text
stringlengths 1
1.02k
| class_index
int64 0
1.38k
| source
stringclasses 431
values |
---|---|---|
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
| 415 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
|
Examples:
```py
>>> from diffusers import VersatileDiffusionPipeline
>>> import torch
>>> pipe = VersatileDiffusionPipeline.from_pretrained(
... "shi-labs/versatile-diffusion", torch_dtype=torch.float16
... )
>>> pipe = pipe.to("cuda")
>>> generator = torch.Generator(device="cuda").manual_seed(0)
>>> image = pipe.text_to_image("an astronaut riding on a horse on mars", generator=generator).images[0]
>>> image.save("./astronaut.png")
```
| 415 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
|
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated images and the
second element is a list of `bool`s indicating whether the corresponding generated image contains
"not-safe-for-work" (nsfw) content.
"""
expected_components = inspect.signature(VersatileDiffusionTextToImagePipeline.__init__).parameters.keys()
components = {name: component for name, component in self.components.items() if name in expected_components}
temp_pipeline = VersatileDiffusionTextToImagePipeline(**components)
output = temp_pipeline(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
| 415 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
|
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
)
# swap the attention blocks back to the original state
temp_pipeline._swap_unet_attention_blocks()
| 415 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
|
return output
@torch.no_grad()
def dual_guided(
self,
prompt: Union[PIL.Image.Image, List[PIL.Image.Image]],
image: Union[str, List[str]],
text_to_image_strength: float = 0.5,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
callback_steps: int = 1,
):
r"""
The call function to the pipeline for generation.
| 415 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
|
Args:
prompt (`str` or `List[str]`):
The prompt or prompts to guide image generation.
height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
| 415 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
|
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.Tensor`, *optional*):
| 415 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
|
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
callback_steps (`int`, *optional*, defaults to 1):
| 415 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
|
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
| 415 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
|
Examples:
```py
>>> from diffusers import VersatileDiffusionPipeline
>>> import torch
>>> import requests
>>> from io import BytesIO
>>> from PIL import Image
>>> # let's download an initial image
>>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg"
>>> response = requests.get(url)
>>> image = Image.open(BytesIO(response.content)).convert("RGB")
>>> text = "a red car in the sun"
>>> pipe = VersatileDiffusionPipeline.from_pretrained(
... "shi-labs/versatile-diffusion", torch_dtype=torch.float16
... )
>>> pipe = pipe.to("cuda")
>>> generator = torch.Generator(device="cuda").manual_seed(0)
>>> text_to_image_strength = 0.75
| 415 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
|
>>> image = pipe.dual_guided(
... prompt=text, image=image, text_to_image_strength=text_to_image_strength, generator=generator
... ).images[0]
>>> image.save("./car_variation.png")
```
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
returned where the first element is a list with the generated images.
"""
| 415 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
|
expected_components = inspect.signature(VersatileDiffusionDualGuidedPipeline.__init__).parameters.keys()
components = {name: component for name, component in self.components.items() if name in expected_components}
temp_pipeline = VersatileDiffusionDualGuidedPipeline(**components)
output = temp_pipeline(
prompt=prompt,
image=image,
text_to_image_strength=text_to_image_strength,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=num_images_per_prompt,
eta=eta,
generator=generator,
latents=latents,
output_type=output_type,
return_dict=return_dict,
callback=callback,
callback_steps=callback_steps,
)
temp_pipeline._revert_dual_attention()
return output
| 415 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
|
class StableDiffusionKDiffusionPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers", "k_diffusion"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers", "k_diffusion"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "k_diffusion"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "k_diffusion"])
| 416 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_k_diffusion_objects.py
|
class StableDiffusionXLKDiffusionPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers", "k_diffusion"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers", "k_diffusion"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "k_diffusion"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "k_diffusion"])
| 417 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_k_diffusion_objects.py
|
class OnnxRuntimeModel(metaclass=DummyObject):
_backends = ["onnx"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["onnx"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["onnx"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["onnx"])
| 418 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_onnx_objects.py
|
class EmptyTqdm:
"""Dummy tqdm which doesn't do anything."""
def __init__(self, *args, **kwargs): # pylint: disable=unused-argument
self._iterator = args[0] if args else None
def __iter__(self):
return iter(self._iterator)
def __getattr__(self, _):
"""Return empty function."""
