code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a : Tuple = {
'''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[str] = [
'''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PegasusXForConditionalGeneration''',
'''PegasusXModel''',
'''PegasusXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 19 |
"""simple docstring"""
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class a_ ( _UpperCAmelCase ):
a : List[Any] = ''
a : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs
def __init__( self : Tuple , __UpperCamelCase : Optional[DatasetInfo] = None , __UpperCamelCase : Optional[str] = None , **__UpperCamelCase : Any , ) ->Any:
'''simple docstring'''
super().__init__(self , **__UpperCamelCase )
_UpperCAmelCase = repo_info
_UpperCAmelCase = token
_UpperCAmelCase = None
def _snake_case ( self : List[str] ) ->List[str]:
'''simple docstring'''
if self.dir_cache is None:
_UpperCAmelCase = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
_UpperCAmelCase = {
"""name""": hf_file.rfilename,
"""size""": None,
"""type""": """file""",
}
self.dir_cache.update(
{
str(__UpperCamelCase ): {"""name""": str(__UpperCamelCase ), """size""": None, """type""": """directory"""}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def _snake_case ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : str = "rb" , **__UpperCamelCase : Any , ) ->List[str]:
'''simple docstring'''
if not isinstance(self.repo_info , __UpperCamelCase ):
raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" )
_UpperCAmelCase = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha )
return fsspec.open(
__UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open()
def _snake_case ( self : int , __UpperCamelCase : int , **__UpperCamelCase : Dict ) ->Tuple:
'''simple docstring'''
self._get_dirs()
_UpperCAmelCase = self._strip_protocol(__UpperCamelCase )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(__UpperCamelCase )
def _snake_case ( self : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple=False , **__UpperCamelCase : List[str] ) ->Optional[Any]:
'''simple docstring'''
self._get_dirs()
_UpperCAmelCase = PurePosixPath(path.strip("""/""" ) )
_UpperCAmelCase = {}
for p, f in self.dir_cache.items():
_UpperCAmelCase = PurePosixPath(p.strip("""/""" ) )
_UpperCAmelCase = p.parent
if root == path:
_UpperCAmelCase = f
_UpperCAmelCase = list(paths.values() )
if detail:
return out
else:
return sorted(f["""name"""] for f in out ) | 19 | 1 |
"""simple docstring"""
import unittest
from transformers import MobileBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
MobileBertModel,
)
class a_ :
def __init__( self : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int]=13 , __UpperCamelCase : Dict=7 , __UpperCamelCase : str=True , __UpperCamelCase : int=True , __UpperCamelCase : int=True , __UpperCamelCase : str=True , __UpperCamelCase : List[Any]=99 , __UpperCamelCase : int=64 , __UpperCamelCase : Optional[int]=32 , __UpperCamelCase : Tuple=5 , __UpperCamelCase : Tuple=4 , __UpperCamelCase : List[Any]=37 , __UpperCamelCase : str="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[Any]=0.1 , __UpperCamelCase : Dict=5_12 , __UpperCamelCase : Union[str, Any]=16 , __UpperCamelCase : int=2 , __UpperCamelCase : Dict=0.0_2 , __UpperCamelCase : List[str]=3 , __UpperCamelCase : int=4 , __UpperCamelCase : List[str]=None , ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_input_mask
_UpperCAmelCase = use_token_type_ids
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = embedding_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_labels
_UpperCAmelCase = num_choices
_UpperCAmelCase = scope
def _snake_case ( self : Dict ) ->str:
'''simple docstring'''
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase = None
if self.use_input_mask:
_UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase = None
if self.use_token_type_ids:
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
_UpperCAmelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _snake_case ( self : Any ) ->Dict:
'''simple docstring'''
return MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , )
def _snake_case ( self : str , __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : Tuple , __UpperCamelCase : str ) ->str:
'''simple docstring'''
_UpperCAmelCase = MobileBertModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase )
_UpperCAmelCase = model(__UpperCamelCase , token_type_ids=__UpperCamelCase )
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _snake_case ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : str ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = MobileBertForMaskedLM(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self : Dict , __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = MobileBertForNextSentencePrediction(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(
__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def _snake_case ( self : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = MobileBertForPreTraining(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(
__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , next_sentence_label=__UpperCamelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def _snake_case ( self : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] ) ->Any:
'''simple docstring'''
_UpperCAmelCase = MobileBertForQuestionAnswering(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(
__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _snake_case ( self : int , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = MobileBertForSequenceClassification(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = MobileBertForTokenClassification(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case ( self : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Any ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = self.num_choices
_UpperCAmelCase = MobileBertForMultipleChoice(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCAmelCase = model(
__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _snake_case ( self : int ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) ,(
_UpperCAmelCase
) ,(
_UpperCAmelCase
) ,(
_UpperCAmelCase
) ,(
_UpperCAmelCase
) ,(
_UpperCAmelCase
) ,(
_UpperCAmelCase
) ,
) = config_and_inputs
_UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class a_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
a : Optional[int] = (
(
MobileBertModel,
MobileBertForMaskedLM,
MobileBertForMultipleChoice,
MobileBertForNextSentencePrediction,
MobileBertForPreTraining,
MobileBertForQuestionAnswering,
MobileBertForSequenceClassification,
MobileBertForTokenClassification,
)
if is_torch_available()
else ()
)
a : Any = (
{
'feature-extraction': MobileBertModel,
'fill-mask': MobileBertForMaskedLM,
'question-answering': MobileBertForQuestionAnswering,
'text-classification': MobileBertForSequenceClassification,
'token-classification': MobileBertForTokenClassification,
'zero-shot': MobileBertForSequenceClassification,
}
if is_torch_available()
else {}
)
a : Optional[int] = True
def _snake_case ( self : int , __UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any]=False ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
if return_labels:
if model_class in get_values(__UpperCamelCase ):
_UpperCAmelCase = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCamelCase )
_UpperCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase )
return inputs_dict
def _snake_case ( self : Tuple ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = MobileBertModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 )
def _snake_case ( self : List[str] ) ->Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _snake_case ( self : Dict ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase )
def _snake_case ( self : Dict ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase )
def _snake_case ( self : List[str] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase )
def _snake_case ( self : Any ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase )
def _snake_case ( self : List[str] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase )
def _snake_case ( self : Dict ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase )
def _snake_case ( self : Any ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase )
def _snake_case ( self : Union[str, Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase )
def _UpperCamelCase ( _A ) -> Optional[Any]:
"""simple docstring"""
return torch.tensor(
_A , dtype=torch.long , device=_A , )
a : str = 1E-3
@require_torch
@require_sentencepiece
@require_tokenizers
class a_ ( unittest.TestCase ):
@slow
def _snake_case ( self : int ) ->Any:
'''simple docstring'''
_UpperCAmelCase = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(__UpperCamelCase )
_UpperCAmelCase = _long_tensor([[1_01, 71_10, 10_05, 10_56, 20_23, 1_13_33, 1_74_13, 10_29, 1_02]] )
with torch.no_grad():
_UpperCAmelCase = model(__UpperCamelCase )[0]
_UpperCAmelCase = torch.Size((1, 9, 5_12) )
self.assertEqual(output.shape , __UpperCamelCase )
_UpperCAmelCase = torch.tensor(
[
[
[-2.4736526e07, 8.2691656e04, 1.6521838e05],
[-5.7541704e-01, 3.9056022e00, 4.4011507e00],
[2.6047359e00, 1.5677652e00, -1.7324188e-01],
]
] , device=__UpperCamelCase , )
# MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a
# ~1 difference, it's therefore not a good idea to measure using addition.
# Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the
# result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE
_UpperCAmelCase = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE )
_UpperCAmelCase = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE )
self.assertTrue(lower_bound and upper_bound ) | 19 |
"""simple docstring"""
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
a : Optional[Any] = '''\
@misc{chen2021evaluating,
title={Evaluating Large Language Models Trained on Code},
author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \
and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \
and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \
and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \
and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \
and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \
and Mohammad Bavarian and Clemens Winter and Philippe Tillet \
and Felipe Petroski Such and Dave Cummings and Matthias Plappert \
and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \
and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \
and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \
and William Saunders and Christopher Hesse and Andrew N. Carr \
and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \
and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \
and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \
and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},
year={2021},
eprint={2107.03374},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
'''
a : List[str] = '''\
This metric implements the evaluation harness for the HumanEval problem solving dataset
described in the paper "Evaluating Large Language Models Trained on Code"
(https://arxiv.org/abs/2107.03374).
'''
a : Any = '''
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of candidates to evaluate. Each candidates should be a list
of strings with several code candidates to solve the problem.
references: a list with a test for each prediction. Each test should evaluate the
correctness of a code candidate.
k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])
num_workers: number of workers used to evaluate the canidate programs (Default: 4).
timeout:
Returns:
pass_at_k: dict with pass rates for each k
results: dict with granular results of each unittest
Examples:
>>> code_eval = datasets.load_metric("code_eval")
>>> test_cases = ["assert add(2,3)==5"]
>>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]
>>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])
>>> print(pass_at_k)
{\'pass@1\': 0.5, \'pass@2\': 1.0}
'''
a : int = '''
################################################################################
!!!WARNING!!!
################################################################################
The "code_eval" metric executes untrusted model-generated code in Python.
Although it is highly unlikely that model-generated code will do something
overtly malicious in response to this test suite, model-generated code may act
destructively due to a lack of model capability or alignment.
Users are strongly encouraged to sandbox this evaluation suite so that it
does not perform destructive actions on their host or network. For more
information on how OpenAI sandboxes its code, see the paper "Evaluating Large
Language Models Trained on Code" (https://arxiv.org/abs/2107.03374).
Once you have read this disclaimer and taken appropriate precautions,
set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this
with:
>>> import os
>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"
################################################################################\
'''
a : List[Any] = '''The MIT License
Copyright (c) OpenAI (https://openai.com)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
def _snake_case ( self : Tuple ) ->Tuple:
'''simple docstring'''
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , )
def _snake_case ( self : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any]=[1, 10, 1_00] , __UpperCamelCase : Dict=4 , __UpperCamelCase : Tuple=3.0 ) ->Union[str, Any]:
'''simple docstring'''
if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError("""This metric is currently not supported on Windows.""" )
with ThreadPoolExecutor(max_workers=__UpperCamelCase ) as executor:
_UpperCAmelCase = []
_UpperCAmelCase = Counter()
_UpperCAmelCase = 0
_UpperCAmelCase = defaultdict(__UpperCamelCase )
for task_id, (candidates, test_case) in enumerate(zip(__UpperCamelCase , __UpperCamelCase ) ):
for candidate in candidates:
_UpperCAmelCase = candidate + """\n""" + test_case
_UpperCAmelCase = (test_program, timeout, task_id, completion_id[task_id])
_UpperCAmelCase = executor.submit(__UpperCamelCase , *__UpperCamelCase )
futures.append(__UpperCamelCase )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(__UpperCamelCase ):
_UpperCAmelCase = future.result()
results[result["task_id"]].append((result["""completion_id"""], result) )
_UpperCAmelCase ,_UpperCAmelCase = [], []
for result in results.values():
result.sort()
_UpperCAmelCase = [r[1]["""passed"""] for r in result]
total.append(len(__UpperCamelCase ) )
correct.append(sum(__UpperCamelCase ) )
_UpperCAmelCase = np.array(__UpperCamelCase )
_UpperCAmelCase = np.array(__UpperCamelCase )
_UpperCAmelCase = k
_UpperCAmelCase = {f"""pass@{k}""": estimate_pass_at_k(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def _UpperCamelCase ( _A , _A , _A ) -> Dict:
"""simple docstring"""
def estimator(_A , _A , _A ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(_A , _A ):
_UpperCAmelCase = itertools.repeat(_A , len(_A ) )
else:
assert len(_A ) == len(_A )
_UpperCAmelCase = iter(_A )
return np.array([estimator(int(_A ) , int(_A ) , _A ) for n, c in zip(_A , _A )] ) | 19 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
a : Tuple = logging.get_logger(__name__)
a : Tuple = {
'''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''',
}
# fmt: off
a : Any = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_7, 3_6_6, 4_3_8, 5_3_2, 6_8_5,
7_0_5, 7_9_6, 9_3_0, 1_0_5_8, 1_2_2_0, 1_2_6_7, 1_2_7_9, 1_3_0_3, 1_3_4_3, 1_3_7_7,
1_3_9_1, 1_6_3_5, 1_7_8_2, 1_8_7_5, 2_1_6_2, 2_3_6_1, 2_4_8_8, 3_4_6_7, 4_0_0_8, 4_2_1_1,
4_6_0_0, 4_8_0_8, 5_2_9_9, 5_8_5_5, 6_3_2_9, 7_2_0_3, 9_6_0_9, 9_9_5_9, 1_0_5_6_3, 1_0_7_8_6,
1_1_4_2_0, 1_1_7_0_9, 1_1_9_0_7, 1_3_1_6_3, 1_3_6_9_7, 1_3_7_0_0, 1_4_8_0_8, 1_5_3_0_6, 1_6_4_1_0, 1_6_7_9_1,
1_7_9_9_2, 1_9_2_0_3, 1_9_5_1_0, 2_0_7_2_4, 2_2_3_0_5, 2_2_9_3_5, 2_7_0_0_7, 3_0_1_0_9, 3_0_4_2_0, 3_3_4_0_9,
3_4_9_4_9, 4_0_2_8_3, 4_0_4_9_3, 4_0_5_4_9, 4_7_2_8_2, 4_9_1_4_6, 5_0_2_5_7, 5_0_3_5_9, 5_0_3_6_0, 5_0_3_6_1
]
a : Tuple = [
1, 2, 7, 8, 9, 1_0, 1_4, 2_5,
2_6, 2_7, 2_8, 2_9, 3_1, 5_8, 5_9, 6_0, 6_1, 6_2,
6_3, 9_0, 9_1, 9_2, 9_3, 3_5_9, 5_0_3, 5_2_2, 5_4_2, 8_7_3,
8_9_3, 9_0_2, 9_1_8, 9_2_2, 9_3_1, 1_3_5_0, 1_8_5_3, 1_9_8_2, 2_4_6_0, 2_6_2_7,
3_2_4_6, 3_2_5_3, 3_2_6_8, 3_5_3_6, 3_8_4_6, 3_9_6_1, 4_1_8_3, 4_6_6_7, 6_5_8_5, 6_6_4_7,
7_2_7_3, 9_0_6_1, 9_3_8_3, 1_0_4_2_8, 1_0_9_2_9, 1_1_9_3_8, 1_2_0_3_3, 1_2_3_3_1, 1_2_5_6_2, 1_3_7_9_3,
1_4_1_5_7, 1_4_6_3_5, 1_5_2_6_5, 1_5_6_1_8, 1_6_5_5_3, 1_6_6_0_4, 1_8_3_6_2, 1_8_9_5_6, 2_0_0_7_5, 2_1_6_7_5,
2_2_5_2_0, 2_6_1_3_0, 2_6_1_6_1, 2_6_4_3_5, 2_8_2_7_9, 2_9_4_6_4, 3_1_6_5_0, 3_2_3_0_2, 3_2_4_7_0, 3_6_8_6_5,
4_2_8_6_3, 4_7_4_2_5, 4_9_8_7_0, 5_0_2_5_4, 5_0_2_5_8, 5_0_3_6_0, 5_0_3_6_1, 5_0_3_6_2
]
class a_ ( _UpperCAmelCase ):
a : Optional[Any] = 'whisper'
a : List[str] = ['past_key_values']
a : str = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self : int , __UpperCamelCase : List[str]=5_18_65 , __UpperCamelCase : Optional[Any]=80 , __UpperCamelCase : Dict=6 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : List[Any]=6 , __UpperCamelCase : Optional[Any]=4 , __UpperCamelCase : Any=15_36 , __UpperCamelCase : List[Any]=15_36 , __UpperCamelCase : int=0.0 , __UpperCamelCase : Union[str, Any]=0.0 , __UpperCamelCase : Tuple=5_02_57 , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Any=True , __UpperCamelCase : int="gelu" , __UpperCamelCase : List[str]=2_56 , __UpperCamelCase : str=0.0 , __UpperCamelCase : Dict=0.0 , __UpperCamelCase : Optional[Any]=0.0 , __UpperCamelCase : int=0.0_2 , __UpperCamelCase : int=False , __UpperCamelCase : List[Any]=15_00 , __UpperCamelCase : Union[str, Any]=4_48 , __UpperCamelCase : int=5_02_56 , __UpperCamelCase : List[str]=5_02_56 , __UpperCamelCase : Tuple=5_02_56 , __UpperCamelCase : int=None , __UpperCamelCase : Optional[Any]=[2_20, 5_02_56] , __UpperCamelCase : Any=False , __UpperCamelCase : Tuple=2_56 , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : List[str]=0.0_5 , __UpperCamelCase : Optional[int]=10 , __UpperCamelCase : str=2 , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : Dict=10 , __UpperCamelCase : List[Any]=0 , __UpperCamelCase : Union[str, Any]=7 , **__UpperCamelCase : List[str] , ) ->Any:
'''simple docstring'''
_UpperCAmelCase = vocab_size
_UpperCAmelCase = num_mel_bins
_UpperCAmelCase = d_model
_UpperCAmelCase = encoder_layers
_UpperCAmelCase = encoder_attention_heads
_UpperCAmelCase = decoder_layers
_UpperCAmelCase = decoder_attention_heads
_UpperCAmelCase = decoder_ffn_dim
_UpperCAmelCase = encoder_ffn_dim
_UpperCAmelCase = dropout
_UpperCAmelCase = attention_dropout
_UpperCAmelCase = activation_dropout
_UpperCAmelCase = activation_function
_UpperCAmelCase = init_std
_UpperCAmelCase = encoder_layerdrop
_UpperCAmelCase = decoder_layerdrop
_UpperCAmelCase = use_cache
_UpperCAmelCase = encoder_layers
_UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True
_UpperCAmelCase = max_source_positions
_UpperCAmelCase = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
_UpperCAmelCase = classifier_proj_size
_UpperCAmelCase = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_UpperCAmelCase = apply_spec_augment
_UpperCAmelCase = mask_time_prob
_UpperCAmelCase = mask_time_length
_UpperCAmelCase = mask_time_min_masks
_UpperCAmelCase = mask_feature_prob
_UpperCAmelCase = mask_feature_length
_UpperCAmelCase = mask_feature_min_masks
_UpperCAmelCase = median_filter_width
super().__init__(
pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , decoder_start_token_id=__UpperCamelCase , suppress_tokens=__UpperCamelCase , begin_suppress_tokens=__UpperCamelCase , **__UpperCamelCase , )
class a_ ( _UpperCAmelCase ):
@property
def _snake_case ( self : Union[str, Any] ) ->Mapping[str, Mapping[int, str]]:
'''simple docstring'''
_UpperCAmelCase = OrderedDict(
[
("""input_features""", {0: """batch""", 1: """feature_size""", 2: """encoder_sequence"""}),
] )
if self.use_past:
_UpperCAmelCase = {0: """batch"""}
else:
_UpperCAmelCase = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(__UpperCamelCase , direction="""inputs""" )
return common_inputs
def _snake_case ( self : Tuple , __UpperCamelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __UpperCamelCase : int = -1 , __UpperCamelCase : int = -1 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional["TensorType"] = None , __UpperCamelCase : int = 2_20_50 , __UpperCamelCase : float = 5.0 , __UpperCamelCase : int = 2_20 , ) ->Mapping[str, Any]:
'''simple docstring'''
_UpperCAmelCase = OrderedDict()
_UpperCAmelCase = OnnxConfig.generate_dummy_inputs(
self , preprocessor=preprocessor.feature_extractor , batch_size=__UpperCamelCase , framework=__UpperCamelCase , sampling_rate=__UpperCamelCase , time_duration=__UpperCamelCase , frequency=__UpperCamelCase , )
_UpperCAmelCase = encoder_inputs["""input_features"""].shape[2]
_UpperCAmelCase = encoder_sequence_length // 2 if self.use_past else seq_length
_UpperCAmelCase = super().generate_dummy_inputs(
preprocessor.tokenizer , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = encoder_inputs.pop("""input_features""" )
_UpperCAmelCase = decoder_inputs.pop("""decoder_input_ids""" )
if "past_key_values" in decoder_inputs:
_UpperCAmelCase = decoder_inputs.pop("""past_key_values""" )
return dummy_inputs
@property
def _snake_case ( self : Union[str, Any] ) ->float:
'''simple docstring'''
return 1e-3 | 19 |
"""simple docstring"""
from collections.abc import Callable
import numpy as np
def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> np.array:
"""simple docstring"""
_UpperCAmelCase = int(np.ceil((x_end - xa) / step_size ) )
_UpperCAmelCase = np.zeros((n + 1,) )
_UpperCAmelCase = ya
_UpperCAmelCase = xa
for k in range(_A ):
_UpperCAmelCase = y[k] + step_size * ode_func(_A , y[k] )
_UpperCAmelCase = y[k] + (
(step_size / 2) * (ode_func(_A , y[k] ) + ode_func(x + step_size , _A ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod() | 19 | 1 |
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class a_ ( unittest.TestCase ):
def _snake_case ( self : str ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = tempfile.mkdtemp()
_UpperCAmelCase = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""的""",
"""价""",
"""格""",
"""是""",
"""15""",
"""便""",
"""alex""",
"""##andra""",
""",""",
"""。""",
"""-""",
"""t""",
"""shirt""",
]
_UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
_UpperCAmelCase = {
"""do_resize""": True,
"""size""": {"""height""": 2_24, """width""": 2_24},
"""do_center_crop""": True,
"""crop_size""": {"""height""": 18, """width""": 18},
"""do_normalize""": True,
"""image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
"""image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
"""do_convert_rgb""": True,
}
_UpperCAmelCase = os.path.join(self.tmpdirname , __UpperCamelCase )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__UpperCamelCase , __UpperCamelCase )
def _snake_case ( self : Tuple , **__UpperCamelCase : Any ) ->List[Any]:
'''simple docstring'''
return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase )
def _snake_case ( self : str , **__UpperCamelCase : str ) ->Optional[int]:
'''simple docstring'''
return BertTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCamelCase )
def _snake_case ( self : str , **__UpperCamelCase : Any ) ->Tuple:
'''simple docstring'''
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase )
def _snake_case ( self : Optional[int] ) ->Optional[Any]:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _snake_case ( self : str ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
_UpperCAmelCase = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case ( self : Tuple ) ->int:
'''simple docstring'''
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = self.get_rust_tokenizer()
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
processor_slow.save_pretrained(self.tmpdirname )
_UpperCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCamelCase )
_UpperCAmelCase = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
processor_fast.save_pretrained(self.tmpdirname )
_UpperCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __UpperCamelCase )
self.assertIsInstance(processor_fast.tokenizer , __UpperCamelCase )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __UpperCamelCase )
self.assertIsInstance(processor_fast.image_processor , __UpperCamelCase )
def _snake_case ( self : str ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_UpperCAmelCase = self.get_tokenizer(cls_token="""(CLS)""" , sep_token="""(SEP)""" )
_UpperCAmelCase = self.get_image_processor(do_normalize=__UpperCamelCase )
_UpperCAmelCase = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token="""(CLS)""" , sep_token="""(SEP)""" , do_normalize=__UpperCamelCase )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __UpperCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCamelCase )
def _snake_case ( self : str ) ->str:
'''simple docstring'''
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = image_processor(__UpperCamelCase , return_tensors="""np""" )
_UpperCAmelCase = processor(images=__UpperCamelCase , return_tensors="""np""" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case ( self : Dict ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
_UpperCAmelCase = """Alexandra,T-shirt的价格是15便士。"""
_UpperCAmelCase = processor(text=__UpperCamelCase )
_UpperCAmelCase = tokenizer(__UpperCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case ( self : Any ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
_UpperCAmelCase = """Alexandra,T-shirt的价格是15便士。"""
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = processor(text=__UpperCamelCase , images=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(__UpperCamelCase ):
processor()
def _snake_case ( self : Union[str, Any] ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
_UpperCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_UpperCAmelCase = processor.batch_decode(__UpperCamelCase )
_UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
def _snake_case ( self : Any ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = self.get_image_processor()
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = ChineseCLIPProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
_UpperCAmelCase = """Alexandra,T-shirt的价格是15便士。"""
_UpperCAmelCase = self.prepare_image_inputs()
_UpperCAmelCase = processor(text=__UpperCamelCase , images=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) | 19 |
"""simple docstring"""
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''',
datefmt='''%Y-%m-%d %H:%M:%S''',
level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(),
stream=sys.stdout,
)
a : List[str] = logging.getLogger(__name__)
a : int = {'''facebook/bart-base''': BartForConditionalGeneration}
a : Dict = {'''facebook/bart-base''': BartTokenizer}
def _UpperCamelCase ( ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" )
parser.add_argument(
"""--validation_file""" , type=_A , default=_A , help="""A csv or a json file containing the validation data.""" )
parser.add_argument(
"""--max_length""" , type=_A , default=5 , help="""The maximum total input sequence length after tokenization.""" , )
parser.add_argument(
"""--num_beams""" , type=_A , default=_A , help=(
"""Number of beams to use for evaluation. This argument will be """
"""passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."""
) , )
parser.add_argument(
"""--model_name_or_path""" , type=_A , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_A , )
parser.add_argument(
"""--config_name""" , type=_A , default=_A , help="""Pretrained config name or path if not the same as model_name""" , )
parser.add_argument(
"""--device""" , type=_A , default="""cpu""" , help="""Device where the model will be run""" , )
parser.add_argument("""--output_file_path""" , type=_A , default=_A , help="""Where to store the final ONNX file.""" )
_UpperCAmelCase = parser.parse_args()
return args
def _UpperCamelCase ( _A , _A="cpu" ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = model_dict[model_name].from_pretrained(_A ).to(_A )
_UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_A )
if model_name in ["facebook/bart-base"]:
_UpperCAmelCase = 0
_UpperCAmelCase = None
_UpperCAmelCase = 0
return huggingface_model, tokenizer
def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> Optional[int]:
"""simple docstring"""
model.eval()
_UpperCAmelCase = None
_UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_A ) )
with torch.no_grad():
_UpperCAmelCase = """My friends are cool but they eat too many carbs."""
_UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="""pt""" ).to(model.device )
_UpperCAmelCase = model.generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=_A , max_length=_A , early_stopping=_A , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
_A , (
inputs["""input_ids"""],
inputs["""attention_mask"""],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , _A , opset_version=1_4 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={
"""input_ids""": {0: """batch""", 1: """seq"""},
"""output_ids""": {0: """batch""", 1: """seq_out"""},
} , example_outputs=_A , )
logger.info("""Model exported to {}""".format(_A ) )
_UpperCAmelCase = remove_dup_initializers(os.path.abspath(_A ) )
logger.info("""Deduplicated and optimized model written to {}""".format(_A ) )
_UpperCAmelCase = onnxruntime.InferenceSession(_A )
_UpperCAmelCase = ort_sess.run(
_A , {
"""input_ids""": inputs["""input_ids"""].cpu().numpy(),
"""attention_mask""": inputs["""attention_mask"""].cpu().numpy(),
"""num_beams""": np.array(_A ),
"""max_length""": np.array(_A ),
"""decoder_start_token_id""": np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 )
logger.info("""Model outputs from torch and ONNX Runtime are similar.""" )
logger.info("""Success.""" )
def _UpperCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = parse_args()
_UpperCAmelCase = 5
_UpperCAmelCase = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
_UpperCAmelCase = torch.device(args.device )
_UpperCAmelCase ,_UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _A )
if model.config.decoder_start_token_id is None:
raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" )
model.to(_A )
if args.max_length:
_UpperCAmelCase = args.max_length
if args.num_beams:
_UpperCAmelCase = args.num_beams
if args.output_file_path:
_UpperCAmelCase = args.output_file_path
else:
_UpperCAmelCase = """BART.onnx"""
logger.info("""Exporting model to ONNX""" )
export_and_validate_model(_A , _A , _A , _A , _A )
if __name__ == "__main__":
main() | 19 | 1 |
"""simple docstring"""
import gc
import unittest
import torch
from parameterized import parameterized
from diffusers import AutoencoderKL
from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class a_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
a : Any = AutoencoderKL
a : Dict = 'sample'
a : List[str] = 1e-2
@property
def _snake_case ( self : Any ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = 4
_UpperCAmelCase = 3
_UpperCAmelCase = (32, 32)
_UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(__UpperCamelCase )
return {"sample": image}
@property
def _snake_case ( self : Tuple ) ->Optional[int]:
'''simple docstring'''
return (3, 32, 32)
@property
def _snake_case ( self : Tuple ) ->Any:
'''simple docstring'''
return (3, 32, 32)
def _snake_case ( self : Dict ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = {
"""block_out_channels""": [32, 64],
"""in_channels""": 3,
"""out_channels""": 3,
"""down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""],
"""up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""],
"""latent_channels""": 4,
}
_UpperCAmelCase = self.dummy_input
return init_dict, inputs_dict
def _snake_case ( self : int ) ->Any:
'''simple docstring'''
pass
def _snake_case ( self : Union[str, Any] ) ->Optional[Any]:
'''simple docstring'''
pass
@unittest.skipIf(torch_device == """mps""" , """Gradient checkpointing skipped on MPS""" )
def _snake_case ( self : Optional[int] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.prepare_init_args_and_inputs_for_common()
_UpperCAmelCase = self.model_class(**__UpperCamelCase )
model.to(__UpperCamelCase )
assert not model.is_gradient_checkpointing and model.training
_UpperCAmelCase = model(**__UpperCamelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model.zero_grad()
_UpperCAmelCase = torch.randn_like(__UpperCamelCase )
_UpperCAmelCase = (out - labels).mean()
loss.backward()
# re-instantiate the model now enabling gradient checkpointing
_UpperCAmelCase = self.model_class(**__UpperCamelCase )
# clone model
model_a.load_state_dict(model.state_dict() )
model_a.to(__UpperCamelCase )
model_a.enable_gradient_checkpointing()
assert model_a.is_gradient_checkpointing and model_a.training
_UpperCAmelCase = model_a(**__UpperCamelCase ).sample
# run the backwards pass on the model. For backwards pass, for simplicity purpose,
# we won't calculate the loss and rather backprop on out.sum()
model_a.zero_grad()
_UpperCAmelCase = (out_a - labels).mean()
loss_a.backward()
# compare the output and parameters gradients
self.assertTrue((loss - loss_a).abs() < 1e-5 )
_UpperCAmelCase = dict(model.named_parameters() )
_UpperCAmelCase = dict(model_a.named_parameters() )
for name, param in named_params.items():
self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) )
def _snake_case ( self : int ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" , output_loading_info=__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 )
model.to(__UpperCamelCase )
_UpperCAmelCase = model(**self.dummy_input )
assert image is not None, "Make sure output is not None"
def _snake_case ( self : Union[str, Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = AutoencoderKL.from_pretrained("""fusing/autoencoder-kl-dummy""" )
_UpperCAmelCase = model.to(__UpperCamelCase )
model.eval()
if torch_device == "mps":
_UpperCAmelCase = torch.manual_seed(0 )
else:
_UpperCAmelCase = torch.Generator(device=__UpperCamelCase ).manual_seed(0 )
_UpperCAmelCase = torch.randn(
1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , )
_UpperCAmelCase = image.to(__UpperCamelCase )
with torch.no_grad():
_UpperCAmelCase = model(__UpperCamelCase , sample_posterior=__UpperCamelCase , generator=__UpperCamelCase ).sample
_UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu()
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
if torch_device == "mps":
_UpperCAmelCase = torch.tensor(
[
-4.0078e-01,
-3.8323e-04,
-1.2681e-01,
-1.1462e-01,
2.0095e-01,
1.0893e-01,
-8.8247e-02,
-3.0361e-01,
-9.8644e-03,
] )
elif torch_device == "cpu":
_UpperCAmelCase = torch.tensor(
[-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] )
else:
_UpperCAmelCase = torch.tensor(
[-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] )
self.assertTrue(torch_all_close(__UpperCamelCase , __UpperCamelCase , rtol=1e-2 ) )
@slow
class a_ ( unittest.TestCase ):
def _snake_case ( self : int , __UpperCamelCase : List[str] , __UpperCamelCase : str ) ->str:
'''simple docstring'''
return f"""gaussian_noise_s={seed}_shape={"_".join([str(__UpperCamelCase ) for s in shape] )}.npy"""
def _snake_case ( self : List[str] ) ->str:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self : Tuple , __UpperCamelCase : Tuple=0 , __UpperCamelCase : List[Any]=(4, 3, 5_12, 5_12) , __UpperCamelCase : Optional[Any]=False ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = torch.floataa if fpaa else torch.floataa
_UpperCAmelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(__UpperCamelCase , __UpperCamelCase ) ) ).to(__UpperCamelCase ).to(__UpperCamelCase )
return image
def _snake_case ( self : Dict , __UpperCamelCase : Optional[int]="CompVis/stable-diffusion-v1-4" , __UpperCamelCase : int=False ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = """fp16""" if fpaa else None
_UpperCAmelCase = torch.floataa if fpaa else torch.floataa
_UpperCAmelCase = AutoencoderKL.from_pretrained(
__UpperCamelCase , subfolder="""vae""" , torch_dtype=__UpperCamelCase , revision=__UpperCamelCase , )
model.to(__UpperCamelCase ).eval()
return model
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : Tuple=0 ) ->Optional[int]:
'''simple docstring'''
if torch_device == "mps":
return torch.manual_seed(__UpperCamelCase )
return torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase )
@parameterized.expand(
[
# fmt: off
[33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]],
[47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]],
# fmt: on
] )
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Any ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = self.get_sd_vae_model()
_UpperCAmelCase = self.get_sd_image(__UpperCamelCase )
_UpperCAmelCase = self.get_generator(__UpperCamelCase )
with torch.no_grad():
_UpperCAmelCase = model(__UpperCamelCase , generator=__UpperCamelCase , sample_posterior=__UpperCamelCase ).sample
assert sample.shape == image.shape
_UpperCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu()
_UpperCAmelCase = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice )
assert torch_all_close(__UpperCamelCase , __UpperCamelCase , atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]],
[47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : str ) ->Any:
'''simple docstring'''
_UpperCAmelCase = self.get_sd_vae_model(fpaa=__UpperCamelCase )
_UpperCAmelCase = self.get_sd_image(__UpperCamelCase , fpaa=__UpperCamelCase )
_UpperCAmelCase = self.get_generator(__UpperCamelCase )
with torch.no_grad():
_UpperCAmelCase = model(__UpperCamelCase , generator=__UpperCamelCase , sample_posterior=__UpperCamelCase ).sample
assert sample.shape == image.shape
_UpperCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu()
_UpperCAmelCase = torch.tensor(__UpperCamelCase )
assert torch_all_close(__UpperCamelCase , __UpperCamelCase , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]],
[47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]],
# fmt: on
] )
def _snake_case ( self : int , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any ) ->str:
'''simple docstring'''
_UpperCAmelCase = self.get_sd_vae_model()
_UpperCAmelCase = self.get_sd_image(__UpperCamelCase )
with torch.no_grad():
_UpperCAmelCase = model(__UpperCamelCase ).sample
assert sample.shape == image.shape
_UpperCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu()
_UpperCAmelCase = torch.tensor(expected_slice_mps if torch_device == """mps""" else expected_slice )
assert torch_all_close(__UpperCamelCase , __UpperCamelCase , atol=3e-3 )
@parameterized.expand(
[
# fmt: off
[13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]],
[37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = self.get_sd_vae_model()
_UpperCAmelCase = self.get_sd_image(__UpperCamelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
_UpperCAmelCase = model.decode(__UpperCamelCase ).sample
assert list(sample.shape ) == [3, 3, 5_12, 5_12]
_UpperCAmelCase = sample[-1, -2:, :2, -2:].flatten().cpu()
_UpperCAmelCase = torch.tensor(__UpperCamelCase )
assert torch_all_close(__UpperCamelCase , __UpperCamelCase , atol=1e-3 )
@parameterized.expand(
[
# fmt: off
[27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]],
[16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]],
# fmt: on
] )
@require_torch_gpu
def _snake_case ( self : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = self.get_sd_vae_model(fpaa=__UpperCamelCase )
_UpperCAmelCase = self.get_sd_image(__UpperCamelCase , shape=(3, 4, 64, 64) , fpaa=__UpperCamelCase )
with torch.no_grad():
_UpperCAmelCase = model.decode(__UpperCamelCase ).sample
assert list(sample.shape ) == [3, 3, 5_12, 5_12]
_UpperCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu()
_UpperCAmelCase = torch.tensor(__UpperCamelCase )
assert torch_all_close(__UpperCamelCase , __UpperCamelCase , atol=5e-3 )
@parameterized.expand([(13,), (16,), (27,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" )
def _snake_case ( self : Optional[Any] , __UpperCamelCase : List[str] ) ->Any:
'''simple docstring'''
_UpperCAmelCase = self.get_sd_vae_model(fpaa=__UpperCamelCase )
_UpperCAmelCase = self.get_sd_image(__UpperCamelCase , shape=(3, 4, 64, 64) , fpaa=__UpperCamelCase )
with torch.no_grad():
_UpperCAmelCase = model.decode(__UpperCamelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
_UpperCAmelCase = model.decode(__UpperCamelCase ).sample
assert list(sample.shape ) == [3, 3, 5_12, 5_12]
assert torch_all_close(__UpperCamelCase , __UpperCamelCase , atol=1e-1 )
@parameterized.expand([(13,), (16,), (37,)] )
@require_torch_gpu
@unittest.skipIf(not is_xformers_available() , reason="""xformers is not required when using PyTorch 2.0.""" )
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : Dict ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = self.get_sd_vae_model()
_UpperCAmelCase = self.get_sd_image(__UpperCamelCase , shape=(3, 4, 64, 64) )
with torch.no_grad():
_UpperCAmelCase = model.decode(__UpperCamelCase ).sample
model.enable_xformers_memory_efficient_attention()
with torch.no_grad():
_UpperCAmelCase = model.decode(__UpperCamelCase ).sample
assert list(sample.shape ) == [3, 3, 5_12, 5_12]
assert torch_all_close(__UpperCamelCase , __UpperCamelCase , atol=1e-2 )
@parameterized.expand(
[
# fmt: off
[33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]],
[47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]],
# fmt: on
] )
def _snake_case ( self : str , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = self.get_sd_vae_model()
_UpperCAmelCase = self.get_sd_image(__UpperCamelCase )
_UpperCAmelCase = self.get_generator(__UpperCamelCase )
with torch.no_grad():
_UpperCAmelCase = model.encode(__UpperCamelCase ).latent_dist
_UpperCAmelCase = dist.sample(generator=__UpperCamelCase )
assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]
_UpperCAmelCase = sample[0, -1, -3:, -3:].flatten().cpu()
_UpperCAmelCase = torch.tensor(__UpperCamelCase )
_UpperCAmelCase = 3e-3 if torch_device != """mps""" else 1e-2
assert torch_all_close(__UpperCamelCase , __UpperCamelCase , atol=__UpperCamelCase ) | 19 |
"""simple docstring"""
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def _UpperCamelCase ( _A , _A=None ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = None
if token is not None:
_UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
_UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
_UpperCAmelCase = requests.get(_A , headers=_A ).json()
_UpperCAmelCase = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
_UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(_A ):
_UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" , headers=_A ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCamelCase ( _A , _A=None ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = None
if token is not None:
_UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
_UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"""
_UpperCAmelCase = requests.get(_A , headers=_A ).json()
_UpperCAmelCase = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
_UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(_A ):
_UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" , headers=_A ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCamelCase ( _A , _A , _A , _A ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = None
if token is not None:
_UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
_UpperCAmelCase = requests.get(_A , headers=_A , allow_redirects=_A )
_UpperCAmelCase = result.headers["""Location"""]
_UpperCAmelCase = requests.get(_A , allow_redirects=_A )
_UpperCAmelCase = os.path.join(_A , F"""{artifact_name}.zip""" )
with open(_A , """wb""" ) as fp:
fp.write(response.content )
def _UpperCamelCase ( _A , _A=None ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = []
_UpperCAmelCase = []
_UpperCAmelCase = None
with zipfile.ZipFile(_A ) as z:
for filename in z.namelist():
if not os.path.isdir(_A ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(_A ) as f:
for line in f:
_UpperCAmelCase = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_UpperCAmelCase = line[: line.index(""": """ )]
_UpperCAmelCase = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
_UpperCAmelCase = line[len("""FAILED """ ) :]
failed_tests.append(_A )
elif filename == "job_name.txt":
_UpperCAmelCase = line
if len(_A ) != len(_A ):
raise ValueError(
F"""`errors` and `failed_tests` should have the same number of elements. Got {len(_A )} for `errors` """
F"""and {len(_A )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"""
""" problem.""" )
_UpperCAmelCase = None
if job_name and job_links:
_UpperCAmelCase = job_links.get(_A , _A )
# A list with elements of the form (line of error, error, failed test)
_UpperCAmelCase = [x + [y] + [job_link] for x, y in zip(_A , _A )]
return result
def _UpperCamelCase ( _A , _A=None ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = []
_UpperCAmelCase = [os.path.join(_A , _A ) for p in os.listdir(_A ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(_A , job_links=_A ) )
return errors
def _UpperCamelCase ( _A , _A=None ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = Counter()
counter.update([x[1] for x in logs] )
_UpperCAmelCase = counter.most_common()
_UpperCAmelCase = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_UpperCAmelCase = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
_UpperCAmelCase = dict(sorted(r.items() , key=lambda _A : item[1]["count"] , reverse=_A ) )
return r
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
_UpperCAmelCase = test.split("""/""" )[2]
else:
_UpperCAmelCase = None
return test
def _UpperCamelCase ( _A , _A=None ) -> Any:
"""simple docstring"""
_UpperCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs]
_UpperCAmelCase = [x for x in logs if x[2] is not None]
_UpperCAmelCase = {x[2] for x in logs}
_UpperCAmelCase = {}
for test in tests:
_UpperCAmelCase = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_UpperCAmelCase = counter.most_common()
_UpperCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_UpperCAmelCase = sum(error_counts.values() )
if n_errors > 0:
_UpperCAmelCase = {"""count""": n_errors, """errors""": error_counts}
_UpperCAmelCase = dict(sorted(r.items() , key=lambda _A : item[1]["count"] , reverse=_A ) )
return r
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = """| no. | error | status |"""
_UpperCAmelCase = """|-:|:-|:-|"""
_UpperCAmelCase = [header, sep]
for error in reduced_by_error:
_UpperCAmelCase = reduced_by_error[error]["""count"""]
_UpperCAmelCase = F"""| {count} | {error[:1_0_0]} | |"""
lines.append(_A )
return "\n".join(_A )
def _UpperCamelCase ( _A ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = """| model | no. of errors | major error | count |"""
_UpperCAmelCase = """|-:|-:|-:|-:|"""
_UpperCAmelCase = [header, sep]
for model in reduced_by_model:
_UpperCAmelCase = reduced_by_model[model]["""count"""]
_UpperCAmelCase ,_UpperCAmelCase = list(reduced_by_model[model]["""errors"""].items() )[0]
_UpperCAmelCase = F"""| {model} | {count} | {error[:6_0]} | {_count} |"""
lines.append(_A )
return "\n".join(_A )
if __name__ == "__main__":
a : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''')
parser.add_argument(
'''--output_dir''',
type=str,
required=True,
help='''Where to store the downloaded artifacts and other result files.''',
)
parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''')
a : Dict = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
a : Tuple = get_job_links(args.workflow_run_id, token=args.token)
a : Tuple = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
a : List[Any] = k.find(''' / ''')
a : Tuple = k[index + len(''' / ''') :]
a : int = v
with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
a : Tuple = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
a : Optional[int] = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
a : Union[str, Any] = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
a : Optional[int] = counter.most_common(3_0)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
a : int = reduce_by_error(errors)
a : str = reduce_by_model(errors)
a : int = make_github_table(reduced_by_error)
a : Optional[int] = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa) | 19 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
a : List[str] = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Optional[int] = ['''GPTSw3Tokenizer''']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_swa import GPTSwaTokenizer
else:
import sys
a : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 19 |
"""simple docstring"""
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class a_ ( _UpperCAmelCase ):
a : Any = ['image_processor', 'tokenizer']
a : Optional[int] = 'AutoImageProcessor'
a : Any = 'AutoTokenizer'
def __init__( self : List[str] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=None , **__UpperCamelCase : List[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCamelCase , )
_UpperCAmelCase = kwargs.pop("""feature_extractor""" )
_UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = self.image_processor
_UpperCAmelCase = False
def __call__( self : Union[str, Any] , *__UpperCamelCase : str , **__UpperCamelCase : Optional[Any] ) ->List[str]:
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = kwargs.pop("""images""" , __UpperCamelCase )
_UpperCAmelCase = kwargs.pop("""text""" , __UpperCamelCase )
if len(__UpperCamelCase ) > 0:
_UpperCAmelCase = args[0]
_UpperCAmelCase = args[1:]
if images is None and text is None:
raise ValueError("""You need to specify either an `images` or `text` input to process.""" )
if images is not None:
_UpperCAmelCase = self.image_processor(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase )
if text is not None:
_UpperCAmelCase = self.tokenizer(__UpperCamelCase , **__UpperCamelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
_UpperCAmelCase = encodings["""input_ids"""]
return inputs
def _snake_case ( self : Union[str, Any] , *__UpperCamelCase : int , **__UpperCamelCase : Tuple ) ->Tuple:
'''simple docstring'''
return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : Tuple , *__UpperCamelCase : int , **__UpperCamelCase : Union[str, Any] ) ->int:
'''simple docstring'''
return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase )
@contextmanager
def _snake_case ( self : Tuple ) ->Union[str, Any]:
'''simple docstring'''
warnings.warn(
"""`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """
"""labels by using the argument `text` of the regular `__call__` method (either in the same call as """
"""your images inputs, or in a separate call.""" )
_UpperCAmelCase = True
_UpperCAmelCase = self.tokenizer
yield
_UpperCAmelCase = self.image_processor
_UpperCAmelCase = False
def _snake_case ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : Union[str, Any]=None ) ->List[str]:
'''simple docstring'''
if added_vocab is None:
_UpperCAmelCase = self.tokenizer.get_added_vocab()
_UpperCAmelCase = {}
while tokens:
_UpperCAmelCase = re.search(r"""<s_(.*?)>""" , __UpperCamelCase , re.IGNORECASE )
if start_token is None:
break
_UpperCAmelCase = start_token.group(1 )
_UpperCAmelCase = re.search(rf"""</s_{key}>""" , __UpperCamelCase , re.IGNORECASE )
_UpperCAmelCase = start_token.group()
if end_token is None:
_UpperCAmelCase = tokens.replace(__UpperCamelCase , """""" )
else:
_UpperCAmelCase = end_token.group()
_UpperCAmelCase = re.escape(__UpperCamelCase )
_UpperCAmelCase = re.escape(__UpperCamelCase )
_UpperCAmelCase = re.search(f"""{start_token_escaped}(.*?){end_token_escaped}""" , __UpperCamelCase , re.IGNORECASE )
if content is not None:
_UpperCAmelCase = content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
_UpperCAmelCase = self.tokenajson(__UpperCamelCase , is_inner_value=__UpperCamelCase , added_vocab=__UpperCamelCase )
if value:
if len(__UpperCamelCase ) == 1:
_UpperCAmelCase = value[0]
_UpperCAmelCase = value
else: # leaf nodes
_UpperCAmelCase = []
for leaf in content.split(r"""<sep/>""" ):
_UpperCAmelCase = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
_UpperCAmelCase = leaf[1:-2] # for categorical special tokens
output[key].append(__UpperCamelCase )
if len(output[key] ) == 1:
_UpperCAmelCase = output[key][0]
_UpperCAmelCase = tokens[tokens.find(__UpperCamelCase ) + len(__UpperCamelCase ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:] , is_inner_value=__UpperCamelCase , added_vocab=__UpperCamelCase )
if len(__UpperCamelCase ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def _snake_case ( self : Tuple ) ->Optional[int]:
'''simple docstring'''
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __UpperCamelCase , )
return self.image_processor_class
@property
def _snake_case ( self : List[str] ) ->Dict:
'''simple docstring'''
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __UpperCamelCase , )
return self.image_processor | 19 | 1 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
a : Optional[int] = logging.get_logger(__name__)
class a_ ( _UpperCAmelCase ):
def __init__( self : str , *__UpperCamelCase : Any , **__UpperCamelCase : Tuple ) ->None:
'''simple docstring'''
warnings.warn(
"""The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use SegformerImageProcessor instead.""" , __UpperCamelCase , )
super().__init__(*__UpperCamelCase , **__UpperCamelCase ) | 19 |
"""simple docstring"""
import colorsys
from PIL import Image # type: ignore
def _UpperCamelCase ( _A , _A , _A ) -> float:
"""simple docstring"""
_UpperCAmelCase = x
_UpperCAmelCase = y
for step in range(_A ): # noqa: B007
_UpperCAmelCase = a * a - b * b + x
_UpperCAmelCase = 2 * a * b + y
_UpperCAmelCase = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def _UpperCamelCase ( _A ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return (2_5_5, 2_5_5, 2_5_5)
def _UpperCamelCase ( _A ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(_A , 1 , 1 ) )
def _UpperCamelCase ( _A = 8_0_0 , _A = 6_0_0 , _A = -0.6 , _A = 0 , _A = 3.2 , _A = 5_0 , _A = True , ) -> Image.Image:
"""simple docstring"""
_UpperCAmelCase = Image.new("""RGB""" , (image_width, image_height) )
_UpperCAmelCase = img.load()
# loop through the image-coordinates
for image_x in range(_A ):
for image_y in range(_A ):
# determine the figure-coordinates based on the image-coordinates
_UpperCAmelCase = figure_width / image_width * image_height
_UpperCAmelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width
_UpperCAmelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height
_UpperCAmelCase = get_distance(_A , _A , _A )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
_UpperCAmelCase = get_color_coded_rgb(_A )
else:
_UpperCAmelCase = get_black_and_white_rgb(_A )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
a : List[str] = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show() | 19 | 1 |
"""simple docstring"""
def _UpperCamelCase ( _A , _A , _A ) -> list:
"""simple docstring"""
_UpperCAmelCase = len(_A )
_UpperCAmelCase = [[0] * n for i in range(_A )]
for i in range(_A ):
_UpperCAmelCase = y_points[i]
for i in range(2 , _A ):
for j in range(_A , _A ):
_UpperCAmelCase = (
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod() | 19 |
"""simple docstring"""
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class a_ ( nn.Module ):
def __init__( self : List[str] , __UpperCamelCase : int = 16 , __UpperCamelCase : int = 88 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 1 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 32 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : str = "geglu" , __UpperCamelCase : Optional[int] = None , ) ->Dict:
'''simple docstring'''
super().__init__()
_UpperCAmelCase = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=__UpperCamelCase , attention_head_dim=__UpperCamelCase , in_channels=__UpperCamelCase , num_layers=__UpperCamelCase , dropout=__UpperCamelCase , norm_num_groups=__UpperCamelCase , cross_attention_dim=__UpperCamelCase , attention_bias=__UpperCamelCase , sample_size=__UpperCamelCase , num_vector_embeds=__UpperCamelCase , activation_fn=__UpperCamelCase , num_embeds_ada_norm=__UpperCamelCase , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
_UpperCAmelCase = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
_UpperCAmelCase = [77, 2_57]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
_UpperCAmelCase = [1, 0]
def _snake_case ( self : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : bool = True , ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = hidden_states
_UpperCAmelCase = []
_UpperCAmelCase = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
_UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
_UpperCAmelCase = self.transformer_index_for_condition[i]
_UpperCAmelCase = self.transformers[transformer_index](
__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , timestep=__UpperCamelCase , cross_attention_kwargs=__UpperCamelCase , return_dict=__UpperCamelCase , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
_UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
_UpperCAmelCase = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=__UpperCamelCase ) | 19 | 1 |
"""simple docstring"""
import os
import unittest
from transformers import MobileBertTokenizer, MobileBertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class a_ ( _UpperCAmelCase , unittest.TestCase ):
a : int = MobileBertTokenizer
a : Optional[int] = MobileBertTokenizerFast
a : Optional[Any] = True
a : Any = True
a : Union[str, Any] = filter_non_english
a : List[Any] = 'google/mobilebert-uncased'
def _snake_case ( self : str ) ->str:
'''simple docstring'''
super().setUp()
_UpperCAmelCase = [
"""[UNK]""",
"""[CLS]""",
"""[SEP]""",
"""[PAD]""",
"""[MASK]""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
_UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) )
_UpperCAmelCase = [
(tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped
for tokenizer_def in self.tokenizers_list
]
def _snake_case ( self : str , __UpperCamelCase : List[Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = """UNwant\u00E9d,running"""
_UpperCAmelCase = """unwanted, running"""
return input_text, output_text
def _snake_case ( self : Any ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.tokenizer_class(self.vocab_file )
_UpperCAmelCase = tokenizer.tokenize("""UNwant\u00E9d,running""" )
self.assertListEqual(__UpperCamelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [9, 6, 7, 12, 10, 11] )
def _snake_case ( self : Optional[Any] ) ->Any:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = self.get_rust_tokenizer()
_UpperCAmelCase = """UNwant\u00E9d,running"""
_UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase )
_UpperCAmelCase = rust_tokenizer.tokenize(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
_UpperCAmelCase = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = self.get_rust_tokenizer()
_UpperCAmelCase = tokenizer.encode(__UpperCamelCase )
_UpperCAmelCase = rust_tokenizer.encode(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
# With lower casing
_UpperCAmelCase = self.get_tokenizer(do_lower_case=__UpperCamelCase )
_UpperCAmelCase = self.get_rust_tokenizer(do_lower_case=__UpperCamelCase )
_UpperCAmelCase = """UNwant\u00E9d,running"""
_UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase )
_UpperCAmelCase = rust_tokenizer.tokenize(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
_UpperCAmelCase = rust_tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = self.get_rust_tokenizer()
_UpperCAmelCase = tokenizer.encode(__UpperCamelCase )
_UpperCAmelCase = rust_tokenizer.encode(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
def _snake_case ( self : Tuple ) ->int:
'''simple docstring'''
_UpperCAmelCase = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] )
def _snake_case ( self : Optional[Any] ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def _snake_case ( self : int ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase , strip_accents=__UpperCamelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] )
def _snake_case ( self : Any ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase , strip_accents=__UpperCamelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def _snake_case ( self : List[Any] ) ->int:
'''simple docstring'''
_UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] )
def _snake_case ( self : Optional[int] ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def _snake_case ( self : Tuple ) ->int:
'''simple docstring'''
_UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase , strip_accents=__UpperCamelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def _snake_case ( self : Optional[Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase , strip_accents=__UpperCamelCase )
self.assertListEqual(
tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] )
def _snake_case ( self : Union[str, Any] ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = BasicTokenizer(do_lower_case=__UpperCamelCase , never_split=["""[UNK]"""] )
self.assertListEqual(
tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] )
def _snake_case ( self : int ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""]
_UpperCAmelCase = {}
for i, token in enumerate(__UpperCamelCase ):
_UpperCAmelCase = i
_UpperCAmelCase = WordpieceTokenizer(vocab=__UpperCamelCase , unk_token="""[UNK]""" )
self.assertListEqual(tokenizer.tokenize("""""" ) , [] )
self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] )
self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] )
def _snake_case ( self : Union[str, Any] ) ->Optional[int]:
'''simple docstring'''
self.assertTrue(_is_whitespace(""" """ ) )
self.assertTrue(_is_whitespace("""\t""" ) )
self.assertTrue(_is_whitespace("""\r""" ) )
self.assertTrue(_is_whitespace("""\n""" ) )
self.assertTrue(_is_whitespace("""\u00A0""" ) )
self.assertFalse(_is_whitespace("""A""" ) )
self.assertFalse(_is_whitespace("""-""" ) )
def _snake_case ( self : Tuple ) ->Tuple:
'''simple docstring'''
self.assertTrue(_is_control("""\u0005""" ) )
self.assertFalse(_is_control("""A""" ) )
self.assertFalse(_is_control(""" """ ) )
self.assertFalse(_is_control("""\t""" ) )
self.assertFalse(_is_control("""\r""" ) )
def _snake_case ( self : Dict ) ->List[Any]:
'''simple docstring'''
self.assertTrue(_is_punctuation("""-""" ) )
self.assertTrue(_is_punctuation("""$""" ) )
self.assertTrue(_is_punctuation("""`""" ) )
self.assertTrue(_is_punctuation(""".""" ) )
self.assertFalse(_is_punctuation("""A""" ) )
self.assertFalse(_is_punctuation(""" """ ) )
def _snake_case ( self : Optional[Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase = self.get_tokenizer()
_UpperCAmelCase = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(__UpperCamelCase ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] )
self.assertListEqual(
[rust_tokenizer.tokenize(__UpperCamelCase ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] )
@slow
def _snake_case ( self : Optional[Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" )
_UpperCAmelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=__UpperCamelCase )
_UpperCAmelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__UpperCamelCase )
_UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase )
_UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__UpperCamelCase , __UpperCamelCase )
assert encoded_sentence == [1_01] + text + [1_02]
assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02]
def _snake_case ( self : int ) ->Tuple:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence."""
