text
stringlengths
1
1.02k
class_index
int64
0
1.38k
source
stringclasses
431 values
The frequency at which the `callback` function is called. If not specified, the callback is called at every step.
415
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
Examples: ```py >>> from diffusers import VersatileDiffusionPipeline >>> import torch >>> pipe = VersatileDiffusionPipeline.from_pretrained( ... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> generator = torch.Generator(device="cuda").manual_seed(0) >>> image = pipe.text_to_image("an astronaut riding on a horse on mars", generator=generator).images[0] >>> image.save("./astronaut.png") ```
415
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ expected_components = inspect.signature(VersatileDiffusionTextToImagePipeline.__init__).parameters.keys() components = {name: component for name, component in self.components.items() if name in expected_components} temp_pipeline = VersatileDiffusionTextToImagePipeline(**components) output = temp_pipeline( prompt=prompt, height=height, width=width, num_inference_steps=num_inference_steps,
415
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
guidance_scale=guidance_scale, negative_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, latents=latents, output_type=output_type, return_dict=return_dict, callback=callback, callback_steps=callback_steps, ) # swap the attention blocks back to the original state temp_pipeline._swap_unet_attention_blocks()
415
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
return output @torch.no_grad() def dual_guided( self, prompt: Union[PIL.Image.Image, List[PIL.Image.Image]], image: Union[str, List[str]], text_to_image_strength: float = 0.5, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, ): r""" The call function to the pipeline for generation.
415
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
Args: prompt (`str` or `List[str]`): The prompt or prompts to guide image generation. height (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.image_unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
415
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*):
415
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1):
415
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
The frequency at which the `callback` function is called. If not specified, the callback is called at every step.
415
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
Examples: ```py >>> from diffusers import VersatileDiffusionPipeline >>> import torch >>> import requests >>> from io import BytesIO >>> from PIL import Image >>> # let's download an initial image >>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg" >>> response = requests.get(url) >>> image = Image.open(BytesIO(response.content)).convert("RGB") >>> text = "a red car in the sun" >>> pipe = VersatileDiffusionPipeline.from_pretrained( ... "shi-labs/versatile-diffusion", torch_dtype=torch.float16 ... ) >>> pipe = pipe.to("cuda") >>> generator = torch.Generator(device="cuda").manual_seed(0) >>> text_to_image_strength = 0.75
415
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
>>> image = pipe.dual_guided( ... prompt=text, image=image, text_to_image_strength=text_to_image_strength, generator=generator ... ).images[0] >>> image.save("./car_variation.png") ``` Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """
415
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
expected_components = inspect.signature(VersatileDiffusionDualGuidedPipeline.__init__).parameters.keys() components = {name: component for name, component in self.components.items() if name in expected_components} temp_pipeline = VersatileDiffusionDualGuidedPipeline(**components) output = temp_pipeline( prompt=prompt, image=image, text_to_image_strength=text_to_image_strength, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, num_images_per_prompt=num_images_per_prompt, eta=eta, generator=generator, latents=latents, output_type=output_type, return_dict=return_dict, callback=callback, callback_steps=callback_steps, ) temp_pipeline._revert_dual_attention() return output
415
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/pipelines/deprecated/versatile_diffusion/pipeline_versatile_diffusion.py
class StableDiffusionKDiffusionPipeline(metaclass=DummyObject): _backends = ["torch", "transformers", "k_diffusion"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers", "k_diffusion"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "k_diffusion"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "k_diffusion"])
416
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_k_diffusion_objects.py
class StableDiffusionXLKDiffusionPipeline(metaclass=DummyObject): _backends = ["torch", "transformers", "k_diffusion"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers", "k_diffusion"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "k_diffusion"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "k_diffusion"])
417
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_k_diffusion_objects.py
class OnnxRuntimeModel(metaclass=DummyObject): _backends = ["onnx"] def __init__(self, *args, **kwargs): requires_backends(self, ["onnx"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["onnx"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["onnx"])
418
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_onnx_objects.py
class EmptyTqdm: """Dummy tqdm which doesn't do anything.""" def __init__(self, *args, **kwargs): # pylint: disable=unused-argument self._iterator = args[0] if args else None def __iter__(self): return iter(self._iterator) def __getattr__(self, _): """Return empty function.""" def empty_fn(*args, **kwargs): # pylint: disable=unused-argument return return empty_fn def __enter__(self): return self def __exit__(self, type_, value, traceback): return
419
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/logging.py
class _tqdm_cls: def __call__(self, *args, **kwargs): if _tqdm_active: return tqdm_lib.tqdm(*args, **kwargs) else: return EmptyTqdm(*args, **kwargs) def set_lock(self, *args, **kwargs): self._lock = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*args, **kwargs) def get_lock(self): if _tqdm_active: return tqdm_lib.tqdm.get_lock()
420
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/logging.py
class OnnxStableDiffusionImg2ImgPipeline(metaclass=DummyObject): _backends = ["torch", "transformers", "onnx"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers", "onnx"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"])
421
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py
class OnnxStableDiffusionInpaintPipeline(metaclass=DummyObject): _backends = ["torch", "transformers", "onnx"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers", "onnx"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"])
422
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py
class OnnxStableDiffusionInpaintPipelineLegacy(metaclass=DummyObject): _backends = ["torch", "transformers", "onnx"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers", "onnx"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"])
423
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py
class OnnxStableDiffusionPipeline(metaclass=DummyObject): _backends = ["torch", "transformers", "onnx"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers", "onnx"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"])
424
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py
class OnnxStableDiffusionUpscalePipeline(metaclass=DummyObject): _backends = ["torch", "transformers", "onnx"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers", "onnx"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"])
425
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py
class StableDiffusionOnnxPipeline(metaclass=DummyObject): _backends = ["torch", "transformers", "onnx"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "transformers", "onnx"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "transformers", "onnx"])
426
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_transformers_and_onnx_objects.py
class AudioDiffusionPipeline(metaclass=DummyObject): _backends = ["torch", "librosa"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "librosa"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "librosa"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "librosa"])
427
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_librosa_objects.py
class Mel(metaclass=DummyObject): _backends = ["torch", "librosa"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "librosa"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "librosa"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "librosa"])
428
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_librosa_objects.py
class CosineDPMSolverMultistepScheduler(metaclass=DummyObject): _backends = ["torch", "torchsde"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "torchsde"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "torchsde"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "torchsde"])
429
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_torchsde_objects.py
class DPMSolverSDEScheduler(metaclass=DummyObject): _backends = ["torch", "torchsde"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch", "torchsde"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch", "torchsde"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch", "torchsde"])
430
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_torch_and_torchsde_objects.py
class AllegroTransformer3DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
431
