r""" Processor for implementing scaled dot-product linear attention. """ def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: original_dtype = hidden_states.dtype hidden_states_uncond, hidden_states_org, hidden_states_ptb = hidden_states.chunk(3) hidden_states_org = torch.cat([hidden_states_uncond, hidden_states_org]) query = attn.to_q(hidden_states_org) key = attn.to_k(hidden_states_org) value = attn.to_v(hidden_states_org) query = query.transpose(1, 2).unflatten(1, (attn.heads, -1)) key = key.transpose(1, 2).unflatten(1, (attn.heads, -1)).transpose(2, 3) value = value.transpose(1, 2).unflatten(1, (attn.heads, -1)) query = F.relu(query) key = F.relu(key)
825
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
query, key, value = query.float(), key.float(), value.float() value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1.0) scores = torch.matmul(value, key) hidden_states_org = torch.matmul(scores, query) hidden_states_org = hidden_states_org[:, :, :-1] / (hidden_states_org[:, :, -1:] + 1e-15) hidden_states_org = hidden_states_org.flatten(1, 2).transpose(1, 2) hidden_states_org = hidden_states_org.to(original_dtype) hidden_states_org = attn.to_out[0](hidden_states_org) hidden_states_org = attn.to_out[1](hidden_states_org) # perturbed path (identity attention) hidden_states_ptb = attn.to_v(hidden_states_ptb).to(original_dtype) hidden_states_ptb = attn.to_out[0](hidden_states_ptb) hidden_states_ptb = attn.to_out[1](hidden_states_ptb) hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])
825
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
if original_dtype == torch.float16: hidden_states = hidden_states.clip(-65504, 65504) return hidden_states
825
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class PAGIdentitySanaLinearAttnProcessor2_0: r""" Processor for implementing scaled dot-product linear attention. """ def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: original_dtype = hidden_states.dtype hidden_states_org, hidden_states_ptb = hidden_states.chunk(2) query = attn.to_q(hidden_states_org) key = attn.to_k(hidden_states_org) value = attn.to_v(hidden_states_org) query = query.transpose(1, 2).unflatten(1, (attn.heads, -1)) key = key.transpose(1, 2).unflatten(1, (attn.heads, -1)).transpose(2, 3) value = value.transpose(1, 2).unflatten(1, (attn.heads, -1)) query = F.relu(query) key = F.relu(key) query, key, value = query.float(), key.float(), value.float()
826
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1.0) scores = torch.matmul(value, key) hidden_states_org = torch.matmul(scores, query) if hidden_states_org.dtype in [torch.float16, torch.bfloat16]: hidden_states_org = hidden_states_org.float() hidden_states_org = hidden_states_org[:, :, :-1] / (hidden_states_org[:, :, -1:] + 1e-15) hidden_states_org = hidden_states_org.flatten(1, 2).transpose(1, 2) hidden_states_org = hidden_states_org.to(original_dtype) hidden_states_org = attn.to_out[0](hidden_states_org) hidden_states_org = attn.to_out[1](hidden_states_org) # perturbed path (identity attention) hidden_states_ptb = attn.to_v(hidden_states_ptb).to(original_dtype) hidden_states_ptb = attn.to_out[0](hidden_states_ptb) hidden_states_ptb = attn.to_out[1](hidden_states_ptb) hidden_states = torch.cat([hidden_states_org, hidden_states_ptb])
826
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
if original_dtype == torch.float16: hidden_states = hidden_states.clip(-65504, 65504) return hidden_states
826
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/attention_processor.py
class ControlNetOutput(ControlNetOutput): def __init__(self, *args, **kwargs): deprecation_message = "Importing `ControlNetOutput` from `diffusers.models.controlnet` is deprecated and this will be removed in a future version. Please use `from diffusers.models.controlnets.controlnet import ControlNetOutput`, instead." deprecate("diffusers.models.controlnet.ControlNetOutput", "0.34", deprecation_message) super().__init__(*args, **kwargs)
827
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnet.py
class ControlNetModel(ControlNetModel): def __init__( self, in_channels: int = 4, conditioning_channels: int = 3, flip_sin_to_cos: bool = True, freq_shift: int = 0, down_block_types: Tuple[str, ...] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ), mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", only_cross_attention: Union[bool, Tuple[bool]] = False, block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280), layers_per_block: int = 2, downsample_padding: int = 1, mid_block_scale_factor: float = 1, act_fn: str = "silu", norm_num_groups: Optional[int] = 32, norm_eps: float = 1e-5, cross_attention_dim: int = 1280, transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1, encoder_hid_dim: Optional[int] = None,
828
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/models/controlnet.py