_UpperCAmelCase = tokenizer_r.encode_plus(
__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , add_special_tokens=__UpperCamelCase , )
_UpperCAmelCase = tokenizer_r.do_lower_case if hasattr(__UpperCamelCase , """do_lower_case""" ) else False
_UpperCAmelCase = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), """A"""),
((1, 2), ""","""),
((3, 5), """na"""),
((5, 6), """##ï"""),
((6, 8), """##ve"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """Allen"""),
((21, 23), """##NL"""),
((23, 24), """##P"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), """a"""),
((1, 2), ""","""),
((3, 8), """naive"""),
((9, 15), tokenizer_r.mask_token),
((16, 21), """allen"""),
((21, 23), """##nl"""),
((23, 24), """##p"""),
((25, 33), """sentence"""),
((33, 34), """."""),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) )
self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] )
def _snake_case ( self : List[Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase = ["""的""", """人""", """有"""]
_UpperCAmelCase = """""".join(__UpperCamelCase )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_UpperCAmelCase = True
_UpperCAmelCase = self.tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = tokenizer_p.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
_UpperCAmelCase = tokenizer_r.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
_UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(__UpperCamelCase )
_UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(__UpperCamelCase )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = False
_UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = self.tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = tokenizer_r.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
_UpperCAmelCase = tokenizer_p.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
_UpperCAmelCase = tokenizer_r.convert_ids_to_tokens(__UpperCamelCase )
_UpperCAmelCase = tokenizer_p.convert_ids_to_tokens(__UpperCamelCase )
# it is expected that only the first Chinese character is not preceded by "##".
_UpperCAmelCase = [
f"""##{token}""" if idx != 0 else token for idx, token in enumerate(__UpperCamelCase )
]
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) | 19 |
"""simple docstring"""
import argparse
import torch
from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCamelCase ( _A , _A , _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = LxmertConfig.from_json_file(_A )
print(F"""Building PyTorch model from configuration: {config}""" )
_UpperCAmelCase = LxmertForPreTraining(_A )
# Load weights from tf checkpoint
load_tf_weights_in_lxmert(_A , _A , _A )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , _A )
if __name__ == "__main__":
a : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
a : Union[str, Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path) | 19 | 1 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class a_ ( _UpperCAmelCase ):
a : UNetaDModel
a : ScoreSdeVeScheduler
def __init__( self : Tuple , __UpperCamelCase : UNetaDModel , __UpperCamelCase : ScoreSdeVeScheduler ) ->str:
'''simple docstring'''
super().__init__()
self.register_modules(unet=__UpperCamelCase , scheduler=__UpperCamelCase )
@torch.no_grad()
def __call__( self : Optional[int] , __UpperCamelCase : int = 1 , __UpperCamelCase : int = 20_00 , __UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , **__UpperCamelCase : Union[str, Any] , ) ->Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
_UpperCAmelCase = self.unet.config.sample_size
_UpperCAmelCase = (batch_size, 3, img_size, img_size)
_UpperCAmelCase = self.unet
_UpperCAmelCase = randn_tensor(__UpperCamelCase , generator=__UpperCamelCase ) * self.scheduler.init_noise_sigma
_UpperCAmelCase = sample.to(self.device )
self.scheduler.set_timesteps(__UpperCamelCase )
self.scheduler.set_sigmas(__UpperCamelCase )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
_UpperCAmelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
_UpperCAmelCase = self.unet(__UpperCamelCase , __UpperCamelCase ).sample
_UpperCAmelCase = self.scheduler.step_correct(__UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ).prev_sample
# prediction step
_UpperCAmelCase = model(__UpperCamelCase , __UpperCamelCase ).sample
_UpperCAmelCase = self.scheduler.step_pred(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase )
_UpperCAmelCase ,_UpperCAmelCase = output.prev_sample, output.prev_sample_mean
_UpperCAmelCase = sample_mean.clamp(0 , 1 )
_UpperCAmelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_UpperCAmelCase = self.numpy_to_pil(__UpperCamelCase )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=__UpperCamelCase ) | 19 |
"""simple docstring"""
import argparse
import os
import re
import packaging.version
a : str = '''examples/'''
a : List[str] = {
'''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''),
'''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''),
'''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''),
'''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''),
}
a : Tuple = {
'''init''': '''src/diffusers/__init__.py''',
'''setup''': '''setup.py''',
}
a : List[str] = '''README.md'''
def _UpperCamelCase ( _A , _A , _A ) -> Dict:
"""simple docstring"""
with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_UpperCAmelCase = f.read()
_UpperCAmelCase ,_UpperCAmelCase = REPLACE_PATTERNS[pattern]
_UpperCAmelCase = replace.replace("""VERSION""" , _A )
_UpperCAmelCase = re_pattern.sub(_A , _A )
with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(_A )
def _UpperCamelCase ( _A ) -> Union[str, Any]:
"""simple docstring"""
for folder, directories, fnames in os.walk(_A ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(_A , _A ) , _A , pattern="""examples""" )
def _UpperCamelCase ( _A , _A=False ) -> int:
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_A , _A , _A )
if not patch:
update_version_in_examples(_A )
def _UpperCamelCase ( ) -> Any:
"""simple docstring"""
_UpperCAmelCase = """🤗 Transformers currently provides the following architectures"""
_UpperCAmelCase = """1. Want to contribute a new model?"""
with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_UpperCAmelCase = f.readlines()
# Find the start of the list.
_UpperCAmelCase = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
_UpperCAmelCase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
_UpperCAmelCase = lines[index].replace(
"""https://huggingface.co/docs/diffusers/main/model_doc""" , """https://huggingface.co/docs/diffusers/model_doc""" , )
index += 1
with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(_A )
def _UpperCamelCase ( ) -> Optional[int]:
"""simple docstring"""
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
_UpperCAmelCase = f.read()
_UpperCAmelCase = REPLACE_PATTERNS["""init"""][0].search(_A ).groups()[0]
return packaging.version.parse(_A )
def _UpperCamelCase ( _A=False ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
_UpperCAmelCase = default_version.base_version
elif patch:
_UpperCAmelCase = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
_UpperCAmelCase = F"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
_UpperCAmelCase = input(F"""Which version are you releasing? [{default_version}]""" )
if len(_A ) == 0:
_UpperCAmelCase = default_version
print(F"""Updating version to {version}.""" )
global_version_update(_A , patch=_A )
def _UpperCamelCase ( ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = get_version()
_UpperCAmelCase = F"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
_UpperCAmelCase = current_version.base_version
# Check with the user we got that right.
_UpperCAmelCase = input(F"""Which version are we developing now? [{dev_version}]""" )
if len(_A ) == 0:
_UpperCAmelCase = dev_version
print(F"""Updating version to {version}.""" )
global_version_update(_A )
# print("Cleaning main README, don't forget to run `make fix-copies`.")
# clean_main_ref_in_model_list()
if __name__ == "__main__":
a : Dict = argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
a : Tuple = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work() | 19 | 1 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class a_ ( _UpperCAmelCase ):
a : Optional[Any] = ['image_processor', 'tokenizer']
a : Any = 'ViTImageProcessor'
a : Dict = ('CLIPTokenizer', 'CLIPTokenizerFast')
def __init__( self : List[Any] , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[str]=None , **__UpperCamelCase : Optional[int] ) ->str:
'''simple docstring'''
_UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCamelCase , )
_UpperCAmelCase = kwargs.pop("""feature_extractor""" )
_UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCamelCase , __UpperCamelCase )
def __call__( self : List[Any] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Any=None , **__UpperCamelCase : Dict ) ->str:
'''simple docstring'''
if text is None and visual_prompt is None and images is None:
raise ValueError("""You have to specify either text, visual prompt or images.""" )
if text is not None and visual_prompt is not None:
raise ValueError("""You have to specify exactly one type of prompt. Either text or visual prompt.""" )
if text is not None:
_UpperCAmelCase = self.tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase )
if visual_prompt is not None:
_UpperCAmelCase = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase )
if images is not None:
_UpperCAmelCase = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase )
if visual_prompt is not None and images is not None:
_UpperCAmelCase = {
"""pixel_values""": image_features.pixel_values,
"""conditional_pixel_values""": prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
_UpperCAmelCase = image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
_UpperCAmelCase = {
"""conditional_pixel_values""": prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase )
def _snake_case ( self : str , *__UpperCamelCase : List[Any] , **__UpperCamelCase : str ) ->Optional[Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : Any , *__UpperCamelCase : Any , **__UpperCamelCase : Union[str, Any] ) ->Optional[Any]:
'''simple docstring'''
return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase )
@property
def _snake_case ( self : Optional[Any] ) ->Optional[Any]:
'''simple docstring'''
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __UpperCamelCase , )
return self.image_processor_class
@property
def _snake_case ( self : Union[str, Any] ) ->List[Any]:
'''simple docstring'''
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __UpperCamelCase , )
return self.image_processor | 19 |
"""simple docstring"""
from __future__ import annotations
def _UpperCamelCase ( _A ) -> None:
"""simple docstring"""
create_state_space_tree(_A , [] , 0 , [0 for i in range(len(_A ) )] )
def _UpperCamelCase ( _A , _A , _A , _A , ) -> None:
"""simple docstring"""
if index == len(_A ):
print(_A )
return
for i in range(len(_A ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_UpperCAmelCase = True
create_state_space_tree(_A , _A , index + 1 , _A )
current_sequence.pop()
_UpperCAmelCase = False
a : list[int | str] = [3, 1, 2, 4]
generate_all_permutations(sequence)
a : list[int | str] = ["A", "B", "C"]
generate_all_permutations(sequence_a) | 19 | 1 |
"""simple docstring"""
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class a_ :
def __init__( self : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : str=13 , __UpperCamelCase : Dict=10 , __UpperCamelCase : int=3 , __UpperCamelCase : str=2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Tuple=True , __UpperCamelCase : str=True , __UpperCamelCase : str=32 , __UpperCamelCase : List[Any]=5 , __UpperCamelCase : Union[str, Any]=4 , __UpperCamelCase : List[str]=37 , __UpperCamelCase : str="gelu" , __UpperCamelCase : Optional[Any]=0.1 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : Tuple=10 , __UpperCamelCase : List[str]=0.0_2 , __UpperCamelCase : Tuple="divided_space_time" , __UpperCamelCase : int=None , ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = patch_size
_UpperCAmelCase = num_frames
_UpperCAmelCase = is_training
_UpperCAmelCase = use_labels
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = attention_type
_UpperCAmelCase = initializer_range
_UpperCAmelCase = scope
_UpperCAmelCase = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
_UpperCAmelCase = (image_size // patch_size) ** 2
_UpperCAmelCase = (num_frames) * self.num_patches_per_frame + 1
def _snake_case ( self : List[str] ) ->int:
'''simple docstring'''
_UpperCAmelCase = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels )
_UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def _snake_case ( self : int ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
_UpperCAmelCase = self.num_labels
return config
def _snake_case ( self : Dict , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : List[str] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = TimesformerModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : str ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = TimesformerForVideoClassification(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase )
# verify the logits shape
_UpperCAmelCase = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , __UpperCamelCase )
def _snake_case ( self : Any ) ->Any:
'''simple docstring'''
_UpperCAmelCase = self.prepare_config_and_inputs()
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = config_and_inputs
_UpperCAmelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class a_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
a : Union[str, Any] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
a : Tuple = (
{'feature-extraction': TimesformerModel, 'video-classification': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
a : Optional[Any] = False
a : int = False
a : List[Any] = False
a : str = False
def _snake_case ( self : List[str] ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = TimesformerModelTester(self )
_UpperCAmelCase = ConfigTester(
self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 )
def _snake_case ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict=False ) ->Any:
'''simple docstring'''
_UpperCAmelCase = copy.deepcopy(__UpperCamelCase )
if return_labels:
if model_class in get_values(__UpperCamelCase ):
_UpperCAmelCase = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase )
return inputs_dict
def _snake_case ( self : Union[str, Any] ) ->int:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""TimeSformer does not use inputs_embeds""" )
def _snake_case ( self : Tuple ) ->Any:
'''simple docstring'''
pass
def _snake_case ( self : str ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) )
def _snake_case ( self : Any ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase = [*signature.parameters.keys()]
_UpperCAmelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCamelCase )
def _snake_case ( self : Union[str, Any] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _snake_case ( self : Optional[Any] ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*__UpperCamelCase )
@slow
def _snake_case ( self : Optional[int] ) ->int:
'''simple docstring'''
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase = TimesformerModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def _snake_case ( self : int ) ->Dict:
'''simple docstring'''
if not self.has_attentions:
pass
else:
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = True
for model_class in self.all_model_classes:
_UpperCAmelCase = self.model_tester.seq_length
_UpperCAmelCase = self.model_tester.num_frames
_UpperCAmelCase = True
_UpperCAmelCase = False
_UpperCAmelCase = True
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
_UpperCAmelCase = outputs.attentions
self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
_UpperCAmelCase = True
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
_UpperCAmelCase = outputs.attentions
self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
_UpperCAmelCase = len(__UpperCamelCase )
# Check attention is always last and order is fine
_UpperCAmelCase = True
_UpperCAmelCase = True
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
self.assertEqual(out_len + 1 , len(__UpperCamelCase ) )
_UpperCAmelCase = outputs.attentions
self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def _snake_case ( self : Union[str, Any] ) ->Any:
'''simple docstring'''
def check_hidden_states_output(__UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] ):
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
_UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
_UpperCAmelCase = outputs.hidden_states
_UpperCAmelCase = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase )
_UpperCAmelCase = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = True
check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_UpperCAmelCase = True
check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def _UpperCamelCase ( ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" )
_UpperCAmelCase = np.load(_A )
return list(_A )
@require_torch
@require_vision
class a_ ( unittest.TestCase ):
@cached_property
def _snake_case ( self : Tuple ) ->List[Any]:
'''simple docstring'''
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def _snake_case ( self : str ) ->str:
'''simple docstring'''
_UpperCAmelCase = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to(
__UpperCamelCase )
_UpperCAmelCase = self.default_image_processor
_UpperCAmelCase = prepare_video()
_UpperCAmelCase = image_processor(video[:8] , return_tensors="""pt""" ).to(__UpperCamelCase )
# forward pass
with torch.no_grad():
_UpperCAmelCase = model(**__UpperCamelCase )
# verify the logits
_UpperCAmelCase = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , __UpperCamelCase )
_UpperCAmelCase = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) ) | 19 |
"""simple docstring"""
import inspect
import unittest
from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class a_ :
def __init__( self : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : int=32 , __UpperCamelCase : Tuple=16 , __UpperCamelCase : Dict=3 , __UpperCamelCase : Dict=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=32 , __UpperCamelCase : Any=4 , __UpperCamelCase : Optional[int]=[0, 1, 2, 3] , __UpperCamelCase : str=4 , __UpperCamelCase : Optional[Any]=37 , __UpperCamelCase : str="gelu" , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Any=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : int=[1, 3_84, 24, 24] , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Any=None , ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = patch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = is_training
_UpperCAmelCase = use_labels
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = backbone_out_indices
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_labels
_UpperCAmelCase = backbone_featmap_shape
_UpperCAmelCase = scope
_UpperCAmelCase = is_hybrid
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
_UpperCAmelCase = (image_size // patch_size) ** 2
_UpperCAmelCase = num_patches + 1
def _snake_case ( self : str ) ->int:
'''simple docstring'''
_UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
_UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def _snake_case ( self : List[str] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [96, 1_92, 3_84, 7_68],
"""num_groups""": 2,
}
return DPTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , )
def _snake_case ( self : Any , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = DPTModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : List[Any] ) ->int:
'''simple docstring'''
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = DPTForDepthEstimation(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) )
def _snake_case ( self : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = DPTForSemanticSegmentation(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def _snake_case ( self : Tuple ) ->Any:
'''simple docstring'''
_UpperCAmelCase = self.prepare_config_and_inputs()
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = config_and_inputs
_UpperCAmelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class a_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
a : Dict = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
a : int = (
{
'depth-estimation': DPTForDepthEstimation,
'feature-extraction': DPTModel,
'image-segmentation': DPTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
a : str = False
a : List[str] = False
a : Dict = False
def _snake_case ( self : Any ) ->Any:
'''simple docstring'''
_UpperCAmelCase = DPTModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 )
def _snake_case ( self : Optional[int] ) ->Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""DPT does not use inputs_embeds""" )
def _snake_case ( self : Tuple ) ->Tuple:
'''simple docstring'''
pass
def _snake_case ( self : int ) ->Any:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) )
def _snake_case ( self : Optional[int] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase = [*signature.parameters.keys()]
_UpperCAmelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCamelCase )
def _snake_case ( self : Optional[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _snake_case ( self : str ) ->int:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*__UpperCamelCase )
def _snake_case ( self : Any ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase )
def _snake_case ( self : str ) ->Any:
'''simple docstring'''
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = True
if model_class in get_values(__UpperCamelCase ):
continue
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.train()
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
_UpperCAmelCase = model(**__UpperCamelCase ).loss
loss.backward()
def _snake_case ( self : List[str] ) ->Dict:
'''simple docstring'''
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = False
_UpperCAmelCase = True
if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.gradient_checkpointing_enable()
model.train()
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
_UpperCAmelCase = model(**__UpperCamelCase ).loss
loss.backward()
def _snake_case ( self : Tuple ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = _config_zero_init(__UpperCamelCase )
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(config=__UpperCamelCase )
# Skip the check for the backbone
_UpperCAmelCase = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
_UpperCAmelCase = [f"""{name}.{key}""" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def _snake_case ( self : Dict ) ->Tuple:
'''simple docstring'''
pass
@slow
def _snake_case ( self : Optional[int] ) ->List[Any]:
'''simple docstring'''
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
_UpperCAmelCase = DPTModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def _snake_case ( self : List[Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = """add"""
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = DPTForDepthEstimation(__UpperCamelCase )
def _UpperCamelCase ( ) -> int:
"""simple docstring"""
_UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
@slow
class a_ ( unittest.TestCase ):
def _snake_case ( self : Any ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" )
_UpperCAmelCase = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__UpperCamelCase )
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase )
# forward pass
with torch.no_grad():
_UpperCAmelCase = model(**__UpperCamelCase )
_UpperCAmelCase = outputs.predicted_depth
# verify the predicted depth
_UpperCAmelCase = torch.Size((1, 3_84, 3_84) )
self.assertEqual(predicted_depth.shape , __UpperCamelCase )
_UpperCAmelCase = torch.tensor(
[[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , __UpperCamelCase , atol=1e-4 ) ) | 19 | 1 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=_UpperCAmelCase )
class a_ ( _UpperCAmelCase ):
a : str = field(default='automatic-speech-recognition' , metadata={'include_in_asdict_even_if_is_default': True} )
a : ClassVar[Features] = Features({'audio': Audio()} )
a : ClassVar[Features] = Features({'transcription': Value('string' )} )
a : str = "audio"
a : str = "transcription"
def _snake_case ( self : str , __UpperCamelCase : List[str] ) ->str:
'''simple docstring'''
if self.audio_column not in features:
raise ValueError(f"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , __UpperCamelCase ):
raise ValueError(f"""Column {self.audio_column} is not an Audio type.""" )
_UpperCAmelCase = copy.deepcopy(self )
_UpperCAmelCase = self.input_schema.copy()
_UpperCAmelCase = features[self.audio_column]
_UpperCAmelCase = input_schema
return task_template
@property
def _snake_case ( self : Optional[int] ) ->Dict[str, str]:
'''simple docstring'''
return {self.audio_column: "audio", self.transcription_column: "transcription"} | 19 |
"""simple docstring"""
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
a : List[str] = logging.get_logger(__name__)
class a_ ( enum.Enum ):
a : Optional[Any] = 0
a : Dict = 1
@add_end_docstrings(_UpperCAmelCase )
class a_ ( _UpperCAmelCase ):
a : List[Any] = 'generated'
def __init__( self : int , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : str ) ->Any:
'''simple docstring'''
super().__init__(*__UpperCamelCase , **__UpperCamelCase )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == """tf"""
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def _snake_case ( self : Optional[int] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Any=None , __UpperCamelCase : int=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Dict=None , **__UpperCamelCase : Any , ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = {}
if truncation is not None:
_UpperCAmelCase = truncation
_UpperCAmelCase = generate_kwargs
_UpperCAmelCase = {}
if return_tensors is not None and return_type is None:
_UpperCAmelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
_UpperCAmelCase = return_type
if clean_up_tokenization_spaces is not None:
_UpperCAmelCase = clean_up_tokenization_spaces
if stop_sequence is not None:
_UpperCAmelCase = self.tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
if len(__UpperCamelCase ) > 1:
warnings.warn(
"""Stopping on a multiple token sequence is not yet supported on transformers. The first token of"""
""" the stop sequence will be used as the stop sequence string in the interim.""" )
_UpperCAmelCase = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def _snake_case ( self : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->Any:
'''simple docstring'''
return True
def _snake_case ( self : Optional[Any] , *__UpperCamelCase : Any , __UpperCamelCase : Dict ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.model.config.prefix if self.model.config.prefix is not None else """"""
if isinstance(args[0] , __UpperCamelCase ):
if self.tokenizer.pad_token_id is None:
raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" )
_UpperCAmelCase = ([prefix + arg for arg in args[0]],)
_UpperCAmelCase = True
elif isinstance(args[0] , __UpperCamelCase ):
_UpperCAmelCase = (prefix + args[0],)
_UpperCAmelCase = False
else:
raise ValueError(
f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" )
_UpperCAmelCase = self.tokenizer(*__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self : Dict , *__UpperCamelCase : str , **__UpperCamelCase : Dict ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = super().__call__(*__UpperCamelCase , **__UpperCamelCase )
if (
isinstance(args[0] , __UpperCamelCase )
and all(isinstance(__UpperCamelCase , __UpperCamelCase ) for el in args[0] )
and all(len(__UpperCamelCase ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def _snake_case ( self : List[str] , __UpperCamelCase : Any , __UpperCamelCase : str=TruncationStrategy.DO_NOT_TRUNCATE , **__UpperCamelCase : Optional[int] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = self._parse_and_tokenize(__UpperCamelCase , truncation=__UpperCamelCase , **__UpperCamelCase )
return inputs
def _snake_case ( self : str , __UpperCamelCase : Dict , **__UpperCamelCase : Dict ) ->Tuple:
'''simple docstring'''
if self.framework == "pt":
_UpperCAmelCase ,_UpperCAmelCase = model_inputs["""input_ids"""].shape
elif self.framework == "tf":
_UpperCAmelCase ,_UpperCAmelCase = tf.shape(model_inputs["""input_ids"""] ).numpy()
_UpperCAmelCase = generate_kwargs.get("""min_length""" , self.model.config.min_length )
_UpperCAmelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length )
self.check_inputs(__UpperCamelCase , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] )
_UpperCAmelCase = self.model.generate(**__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = output_ids.shape[0]
if self.framework == "pt":
_UpperCAmelCase = output_ids.reshape(__UpperCamelCase , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
_UpperCAmelCase = tf.reshape(__UpperCamelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def _snake_case ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any]=ReturnType.TEXT , __UpperCamelCase : int=False ) ->Any:
'''simple docstring'''
_UpperCAmelCase = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
_UpperCAmelCase = {f"""{self.return_name}_token_ids""": output_ids}
elif return_type == ReturnType.TEXT:
_UpperCAmelCase = {
f"""{self.return_name}_text""": self.tokenizer.decode(
__UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase , )
}
records.append(__UpperCamelCase )
return records
@add_end_docstrings(_UpperCAmelCase )
class a_ ( _UpperCAmelCase ):
a : List[Any] = 'summary'
def __call__( self : Optional[Any] , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Optional[int] ) ->Any:
'''simple docstring'''
return super().__call__(*__UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : str , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->bool:
'''simple docstring'''
if max_length < min_length:
logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" )
if input_length < max_length:
logger.warning(
f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """
"""a summarization task, where outputs shorter than the input are typically wanted, you might """
f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" )
@add_end_docstrings(_UpperCAmelCase )
class a_ ( _UpperCAmelCase ):
a : Optional[int] = 'translation'
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->Any:
'''simple docstring'''
if input_length > 0.9 * max_length:
logger.warning(
f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """
"""increasing your max_length manually, e.g. translator('...', max_length=400)""" )
return True
def _snake_case ( self : Tuple , *__UpperCamelCase : List[str] , __UpperCamelCase : Tuple=TruncationStrategy.DO_NOT_TRUNCATE , __UpperCamelCase : Tuple=None , __UpperCamelCase : Union[str, Any]=None ) ->Tuple:
'''simple docstring'''
if getattr(self.tokenizer , """_build_translation_inputs""" , __UpperCamelCase ):
return self.tokenizer._build_translation_inputs(
*__UpperCamelCase , return_tensors=self.framework , truncation=__UpperCamelCase , src_lang=__UpperCamelCase , tgt_lang=__UpperCamelCase )
else:
return super()._parse_and_tokenize(*__UpperCamelCase , truncation=__UpperCamelCase )
def _snake_case ( self : List[str] , __UpperCamelCase : int=None , __UpperCamelCase : int=None , **__UpperCamelCase : Any ) ->int:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = super()._sanitize_parameters(**__UpperCamelCase )
if src_lang is not None:
_UpperCAmelCase = src_lang
if tgt_lang is not None:
_UpperCAmelCase = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
_UpperCAmelCase = kwargs.get("""task""" , self.task )
_UpperCAmelCase = task.split("""_""" )
if task and len(__UpperCamelCase ) == 4:
# translation, XX, to YY
_UpperCAmelCase = items[1]
_UpperCAmelCase = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self : List[str] , *__UpperCamelCase : str , **__UpperCamelCase : Optional[Any] ) ->int:
'''simple docstring'''
return super().__call__(*__UpperCamelCase , **__UpperCamelCase ) | 19 | 1 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : List[Any] = logging.get_logger(__name__)
a : Union[str, Any] = {
'''asapp/sew-d-tiny-100k''': '''https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json''',
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class a_ ( _UpperCAmelCase ):
a : List[Any] = 'sew-d'
def __init__( self : List[str] , __UpperCamelCase : Dict=32 , __UpperCamelCase : List[Any]=7_68 , __UpperCamelCase : Dict=12 , __UpperCamelCase : Dict=12 , __UpperCamelCase : Optional[Any]=30_72 , __UpperCamelCase : str=2 , __UpperCamelCase : str=5_12 , __UpperCamelCase : Union[str, Any]=2_56 , __UpperCamelCase : Any=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : Union[str, Any]=("p2c", "c2p") , __UpperCamelCase : List[str]="layer_norm" , __UpperCamelCase : Optional[int]="gelu_python" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Union[str, Any]=0.0 , __UpperCamelCase : str=0.1 , __UpperCamelCase : Optional[Any]=0.0_2 , __UpperCamelCase : str=1e-7 , __UpperCamelCase : Optional[int]=1e-5 , __UpperCamelCase : List[Any]="group" , __UpperCamelCase : List[Any]="gelu" , __UpperCamelCase : int=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , __UpperCamelCase : Any=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __UpperCamelCase : Optional[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __UpperCamelCase : Dict=False , __UpperCamelCase : List[str]=1_28 , __UpperCamelCase : List[str]=16 , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=0.0_5 , __UpperCamelCase : List[str]=10 , __UpperCamelCase : str=2 , __UpperCamelCase : Tuple=0.0 , __UpperCamelCase : List[str]=10 , __UpperCamelCase : Tuple=0 , __UpperCamelCase : Optional[int]="mean" , __UpperCamelCase : List[Any]=False , __UpperCamelCase : List[str]=False , __UpperCamelCase : Tuple=2_56 , __UpperCamelCase : List[str]=0 , __UpperCamelCase : str=1 , __UpperCamelCase : List[Any]=2 , **__UpperCamelCase : Union[str, Any] , ) ->int:
'''simple docstring'''
super().__init__(**__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase )
_UpperCAmelCase = hidden_size
_UpperCAmelCase = feat_extract_norm
_UpperCAmelCase = feat_extract_activation
_UpperCAmelCase = list(__UpperCamelCase )
_UpperCAmelCase = list(__UpperCamelCase )
_UpperCAmelCase = list(__UpperCamelCase )
_UpperCAmelCase = conv_bias
_UpperCAmelCase = num_conv_pos_embeddings
_UpperCAmelCase = num_conv_pos_embedding_groups
_UpperCAmelCase = len(self.conv_dim )
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = squeeze_factor
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = position_buckets
_UpperCAmelCase = share_att_key
_UpperCAmelCase = relative_attention
_UpperCAmelCase = norm_rel_ebd
_UpperCAmelCase = list(__UpperCamelCase )
_UpperCAmelCase = hidden_act
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = hidden_dropout
_UpperCAmelCase = attention_dropout
_UpperCAmelCase = activation_dropout
_UpperCAmelCase = feat_proj_dropout
_UpperCAmelCase = final_dropout
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = feature_layer_norm_eps
_UpperCAmelCase = initializer_range
_UpperCAmelCase = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect."""