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class AsymmetricAutoencoderKL(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
432
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class AuraFlowTransformer2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
433
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class AutoencoderDC(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
434
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class AutoencoderKL(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
435
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class AutoencoderKLAllegro(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
436
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class AutoencoderKLCogVideoX(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
437
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class AutoencoderKLHunyuanVideo(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
438
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class AutoencoderKLLTXVideo(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
439
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class AutoencoderKLMochi(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
440
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class AutoencoderKLTemporalDecoder(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
441
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class AutoencoderOobleck(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
442
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class AutoencoderTiny(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
443
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class CogVideoXTransformer3DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
444
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class CogView3PlusTransformer2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
445
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class ConsisIDTransformer3DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
446
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class ConsistencyDecoderVAE(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
447
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class ControlNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
448
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class ControlNetUnionModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
449
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class ControlNetXSAdapter(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
450
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class DiTTransformer2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
451
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class FluxControlNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
452
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class FluxMultiControlNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
453
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class FluxTransformer2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
454
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class HunyuanDiT2DControlNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
455
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class HunyuanDiT2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
456
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class HunyuanDiT2DMultiControlNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
457
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class HunyuanVideoTransformer3DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
458
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class I2VGenXLUNet(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
459
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class Kandinsky3UNet(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
460
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class LatteTransformer3DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
461
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class LTXVideoTransformer3DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
462
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class LuminaNextDiT2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
463
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class MochiTransformer3DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
464
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class ModelMixin(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
465
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class MotionAdapter(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
466
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class MultiAdapter(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
467
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class MultiControlNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
468
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class PixArtTransformer2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
469
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class PriorTransformer(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
470
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class SanaTransformer2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
471
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class SD3ControlNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
472
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class SD3MultiControlNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
473
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class SD3Transformer2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
474
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class SparseControlNetModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
475
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class StableAudioDiTModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
476
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class T2IAdapter(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
477
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class T5FilmDecoder(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
478
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class Transformer2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
479
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class UNet1DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
480
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class UNet2DConditionModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
481
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class UNet2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
482
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class UNet3DConditionModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
483
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class UNetControlNetXSModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
484
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class UNetMotionModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
485
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class UNetSpatioTemporalConditionModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
486
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class UVit2DModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
487
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class VQModel(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
488
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class AudioPipelineOutput(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
489
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class AutoPipelineForImage2Image(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
490
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class AutoPipelineForInpainting(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
491
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class AutoPipelineForText2Image(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
492
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class BlipDiffusionControlNetPipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
493
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class BlipDiffusionPipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
494
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class CLIPImageProjection(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
495
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class ConsistencyModelPipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
496
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class DanceDiffusionPipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
497
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class DDIMPipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
498
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class DDPMPipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
499
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class DiffusionPipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
500
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class DiTPipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
501
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class ImagePipelineOutput(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
502
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py
class KarrasVePipeline(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"])
503
/Users/nielsrogge/Documents/python_projecten/diffusers/src/diffusers/utils/dummy_pt_objects.py