text
stringlengths 1
1.02k
| class_index
int64 0
1.38k
| source
stringclasses 431
values |
---|---|---|
class LDMPipeline(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 504 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class LDMSuperResolutionPipeline(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 505 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class PNDMPipeline(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 506 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class RePaintPipeline(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 507 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class ScoreSdeVePipeline(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 508 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class StableDiffusionMixin(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 509 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class DiffusersQuantizer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 510 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class AmusedScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 511 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class CMStochasticIterativeScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 512 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class CogVideoXDDIMScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 513 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class CogVideoXDPMScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 514 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class DDIMInverseScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 515 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class DDIMParallelScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 516 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class DDIMScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 517 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class DDPMParallelScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 518 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class DDPMScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 519 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class DDPMWuerstchenScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 520 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class DEISMultistepScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 521 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class DPMSolverMultistepInverseScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 522 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class DPMSolverMultistepScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 523 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class DPMSolverSinglestepScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 524 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class EDMDPMSolverMultistepScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 525 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class EDMEulerScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 526 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class EulerAncestralDiscreteScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 527 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class EulerDiscreteScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 528 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class FlowMatchEulerDiscreteScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 529 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class FlowMatchHeunDiscreteScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 530 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class HeunDiscreteScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 531 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class IPNDMScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 532 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class KarrasVeScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 533 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class KDPM2AncestralDiscreteScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 534 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class KDPM2DiscreteScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 535 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class LCMScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 536 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class PNDMScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 537 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class RePaintScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 538 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class SASolverScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 539 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class SchedulerMixin(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 540 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class ScoreSdeVeScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 541 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class TCDScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 542 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class UnCLIPScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 543 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class UniPCMultistepScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 544 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class VQDiffusionScheduler(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 545 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class EMAModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 546 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class CaptureLogger:
"""
Args:
Context manager to capture `logging` streams
logger: 'logging` logger object
Returns:
The captured output is available via `self.out`
Example:
```python
>>> from diffusers import logging
>>> from diffusers.testing_utils import CaptureLogger
>>> msg = "Testing 1, 2, 3"
>>> logging.set_verbosity_info()
>>> logger = logging.get_logger("diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.py")
>>> with CaptureLogger(logger) as cl:
... logger.info(msg)
>>> assert cl.out, msg + "\n"
```
"""
def __init__(self, logger):
self.logger = logger
self.io = StringIO()
self.sh = logging.StreamHandler(self.io)
self.out = ""
def __enter__(self):
self.logger.addHandler(self.sh)
return self
def __exit__(self, *exc):
self.logger.removeHandler(self.sh)
self.out = self.io.getvalue()
| 547 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/testing_utils.py
|
def __repr__(self):
return f"captured: {self.out}\n"
| 547 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/testing_utils.py
|
class StateDictType(enum.Enum):
"""
The mode to use when converting state dicts.
"""
DIFFUSERS_OLD = "diffusers_old"
KOHYA_SS = "kohya_ss"
PEFT = "peft"
DIFFUSERS = "diffusers"
| 548 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/state_dict_utils.py
|
class AllegroPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 549 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class AltDiffusionImg2ImgPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 550 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class AltDiffusionPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 551 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class AmusedImg2ImgPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 552 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class AmusedInpaintPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 553 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class AmusedPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 554 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class AnimateDiffControlNetPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 555 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class AnimateDiffPAGPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 556 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class AnimateDiffPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 557 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class AnimateDiffSDXLPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 558 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class AnimateDiffSparseControlNetPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 559 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class AnimateDiffVideoToVideoControlNetPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 560 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class AnimateDiffVideoToVideoPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 561 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class AudioLDM2Pipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 562 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class AudioLDM2ProjectionModel(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 563 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class AudioLDM2UNet2DConditionModel(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 564 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class AudioLDMPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 565 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class AuraFlowPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 566 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class CLIPImageProjection(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 567 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class CogVideoXFunControlPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 568 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class CogVideoXImageToVideoPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 569 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class CogVideoXPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 570 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class CogVideoXVideoToVideoPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 571 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class CogView3PlusPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 572 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class ConsisIDPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 573 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class CycleDiffusionPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 574 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class FluxControlImg2ImgPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 575 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class FluxControlInpaintPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 576 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class FluxControlNetImg2ImgPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 577 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class FluxControlNetInpaintPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 578 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class FluxControlNetPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 579 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class FluxControlPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 580 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class FluxFillPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 581 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class FluxImg2ImgPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 582 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class FluxInpaintPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 583 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class FluxPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 584 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class FluxPriorReduxPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 585 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class HunyuanDiTControlNetPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 586 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class HunyuanDiTPAGPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 587 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class HunyuanDiTPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 588 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class HunyuanVideoPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 589 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class I2VGenXLPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 590 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class IFImg2ImgPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 591 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class IFImg2ImgSuperResolutionPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 592 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class IFInpaintingPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 593 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class IFInpaintingSuperResolutionPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 594 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class IFPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 595 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class IFSuperResolutionPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 596 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class ImageTextPipelineOutput(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 597 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class Kandinsky3Img2ImgPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 598 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class Kandinsky3Pipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 599 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class KandinskyCombinedPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 600 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class KandinskyImg2ImgCombinedPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 601 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
class KandinskyImg2ImgPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers"])
| 602 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_objects.py
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.