"""It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"""
f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"""
f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_UpperCAmelCase = apply_spec_augment
_UpperCAmelCase = mask_time_prob
_UpperCAmelCase = mask_time_length
_UpperCAmelCase = mask_time_min_masks
_UpperCAmelCase = mask_feature_prob
_UpperCAmelCase = mask_feature_length
_UpperCAmelCase = mask_feature_min_masks
# ctc loss
_UpperCAmelCase = ctc_loss_reduction
_UpperCAmelCase = ctc_zero_infinity
# sequence classification
_UpperCAmelCase = use_weighted_layer_sum
_UpperCAmelCase = classifier_proj_size
@property
def _snake_case ( self : Any ) ->List[Any]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 ) | 19 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class a_ ( unittest.TestCase ):
@property
def _snake_case ( self : Dict ) ->int:
'''simple docstring'''
torch.manual_seed(0 )
_UpperCAmelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , )
return model
@property
def _snake_case ( self : Optional[Any] ) ->str:
'''simple docstring'''
torch.manual_seed(0 )
_UpperCAmelCase = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , )
return model
@property
def _snake_case ( self : List[Any] ) ->Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
_UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModel(__UpperCamelCase )
def _snake_case ( self : List[str] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = self.dummy_uncond_unet
_UpperCAmelCase = DDIMScheduler()
_UpperCAmelCase = self.dummy_vq_model
_UpperCAmelCase = LDMPipeline(unet=__UpperCamelCase , vqvae=__UpperCamelCase , scheduler=__UpperCamelCase )
ldm.to(__UpperCamelCase )
ldm.set_progress_bar_config(disable=__UpperCamelCase )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type="""numpy""" ).images
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type="""numpy""" , return_dict=__UpperCamelCase )[0]
_UpperCAmelCase = image[0, -3:, -3:, -1]
_UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_UpperCAmelCase = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] )
_UpperCAmelCase = 1e-2 if torch_device != """mps""" else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance
@slow
@require_torch
class a_ ( unittest.TestCase ):
def _snake_case ( self : List[Any] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" )
ldm.to(__UpperCamelCase )
ldm.set_progress_bar_config(disable=__UpperCamelCase )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=5 , output_type="""numpy""" ).images
_UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
_UpperCAmelCase = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] )
_UpperCAmelCase = 1e-2 if torch_device != """mps""" else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance | 19 | 1 |
"""simple docstring"""
from collections import defaultdict
from math import gcd
def _UpperCamelCase ( _A = 1_5_0_0_0_0_0 ) -> int:
"""simple docstring"""
_UpperCAmelCase = defaultdict(_A )
_UpperCAmelCase = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1 , _A , 2 ):
if gcd(_A , _A ) > 1:
continue
_UpperCAmelCase = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(_A , limit + 1 , _A ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F"{solution() = }") | 19 |
"""simple docstring"""
import re
from filelock import FileLock
try:
import nltk
a : str = True
except (ImportError, ModuleNotFoundError):
a : List[str] = False
if NLTK_AVAILABLE:
with FileLock('''.lock''') as lock:
nltk.download('''punkt''', quiet=True)
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
re.sub("""<n>""" , """""" , _A ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(_A ) ) | 19 | 1 |
"""simple docstring"""
from collections.abc import Callable
def _UpperCamelCase ( _A , _A , _A ) -> float:
"""simple docstring"""
_UpperCAmelCase = a
_UpperCAmelCase = b
if function(_A ) == 0: # one of the a or b is a root for the function
return a
elif function(_A ) == 0:
return b
elif (
function(_A ) * function(_A ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError("""could not find root in given interval.""" )
else:
_UpperCAmelCase = start + (end - start) / 2.0
while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7
if function(_A ) == 0:
return mid
elif function(_A ) * function(_A ) < 0:
_UpperCAmelCase = mid
else:
_UpperCAmelCase = mid
_UpperCAmelCase = start + (end - start) / 2.0
return mid
def _UpperCamelCase ( _A ) -> float:
"""simple docstring"""
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1_0_0_0))
import doctest
doctest.testmod() | 19 |
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
a : str = '''platform'''
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class a_ :
a : List[Any] = PegasusConfig
a : Dict = {}
a : List[Any] = 'gelu'
def __init__( self : Any , __UpperCamelCase : Dict , __UpperCamelCase : Tuple=13 , __UpperCamelCase : Tuple=7 , __UpperCamelCase : Tuple=True , __UpperCamelCase : Any=False , __UpperCamelCase : Any=99 , __UpperCamelCase : Optional[int]=32 , __UpperCamelCase : Dict=5 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : Dict=37 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : Optional[Any]=20 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : Optional[int]=1 , __UpperCamelCase : Tuple=0 , ) ->int:
'''simple docstring'''
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = eos_token_id
_UpperCAmelCase = pad_token_id
_UpperCAmelCase = bos_token_id
def _snake_case ( self : Union[str, Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
_UpperCAmelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
_UpperCAmelCase = np.concatenate([input_ids, eos_tensor] , axis=1 )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_UpperCAmelCase = prepare_pegasus_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
return config, inputs_dict
def _snake_case ( self : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase = 20
_UpperCAmelCase = model_class_name(__UpperCamelCase )
_UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] )
_UpperCAmelCase ,_UpperCAmelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
_UpperCAmelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_UpperCAmelCase = model.decode(
decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , )
_UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_UpperCAmelCase = model.decode(
decoder_input_ids[:, -1:] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__UpperCamelCase , )
_UpperCAmelCase = model.decode(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def _snake_case ( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase = 20
_UpperCAmelCase = model_class_name(__UpperCamelCase )
_UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] )
_UpperCAmelCase ,_UpperCAmelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_UpperCAmelCase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_UpperCAmelCase = model.decode(
decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , )
_UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_UpperCAmelCase = model.decode(
decoder_input_ids[:, -1:] , __UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , )
_UpperCAmelCase = model.decode(__UpperCamelCase , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase )
_UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def _UpperCamelCase ( _A , _A , _A , _A=None , _A=None , ) -> int:
"""simple docstring"""
if attention_mask is None:
_UpperCAmelCase = np.not_equal(_A , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
_UpperCAmelCase = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class a_ ( _UpperCAmelCase , unittest.TestCase ):
a : List[str] = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
a : Any = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
a : Any = True
a : int = False
a : Union[str, Any] = False
a : Optional[int] = False
def _snake_case ( self : Union[str, Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = FlaxPegasusModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase )
def _snake_case ( self : Optional[int] ) ->Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _snake_case ( self : Optional[int] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def _snake_case ( self : Dict ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def _snake_case ( self : Dict ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = model_class(__UpperCamelCase )
@jax.jit
def encode_jitted(__UpperCamelCase : List[Any] , __UpperCamelCase : str=None , **__UpperCamelCase : int ):
return model.encode(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase )
with self.subTest("""JIT Enabled""" ):
_UpperCAmelCase = encode_jitted(**__UpperCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_UpperCAmelCase = encode_jitted(**__UpperCamelCase ).to_tuple()
self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) )
for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def _snake_case ( self : List[Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
_UpperCAmelCase = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple ):
return model.decode(
decoder_input_ids=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , encoder_outputs=__UpperCamelCase , )
with self.subTest("""JIT Enabled""" ):
_UpperCAmelCase = decode_jitted(**__UpperCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_UpperCAmelCase = decode_jitted(**__UpperCamelCase ).to_tuple()
self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) )
for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _snake_case ( self : int ) ->int:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCAmelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=__UpperCamelCase )
_UpperCAmelCase = np.ones((1, 1) )
_UpperCAmelCase = model(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
@slow
def _snake_case ( self : Dict ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
_UpperCAmelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
_UpperCAmelCase = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
_UpperCAmelCase = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
_UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors="""np""" , truncation=__UpperCamelCase , max_length=5_12 , padding=__UpperCamelCase )
_UpperCAmelCase = model.generate(**__UpperCamelCase , num_beams=2 ).sequences
_UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase )
assert tgt_text == decoded | 19 | 1 |
"""simple docstring"""
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import torch
@dataclass
class a_ :
a : torch.Tensor # [batch_size x 3]
a : torch.Tensor # [batch_size x 3]
a : torch.Tensor # [batch_size x 3]
a : torch.Tensor # [batch_size x 3]
a : int
a : int
a : float
a : float
a : Tuple[int]
def _snake_case ( self : List[Any] ) ->str:
'''simple docstring'''
assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0]
assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3
assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2
def _snake_case ( self : Tuple ) ->Dict:
'''simple docstring'''
return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) )
def _snake_case ( self : Optional[int] ) ->str:
'''simple docstring'''
return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) )
def _snake_case ( self : str ) ->torch.Tensor:
'''simple docstring'''
_UpperCAmelCase = torch.arange(self.height * self.width )
_UpperCAmelCase = torch.stack(
[
pixel_indices % self.width,
torch.div(__UpperCamelCase , self.width , rounding_mode="""trunc""" ),
] , axis=1 , )
return coords
@property
def _snake_case ( self : int ) ->int:
'''simple docstring'''
_UpperCAmelCase ,*_UpperCAmelCase = self.shape
_UpperCAmelCase = int(np.prod(__UpperCamelCase ) )
_UpperCAmelCase = self.get_image_coords()
_UpperCAmelCase = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] )
_UpperCAmelCase = self.get_camera_rays(__UpperCamelCase )
_UpperCAmelCase = rays.view(__UpperCamelCase , inner_batch_size * self.height * self.width , 2 , 3 )
return rays
def _snake_case ( self : int , __UpperCamelCase : torch.Tensor ) ->torch.Tensor:
'''simple docstring'''
_UpperCAmelCase ,*_UpperCAmelCase ,_UpperCAmelCase = coords.shape
assert n_coords == 2
assert batch_size == self.origin.shape[0]
_UpperCAmelCase = coords.view(__UpperCamelCase , -1 , 2 )
_UpperCAmelCase = self.resolution()
_UpperCAmelCase = self.fov()
_UpperCAmelCase = (flat.float() / (res - 1)) * 2 - 1
_UpperCAmelCase = fracs * torch.tan(fov / 2 )
_UpperCAmelCase = fracs.view(__UpperCamelCase , -1 , 2 )
_UpperCAmelCase = (
self.z.view(__UpperCamelCase , 1 , 3 )
+ self.x.view(__UpperCamelCase , 1 , 3 ) * fracs[:, :, :1]
+ self.y.view(__UpperCamelCase , 1 , 3 ) * fracs[:, :, 1:]
)
_UpperCAmelCase = directions / directions.norm(dim=-1 , keepdim=__UpperCamelCase )
_UpperCAmelCase = torch.stack(
[
torch.broadcast_to(self.origin.view(__UpperCamelCase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ),
directions,
] , dim=2 , )
return rays.view(__UpperCamelCase , *__UpperCamelCase , 2 , 3 )
def _snake_case ( self : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->"DifferentiableProjectiveCamera":
'''simple docstring'''
assert width * self.height == height * self.width, "The aspect ratio should not change."
return DifferentiableProjectiveCamera(
origin=self.origin , x=self.x , y=self.y , z=self.z , width=__UpperCamelCase , height=__UpperCamelCase , x_fov=self.x_fov , y_fov=self.y_fov , )
def _UpperCamelCase ( _A ) -> DifferentiableProjectiveCamera:
"""simple docstring"""
_UpperCAmelCase = []
_UpperCAmelCase = []
_UpperCAmelCase = []
_UpperCAmelCase = []
for theta in np.linspace(0 , 2 * np.pi , num=2_0 ):
_UpperCAmelCase = np.array([np.sin(_A ), np.cos(_A ), -0.5] )
z /= np.sqrt(np.sum(z**2 ) )
_UpperCAmelCase = -z * 4
_UpperCAmelCase = np.array([np.cos(_A ), -np.sin(_A ), 0.0] )
_UpperCAmelCase = np.cross(_A , _A )
origins.append(_A )
xs.append(_A )
ys.append(_A )
zs.append(_A )
return DifferentiableProjectiveCamera(
origin=torch.from_numpy(np.stack(_A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(_A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(_A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(_A , axis=0 ) ).float() , width=_A , height=_A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(_A )) , ) | 19 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class a_ :
def __init__( self : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any]=99 , __UpperCamelCase : Optional[int]=13 , __UpperCamelCase : List[str]=7 , __UpperCamelCase : List[Any]=9 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : str=True , __UpperCamelCase : int=False , __UpperCamelCase : int=32 , __UpperCamelCase : Dict=5 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : List[Any]=8 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : str=0.0_0_2 , __UpperCamelCase : Union[str, Any]=1 , __UpperCamelCase : List[Any]=0 , __UpperCamelCase : Tuple=0 , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Any=None , ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = encoder_seq_length
_UpperCAmelCase = decoder_seq_length
# For common tests
_UpperCAmelCase = self.decoder_seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_attention_mask
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = d_ff
_UpperCAmelCase = relative_attention_num_buckets
_UpperCAmelCase = dropout_rate
_UpperCAmelCase = initializer_factor
_UpperCAmelCase = eos_token_id
_UpperCAmelCase = pad_token_id
_UpperCAmelCase = decoder_start_token_id
_UpperCAmelCase = None
_UpperCAmelCase = decoder_layers
def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]:
'''simple docstring'''
return TaConfig.from_pretrained("""google/umt5-base""" )
def _snake_case ( self : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Any=None , __UpperCamelCase : str=None , ) ->int:
'''simple docstring'''
if attention_mask is None:
_UpperCAmelCase = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
_UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
_UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCamelCase )
if decoder_head_mask is None:
_UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase )
if cross_attn_head_mask is None:
_UpperCAmelCase = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _snake_case ( self : List[Any] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
_UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 )
_UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 )
_UpperCAmelCase = self.get_config()
_UpperCAmelCase = config.num_attention_heads
_UpperCAmelCase = self.prepare_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
return config, input_dict
def _snake_case ( self : Union[str, Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def _snake_case ( self : Dict ) ->List[str]:
'''simple docstring'''
return TaConfig(
vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _snake_case ( self : Tuple ) ->Dict:
'''simple docstring'''
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _snake_case ( self : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = UMTaModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(
input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , )
_UpperCAmelCase = model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase )
_UpperCAmelCase = result.last_hidden_state
_UpperCAmelCase = result.past_key_values
_UpperCAmelCase = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(__UpperCamelCase ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , ) ->str:
'''simple docstring'''
_UpperCAmelCase = UMTaModel(config=__UpperCamelCase ).get_decoder().to(__UpperCamelCase ).eval()
# first forward pass
_UpperCAmelCase = model(__UpperCamelCase , use_cache=__UpperCamelCase )
_UpperCAmelCase = model(__UpperCamelCase )
_UpperCAmelCase = model(__UpperCamelCase , use_cache=__UpperCamelCase )
self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) )
self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) + 1 )
_UpperCAmelCase ,_UpperCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
_UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
_UpperCAmelCase = model(__UpperCamelCase )["""last_hidden_state"""]
_UpperCAmelCase = model(__UpperCamelCase , past_key_values=__UpperCamelCase )["""last_hidden_state"""]
# select random slice
_UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach()
_UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) )
def _snake_case ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Dict , ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = UMTaModel(config=__UpperCamelCase ).to(__UpperCamelCase ).half().eval()
_UpperCAmelCase = model(**__UpperCamelCase )["""last_hidden_state"""]
self.parent.assertFalse(torch.isnan(__UpperCamelCase ).any().item() )
@require_torch
class a_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
a : List[str] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
a : Tuple = (UMTaForConditionalGeneration,) if is_torch_available() else ()
a : Optional[Any] = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
a : Any = True
a : Optional[int] = False
a : Any = False
a : Optional[int] = True
a : Optional[Any] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
a : int = [0.8, 0.9]
def _snake_case ( self : Optional[Any] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = UMTaModelTester(self )
@unittest.skip("""Test has a segmentation fault on torch 1.8.0""" )
def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
_UpperCAmelCase = UMTaModel(config_and_inputs[0] ).to(__UpperCamelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
__UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"""{tmpdirname}/t5_test.onnx""" , export_params=__UpperCamelCase , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def _snake_case ( self : Tuple ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*__UpperCamelCase )
def _snake_case ( self : Any ) ->Any:
'''simple docstring'''
_UpperCAmelCase = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""]
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
_UpperCAmelCase = config_and_inputs[0]
_UpperCAmelCase = UMTaForConditionalGeneration(__UpperCamelCase ).eval()
model.to(__UpperCamelCase )
_UpperCAmelCase = {
"""head_mask""": torch.zeros(config.num_layers , config.num_heads , device=__UpperCamelCase ),
"""decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ),
"""cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ),
}
for attn_name, (name, mask) in zip(__UpperCamelCase , head_masking.items() ):
_UpperCAmelCase = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
_UpperCAmelCase = torch.ones(
config.num_decoder_layers , config.num_heads , device=__UpperCamelCase )
_UpperCAmelCase = model.generate(
config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=__UpperCamelCase , return_dict_in_generate=__UpperCamelCase , **__UpperCamelCase , )
# We check the state of decoder_attentions and cross_attentions just from the last step
_UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" )
def _snake_case ( self : Tuple ) ->List[Any]:
'''simple docstring'''
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class a_ ( unittest.TestCase ):
@slow
@unittest.skip(
"""Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" )
def _snake_case ( self : Optional[Any] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=__UpperCamelCase ).to(__UpperCamelCase )
_UpperCAmelCase = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=__UpperCamelCase , legacy=__UpperCamelCase )
_UpperCAmelCase = [
"""Bonjour monsieur <extra_id_0> bien <extra_id_1>.""",
"""No se como puedo <extra_id_0>.""",
"""This is the reason why we <extra_id_0> them.""",
"""The <extra_id_0> walks in <extra_id_1>, seats""",
"""A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""",
]
_UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors="""pt""" , padding=__UpperCamelCase ).input_ids
# fmt: off
_UpperCAmelCase = torch.tensor(
[
[ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1],
] )
# fmt: on
torch.testing.assert_allclose(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = model.generate(input_ids.to(__UpperCamelCase ) )
_UpperCAmelCase = [
"""<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""",
"""<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
]
_UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase )
self.assertEqual(__UpperCamelCase , __UpperCamelCase ) | 19 | 1 |
"""simple docstring"""
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def _UpperCamelCase ( _A , _A , _A ) -> Optional[int]:
"""simple docstring"""
if gpta_config_file == "":
_UpperCAmelCase = GPTaConfig()
else:
_UpperCAmelCase = GPTaConfig.from_json_file(_A )
_UpperCAmelCase = GPTaModel(_A )
# Load weights from numpy
load_tf_weights_in_gpta(_A , _A , _A )
# Save pytorch-model
_UpperCAmelCase = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
_UpperCAmelCase = pytorch_dump_folder_path + """/""" + CONFIG_NAME
print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" )
torch.save(model.state_dict() , _A )
print(F"""Save configuration file to {pytorch_config_dump_path}""" )
with open(_A , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
a : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--gpt2_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--gpt2_config_file''',
default='''''',
type=str,
help=(
'''An optional config json file corresponding to the pre-trained OpenAI model. \n'''
'''This specifies the model architecture.'''