def empty_fn(*args, **kwargs): # pylint: disable=unused-argument
return
return empty_fn
def __enter__(self):
return self
def __exit__(self, type_, value, traceback):
return
| 419 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/logging.py
|
class _tqdm_cls:
def __call__(self, *args, **kwargs):
if _tqdm_active:
return tqdm_lib.tqdm(*args, **kwargs)
else:
return EmptyTqdm(*args, **kwargs)
def set_lock(self, *args, **kwargs):
self._lock = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*args, **kwargs)
def get_lock(self):
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
| 420 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/logging.py
|
class OnnxStableDiffusionImg2ImgPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers", "onnx"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers", "onnx"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "onnx"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "onnx"])
| 421 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py
|
class OnnxStableDiffusionInpaintPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers", "onnx"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers", "onnx"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "onnx"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "onnx"])
| 422 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py
|
class OnnxStableDiffusionInpaintPipelineLegacy(metaclass=DummyObject):
_backends = ["torch", "transformers", "onnx"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers", "onnx"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "onnx"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "onnx"])
| 423 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py
|
class OnnxStableDiffusionPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers", "onnx"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers", "onnx"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "onnx"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "onnx"])
| 424 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py
|
class OnnxStableDiffusionUpscalePipeline(metaclass=DummyObject):
_backends = ["torch", "transformers", "onnx"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers", "onnx"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "onnx"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "onnx"])
| 425 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py
|
class StableDiffusionOnnxPipeline(metaclass=DummyObject):
_backends = ["torch", "transformers", "onnx"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "transformers", "onnx"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "onnx"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "transformers", "onnx"])
| 426 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py
|
class AudioDiffusionPipeline(metaclass=DummyObject):
_backends = ["torch", "librosa"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "librosa"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "librosa"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "librosa"])
| 427 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_librosa_objects.py
|
class Mel(metaclass=DummyObject):
_backends = ["torch", "librosa"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "librosa"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "librosa"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "librosa"])
| 428 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_librosa_objects.py
|
class CosineDPMSolverMultistepScheduler(metaclass=DummyObject):
_backends = ["torch", "torchsde"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "torchsde"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "torchsde"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "torchsde"])
| 429 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_torchsde_objects.py
|
class DPMSolverSDEScheduler(metaclass=DummyObject):
_backends = ["torch", "torchsde"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch", "torchsde"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch", "torchsde"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch", "torchsde"])
| 430 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_torchsde_objects.py
|
class AllegroTransformer3DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 431 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class AsymmetricAutoencoderKL(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 432 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class AuraFlowTransformer2DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 433 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class AutoencoderDC(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 434 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class AutoencoderKL(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 435 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class AutoencoderKLAllegro(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 436 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class AutoencoderKLCogVideoX(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 437 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class AutoencoderKLHunyuanVideo(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 438 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class AutoencoderKLLTXVideo(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 439 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class AutoencoderKLMochi(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 440 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class AutoencoderKLTemporalDecoder(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 441 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class AutoencoderOobleck(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 442 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class AutoencoderTiny(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 443 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class CogVideoXTransformer3DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 444 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class CogView3PlusTransformer2DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 445 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class ConsisIDTransformer3DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 446 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class ConsistencyDecoderVAE(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 447 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class ControlNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 448 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class ControlNetUnionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 449 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class ControlNetXSAdapter(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 450 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class DiTTransformer2DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 451 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class FluxControlNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 452 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class FluxMultiControlNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 453 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class FluxTransformer2DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 454 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class HunyuanDiT2DControlNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 455 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class HunyuanDiT2DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 456 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class HunyuanDiT2DMultiControlNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 457 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class HunyuanVideoTransformer3DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 458 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class I2VGenXLUNet(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 459 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class Kandinsky3UNet(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 460 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class LatteTransformer3DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 461 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class LTXVideoTransformer3DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 462 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class LuminaNextDiT2DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 463 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class MochiTransformer3DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 464 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class ModelMixin(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 465 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class MotionAdapter(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 466 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class MultiAdapter(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 467 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class MultiControlNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 468 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class PixArtTransformer2DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 469 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class PriorTransformer(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 470 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class SanaTransformer2DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 471 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class SD3ControlNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 472 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class SD3MultiControlNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 473 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class SD3Transformer2DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 474 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class SparseControlNetModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 475 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class StableAudioDiTModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 476 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class T2IAdapter(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 477 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class T5FilmDecoder(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 478 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class Transformer2DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 479 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class UNet1DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 480 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class UNet2DConditionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 481 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class UNet2DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 482 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class UNet3DConditionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 483 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class UNetControlNetXSModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 484 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class UNetMotionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 485 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class UNetSpatioTemporalConditionModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 486 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class UVit2DModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 487 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class VQModel(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 488 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class AudioPipelineOutput(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 489 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class AutoPipelineForImage2Image(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 490 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class AutoPipelineForInpainting(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 491 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class AutoPipelineForText2Image(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 492 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class BlipDiffusionControlNetPipeline(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 493 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class BlipDiffusionPipeline(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 494 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class CLIPImageProjection(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 495 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class ConsistencyModelPipeline(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 496 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class DanceDiffusionPipeline(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 497 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class DDIMPipeline(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 498 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class DDPMPipeline(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 499 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class DiffusionPipeline(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 500 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class DiTPipeline(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 501 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class ImagePipelineOutput(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 502 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
class KarrasVePipeline(metaclass=DummyObject):
_backends = ["torch"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["torch"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["torch"])
| 503 |
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.