),
)
a : Tuple = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path) | 19 |
"""simple docstring"""
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class a_ ( _UpperCAmelCase ):
def _snake_case ( self : str ) ->str:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] ) )
self.assertEqual(arr.type , pa.intaa() )
def _snake_case ( self : Any ) ->List[str]:
'''simple docstring'''
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() )
def _snake_case ( self : Optional[int] ) ->Tuple:
'''simple docstring'''
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) )
def _snake_case ( self : List[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) )
self.assertEqual(arr.type , pa.intaa() )
def _snake_case ( self : str ) ->Dict:
'''simple docstring'''
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
_UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) )
def _snake_case ( self : Union[str, Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) )
self.assertEqual(arr.type , pa.intaa() )
def _snake_case ( self : List[str] ) ->Any:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) )
self.assertEqual(arr.type , pa.string() )
def _snake_case ( self : List[Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) )
def _snake_case ( self : List[Any] ) ->Optional[Any]:
'''simple docstring'''
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
_UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) )
def _snake_case ( self : List[str] ) ->int:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) )
def _snake_case ( self : Optional[int] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , pa.string() )
@require_pil
def _snake_case ( self : str ) ->Optional[Any]:
'''simple docstring'''
import PIL.Image
_UpperCAmelCase = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) )
with patch(
"""datasets.arrow_writer.cast_to_python_objects""" , side_effect=__UpperCamelCase ) as mock_cast_to_python_objects:
_UpperCAmelCase = pa.array(TypedSequence([{"""path""": None, """bytes""": b"""image_bytes"""}, pil_image] , type=Image() ) )
_UpperCAmelCase ,_UpperCAmelCase = mock_cast_to_python_objects.call_args_list[-1]
self.assertIn("""optimize_list_casting""" , __UpperCamelCase )
self.assertFalse(kwargs["""optimize_list_casting"""] )
def _UpperCamelCase ( _A , _A ) -> Any:
"""simple docstring"""
_UpperCAmelCase = pa.BufferReader(_A ) if isinstance(_A , pa.Buffer ) else pa.memory_map(_A )
_UpperCAmelCase = pa.ipc.open_stream(_A )
_UpperCAmelCase = f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( _A , _A ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = pa.schema(_A ) if fields else None
with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def _UpperCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} )
with ArrowWriter(stream=_A , features=_A ) as writer:
writer.write({"""labels""": 0} )
writer.write({"""labels""": 1} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
_UpperCAmelCase = pa.BufferReader(output.getvalue() )
_UpperCAmelCase = pa.ipc.open_stream(_A )
_UpperCAmelCase = f.read_all()
_UpperCAmelCase = pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(_A )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
with ArrowWriter(
stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer:
with pytest.raises(_A ):
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
@pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] )
def _UpperCamelCase ( _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
with ArrowWriter(
stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer:
with pytest.raises(_A ):
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1_0 )
writer.write({"""col_1""": """bar""", """col_2""": 2} , key=1_0 )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
@pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] )
def _UpperCamelCase ( _A ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
with ArrowWriter(
stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 )
writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( _A , _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = pa.schema(_A ) if fields else None
with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer:
writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} )
writer.write_batch({"""col_1""": [], """col_2""": []} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( _A , _A ) -> Any:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = pa.schema(_A ) if fields else None
with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer:
writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( _A , _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = pa.schema(_A ) if fields else None
with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer:
writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) )
writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def _UpperCamelCase ( ) -> str:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
_UpperCAmelCase = os.path.join(_A , """test.arrow""" )
with ArrowWriter(path=_A , schema=pa.schema(_A ) ) as writer:
writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(_A , 1 )
def _UpperCamelCase ( _A ) -> int:
"""simple docstring"""
if pa.types.is_list(_A ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def _UpperCamelCase ( _A , _A ) -> Any:
"""simple docstring"""
if isinstance(lst[0] , _A ):
change_first_primitive_element_in_list(lst[0] , _A )
else:
_UpperCAmelCase = value
@pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] )
@pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def _UpperCamelCase ( _A , _A , _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = pa.array(TypedSequence(_A , optimized_int_type=_A ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
"""col, expected_dtype""" , [
("""attention_mask""", pa.inta()),
("""special_tokens_mask""", pa.inta()),
("""token_type_ids""", pa.inta()),
("""input_ids""", pa.intaa()),
("""other""", pa.intaa()),
] , )
@pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def _UpperCamelCase ( _A , _A , _A ) -> str:
"""simple docstring"""
_UpperCAmelCase = pa.array(OptimizedTypedSequence(_A , col=_A ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
_UpperCAmelCase = copy.deepcopy(_A )
_UpperCAmelCase = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(_A , _A )
_UpperCAmelCase = pa.array(OptimizedTypedSequence(_A , col=_A ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize("""raise_exception""" , [False, True] )
def _UpperCamelCase ( _A , _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = str(tmp_path / """dataset-train.arrow""" )
try:
with ArrowWriter(path=_A ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = """mock://dataset-train.arrow"""
with ArrowWriter(path=_A , storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs , type(_A ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(_A )
def _UpperCamelCase ( ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
with ParquetWriter(stream=_A ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_UpperCAmelCase = pa.BufferReader(output.getvalue() )
_UpperCAmelCase = pq.read_table(_A )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize("""embed_local_files""" , [False, True] )
def _UpperCamelCase ( _A , _A ) -> Any:
"""simple docstring"""
import PIL.Image
_UpperCAmelCase = str(tmp_path / """test_image_rgb.jpg""" )
PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_A , format="""png""" )
_UpperCAmelCase = pa.BufferOutputStream()
with ParquetWriter(
stream=_A , features=Features({"""image""": Image()} ) , embed_local_files=_A ) as writer:
writer.write({"""image""": image_path} )
writer.finalize()
_UpperCAmelCase = pa.BufferReader(output.getvalue() )
_UpperCAmelCase = pq.read_table(_A )
_UpperCAmelCase = pa_table.to_pydict()
if embed_local_files:
assert isinstance(out["""image"""][0]["""path"""] , _A )
with open(_A , """rb""" ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def _UpperCamelCase ( ) -> int:
"""simple docstring"""
_UpperCAmelCase = pa.schema([pa.field("""col_1""" , pa.string() , nullable=_A )] )
_UpperCAmelCase = pa.BufferOutputStream()
with ArrowWriter(stream=_A ) as writer:
writer._build_writer(inferred_schema=_A )
assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] ) | 19 | 1 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : Tuple = logging.get_logger(__name__)
a : Optional[Any] = {
'''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''',
# See all WavLM models at https://huggingface.co/models?filter=wavlm
}
class a_ ( _UpperCAmelCase ):
a : int = 'wavlm'
def __init__( self : List[str] , __UpperCamelCase : Optional[int]=32 , __UpperCamelCase : Dict=7_68 , __UpperCamelCase : List[Any]=12 , __UpperCamelCase : List[str]=12 , __UpperCamelCase : str=30_72 , __UpperCamelCase : int="gelu" , __UpperCamelCase : int=0.1 , __UpperCamelCase : Optional[Any]=0.1 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : Dict=0.0 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : List[Any]=0.0_2 , __UpperCamelCase : Optional[Any]=1e-5 , __UpperCamelCase : Optional[Any]="group" , __UpperCamelCase : Union[str, Any]="gelu" , __UpperCamelCase : str=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __UpperCamelCase : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , __UpperCamelCase : Union[str, Any]=(10, 3, 3, 3, 3, 2, 2) , __UpperCamelCase : str=False , __UpperCamelCase : List[Any]=1_28 , __UpperCamelCase : Union[str, Any]=16 , __UpperCamelCase : Optional[int]=3_20 , __UpperCamelCase : Any=8_00 , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Optional[int]=0.0_5 , __UpperCamelCase : Optional[Any]=10 , __UpperCamelCase : int=2 , __UpperCamelCase : str=0.0 , __UpperCamelCase : Optional[int]=10 , __UpperCamelCase : Any=3_20 , __UpperCamelCase : Any=2 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : List[str]=1_00 , __UpperCamelCase : int=2_56 , __UpperCamelCase : Dict=2_56 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Optional[int]="mean" , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : str=False , __UpperCamelCase : List[str]=2_56 , __UpperCamelCase : Tuple=(5_12, 5_12, 5_12, 5_12, 15_00) , __UpperCamelCase : Union[str, Any]=(5, 3, 3, 1, 1) , __UpperCamelCase : Any=(1, 2, 3, 1, 1) , __UpperCamelCase : int=5_12 , __UpperCamelCase : List[Any]=80 , __UpperCamelCase : Optional[int]=0 , __UpperCamelCase : Dict=1 , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : Tuple=False , __UpperCamelCase : Dict=3 , __UpperCamelCase : str=2 , __UpperCamelCase : Dict=3 , __UpperCamelCase : int=None , **__UpperCamelCase : Optional[Any] , ) ->Union[str, Any]:
'''simple docstring'''
super().__init__(**__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase )
_UpperCAmelCase = hidden_size
_UpperCAmelCase = feat_extract_norm
_UpperCAmelCase = feat_extract_activation
_UpperCAmelCase = list(__UpperCamelCase )
_UpperCAmelCase = list(__UpperCamelCase )
_UpperCAmelCase = list(__UpperCamelCase )
_UpperCAmelCase = conv_bias
_UpperCAmelCase = num_buckets
_UpperCAmelCase = max_bucket_distance
_UpperCAmelCase = num_conv_pos_embeddings
_UpperCAmelCase = num_conv_pos_embedding_groups
_UpperCAmelCase = len(self.conv_dim )
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = hidden_dropout
_UpperCAmelCase = attention_dropout
_UpperCAmelCase = activation_dropout
_UpperCAmelCase = feat_proj_dropout
_UpperCAmelCase = final_dropout
_UpperCAmelCase = layerdrop
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_ctc_classes
_UpperCAmelCase = vocab_size
_UpperCAmelCase = do_stable_layer_norm
_UpperCAmelCase = use_weighted_layer_sum
_UpperCAmelCase = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"""
f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_UpperCAmelCase = apply_spec_augment
_UpperCAmelCase = mask_time_prob
_UpperCAmelCase = mask_time_length
_UpperCAmelCase = mask_time_min_masks
_UpperCAmelCase = mask_feature_prob
_UpperCAmelCase = mask_feature_length
# parameters for pretraining with codevector quantized representations
_UpperCAmelCase = num_codevectors_per_group
_UpperCAmelCase = num_codevector_groups
_UpperCAmelCase = contrastive_logits_temperature
_UpperCAmelCase = num_negatives
_UpperCAmelCase = codevector_dim
_UpperCAmelCase = proj_codevector_dim
_UpperCAmelCase = diversity_loss_weight
# ctc loss
_UpperCAmelCase = ctc_loss_reduction
_UpperCAmelCase = ctc_zero_infinity
# adapter
_UpperCAmelCase = add_adapter
_UpperCAmelCase = adapter_kernel_size
_UpperCAmelCase = adapter_stride
_UpperCAmelCase = num_adapter_layers
_UpperCAmelCase = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_UpperCAmelCase = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_UpperCAmelCase = list(__UpperCamelCase )
_UpperCAmelCase = list(__UpperCamelCase )
_UpperCAmelCase = list(__UpperCamelCase )
_UpperCAmelCase = xvector_output_dim
@property
def _snake_case ( self : str ) ->Tuple:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 ) | 19 |
"""simple docstring"""
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
a : List[Any] = get_logger()
a : Optional[dict] = None
class a_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ):
def __init__( self : int , __UpperCamelCase : List[str]=None , __UpperCamelCase : Optional[int]=None , **__UpperCamelCase : int ) ->Tuple:
'''simple docstring'''
super().__init__(features=__UpperCamelCase )
import jax
from jaxlib.xla_client import Device
if isinstance(__UpperCamelCase , __UpperCamelCase ):
raise ValueError(
f"""Expected {device} to be a `str` not {type(__UpperCamelCase )}, as `jaxlib.xla_extension.Device` """
"""is not serializable neither with `pickle` nor with `dill`. Instead you can surround """
"""the device with `str()` to get its string identifier that will be internally mapped """
"""to the actual `jaxlib.xla_extension.Device`.""" )
_UpperCAmelCase = device if isinstance(__UpperCamelCase , __UpperCamelCase ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_UpperCAmelCase = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
f"""Device with string identifier {self.device} not listed among the available """
f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """
f"""device: {str(jax.devices()[0] )}.""" )
_UpperCAmelCase = str(jax.devices()[0] )
_UpperCAmelCase = jnp_array_kwargs
@staticmethod
def _snake_case ( ) ->Dict[str, "jaxlib.xla_extension.Device"]:
'''simple docstring'''
import jax
return {str(__UpperCamelCase ): device for device in jax.devices()}
def _snake_case ( self : Dict , __UpperCamelCase : Any ) ->Union[str, Any]:
'''simple docstring'''
import jax
import jax.numpy as jnp
if isinstance(__UpperCamelCase , __UpperCamelCase ) and column:
if all(
isinstance(__UpperCamelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(__UpperCamelCase , axis=0 )
return column
def _snake_case ( self : List[str] , __UpperCamelCase : Any ) ->Optional[int]:
'''simple docstring'''
import jax
import jax.numpy as jnp
if isinstance(__UpperCamelCase , (str, bytes, type(__UpperCamelCase )) ):
return value
elif isinstance(__UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
_UpperCAmelCase = {}
if isinstance(__UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
_UpperCAmelCase = {"""dtype""": jnp.intaa}
else:
_UpperCAmelCase = {"""dtype""": jnp.intaa}
elif isinstance(__UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
_UpperCAmelCase = {"""dtype""": jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(__UpperCamelCase , PIL.Image.Image ):
_UpperCAmelCase = np.asarray(__UpperCamelCase )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_UpperCAmelCase = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(__UpperCamelCase , **{**default_dtype, **self.jnp_array_kwargs} )
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[str] ) ->Any:
'''simple docstring'''
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(__UpperCamelCase , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(__UpperCamelCase , """__array__""" ) and not isinstance(__UpperCamelCase , jax.Array ):
_UpperCAmelCase = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(__UpperCamelCase , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(__UpperCamelCase ) for substruct in data_struct] )
elif isinstance(__UpperCamelCase , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(__UpperCamelCase ) for substruct in data_struct] )
return self._tensorize(__UpperCamelCase )
def _snake_case ( self : List[str] , __UpperCamelCase : dict ) ->int:
'''simple docstring'''
return map_nested(self._recursive_tensorize , __UpperCamelCase , map_list=__UpperCamelCase )
def _snake_case ( self : Dict , __UpperCamelCase : pa.Table ) ->Mapping:
'''simple docstring'''
_UpperCAmelCase = self.numpy_arrow_extractor().extract_row(__UpperCamelCase )
_UpperCAmelCase = self.python_features_decoder.decode_row(__UpperCamelCase )
return self.recursive_tensorize(__UpperCamelCase )
def _snake_case ( self : Optional[int] , __UpperCamelCase : pa.Table ) ->"jax.Array":
'''simple docstring'''
_UpperCAmelCase = self.numpy_arrow_extractor().extract_column(__UpperCamelCase )
_UpperCAmelCase = self.python_features_decoder.decode_column(__UpperCamelCase , pa_table.column_names[0] )
_UpperCAmelCase = self.recursive_tensorize(__UpperCamelCase )
_UpperCAmelCase = self._consolidate(__UpperCamelCase )
return column
def _snake_case ( self : Optional[Any] , __UpperCamelCase : pa.Table ) ->Mapping:
'''simple docstring'''
_UpperCAmelCase = self.numpy_arrow_extractor().extract_batch(__UpperCamelCase )
_UpperCAmelCase = self.python_features_decoder.decode_batch(__UpperCamelCase )
_UpperCAmelCase = self.recursive_tensorize(__UpperCamelCase )
for column_name in batch:
_UpperCAmelCase = self._consolidate(batch[column_name] )
return batch | 19 | 1 |
"""simple docstring"""
import os
import shutil
import sys
import tempfile
import unittest
from pathlib import Path
import pytest
import transformers
from transformers import (
BERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoTokenizer,
BertConfig,
BertTokenizer,
BertTokenizerFast,
CTRLTokenizer,
GPTaTokenizer,
GPTaTokenizerFast,
PreTrainedTokenizerFast,
RobertaTokenizer,
RobertaTokenizerFast,
is_tokenizers_available,
)
from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig
from transformers.models.auto.tokenization_auto import (
TOKENIZER_MAPPING,
get_tokenizer_config,
tokenizer_class_from_name,
)
from transformers.models.roberta.configuration_roberta import RobertaConfig
from transformers.testing_utils import (
DUMMY_DIFF_TOKENIZER_IDENTIFIER,
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tokenizers,
slow,
)
sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class a_ ( unittest.TestCase ):
def _snake_case ( self : Optional[Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase = 0
@slow
def _snake_case ( self : int ) ->List[Any]:
'''simple docstring'''
for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x):
_UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
self.assertIsInstance(__UpperCamelCase , (BertTokenizer, BertTokenizerFast) )
self.assertGreater(len(__UpperCamelCase ) , 0 )
for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys():
_UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
self.assertIsInstance(__UpperCamelCase , (GPTaTokenizer, GPTaTokenizerFast) )
self.assertGreater(len(__UpperCamelCase ) , 0 )
def _snake_case ( self : Optional[int] ) ->str:
'''simple docstring'''
_UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase )
self.assertIsInstance(__UpperCamelCase , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 12 )
def _snake_case ( self : Dict ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase )
self.assertIsInstance(__UpperCamelCase , (RobertaTokenizer, RobertaTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 20 )
def _snake_case ( self : Any ) ->str:
'''simple docstring'''
_UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase )
self.assertIsInstance(__UpperCamelCase , __UpperCamelCase )
# Check that tokenizer_type ≠ model_type
_UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase , config=__UpperCamelCase )
self.assertIsInstance(__UpperCamelCase , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(tokenizer.vocab_size , 12 )
def _snake_case ( self : Dict ) ->int:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(__UpperCamelCase , """vocab.txt""" ) )
_UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase , tokenizer_type="""bert""" , use_fast=__UpperCamelCase )
self.assertIsInstance(__UpperCamelCase , __UpperCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(__UpperCamelCase , """vocab.json""" ) )
shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(__UpperCamelCase , """merges.txt""" ) )
_UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase , tokenizer_type="""gpt2""" , use_fast=__UpperCamelCase )
self.assertIsInstance(__UpperCamelCase , __UpperCamelCase )
@require_tokenizers
def _snake_case ( self : List[Any] ) ->Union[str, Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("""./tests/fixtures/vocab.txt""" , os.path.join(__UpperCamelCase , """vocab.txt""" ) )
_UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase , tokenizer_type="""bert""" )
self.assertIsInstance(__UpperCamelCase , __UpperCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
shutil.copy("""./tests/fixtures/vocab.json""" , os.path.join(__UpperCamelCase , """vocab.json""" ) )
shutil.copy("""./tests/fixtures/merges.txt""" , os.path.join(__UpperCamelCase , """merges.txt""" ) )
_UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase , tokenizer_type="""gpt2""" )
self.assertIsInstance(__UpperCamelCase , __UpperCamelCase )
def _snake_case ( self : int ) ->Optional[Any]:
'''simple docstring'''
with pytest.raises(__UpperCamelCase ):
AutoTokenizer.from_pretrained("""./""" , tokenizer_type="""xxx""" )
@require_tokenizers
def _snake_case ( self : str ) ->Optional[Any]:
'''simple docstring'''
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
_UpperCAmelCase = tokenizer_class.from_pretrained("""wietsedv/bert-base-dutch-cased""" )
self.assertIsInstance(__UpperCamelCase , (BertTokenizer, BertTokenizerFast) )
if isinstance(__UpperCamelCase , __UpperCamelCase ):
self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __UpperCamelCase )
else:
self.assertEqual(tokenizer.do_lower_case , __UpperCamelCase )
self.assertEqual(tokenizer.model_max_length , 5_12 )
@require_tokenizers
def _snake_case ( self : str ) ->Dict:
'''simple docstring'''
for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]:
with self.assertRaisesRegex(
__UpperCamelCase , """julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier""" , ):
_UpperCAmelCase = tokenizer_class.from_pretrained("""julien-c/herlolip-not-exists""" )
def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = TOKENIZER_MAPPING.values()
_UpperCAmelCase = []
for slow_tok, fast_tok in tokenizers:
if slow_tok is not None:
tokenizer_names.append(slow_tok.__name__ )
if fast_tok is not None:
tokenizer_names.append(fast_tok.__name__ )
for tokenizer_name in tokenizer_names:
# must find the right class
tokenizer_class_from_name(__UpperCamelCase )
@require_tokenizers
def _snake_case ( self : int ) ->Union[str, Any]:
'''simple docstring'''
self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=__UpperCamelCase ) , __UpperCamelCase )
self.assertIsInstance(AutoTokenizer.from_pretrained("""bert-base-cased""" ) , __UpperCamelCase )
@require_tokenizers
def _snake_case ( self : List[Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase = AutoTokenizer.from_pretrained("""distilbert-base-uncased""" , do_lower_case=__UpperCamelCase )
_UpperCAmelCase = """Hello, world. How are you?"""
_UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase )
self.assertEqual("""[UNK]""" , tokens[0] )
_UpperCAmelCase = AutoTokenizer.from_pretrained("""microsoft/mpnet-base""" , do_lower_case=__UpperCamelCase )
_UpperCAmelCase = tokenizer.tokenize(__UpperCamelCase )
self.assertEqual("""[UNK]""" , tokens[0] )
@require_tokenizers
def _snake_case ( self : List[str] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = AutoTokenizer.from_pretrained("""robot-test/dummy-tokenizer-fast-with-model-config""" )
self.assertEqual(type(__UpperCamelCase ) , __UpperCamelCase )
self.assertEqual(tokenizer.model_max_length , 5_12 )
self.assertEqual(tokenizer.vocab_size , 3_00_00 )
self.assertEqual(tokenizer.unk_token , """[UNK]""" )
self.assertEqual(tokenizer.padding_side , """right""" )
self.assertEqual(tokenizer.truncation_side , """right""" )
def _snake_case ( self : Tuple ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase )
self.assertIsInstance(__UpperCamelCase , (BertTokenizer, BertTokenizerFast) )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(__UpperCamelCase )
_UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase )
self.assertIsInstance(__UpperCamelCase , tokenizer.__class__ )
self.assertEqual(tokenizera.vocab_size , 12 )
def _snake_case ( self : Any ) ->str:
'''simple docstring'''
_UpperCAmelCase = AutoTokenizer.from_pretrained("""ctrl""" )
# There is no fast CTRL so this always gives us a slow tokenizer.
self.assertIsInstance(__UpperCamelCase , __UpperCamelCase )
def _snake_case ( self : Union[str, Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = get_tokenizer_config("""bert-base-cased""" )
_UpperCAmelCase = config.pop("""_commit_hash""" , __UpperCamelCase )
# If we ever update bert-base-cased tokenizer config, this dict here will need to be updated.
self.assertEqual(__UpperCamelCase , {"""do_lower_case""": False} )
# This model does not have a tokenizer_config so we get back an empty dict.
_UpperCAmelCase = get_tokenizer_config(__UpperCamelCase )
self.assertDictEqual(__UpperCamelCase , {} )
# A tokenizer saved with `save_pretrained` always creates a tokenizer config.
_UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(__UpperCamelCase )
_UpperCAmelCase = get_tokenizer_config(__UpperCamelCase )
# Check the class of the tokenizer was properly saved (note that it always saves the slow class).
self.assertEqual(config["""tokenizer_class"""] , """BertTokenizer""" )
def _snake_case ( self : str ) ->List[str]:
'''simple docstring'''
try:
AutoConfig.register("""custom""" , __UpperCamelCase )
AutoTokenizer.register(__UpperCamelCase , slow_tokenizer_class=__UpperCamelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__UpperCamelCase ):
AutoTokenizer.register(__UpperCamelCase , slow_tokenizer_class=__UpperCamelCase )
_UpperCAmelCase = CustomTokenizer.from_pretrained(__UpperCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(__UpperCamelCase )
_UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase )
self.assertIsInstance(__UpperCamelCase , __UpperCamelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
@require_tokenizers
def _snake_case ( self : Optional[int] ) ->Any:
'''simple docstring'''
try:
AutoConfig.register("""custom""" , __UpperCamelCase )
# Can register in two steps
AutoTokenizer.register(__UpperCamelCase , slow_tokenizer_class=__UpperCamelCase )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) )
AutoTokenizer.register(__UpperCamelCase , fast_tokenizer_class=__UpperCamelCase )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
del TOKENIZER_MAPPING._extra_content[CustomConfig]
# Can register in one step
AutoTokenizer.register(
__UpperCamelCase , slow_tokenizer_class=__UpperCamelCase , fast_tokenizer_class=__UpperCamelCase )
self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__UpperCamelCase ):
AutoTokenizer.register(__UpperCamelCase , fast_tokenizer_class=__UpperCamelCase )
# We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer
# and that model does not have a tokenizer.json
with tempfile.TemporaryDirectory() as tmp_dir:
_UpperCAmelCase = BertTokenizerFast.from_pretrained(__UpperCamelCase )
bert_tokenizer.save_pretrained(__UpperCamelCase )
_UpperCAmelCase = CustomTokenizerFast.from_pretrained(__UpperCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(__UpperCamelCase )
_UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase )
self.assertIsInstance(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase , use_fast=__UpperCamelCase )
self.assertIsInstance(__UpperCamelCase , __UpperCamelCase )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def _snake_case ( self : Any ) ->Union[str, Any]:
'''simple docstring'''
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" )
# If remote code is disabled, we can't load this config.
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__UpperCamelCase )
_UpperCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__UpperCamelCase )
self.assertTrue(tokenizer.special_attribute_present )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(__UpperCamelCase )
_UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase , trust_remote_code=__UpperCamelCase )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizerFast""" )
# Test we can also load the slow version
_UpperCAmelCase = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__UpperCamelCase , use_fast=__UpperCamelCase )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
# Test tokenizer can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(__UpperCamelCase )
_UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase , trust_remote_code=__UpperCamelCase , use_fast=__UpperCamelCase )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertTrue(reloaded_tokenizer.special_attribute_present )
else:
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertEqual(reloaded_tokenizer.__class__.__name__ , """NewTokenizer""" )
@require_tokenizers
def _snake_case ( self : Dict ) ->List[Any]:
'''simple docstring'''
class a_ ( _UpperCAmelCase ):
a : Tuple = False
class a_ ( _UpperCAmelCase ):
a : str = NewTokenizer
a : List[Any] = False
try:
AutoConfig.register("""custom""" , __UpperCamelCase )
AutoTokenizer.register(__UpperCamelCase , slow_tokenizer_class=__UpperCamelCase )
AutoTokenizer.register(__UpperCamelCase , fast_tokenizer_class=__UpperCamelCase )
# If remote code is not set, the default is to use local
_UpperCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
self.assertFalse(tokenizer.special_attribute_present )
_UpperCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/test_dynamic_tokenizer""" , use_fast=__UpperCamelCase )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertFalse(tokenizer.special_attribute_present )
# If remote code is disabled, we load the local one.
_UpperCAmelCase = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__UpperCamelCase )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
self.assertFalse(tokenizer.special_attribute_present )
_UpperCAmelCase = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__UpperCamelCase , use_fast=__UpperCamelCase )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertFalse(tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub
_UpperCAmelCase = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__UpperCamelCase )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
self.assertTrue(tokenizer.special_attribute_present )
_UpperCAmelCase = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer""" , trust_remote_code=__UpperCamelCase , use_fast=__UpperCamelCase )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
self.assertTrue(tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
def _snake_case ( self : List[Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=__UpperCamelCase )
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" )
# Test we can also load the slow version
_UpperCAmelCase = AutoTokenizer.from_pretrained(
"""hf-internal-testing/test_dynamic_tokenizer_legacy""" , trust_remote_code=__UpperCamelCase , use_fast=__UpperCamelCase )
self.assertTrue(tokenizer.special_attribute_present )
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
else:
self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" )
def _snake_case ( self : Union[str, Any] ) ->str:
'''simple docstring'''
with self.assertRaisesRegex(
__UpperCamelCase , """bert-base is not a local folder and is not a valid model identifier""" ):
_UpperCAmelCase = AutoTokenizer.from_pretrained("""bert-base""" )
def _snake_case ( self : Dict ) ->Tuple:
'''simple docstring'''
with self.assertRaisesRegex(
__UpperCamelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
_UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase , revision="""aaaaaa""" )
def _snake_case ( self : int ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
with RequestCounter() as counter:
_UpperCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 ) | 19 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a : Tuple = {
'''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[str] = [
'''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PegasusXForConditionalGeneration''',
'''PegasusXModel''',
'''PegasusXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 19 | 1 |
"""simple docstring"""
from collections import defaultdict
from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst
def _UpperCamelCase ( ) -> int:
"""simple docstring"""
_UpperCAmelCase ,_UpperCAmelCase = 9, 1_4 # noqa: F841
_UpperCAmelCase = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 1_4],
[3, 4, 9],
[5, 4, 1_0],
[1, 7, 1_1],
]
_UpperCAmelCase = defaultdict(_A )
for nodea, nodea, cost in edges:
adjancency[nodea].append([nodea, cost] )
adjancency[nodea].append([nodea, cost] )
_UpperCAmelCase = mst(_A )
_UpperCAmelCase = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
for answer in expected:
_UpperCAmelCase = tuple(answer[:2] )
_UpperCAmelCase = tuple(edge[::-1] )
assert edge in result or reverse in result | 19 |
"""simple docstring"""
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
a : int = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN'''])
def _UpperCamelCase ( _A ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = test_results.split(""" """ )
_UpperCAmelCase = 0
_UpperCAmelCase = 0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
_UpperCAmelCase = expressions[-2] if """=""" in expressions[-1] else expressions[-1]
for i, expression in enumerate(_A ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def _UpperCamelCase ( _A ) -> int:
"""simple docstring"""
_UpperCAmelCase = {}
_UpperCAmelCase = None
_UpperCAmelCase = False
for line in failures_short_lines.split("""\n""" ):
if re.search(R"""_ \[doctest\]""" , _A ):
_UpperCAmelCase = True
_UpperCAmelCase = line.split(""" """ )[2]
elif in_error and not line.split(""" """ )[0].isdigit():
_UpperCAmelCase = line
_UpperCAmelCase = False
return failures
class a_ :
def __init__( self : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Dict ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = title
_UpperCAmelCase = doc_test_results["""time_spent"""].split(""",""" )[0]
_UpperCAmelCase = doc_test_results["""success"""]
_UpperCAmelCase = doc_test_results["""failures"""]
_UpperCAmelCase = self.n_success + self.n_failures
# Failures and success of the modeling tests
_UpperCAmelCase = doc_test_results
@property
def _snake_case ( self : int ) ->str:
'''simple docstring'''
_UpperCAmelCase = [self._time_spent]
_UpperCAmelCase = 0
for time in time_spent:
_UpperCAmelCase = time.split(""":""" )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(__UpperCamelCase ) == 1:
_UpperCAmelCase = [0, 0, time_parts[0]]
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return f"""{int(__UpperCamelCase )}h{int(__UpperCamelCase )}m{int(__UpperCamelCase )}s"""
@property
def _snake_case ( self : List[Any] ) ->Dict:
'''simple docstring'''
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def _snake_case ( self : Optional[Any] ) ->Dict:
'''simple docstring'''
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""",
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
@property
def _snake_case ( self : Union[str, Any] ) ->Dict:
'''simple docstring'''
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in"""
f""" {self.time}."""
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
@property
def _snake_case ( self : List[str] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = 40
_UpperCAmelCase = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(__UpperCamelCase , __UpperCamelCase )}
_UpperCAmelCase = """"""
for category, failures in category_failures.items():
if len(__UpperCamelCase ) == 0:
continue
if report != "":
report += "\n\n"
report += f"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(__UpperCamelCase )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f"""The following examples had failures:\n\n\n{report}\n""",
},
}
@property
def _snake_case ( self : Union[str, Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase = [self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(__UpperCamelCase )
@staticmethod
def _snake_case ( ) ->Any:
'''simple docstring'''
_UpperCAmelCase = [
{
"""type""": """section""",
"""text""": {
"""type""": """plain_text""",
"""text""": """There was an issue running the tests.""",
},
"""accessory""": {
"""type""": """button""",
"""text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True},
"""url""": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
]
print("""Sending the following payload""" )
print(json.dumps({"""blocks""": json.loads(__UpperCamelCase )} ) )
client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=__UpperCamelCase , )
def _snake_case ( self : Tuple ) ->Optional[Any]:
'''simple docstring'''
print("""Sending the following payload""" )
print(json.dumps({"""blocks""": json.loads(self.payload )} ) )
_UpperCAmelCase = f"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else """All tests passed."""
_UpperCAmelCase = client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=__UpperCamelCase , )
def _snake_case ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : List[str] ) ->str:
'''simple docstring'''
_UpperCAmelCase = """"""
for key, value in failures.items():
_UpperCAmelCase = value[:2_00] + """ [Truncated]""" if len(__UpperCamelCase ) > 2_50 else value
failures_text += f"""*{key}*\n_{value}_\n\n"""
_UpperCAmelCase = job_name
_UpperCAmelCase = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}}
if job_link is not None:
_UpperCAmelCase = {
"""type""": """button""",
"""text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True},
"""url""": job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def _snake_case ( self : int ) ->Optional[Any]:
'''simple docstring'''
if self.thread_ts is None:
raise ValueError("""Can only post reply if a post has been made.""" )
_UpperCAmelCase = self.doc_test_results.pop("""job_link""" )
self.doc_test_results.pop("""failures""" )
self.doc_test_results.pop("""success""" )
self.doc_test_results.pop("""time_spent""" )
_UpperCAmelCase = sorted(self.doc_test_results.items() , key=lambda __UpperCamelCase : t[0] )
for job, job_result in sorted_dict:
if len(job_result["""failures"""] ):
_UpperCAmelCase = f"""*Num failures* :{len(job_result["failed"] )} \n"""
_UpperCAmelCase = job_result["""failures"""]
_UpperCAmelCase = self.get_reply_blocks(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , text=__UpperCamelCase )
print("""Sending the following reply""" )
print(json.dumps({"""blocks""": blocks} ) )
client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=f"""Results for {job}""" , blocks=__UpperCamelCase , thread_ts=self.thread_ts["""ts"""] , )
time.sleep(1 )
def _UpperCamelCase ( ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = os.environ["""GITHUB_RUN_ID"""]
_UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100"""
_UpperCAmelCase = requests.get(_A ).json()
_UpperCAmelCase = {}
try:
jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
_UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(_A ):
_UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" ).json()
jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return jobs
except Exception as e:
print("""Unknown error, could not fetch links.""" , _A )
return {}
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = {}
if os.path.exists(_A ):
_UpperCAmelCase = os.listdir(_A )
for file in files:
try:
with open(os.path.join(_A , _A ) , encoding="""utf-8""" ) as f:
_UpperCAmelCase = f.read()
except UnicodeDecodeError as e:
raise ValueError(F"""Could not open {os.path.join(_A , _A )}.""" ) from e
return _artifact
def _UpperCamelCase ( ) -> int:
"""simple docstring"""
class a_ :
def __init__( self : List[Any] , __UpperCamelCase : str ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = name
_UpperCAmelCase = []
def __str__( self : int ) ->Optional[Any]:
'''simple docstring'''
return self.name
def _snake_case ( self : Dict , __UpperCamelCase : str ) ->int:
'''simple docstring'''
self.paths.append({"""name""": self.name, """path""": path} )
_UpperCAmelCase = {}
_UpperCAmelCase = filter(os.path.isdir , os.listdir() )
for directory in directories:
_UpperCAmelCase = directory
if artifact_name not in _available_artifacts:
_UpperCAmelCase = Artifact(_A )
_available_artifacts[artifact_name].add_path(_A )
return _available_artifacts
if __name__ == "__main__":
a : Dict = get_job_links()
a : Dict = retrieve_available_artifacts()
a : Optional[int] = collections.OrderedDict(
[
('''*.py''', '''API Examples'''),
('''*.md''', '''MD Examples'''),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
a : Dict = {
v: {
'''failed''': [],
'''failures''': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
a : int = github_actions_job_links.get('''run_doctests''')
a : Tuple = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0]
a : Optional[Any] = retrieve_artifact(artifact_path['''name'''])
if "stats" in artifact:
a , a , a : str = handle_test_results(artifact['''stats'''])
a : Tuple = failed
a : int = success
a : Any = time_spent[1:-1] + ''', '''
a : Dict = extract_first_line_failure(artifact['''failures_short'''])
for line in artifact["summary_short"].split('''\n'''):
if re.search('''FAILED''', line):
a : List[Any] = line.replace('''FAILED ''', '''''')
a : Tuple = line.split()[0].replace('''\n''', '''''')
if "::" in line:
a , a : Union[str, Any] = line.split('''::''')
else:
a , a : Optional[Any] = line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
a : List[Any] = docs[file_regex]
doc_test_results[category]["failed"].append(test)
a : Optional[Any] = all_failures[test] if test in all_failures else '''N/A'''
a : List[str] = failure
break
a : List[Any] = Message('''🤗 Results of the doc tests.''', doc_test_results)
message.post()
message.post_reply() | 19 | 1 |
"""simple docstring"""
from __future__ import annotations
from collections import Counter
from random import random
class a_ :
def __init__( self : List[str] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = {}
def _snake_case ( self : str , __UpperCamelCase : str ) ->None:
'''simple docstring'''
_UpperCAmelCase = {}
def _snake_case ( self : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : float ) ->None:
'''simple docstring'''
if nodea not in self.connections:
self.add_node(__UpperCamelCase )
if nodea not in self.connections:
self.add_node(__UpperCamelCase )
_UpperCAmelCase = probability
def _snake_case ( self : Dict ) ->list[str]:
'''simple docstring'''
return list(self.connections )
def _snake_case ( self : Tuple , __UpperCamelCase : str ) ->str:
'''simple docstring'''
_UpperCAmelCase = 0
_UpperCAmelCase = random()
for dest in self.connections[node]:
current_probability += self.connections[node][dest]
if current_probability > random_value:
return dest
return ""
def _UpperCamelCase ( _A , _A , _A ) -> dict[str, int]:
"""simple docstring"""
_UpperCAmelCase = MarkovChainGraphUndirectedUnweighted()
for nodea, nodea, probability in transitions:
graph.add_transition_probability(_A , _A , _A )
_UpperCAmelCase = Counter(graph.get_nodes() )
_UpperCAmelCase = start
for _ in range(_A ):
_UpperCAmelCase = graph.transition(_A )
visited[node] += 1
return visited
if __name__ == "__main__":
import doctest
doctest.testmod() | 19 |
"""simple docstring"""
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse('''3.8'''):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def _UpperCamelCase ( _A , _A=False ) -> str:
"""simple docstring"""
try:
_UpperCAmelCase = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_UpperCAmelCase = default
else:
# KEY is set, convert it to True or False.
try:
_UpperCAmelCase = strtobool(_A )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F"""If set, {key} must be yes or no.""" )
return _value
a : Union[str, Any] = parse_flag_from_env('''RUN_SLOW''', default=False)
a : Tuple = parse_flag_from_env('''RUN_REMOTE''', default=False)
a : Union[str, Any] = parse_flag_from_env('''RUN_LOCAL''', default=True)
a : int = parse_flag_from_env('''RUN_PACKAGED''', default=True)
# Compression
a : List[Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''')
a : List[Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''')
a : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''')
# Audio
a : int = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''),
reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''',
)
# Beam
a : Tuple = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''),
reason='''test requires apache-beam and a compatible dill version''',
)
# Dill-cloudpickle compatibility
a : Any = pytest.mark.skipif(
config.DILL_VERSION <= version.parse('''0.3.2'''),
reason='''test requires dill>0.3.2 for cloudpickle compatibility''',
)
# Windows
a : int = pytest.mark.skipif(
sys.platform == '''win32''',
reason='''test should not be run on Windows''',
)
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
try:
import faiss # noqa
except ImportError:
_UpperCAmelCase = unittest.skip("""test requires faiss""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Any:
"""simple docstring"""
try:
import regex # noqa
except ImportError:
_UpperCAmelCase = unittest.skip("""test requires regex""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Union[str, Any]:
"""simple docstring"""
try:
import elasticsearch # noqa
except ImportError:
_UpperCAmelCase = unittest.skip("""test requires elasticsearch""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
try:
import sqlalchemy # noqa
except ImportError:
_UpperCAmelCase = unittest.skip("""test requires sqlalchemy""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Union[str, Any]:
"""simple docstring"""
if not config.TORCH_AVAILABLE:
_UpperCAmelCase = unittest.skip("""test requires PyTorch""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Optional[Any]:
"""simple docstring"""
if not config.TF_AVAILABLE:
_UpperCAmelCase = unittest.skip("""test requires TensorFlow""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
if not config.JAX_AVAILABLE:
_UpperCAmelCase = unittest.skip("""test requires JAX""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
if not config.PIL_AVAILABLE:
_UpperCAmelCase = unittest.skip("""test requires Pillow""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
try:
import transformers # noqa F401
except ImportError:
return unittest.skip("""test requires transformers""" )(_A )
else:
return test_case
def _UpperCamelCase ( _A ) -> List[Any]:
"""simple docstring"""
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip("""test requires tiktoken""" )(_A )
else:
return test_case
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
try:
import spacy # noqa F401
except ImportError:
return unittest.skip("""test requires spacy""" )(_A )
else:
return test_case
def _UpperCamelCase ( _A ) -> int:
"""simple docstring"""
def _require_spacy_model(_A ):
try:
import spacy # noqa F401
spacy.load(_A )
except ImportError:
return unittest.skip("""test requires spacy""" )(_A )
except OSError:
return unittest.skip("""test requires spacy model '{}'""".format(_A ) )(_A )
else:
return test_case
return _require_spacy_model
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip("""test requires pyspark""" )(_A )
else:
return test_case
def _UpperCamelCase ( _A ) -> List[Any]:
"""simple docstring"""
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip("""test requires joblibspark""" )(_A )
else:
return test_case
def _UpperCamelCase ( _A ) -> Any:
"""simple docstring"""
if not _run_slow_tests or _run_slow_tests == 0:
_UpperCAmelCase = unittest.skip("""test is slow""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Any:
"""simple docstring"""
if not _run_local_tests or _run_local_tests == 0:
_UpperCAmelCase = unittest.skip("""test is local""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
if not _run_packaged_tests or _run_packaged_tests == 0:
_UpperCAmelCase = unittest.skip("""test is packaged""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
if not _run_remote_tests or _run_remote_tests == 0:
_UpperCAmelCase = unittest.skip("""test requires remote""" )(_A )
return test_case
def _UpperCamelCase ( *_A ) -> Dict:
"""simple docstring"""
def decorate(cls ):
for name, fn in cls.__dict__.items():
if callable(_A ) and name.startswith("""test""" ):
for decorator in decorators:
_UpperCAmelCase = decorator(_A )
setattr(cls , _A , _A )
return cls
return decorate
class a_ ( _UpperCAmelCase ):
pass
class a_ ( _UpperCAmelCase ):
a : Any = 0
a : Optional[Any] = 1
a : int = 2
@contextmanager
def _UpperCamelCase ( _A=OfflineSimulationMode.CONNECTION_FAILS , _A=1e-16 ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = requests.Session().request
def timeout_request(_A , _A , _A , **_A ):
# Change the url to an invalid url so that the connection hangs
_UpperCAmelCase = """https://10.255.255.1"""
if kwargs.get("""timeout""" ) is None:
raise RequestWouldHangIndefinitelyError(
F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" )
_UpperCAmelCase = timeout
try:
return online_request(_A , _A , **_A )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
_UpperCAmelCase = url
_UpperCAmelCase = e.args[0]
_UpperCAmelCase = (max_retry_error.args[0].replace("""10.255.255.1""" , F"""OfflineMock[{url}]""" ),)
_UpperCAmelCase = (max_retry_error,)
raise
def raise_connection_error(_A , _A , **_A ):
raise requests.ConnectionError("""Offline mode is enabled.""" , request=_A )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch("""requests.Session.send""" , _A ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch("""requests.Session.request""" , _A ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch("""datasets.config.HF_DATASETS_OFFLINE""" , _A ):
yield
else:
raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" )
@contextmanager
def _UpperCamelCase ( *_A , **_A ) -> str:
"""simple docstring"""
_UpperCAmelCase = str(Path().resolve() )
with tempfile.TemporaryDirectory(*_A , **_A ) as tmp_dir:
try:
os.chdir(_A )
yield
finally:
os.chdir(_A )
@contextmanager
def _UpperCamelCase ( ) -> Any:
"""simple docstring"""
import gc
gc.collect()
_UpperCAmelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def _UpperCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
import gc
gc.collect()
_UpperCAmelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def _UpperCamelCase ( _A , _A ) -> str:
"""simple docstring"""
return deepcopy(_A ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(_A ).integers(0 , 1_0_0 , 1_0 ).tolist()
def _UpperCamelCase ( _A ) -> Tuple:
"""simple docstring"""
import decorator
from requests.exceptions import HTTPError
def _wrapper(_A , *_A , **_A ):
try:
return func(*_A , **_A )
except HTTPError as err:
if str(_A ).startswith("""500""" ) or str(_A ).startswith("""502""" ):
pytest.xfail(str(_A ) )
raise err
return decorator.decorator(_wrapper , _A )
class a_ :
def __init__( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] ) ->int:
'''simple docstring'''
_UpperCAmelCase = returncode
_UpperCAmelCase = stdout
_UpperCAmelCase = stderr
async def _UpperCamelCase ( _A , _A ) -> Union[str, Any]:
"""simple docstring"""
while True:
_UpperCAmelCase = await stream.readline()
if line:
callback(_A )
else:
break
async def _UpperCamelCase ( _A , _A=None , _A=None , _A=None , _A=False , _A=False ) -> _RunOutput:
"""simple docstring"""
if echo:
print("""\nRunning: """ , """ """.join(_A ) )
_UpperCAmelCase = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=_A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_A , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
_UpperCAmelCase = []
_UpperCAmelCase = []
def tee(_A , _A , _A , _A="" ):
_UpperCAmelCase = line.decode("""utf-8""" ).rstrip()
sink.append(_A )
if not quiet:
print(_A , _A , file=_A )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout , lambda _A : tee(_A , _A , sys.stdout , label="""stdout:""" ) ),
_read_stream(p.stderr , lambda _A : tee(_A , _A , sys.stderr , label="""stderr:""" ) ),
] , timeout=_A , )
return _RunOutput(await p.wait() , _A , _A )
def _UpperCamelCase ( _A , _A=None , _A=None , _A=1_8_0 , _A=False , _A=True ) -> _RunOutput:
"""simple docstring"""
_UpperCAmelCase = asyncio.get_event_loop()
_UpperCAmelCase = loop.run_until_complete(
_stream_subprocess(_A , env=_A , stdin=_A , timeout=_A , quiet=_A , echo=_A ) )
_UpperCAmelCase = """ """.join(_A )
if result.returncode > 0:
_UpperCAmelCase = """\n""".join(result.stderr )
raise RuntimeError(
F"""'{cmd_str}' failed with returncode {result.returncode}\n\n"""
F"""The combined stderr from workers follows:\n{stderr}""" )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(F"""'{cmd_str}' produced no output.""" )
return result
def _UpperCamelCase ( ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" )
_UpperCAmelCase = re.sub(R"""^gw""" , """""" , _A , 0 , re.M )
return int(_A )
def _UpperCamelCase ( ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = 2_9_5_0_0
_UpperCAmelCase = pytest_xdist_worker_id()
return port + uniq_delta | 19 | 1 |
"""simple docstring"""
from abc import ABC, abstractmethod
from typing import Optional, Union
from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit
from ..utils.typing import NestedDataStructureLike, PathLike
class a_ ( _UpperCAmelCase ):
def __init__( self : Optional[int] , __UpperCamelCase : Optional[NestedDataStructureLike[PathLike]] = None , __UpperCamelCase : Optional[NamedSplit] = None , __UpperCamelCase : Optional[Features] = None , __UpperCamelCase : str = None , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[int] = None , **__UpperCamelCase : Union[str, Any] , ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = path_or_paths
_UpperCAmelCase = split if split or isinstance(__UpperCamelCase , __UpperCamelCase ) else """train"""
_UpperCAmelCase = features
_UpperCAmelCase = cache_dir
_UpperCAmelCase = keep_in_memory
_UpperCAmelCase = streaming
_UpperCAmelCase = num_proc
_UpperCAmelCase = kwargs
@abstractmethod
def _snake_case ( self : Optional[Any] ) ->Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]:
'''simple docstring'''
pass
class a_ ( _UpperCAmelCase ):
def __init__( self : Any , __UpperCamelCase : Optional[Features] = None , __UpperCamelCase : str = None , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[int] = None , **__UpperCamelCase : Dict , ) ->int:
'''simple docstring'''
_UpperCAmelCase = features
_UpperCAmelCase = cache_dir
_UpperCAmelCase = keep_in_memory
_UpperCAmelCase = streaming
_UpperCAmelCase = num_proc
_UpperCAmelCase = kwargs
@abstractmethod
def _snake_case ( self : Dict ) ->Union[Dataset, IterableDataset]:
'''simple docstring'''
pass | 19 |
"""simple docstring"""
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class a_ ( _UpperCAmelCase ):
a : List[Any] = ''
a : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs
def __init__( self : Tuple , __UpperCamelCase : Optional[DatasetInfo] = None , __UpperCamelCase : Optional[str] = None , **__UpperCamelCase : Any , ) ->Any:
'''simple docstring'''
super().__init__(self , **__UpperCamelCase )
_UpperCAmelCase = repo_info
_UpperCAmelCase = token
_UpperCAmelCase = None
def _snake_case ( self : List[str] ) ->List[str]:
'''simple docstring'''
if self.dir_cache is None:
_UpperCAmelCase = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
_UpperCAmelCase = {
"""name""": hf_file.rfilename,
"""size""": None,
"""type""": """file""",
}
self.dir_cache.update(
{
str(__UpperCamelCase ): {"""name""": str(__UpperCamelCase ), """size""": None, """type""": """directory"""}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def _snake_case ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : str = "rb" , **__UpperCamelCase : Any , ) ->List[str]:
'''simple docstring'''
if not isinstance(self.repo_info , __UpperCamelCase ):
raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" )
_UpperCAmelCase = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha )
return fsspec.open(
__UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open()
def _snake_case ( self : int , __UpperCamelCase : int , **__UpperCamelCase : Dict ) ->Tuple:
'''simple docstring'''
self._get_dirs()
_UpperCAmelCase = self._strip_protocol(__UpperCamelCase )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(__UpperCamelCase )
def _snake_case ( self : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple=False , **__UpperCamelCase : List[str] ) ->Optional[Any]:
'''simple docstring'''
self._get_dirs()
_UpperCAmelCase = PurePosixPath(path.strip("""/""" ) )
_UpperCAmelCase = {}
for p, f in self.dir_cache.items():
_UpperCAmelCase = PurePosixPath(p.strip("""/""" ) )
_UpperCAmelCase = p.parent
if root == path:
_UpperCAmelCase = f
_UpperCAmelCase = list(paths.values() )
if detail:
return out
else:
return sorted(f["""name"""] for f in out ) | 19 | 1 |
"""simple docstring"""
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
a : List[Any] = logging.get_logger(__name__)
@add_end_docstrings(_UpperCAmelCase )
class a_ ( _UpperCAmelCase ):
def __init__( self : int , *__UpperCamelCase : Tuple , **__UpperCamelCase : Optional[int] ) ->Optional[Any]:
'''simple docstring'''
super().__init__(*__UpperCamelCase , **__UpperCamelCase )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def _snake_case ( self : Dict , __UpperCamelCase : List[str]=None ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = {}
if top_k is not None:
_UpperCAmelCase = top_k
return {}, {}, postprocess_params
def __call__( self : List[str] , __UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__UpperCamelCase : List[str] ) ->str:
'''simple docstring'''
return super().__call__(__UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : str , __UpperCamelCase : Dict ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = load_image(__UpperCamelCase )
_UpperCAmelCase = self.image_processor(images=__UpperCamelCase , return_tensors=self.framework )
return model_inputs
def _snake_case ( self : str , __UpperCamelCase : Union[str, Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase = self.model(**__UpperCamelCase )
return model_outputs
def _snake_case ( self : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple=5 ) ->int:
'''simple docstring'''
if top_k > self.model.config.num_labels:
_UpperCAmelCase = self.model.config.num_labels
if self.framework == "pt":
_UpperCAmelCase = model_outputs.logits.softmax(-1 )[0]
_UpperCAmelCase ,_UpperCAmelCase = probs.topk(__UpperCamelCase )
elif self.framework == "tf":
_UpperCAmelCase = stable_softmax(model_outputs.logits , axis=-1 )[0]
_UpperCAmelCase = tf.math.top_k(__UpperCamelCase , k=__UpperCamelCase )
_UpperCAmelCase ,_UpperCAmelCase = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(f"""Unsupported framework: {self.framework}""" )
_UpperCAmelCase = scores.tolist()
_UpperCAmelCase = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__UpperCamelCase , __UpperCamelCase )] | 19 |
"""simple docstring"""
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
a : Optional[Any] = '''\
@misc{chen2021evaluating,
title={Evaluating Large Language Models Trained on Code},
author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \
and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \
and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \
and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \
and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \
and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \
and Mohammad Bavarian and Clemens Winter and Philippe Tillet \
and Felipe Petroski Such and Dave Cummings and Matthias Plappert \
and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \
and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \
and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \
and William Saunders and Christopher Hesse and Andrew N. Carr \
and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \
and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \
and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \
and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},
year={2021},
eprint={2107.03374},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
'''
a : List[str] = '''\
This metric implements the evaluation harness for the HumanEval problem solving dataset
described in the paper "Evaluating Large Language Models Trained on Code"
(https://arxiv.org/abs/2107.03374).
'''
a : Any = '''
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of candidates to evaluate. Each candidates should be a list
of strings with several code candidates to solve the problem.
references: a list with a test for each prediction. Each test should evaluate the
correctness of a code candidate.
k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])
num_workers: number of workers used to evaluate the canidate programs (Default: 4).
timeout:
Returns:
pass_at_k: dict with pass rates for each k
results: dict with granular results of each unittest
Examples:
>>> code_eval = datasets.load_metric("code_eval")
>>> test_cases = ["assert add(2,3)==5"]
>>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]
>>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])
>>> print(pass_at_k)
{\'pass@1\': 0.5, \'pass@2\': 1.0}
'''
a : int = '''
################################################################################
!!!WARNING!!!
################################################################################
The "code_eval" metric executes untrusted model-generated code in Python.
Although it is highly unlikely that model-generated code will do something
overtly malicious in response to this test suite, model-generated code may act
destructively due to a lack of model capability or alignment.
Users are strongly encouraged to sandbox this evaluation suite so that it
does not perform destructive actions on their host or network. For more
information on how OpenAI sandboxes its code, see the paper "Evaluating Large
Language Models Trained on Code" (https://arxiv.org/abs/2107.03374).
Once you have read this disclaimer and taken appropriate precautions,
set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this
with:
>>> import os
>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"
################################################################################\
'''
a : List[Any] = '''The MIT License
Copyright (c) OpenAI (https://openai.com)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
def _snake_case ( self : Tuple ) ->Tuple:
'''simple docstring'''
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , )
def _snake_case ( self : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any]=[1, 10, 1_00] , __UpperCamelCase : Dict=4 , __UpperCamelCase : Tuple=3.0 ) ->Union[str, Any]:
'''simple docstring'''
if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError("""This metric is currently not supported on Windows.""" )
with ThreadPoolExecutor(max_workers=__UpperCamelCase ) as executor:
_UpperCAmelCase = []
_UpperCAmelCase = Counter()
_UpperCAmelCase = 0
_UpperCAmelCase = defaultdict(__UpperCamelCase )
for task_id, (candidates, test_case) in enumerate(zip(__UpperCamelCase , __UpperCamelCase ) ):
for candidate in candidates:
_UpperCAmelCase = candidate + """\n""" + test_case
_UpperCAmelCase = (test_program, timeout, task_id, completion_id[task_id])
_UpperCAmelCase = executor.submit(__UpperCamelCase , *__UpperCamelCase )
futures.append(__UpperCamelCase )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(__UpperCamelCase ):
_UpperCAmelCase = future.result()
results[result["task_id"]].append((result["""completion_id"""], result) )
_UpperCAmelCase ,_UpperCAmelCase = [], []
for result in results.values():
result.sort()
_UpperCAmelCase = [r[1]["""passed"""] for r in result]
total.append(len(__UpperCamelCase ) )
correct.append(sum(__UpperCamelCase ) )
_UpperCAmelCase = np.array(__UpperCamelCase )
_UpperCAmelCase = np.array(__UpperCamelCase )
_UpperCAmelCase = k
_UpperCAmelCase = {f"""pass@{k}""": estimate_pass_at_k(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def _UpperCamelCase ( _A , _A , _A ) -> Dict:
"""simple docstring"""
def estimator(_A , _A , _A ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(_A , _A ):
_UpperCAmelCase = itertools.repeat(_A , len(_A ) )
else:
assert len(_A ) == len(_A )
_UpperCAmelCase = iter(_A )
return np.array([estimator(int(_A ) , int(_A ) , _A ) for n, c in zip(_A , _A )] ) | 19 | 1 |
"""simple docstring"""
import os
import pytest
from transformers.dynamic_module_utils import get_imports
a : Union[str, Any] = '''
import os
'''
a : List[str] = '''
def foo():
import os
return False
'''
a : Any = '''
def foo():
def bar():
if True:
import os
return False
return bar()
'''
a : List[Any] = '''
import os
try:
import bar
except ImportError:
raise ValueError()
'''
a : str = '''
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
'''
a : List[str] = '''
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
'''
a : Any = '''
import os
try:
import bar
except ImportError as e:
raise ValueError()
'''
a : List[Any] = '''
import os
try:
import bar
except:
raise ValueError()
'''
a : Optional[int] = '''
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
'''
a : Union[str, Any] = '''
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
'''
a : List[Any] = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize("""case""" , _A )
def _UpperCamelCase ( _A , _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = os.path.join(_A , """test_file.py""" )
with open(_A , """w""" ) as _tmp_file:
_tmp_file.write(_A )
_UpperCAmelCase = get_imports(_A )
assert parsed_imports == ["os"] | 19 |
"""simple docstring"""
from collections.abc import Callable
import numpy as np
def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> np.array:
"""simple docstring"""
_UpperCAmelCase = int(np.ceil((x_end - xa) / step_size ) )
_UpperCAmelCase = np.zeros((n + 1,) )
_UpperCAmelCase = ya
_UpperCAmelCase = xa
for k in range(_A ):
_UpperCAmelCase = y[k] + step_size * ode_func(_A , y[k] )
_UpperCAmelCase = y[k] + (
(step_size / 2) * (ode_func(_A , y[k] ) + ode_func(x + step_size , _A ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod() | 19 | 1 |
"""simple docstring"""
def _UpperCamelCase ( _A , _A ) -> int:
"""simple docstring"""
return int(input_a == input_a == 0 )
def _UpperCamelCase ( ) -> None:
"""simple docstring"""
print("""Truth Table of NOR Gate:""" )
print("""| Input 1 | Input 2 | Output |""" )
print(F"""| 0 | 0 | {nor_gate(0 , 0 )} |""" )
print(F"""| 0 | 1 | {nor_gate(0 , 1 )} |""" )
print(F"""| 1 | 0 | {nor_gate(1 , 0 )} |""" )
print(F"""| 1 | 1 | {nor_gate(1 , 1 )} |""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main() | 19 |
"""simple docstring"""
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''',
datefmt='''%Y-%m-%d %H:%M:%S''',
level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(),
stream=sys.stdout,
)
a : List[str] = logging.getLogger(__name__)
a : int = {'''facebook/bart-base''': BartForConditionalGeneration}
a : Dict = {'''facebook/bart-base''': BartTokenizer}
def _UpperCamelCase ( ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" )
parser.add_argument(
"""--validation_file""" , type=_A , default=_A , help="""A csv or a json file containing the validation data.""" )
parser.add_argument(
"""--max_length""" , type=_A , default=5 , help="""The maximum total input sequence length after tokenization.""" , )
parser.add_argument(
"""--num_beams""" , type=_A , default=_A , help=(
"""Number of beams to use for evaluation. This argument will be """
"""passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."""
) , )
parser.add_argument(
"""--model_name_or_path""" , type=_A , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_A , )
parser.add_argument(
"""--config_name""" , type=_A , default=_A , help="""Pretrained config name or path if not the same as model_name""" , )
parser.add_argument(
"""--device""" , type=_A , default="""cpu""" , help="""Device where the model will be run""" , )
parser.add_argument("""--output_file_path""" , type=_A , default=_A , help="""Where to store the final ONNX file.""" )
_UpperCAmelCase = parser.parse_args()
return args
def _UpperCamelCase ( _A , _A="cpu" ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = model_dict[model_name].from_pretrained(_A ).to(_A )
_UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_A )
if model_name in ["facebook/bart-base"]:
_UpperCAmelCase = 0
_UpperCAmelCase = None
_UpperCAmelCase = 0
return huggingface_model, tokenizer
def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> Optional[int]:
"""simple docstring"""
model.eval()
_UpperCAmelCase = None
_UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_A ) )
with torch.no_grad():
_UpperCAmelCase = """My friends are cool but they eat too many carbs."""
_UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="""pt""" ).to(model.device )
_UpperCAmelCase = model.generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=_A , max_length=_A , early_stopping=_A , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
_A , (
inputs["""input_ids"""],
inputs["""attention_mask"""],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , _A , opset_version=1_4 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={
"""input_ids""": {0: """batch""", 1: """seq"""},
"""output_ids""": {0: """batch""", 1: """seq_out"""},
} , example_outputs=_A , )
logger.info("""Model exported to {}""".format(_A ) )
_UpperCAmelCase = remove_dup_initializers(os.path.abspath(_A ) )
logger.info("""Deduplicated and optimized model written to {}""".format(_A ) )
_UpperCAmelCase = onnxruntime.InferenceSession(_A )
_UpperCAmelCase = ort_sess.run(
_A , {
"""input_ids""": inputs["""input_ids"""].cpu().numpy(),
"""attention_mask""": inputs["""attention_mask"""].cpu().numpy(),
"""num_beams""": np.array(_A ),
"""max_length""": np.array(_A ),
"""decoder_start_token_id""": np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 )
logger.info("""Model outputs from torch and ONNX Runtime are similar.""" )
logger.info("""Success.""" )
def _UpperCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = parse_args()
_UpperCAmelCase = 5
_UpperCAmelCase = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
_UpperCAmelCase = torch.device(args.device )
_UpperCAmelCase ,_UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _A )
if model.config.decoder_start_token_id is None:
raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" )
model.to(_A )
if args.max_length:
_UpperCAmelCase = args.max_length
if args.num_beams:
_UpperCAmelCase = args.num_beams
if args.output_file_path:
_UpperCAmelCase = args.output_file_path
else:
_UpperCAmelCase = """BART.onnx"""
logger.info("""Exporting model to ONNX""" )
export_and_validate_model(_A , _A , _A , _A , _A )
if __name__ == "__main__":
main() | 19 | 1 |
"""simple docstring"""
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a : Optional[Any] = logging.get_logger(__name__)
a : int = {'''vocab_file''': '''vocab.json'''}
a : Any = {
'''vocab_file''': {
'''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''',
}
}
a : List[str] = {'''mgp-str''': 2_7}
class a_ ( _UpperCAmelCase ):
a : Union[str, Any] = VOCAB_FILES_NAMES
a : str = PRETRAINED_VOCAB_FILES_MAP
a : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : int , __UpperCamelCase : Dict , __UpperCamelCase : Dict="[GO]" , __UpperCamelCase : int="[GO]" , __UpperCamelCase : Union[str, Any]="[s]" , __UpperCamelCase : List[str]="[GO]" , **__UpperCamelCase : Dict ) ->Optional[Any]:
'''simple docstring'''
super().__init__(
unk_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , pad_token=__UpperCamelCase , **__UpperCamelCase , )
with open(__UpperCamelCase , encoding="""utf-8""" ) as vocab_handle:
_UpperCAmelCase = json.load(__UpperCamelCase )
_UpperCAmelCase = {v: k for k, v in self.vocab.items()}
@property
def _snake_case ( self : int ) ->List[Any]:
'''simple docstring'''
return len(self.vocab )
def _snake_case ( self : List[Any] ) ->List[Any]:
'''simple docstring'''
return dict(self.vocab , **self.added_tokens_encoder )
def _snake_case ( self : Optional[Any] , __UpperCamelCase : Optional[int] ) ->int:
'''simple docstring'''
_UpperCAmelCase = []
for s in text:
char_tokens.extend(__UpperCamelCase )
return char_tokens
def _snake_case ( self : int , __UpperCamelCase : Optional[int] ) ->Any:
'''simple docstring'''
return self.vocab.get(__UpperCamelCase , self.vocab.get(self.unk_token ) )
def _snake_case ( self : List[Any] , __UpperCamelCase : Any ) ->str:
'''simple docstring'''
return self.decoder.get(__UpperCamelCase )
def _snake_case ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) ->Tuple[str]:
'''simple docstring'''
if not os.path.isdir(__UpperCamelCase ):
logger.error("""Vocabulary path ({}) should be a directory""".format(__UpperCamelCase ) )
return
_UpperCAmelCase = os.path.join(
__UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=__UpperCamelCase , ensure_ascii=__UpperCamelCase ) + """\n""" )
return (vocab_file,) | 19 |
"""simple docstring"""
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def _UpperCamelCase ( _A , _A=None ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = None
if token is not None:
_UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
_UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
_UpperCAmelCase = requests.get(_A , headers=_A ).json()
_UpperCAmelCase = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
_UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(_A ):
_UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" , headers=_A ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCamelCase ( _A , _A=None ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = None
if token is not None:
_UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
_UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"""
_UpperCAmelCase = requests.get(_A , headers=_A ).json()
_UpperCAmelCase = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
_UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(_A ):
_UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" , headers=_A ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCamelCase ( _A , _A , _A , _A ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = None
if token is not None:
_UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
_UpperCAmelCase = requests.get(_A , headers=_A , allow_redirects=_A )
_UpperCAmelCase = result.headers["""Location"""]
_UpperCAmelCase = requests.get(_A , allow_redirects=_A )
_UpperCAmelCase = os.path.join(_A , F"""{artifact_name}.zip""" )
with open(_A , """wb""" ) as fp:
fp.write(response.content )
def _UpperCamelCase ( _A , _A=None ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = []
_UpperCAmelCase = []
_UpperCAmelCase = None
with zipfile.ZipFile(_A ) as z:
for filename in z.namelist():
if not os.path.isdir(_A ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(_A ) as f:
for line in f:
_UpperCAmelCase = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_UpperCAmelCase = line[: line.index(""": """ )]
_UpperCAmelCase = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
_UpperCAmelCase = line[len("""FAILED """ ) :]
failed_tests.append(_A )
elif filename == "job_name.txt":
_UpperCAmelCase = line
if len(_A ) != len(_A ):
raise ValueError(
F"""`errors` and `failed_tests` should have the same number of elements. Got {len(_A )} for `errors` """
F"""and {len(_A )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"""
""" problem.""" )
_UpperCAmelCase = None
if job_name and job_links:
_UpperCAmelCase = job_links.get(_A , _A )
# A list with elements of the form (line of error, error, failed test)
_UpperCAmelCase = [x + [y] + [job_link] for x, y in zip(_A , _A )]
return result
def _UpperCamelCase ( _A , _A=None ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = []
_UpperCAmelCase = [os.path.join(_A , _A ) for p in os.listdir(_A ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(_A , job_links=_A ) )
return errors
def _UpperCamelCase ( _A , _A=None ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = Counter()
counter.update([x[1] for x in logs] )
_UpperCAmelCase = counter.most_common()
_UpperCAmelCase = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_UpperCAmelCase = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
_UpperCAmelCase = dict(sorted(r.items() , key=lambda _A : item[1]["count"] , reverse=_A ) )
return r
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
_UpperCAmelCase = test.split("""/""" )[2]
else:
_UpperCAmelCase = None
return test
def _UpperCamelCase ( _A , _A=None ) -> Any:
"""simple docstring"""
_UpperCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs]
_UpperCAmelCase = [x for x in logs if x[2] is not None]
_UpperCAmelCase = {x[2] for x in logs}
_UpperCAmelCase = {}
for test in tests:
_UpperCAmelCase = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_UpperCAmelCase = counter.most_common()
_UpperCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_UpperCAmelCase = sum(error_counts.values() )
if n_errors > 0:
_UpperCAmelCase = {"""count""": n_errors, """errors""": error_counts}
_UpperCAmelCase = dict(sorted(r.items() , key=lambda _A : item[1]["count"] , reverse=_A ) )
return r
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = """| no. | error | status |"""
_UpperCAmelCase = """|-:|:-|:-|"""
_UpperCAmelCase = [header, sep]
for error in reduced_by_error:
_UpperCAmelCase = reduced_by_error[error]["""count"""]
_UpperCAmelCase = F"""| {count} | {error[:1_0_0]} | |"""
lines.append(_A )
return "\n".join(_A )
def _UpperCamelCase ( _A ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = """| model | no. of errors | major error | count |"""
_UpperCAmelCase = """|-:|-:|-:|-:|"""
_UpperCAmelCase = [header, sep]
for model in reduced_by_model:
_UpperCAmelCase = reduced_by_model[model]["""count"""]
_UpperCAmelCase ,_UpperCAmelCase = list(reduced_by_model[model]["""errors"""].items() )[0]
_UpperCAmelCase = F"""| {model} | {count} | {error[:6_0]} | {_count} |"""
lines.append(_A )
return "\n".join(_A )
if __name__ == "__main__":
a : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''')
parser.add_argument(
'''--output_dir''',
type=str,
required=True,
help='''Where to store the downloaded artifacts and other result files.''',
)
parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''')
a : Dict = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
a : Tuple = get_job_links(args.workflow_run_id, token=args.token)
a : Tuple = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
a : List[Any] = k.find(''' / ''')
a : Tuple = k[index + len(''' / ''') :]
a : int = v
with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
a : Tuple = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
a : Optional[int] = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
a : Union[str, Any] = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
a : Optional[int] = counter.most_common(3_0)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
a : int = reduce_by_error(errors)
a : str = reduce_by_model(errors)
a : int = make_github_table(reduced_by_error)
a : Optional[int] = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa) | 19 | 1 |
"""simple docstring"""
import gc
import tempfile
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionPipeline
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
a : Union[str, Any] = False
class a_ ( unittest.TestCase ):
pass
@nightly
@require_torch_gpu
class a_ ( unittest.TestCase ):
def _snake_case ( self : List[str] ) ->Any:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self : Union[str, Any] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa )
pipe.to(__UpperCamelCase )
pipe.set_progress_bar_config(disable=__UpperCamelCase )
_UpperCAmelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = pipe.dual_guided(
prompt="""first prompt""" , image=__UpperCamelCase , text_to_image_strength=0.7_5 , generator=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__UpperCamelCase )
_UpperCAmelCase = VersatileDiffusionPipeline.from_pretrained(__UpperCamelCase , torch_dtype=torch.floataa )
pipe.to(__UpperCamelCase )
pipe.set_progress_bar_config(disable=__UpperCamelCase )
_UpperCAmelCase = generator.manual_seed(0 )
_UpperCAmelCase = pipe.dual_guided(
prompt="""first prompt""" , image=__UpperCamelCase , text_to_image_strength=0.7_5 , generator=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images
assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass"
def _snake_case ( self : Union[str, Any] ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa )
pipe.to(__UpperCamelCase )
pipe.set_progress_bar_config(disable=__UpperCamelCase )
_UpperCAmelCase = """cyberpunk 2077"""
_UpperCAmelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = pipe.dual_guided(
prompt=__UpperCamelCase , image=__UpperCamelCase , text_to_image_strength=0.7_5 , generator=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images
_UpperCAmelCase = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_UpperCAmelCase = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
_UpperCAmelCase = """A painting of a squirrel eating a burger """
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = pipe.text_to_image(
prompt=__UpperCamelCase , generator=__UpperCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images
_UpperCAmelCase = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_UpperCAmelCase = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
_UpperCAmelCase = pipe.image_variation(__UpperCamelCase , generator=__UpperCamelCase , output_type="""numpy""" ).images
_UpperCAmelCase = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_UpperCAmelCase = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 | 19 |
"""simple docstring"""
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class a_ ( _UpperCAmelCase ):
a : Any = ['image_processor', 'tokenizer']
a : Optional[int] = 'AutoImageProcessor'
a : Any = 'AutoTokenizer'
def __init__( self : List[str] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=None , **__UpperCamelCase : List[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCamelCase , )
_UpperCAmelCase = kwargs.pop("""feature_extractor""" )
_UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = self.image_processor
_UpperCAmelCase = False
def __call__( self : Union[str, Any] , *__UpperCamelCase : str , **__UpperCamelCase : Optional[Any] ) ->List[str]:
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = kwargs.pop("""images""" , __UpperCamelCase )
_UpperCAmelCase = kwargs.pop("""text""" , __UpperCamelCase )
if len(__UpperCamelCase ) > 0:
_UpperCAmelCase = args[0]
_UpperCAmelCase = args[1:]
if images is None and text is None:
raise ValueError("""You need to specify either an `images` or `text` input to process.""" )
if images is not None:
_UpperCAmelCase = self.image_processor(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase )
if text is not None:
_UpperCAmelCase = self.tokenizer(__UpperCamelCase , **__UpperCamelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
_UpperCAmelCase = encodings["""input_ids"""]
return inputs
def _snake_case ( self : Union[str, Any] , *__UpperCamelCase : int , **__UpperCamelCase : Tuple ) ->Tuple:
'''simple docstring'''
return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : Tuple , *__UpperCamelCase : int , **__UpperCamelCase : Union[str, Any] ) ->int:
'''simple docstring'''
return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase )
@contextmanager
def _snake_case ( self : Tuple ) ->Union[str, Any]:
'''simple docstring'''
warnings.warn(
"""`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """
"""labels by using the argument `text` of the regular `__call__` method (either in the same call as """
"""your images inputs, or in a separate call.""" )
_UpperCAmelCase = True
_UpperCAmelCase = self.tokenizer
yield
_UpperCAmelCase = self.image_processor
_UpperCAmelCase = False
def _snake_case ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : Union[str, Any]=None ) ->List[str]:
'''simple docstring'''
if added_vocab is None:
_UpperCAmelCase = self.tokenizer.get_added_vocab()
_UpperCAmelCase = {}
while tokens:
_UpperCAmelCase = re.search(r"""<s_(.*?)>""" , __UpperCamelCase , re.IGNORECASE )
if start_token is None:
break
_UpperCAmelCase = start_token.group(1 )
_UpperCAmelCase = re.search(rf"""</s_{key}>""" , __UpperCamelCase , re.IGNORECASE )
_UpperCAmelCase = start_token.group()
if end_token is None:
_UpperCAmelCase = tokens.replace(__UpperCamelCase , """""" )
else:
_UpperCAmelCase = end_token.group()
_UpperCAmelCase = re.escape(__UpperCamelCase )
_UpperCAmelCase = re.escape(__UpperCamelCase )
_UpperCAmelCase = re.search(f"""{start_token_escaped}(.*?){end_token_escaped}""" , __UpperCamelCase , re.IGNORECASE )
if content is not None:
_UpperCAmelCase = content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
_UpperCAmelCase = self.tokenajson(__UpperCamelCase , is_inner_value=__UpperCamelCase , added_vocab=__UpperCamelCase )
if value:
if len(__UpperCamelCase ) == 1:
_UpperCAmelCase = value[0]
_UpperCAmelCase = value
else: # leaf nodes
_UpperCAmelCase = []
for leaf in content.split(r"""<sep/>""" ):
_UpperCAmelCase = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
_UpperCAmelCase = leaf[1:-2] # for categorical special tokens
output[key].append(__UpperCamelCase )
if len(output[key] ) == 1:
_UpperCAmelCase = output[key][0]
_UpperCAmelCase = tokens[tokens.find(__UpperCamelCase ) + len(__UpperCamelCase ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:] , is_inner_value=__UpperCamelCase , added_vocab=__UpperCamelCase )
if len(__UpperCamelCase ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def _snake_case ( self : Tuple ) ->Optional[int]:
'''simple docstring'''
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __UpperCamelCase , )
return self.image_processor_class
@property
def _snake_case ( self : List[str] ) ->Dict:
'''simple docstring'''
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __UpperCamelCase , )
return self.image_processor | 19 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_albert import AlbertTokenizer
else:
a : Union[str, Any] = None
a : Optional[Any] = logging.get_logger(__name__)
a : List[Any] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
a : Optional[Any] = {
'''vocab_file''': {
'''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''',
'''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''',
'''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''',
'''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''',
'''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''',
'''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''',
'''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''',
'''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''',
},
'''tokenizer_file''': {
'''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''',
'''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''',
'''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''',
'''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''',
'''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''',
'''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''',
'''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''',
'''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''',
},
}
a : Dict = {
'''albert-base-v1''': 5_1_2,
'''albert-large-v1''': 5_1_2,
'''albert-xlarge-v1''': 5_1_2,
'''albert-xxlarge-v1''': 5_1_2,
'''albert-base-v2''': 5_1_2,
'''albert-large-v2''': 5_1_2,
'''albert-xlarge-v2''': 5_1_2,
'''albert-xxlarge-v2''': 5_1_2,
}
a : Any = '''▁'''
class a_ ( _UpperCAmelCase ):
a : List[str] = VOCAB_FILES_NAMES
a : Tuple = PRETRAINED_VOCAB_FILES_MAP
a : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a : Any = AlbertTokenizer
def __init__( self : int , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : int=None , __UpperCamelCase : Any=True , __UpperCamelCase : int=True , __UpperCamelCase : Dict=False , __UpperCamelCase : Union[str, Any]="[CLS]" , __UpperCamelCase : List[Any]="[SEP]" , __UpperCamelCase : Dict="<unk>" , __UpperCamelCase : Dict="[SEP]" , __UpperCamelCase : Optional[int]="<pad>" , __UpperCamelCase : Union[str, Any]="[CLS]" , __UpperCamelCase : Optional[int]="[MASK]" , **__UpperCamelCase : Optional[Any] , ) ->int:
'''simple docstring'''
_UpperCAmelCase = (
AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase , normalized=__UpperCamelCase )
if isinstance(__UpperCamelCase , __UpperCamelCase )
else mask_token
)
super().__init__(
__UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , remove_space=__UpperCamelCase , keep_accents=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , **__UpperCamelCase , )
_UpperCAmelCase = do_lower_case
_UpperCAmelCase = remove_space
_UpperCAmelCase = keep_accents
_UpperCAmelCase = vocab_file
_UpperCAmelCase = False if not self.vocab_file else True
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) ->List[int]:
'''simple docstring'''
_UpperCAmelCase = [self.sep_token_id]
_UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _snake_case ( self : str , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) ->List[int]:
'''simple docstring'''
_UpperCAmelCase = [self.sep_token_id]
_UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _snake_case ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) ->Tuple[str]:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(__UpperCamelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_UpperCAmelCase = os.path.join(
__UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ):
copyfile(self.vocab_file , __UpperCamelCase )
return (out_vocab_file,) | 19 |
"""simple docstring"""
import colorsys
from PIL import Image # type: ignore
def _UpperCamelCase ( _A , _A , _A ) -> float:
"""simple docstring"""
_UpperCAmelCase = x
_UpperCAmelCase = y
for step in range(_A ): # noqa: B007
_UpperCAmelCase = a * a - b * b + x
_UpperCAmelCase = 2 * a * b + y
_UpperCAmelCase = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def _UpperCamelCase ( _A ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return (2_5_5, 2_5_5, 2_5_5)
def _UpperCamelCase ( _A ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(_A , 1 , 1 ) )
def _UpperCamelCase ( _A = 8_0_0 , _A = 6_0_0 , _A = -0.6 , _A = 0 , _A = 3.2 , _A = 5_0 , _A = True , ) -> Image.Image:
"""simple docstring"""
_UpperCAmelCase = Image.new("""RGB""" , (image_width, image_height) )
_UpperCAmelCase = img.load()
# loop through the image-coordinates
for image_x in range(_A ):
for image_y in range(_A ):
# determine the figure-coordinates based on the image-coordinates
_UpperCAmelCase = figure_width / image_width * image_height
_UpperCAmelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width
_UpperCAmelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height
_UpperCAmelCase = get_distance(_A , _A , _A )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
_UpperCAmelCase = get_color_coded_rgb(_A )
else:
_UpperCAmelCase = get_black_and_white_rgb(_A )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
a : List[str] = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show() | 19 | 1 |
"""simple docstring"""
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def _UpperCamelCase ( _A ) -> List[Any]:
"""simple docstring"""
return EnvironmentCommand()
def _UpperCamelCase ( _A ) -> Any:
"""simple docstring"""
return EnvironmentCommand(args.accelerate_config_file )
class a_ ( _UpperCAmelCase ):
@staticmethod
def _snake_case ( __UpperCamelCase : ArgumentParser ) ->int:
'''simple docstring'''
_UpperCAmelCase = parser.add_parser("""env""" )
download_parser.set_defaults(func=__UpperCamelCase )
download_parser.add_argument(
"""--accelerate-config_file""" , default=__UpperCamelCase , help="""The accelerate config file to use for the default values in the launching script.""" , )
download_parser.set_defaults(func=__UpperCamelCase )
def __init__( self : Any , __UpperCamelCase : List[Any] , *__UpperCamelCase : Any ) ->None:
'''simple docstring'''
_UpperCAmelCase = accelerate_config_file
def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = """not installed"""
if is_safetensors_available():
import safetensors
_UpperCAmelCase = safetensors.__version__
elif importlib.util.find_spec("""safetensors""" ) is not None:
import safetensors
_UpperCAmelCase = f"""{safetensors.__version__} but is ignored because of PyTorch version too old."""
_UpperCAmelCase = """not installed"""
_UpperCAmelCase = _UpperCAmelCase = """not found"""
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
_UpperCAmelCase = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(__UpperCamelCase ):
_UpperCAmelCase = load_config_from_file(self._accelerate_config_file ).to_dict()
_UpperCAmelCase = (
"""\n""".join([f"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] )
if isinstance(__UpperCamelCase , __UpperCamelCase )
else f"""\t{accelerate_config}"""
)
_UpperCAmelCase = """not installed"""
_UpperCAmelCase = """NA"""
if is_torch_available():
import torch
_UpperCAmelCase = torch.__version__
_UpperCAmelCase = torch.cuda.is_available()
_UpperCAmelCase = """not installed"""
_UpperCAmelCase = """NA"""
if is_tf_available():
import tensorflow as tf
_UpperCAmelCase = tf.__version__
try:
# deprecated in v2.1
_UpperCAmelCase = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
_UpperCAmelCase = bool(tf.config.list_physical_devices("""GPU""" ) )
_UpperCAmelCase = """not installed"""
_UpperCAmelCase = """not installed"""
_UpperCAmelCase = """not installed"""
_UpperCAmelCase = """NA"""
if is_flax_available():
import flax
import jax
import jaxlib
_UpperCAmelCase = flax.__version__
_UpperCAmelCase = jax.__version__
_UpperCAmelCase = jaxlib.__version__
_UpperCAmelCase = jax.lib.xla_bridge.get_backend().platform
_UpperCAmelCase = {
"""`transformers` version""": version,
"""Platform""": platform.platform(),
"""Python version""": platform.python_version(),
"""Huggingface_hub version""": huggingface_hub.__version__,
"""Safetensors version""": f"""{safetensors_version}""",
"""Accelerate version""": f"""{accelerate_version}""",
"""Accelerate config""": f"""{accelerate_config_str}""",
"""PyTorch version (GPU?)""": f"""{pt_version} ({pt_cuda_available})""",
"""Tensorflow version (GPU?)""": f"""{tf_version} ({tf_cuda_available})""",
"""Flax version (CPU?/GPU?/TPU?)""": f"""{flax_version} ({jax_backend})""",
"""Jax version""": f"""{jax_version}""",
"""JaxLib version""": f"""{jaxlib_version}""",
"""Using GPU in script?""": """<fill in>""",
"""Using distributed or parallel set-up in script?""": """<fill in>""",
}
print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" )
print(self.format_dict(__UpperCamelCase ) )
return info
@staticmethod
def _snake_case ( __UpperCamelCase : Union[str, Any] ) ->Dict:
'''simple docstring'''
return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n" | 19 |
"""simple docstring"""
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class a_ ( nn.Module ):
def __init__( self : List[str] , __UpperCamelCase : int = 16 , __UpperCamelCase : int = 88 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 1 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 32 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : str = "geglu" , __UpperCamelCase : Optional[int] = None , ) ->Dict:
'''simple docstring'''
super().__init__()
_UpperCAmelCase = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=__UpperCamelCase , attention_head_dim=__UpperCamelCase , in_channels=__UpperCamelCase , num_layers=__UpperCamelCase , dropout=__UpperCamelCase , norm_num_groups=__UpperCamelCase , cross_attention_dim=__UpperCamelCase , attention_bias=__UpperCamelCase , sample_size=__UpperCamelCase , num_vector_embeds=__UpperCamelCase , activation_fn=__UpperCamelCase , num_embeds_ada_norm=__UpperCamelCase , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
_UpperCAmelCase = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
_UpperCAmelCase = [77, 2_57]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
_UpperCAmelCase = [1, 0]
def _snake_case ( self : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : bool = True , ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = hidden_states
_UpperCAmelCase = []
_UpperCAmelCase = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
_UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
_UpperCAmelCase = self.transformer_index_for_condition[i]
_UpperCAmelCase = self.transformers[transformer_index](
__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , timestep=__UpperCamelCase , cross_attention_kwargs=__UpperCamelCase , return_dict=__UpperCamelCase , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
_UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
_UpperCAmelCase = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=__UpperCamelCase ) | 19 | 1 |
"""simple docstring"""
import argparse
import os
import re
import packaging.version
a : str = '''examples/'''
a : List[str] = {
'''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''),
'''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''),
'''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''),
'''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''),
}
a : Tuple = {
'''init''': '''src/diffusers/__init__.py''',
'''setup''': '''setup.py''',
}
a : List[str] = '''README.md'''
def _UpperCamelCase ( _A , _A , _A ) -> Dict:
"""simple docstring"""
with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_UpperCAmelCase = f.read()
_UpperCAmelCase ,_UpperCAmelCase = REPLACE_PATTERNS[pattern]
_UpperCAmelCase = replace.replace("""VERSION""" , _A )
_UpperCAmelCase = re_pattern.sub(_A , _A )
with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(_A )
def _UpperCamelCase ( _A ) -> Union[str, Any]:
"""simple docstring"""
for folder, directories, fnames in os.walk(_A ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(_A , _A ) , _A , pattern="""examples""" )
def _UpperCamelCase ( _A , _A=False ) -> int:
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_A , _A , _A )
if not patch:
update_version_in_examples(_A )
def _UpperCamelCase ( ) -> Any:
"""simple docstring"""
_UpperCAmelCase = """🤗 Transformers currently provides the following architectures"""
_UpperCAmelCase = """1. Want to contribute a new model?"""
with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_UpperCAmelCase = f.readlines()
# Find the start of the list.
_UpperCAmelCase = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
_UpperCAmelCase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
_UpperCAmelCase = lines[index].replace(
"""https://huggingface.co/docs/diffusers/main/model_doc""" , """https://huggingface.co/docs/diffusers/model_doc""" , )
index += 1
with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(_A )
def _UpperCamelCase ( ) -> Optional[int]:
"""simple docstring"""
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
_UpperCAmelCase = f.read()
_UpperCAmelCase = REPLACE_PATTERNS["""init"""][0].search(_A ).groups()[0]
return packaging.version.parse(_A )
def _UpperCamelCase ( _A=False ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
_UpperCAmelCase = default_version.base_version
elif patch:
_UpperCAmelCase = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
_UpperCAmelCase = F"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
_UpperCAmelCase = input(F"""Which version are you releasing? [{default_version}]""" )
if len(_A ) == 0:
_UpperCAmelCase = default_version
print(F"""Updating version to {version}.""" )
global_version_update(_A , patch=_A )
def _UpperCamelCase ( ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = get_version()
_UpperCAmelCase = F"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
_UpperCAmelCase = current_version.base_version
# Check with the user we got that right.
_UpperCAmelCase = input(F"""Which version are we developing now? [{dev_version}]""" )
if len(_A ) == 0:
_UpperCAmelCase = dev_version
print(F"""Updating version to {version}.""" )
global_version_update(_A )
# print("Cleaning main README, don't forget to run `make fix-copies`.")
# clean_main_ref_in_model_list()
if __name__ == "__main__":
a : Dict = argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
a : Tuple = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work() | 19 |
"""simple docstring"""
import argparse
import torch
from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCamelCase ( _A , _A , _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = LxmertConfig.from_json_file(_A )
print(F"""Building PyTorch model from configuration: {config}""" )
_UpperCAmelCase = LxmertForPreTraining(_A )
# Load weights from tf checkpoint
load_tf_weights_in_lxmert(_A , _A , _A )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , _A )
if __name__ == "__main__":
a : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
a : Union[str, Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path) | 19 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class a_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
a : Dict = StableDiffusionInpaintPipeline
a : Any = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
a : List[Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
a : Optional[Any] = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
a : List[str] = frozenset([] )
def _snake_case ( self : Optional[Any] ) ->Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
_UpperCAmelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__UpperCamelCase , )
_UpperCAmelCase = PNDMScheduler(skip_prk_steps=__UpperCamelCase )
torch.manual_seed(0 )
_UpperCAmelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
_UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , )
_UpperCAmelCase = CLIPTextModel(__UpperCamelCase )
_UpperCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
_UpperCAmelCase = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def _snake_case ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int]=0 ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCamelCase ) ).to(__UpperCamelCase )
_UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_UpperCAmelCase = Image.fromarray(np.uinta(__UpperCamelCase ) ).convert("""RGB""" ).resize((64, 64) )
_UpperCAmelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) )
if str(__UpperCamelCase ).startswith("""mps""" ):
_UpperCAmelCase = torch.manual_seed(__UpperCamelCase )
else:
_UpperCAmelCase = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase )
_UpperCAmelCase = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": init_image,
"""mask_image""": mask_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def _snake_case ( self : List[str] ) ->int:
'''simple docstring'''
_UpperCAmelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator
_UpperCAmelCase = self.get_dummy_components()
_UpperCAmelCase = StableDiffusionInpaintPipeline(**__UpperCamelCase )
_UpperCAmelCase = sd_pipe.to(__UpperCamelCase )
sd_pipe.set_progress_bar_config(disable=__UpperCamelCase )
_UpperCAmelCase = self.get_dummy_inputs(__UpperCamelCase )
_UpperCAmelCase = sd_pipe(**__UpperCamelCase ).images
_UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_UpperCAmelCase = np.array([0.4_7_2_7, 0.5_7_3_5, 0.3_9_4_1, 0.5_4_4_6, 0.5_9_2_6, 0.4_3_9_4, 0.5_0_6_2, 0.4_6_5_4, 0.4_4_7_6] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _snake_case ( self : str ) ->List[Any]:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class a_ ( unittest.TestCase ):
def _snake_case ( self : Tuple ) ->Optional[Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self : Tuple ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
_UpperCAmelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
_UpperCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench.npy""" )
_UpperCAmelCase = """stabilityai/stable-diffusion-2-inpainting"""
_UpperCAmelCase = StableDiffusionInpaintPipeline.from_pretrained(__UpperCamelCase , safety_checker=__UpperCamelCase )
pipe.to(__UpperCamelCase )
pipe.set_progress_bar_config(disable=__UpperCamelCase )
pipe.enable_attention_slicing()
_UpperCAmelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = pipe(
prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , generator=__UpperCamelCase , output_type="""np""" , )
_UpperCAmelCase = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 9e-3
def _snake_case ( self : List[Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
_UpperCAmelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
_UpperCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint"""
"""/yellow_cat_sitting_on_a_park_bench_fp16.npy""" )
_UpperCAmelCase = """stabilityai/stable-diffusion-2-inpainting"""
_UpperCAmelCase = StableDiffusionInpaintPipeline.from_pretrained(
__UpperCamelCase , torch_dtype=torch.floataa , safety_checker=__UpperCamelCase , )
pipe.to(__UpperCamelCase )
pipe.set_progress_bar_config(disable=__UpperCamelCase )
pipe.enable_attention_slicing()
_UpperCAmelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = pipe(
prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , generator=__UpperCamelCase , output_type="""np""" , )
_UpperCAmelCase = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert np.abs(expected_image - image ).max() < 5e-1
def _snake_case ( self : str ) ->Any:
'''simple docstring'''
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
_UpperCAmelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
_UpperCAmelCase = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
_UpperCAmelCase = """stabilityai/stable-diffusion-2-inpainting"""
_UpperCAmelCase = PNDMScheduler.from_pretrained(__UpperCamelCase , subfolder="""scheduler""" )
_UpperCAmelCase = StableDiffusionInpaintPipeline.from_pretrained(
__UpperCamelCase , safety_checker=__UpperCamelCase , scheduler=__UpperCamelCase , torch_dtype=torch.floataa , )
pipe.to(__UpperCamelCase )
pipe.set_progress_bar_config(disable=__UpperCamelCase )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
_UpperCAmelCase = """Face of a yellow cat, high resolution, sitting on a park bench"""
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = pipe(
prompt=__UpperCamelCase , image=__UpperCamelCase , mask_image=__UpperCamelCase , generator=__UpperCamelCase , num_inference_steps=2 , output_type="""np""" , )
_UpperCAmelCase = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.6_5 * 10**9 | 19 |
"""simple docstring"""
import argparse
import os
import re
import packaging.version
a : str = '''examples/'''
a : List[str] = {
'''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''),
'''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''),
'''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''),
'''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''),
}
a : Tuple = {
'''init''': '''src/diffusers/__init__.py''',
'''setup''': '''setup.py''',
}
a : List[str] = '''README.md'''
def _UpperCamelCase ( _A , _A , _A ) -> Dict:
"""simple docstring"""
with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_UpperCAmelCase = f.read()
_UpperCAmelCase ,_UpperCAmelCase = REPLACE_PATTERNS[pattern]
_UpperCAmelCase = replace.replace("""VERSION""" , _A )
_UpperCAmelCase = re_pattern.sub(_A , _A )
with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(_A )
def _UpperCamelCase ( _A ) -> Union[str, Any]:
"""simple docstring"""
for folder, directories, fnames in os.walk(_A ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(_A , _A ) , _A , pattern="""examples""" )
def _UpperCamelCase ( _A , _A=False ) -> int:
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_A , _A , _A )
if not patch:
update_version_in_examples(_A )
def _UpperCamelCase ( ) -> Any:
"""simple docstring"""
_UpperCAmelCase = """🤗 Transformers currently provides the following architectures"""
_UpperCAmelCase = """1. Want to contribute a new model?"""
with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_UpperCAmelCase = f.readlines()
# Find the start of the list.
_UpperCAmelCase = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
_UpperCAmelCase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
_UpperCAmelCase = lines[index].replace(
"""https://huggingface.co/docs/diffusers/main/model_doc""" , """https://huggingface.co/docs/diffusers/model_doc""" , )
index += 1
with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(_A )
def _UpperCamelCase ( ) -> Optional[int]:
"""simple docstring"""
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
_UpperCAmelCase = f.read()
_UpperCAmelCase = REPLACE_PATTERNS["""init"""][0].search(_A ).groups()[0]
return packaging.version.parse(_A )
def _UpperCamelCase ( _A=False ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
_UpperCAmelCase = default_version.base_version
elif patch:
_UpperCAmelCase = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
_UpperCAmelCase = F"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
_UpperCAmelCase = input(F"""Which version are you releasing? [{default_version}]""" )
if len(_A ) == 0:
_UpperCAmelCase = default_version
print(F"""Updating version to {version}.""" )
global_version_update(_A , patch=_A )
def _UpperCamelCase ( ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = get_version()
_UpperCAmelCase = F"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
_UpperCAmelCase = current_version.base_version
# Check with the user we got that right.
_UpperCAmelCase = input(F"""Which version are we developing now? [{dev_version}]""" )
if len(_A ) == 0:
_UpperCAmelCase = dev_version
print(F"""Updating version to {version}.""" )
global_version_update(_A )
# print("Cleaning main README, don't forget to run `make fix-copies`.")
# clean_main_ref_in_model_list()
if __name__ == "__main__":
a : Dict = argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
a : Tuple = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work() | 19 | 1 |
"""simple docstring"""
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
a : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name
def _UpperCamelCase ( _A ) -> int:
"""simple docstring"""
warnings.warn(
"""The preprocess method is deprecated and will be removed in a future version. Please"""
""" use VaeImageProcessor.preprocess instead""" , _A , )
if isinstance(_A , torch.Tensor ):
return image
elif isinstance(_A , PIL.Image.Image ):
_UpperCAmelCase = [image]
if isinstance(image[0] , PIL.Image.Image ):
_UpperCAmelCase ,_UpperCAmelCase = image[0].size
_UpperCAmelCase ,_UpperCAmelCase = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
_UpperCAmelCase = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image]
_UpperCAmelCase = np.concatenate(_A , axis=0 )
_UpperCAmelCase = np.array(_A ).astype(np.floataa ) / 255.0
_UpperCAmelCase = image.transpose(0 , 3 , 1 , 2 )
_UpperCAmelCase = 2.0 * image - 1.0
_UpperCAmelCase = torch.from_numpy(_A )
elif isinstance(image[0] , torch.Tensor ):
_UpperCAmelCase = torch.cat(_A , dim=0 )
return image
def _UpperCamelCase ( _A ) -> Tuple:
"""simple docstring"""
if isinstance(_A , torch.Tensor ):
return mask
elif isinstance(_A , PIL.Image.Image ):
_UpperCAmelCase = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
_UpperCAmelCase ,_UpperCAmelCase = mask[0].size
_UpperCAmelCase ,_UpperCAmelCase = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32
_UpperCAmelCase = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask]
_UpperCAmelCase = np.concatenate(_A , axis=0 )
_UpperCAmelCase = mask.astype(np.floataa ) / 255.0
_UpperCAmelCase = 0
_UpperCAmelCase = 1
_UpperCAmelCase = torch.from_numpy(_A )
elif isinstance(mask[0] , torch.Tensor ):
_UpperCAmelCase = torch.cat(_A , dim=0 )
return mask
class a_ ( _UpperCAmelCase ):
a : UNetaDModel
a : RePaintScheduler
def __init__( self : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str ) ->Tuple:
'''simple docstring'''
super().__init__()
self.register_modules(unet=__UpperCamelCase , scheduler=__UpperCamelCase )
@torch.no_grad()
def __call__( self : Any , __UpperCamelCase : Union[torch.Tensor, PIL.Image.Image] , __UpperCamelCase : Union[torch.Tensor, PIL.Image.Image] , __UpperCamelCase : int = 2_50 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 10 , __UpperCamelCase : int = 10 , __UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , ) ->Union[ImagePipelineOutput, Tuple]:
'''simple docstring'''
_UpperCAmelCase = image
_UpperCAmelCase = _preprocess_image(__UpperCamelCase )
_UpperCAmelCase = original_image.to(device=self.device , dtype=self.unet.dtype )
_UpperCAmelCase = _preprocess_mask(__UpperCamelCase )
_UpperCAmelCase = mask_image.to(device=self.device , dtype=self.unet.dtype )
_UpperCAmelCase = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) != batch_size:
raise ValueError(
f"""You have passed a list of generators of length {len(__UpperCamelCase )}, but requested an effective batch"""
f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" )
_UpperCAmelCase = original_image.shape
_UpperCAmelCase = randn_tensor(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , self.device )
_UpperCAmelCase = eta
_UpperCAmelCase = self.scheduler.timesteps[0] + 1
_UpperCAmelCase = generator[0] if isinstance(__UpperCamelCase , __UpperCamelCase ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
_UpperCAmelCase = self.unet(__UpperCamelCase , __UpperCamelCase ).sample
# compute previous image: x_t -> x_t-1
_UpperCAmelCase = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
_UpperCAmelCase = self.scheduler.undo_step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = t
_UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
_UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_UpperCAmelCase = self.numpy_to_pil(__UpperCamelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__UpperCamelCase ) | 19 |
"""simple docstring"""
from __future__ import annotations
def _UpperCamelCase ( _A ) -> None:
"""simple docstring"""
create_state_space_tree(_A , [] , 0 , [0 for i in range(len(_A ) )] )
def _UpperCamelCase ( _A , _A , _A , _A , ) -> None:
"""simple docstring"""
if index == len(_A ):
print(_A )
return
for i in range(len(_A ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_UpperCAmelCase = True
create_state_space_tree(_A , _A , index + 1 , _A )
current_sequence.pop()
_UpperCAmelCase = False
a : list[int | str] = [3, 1, 2, 4]
generate_all_permutations(sequence)
a : list[int | str] = ["A", "B", "C"]
generate_all_permutations(sequence_a) | 19 | 1 |
"""simple docstring"""
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''',
datefmt='''%Y-%m-%d %H:%M:%S''',
level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(),
stream=sys.stdout,
)
a : List[str] = logging.getLogger(__name__)
a : int = {'''facebook/bart-base''': BartForConditionalGeneration}
a : Dict = {'''facebook/bart-base''': BartTokenizer}
def _UpperCamelCase ( ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" )
parser.add_argument(
"""--validation_file""" , type=_A , default=_A , help="""A csv or a json file containing the validation data.""" )
parser.add_argument(
"""--max_length""" , type=_A , default=5 , help="""The maximum total input sequence length after tokenization.""" , )
parser.add_argument(
"""--num_beams""" , type=_A , default=_A , help=(
"""Number of beams to use for evaluation. This argument will be """
"""passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."""
) , )
parser.add_argument(
"""--model_name_or_path""" , type=_A , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_A , )
parser.add_argument(
"""--config_name""" , type=_A , default=_A , help="""Pretrained config name or path if not the same as model_name""" , )
parser.add_argument(
"""--device""" , type=_A , default="""cpu""" , help="""Device where the model will be run""" , )
parser.add_argument("""--output_file_path""" , type=_A , default=_A , help="""Where to store the final ONNX file.""" )
_UpperCAmelCase = parser.parse_args()
return args
def _UpperCamelCase ( _A , _A="cpu" ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = model_dict[model_name].from_pretrained(_A ).to(_A )
_UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_A )
if model_name in ["facebook/bart-base"]:
_UpperCAmelCase = 0
_UpperCAmelCase = None
_UpperCAmelCase = 0
return huggingface_model, tokenizer
def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> Optional[int]:
"""simple docstring"""
model.eval()
_UpperCAmelCase = None
_UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_A ) )
with torch.no_grad():
_UpperCAmelCase = """My friends are cool but they eat too many carbs."""
_UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="""pt""" ).to(model.device )
_UpperCAmelCase = model.generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=_A , max_length=_A , early_stopping=_A , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
_A , (
inputs["""input_ids"""],
inputs["""attention_mask"""],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , _A , opset_version=1_4 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={
"""input_ids""": {0: """batch""", 1: """seq"""},
"""output_ids""": {0: """batch""", 1: """seq_out"""},
} , example_outputs=_A , )
logger.info("""Model exported to {}""".format(_A ) )
_UpperCAmelCase = remove_dup_initializers(os.path.abspath(_A ) )
logger.info("""Deduplicated and optimized model written to {}""".format(_A ) )
_UpperCAmelCase = onnxruntime.InferenceSession(_A )
_UpperCAmelCase = ort_sess.run(
_A , {
"""input_ids""": inputs["""input_ids"""].cpu().numpy(),
"""attention_mask""": inputs["""attention_mask"""].cpu().numpy(),
"""num_beams""": np.array(_A ),
"""max_length""": np.array(_A ),
"""decoder_start_token_id""": np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 )
logger.info("""Model outputs from torch and ONNX Runtime are similar.""" )
logger.info("""Success.""" )
def _UpperCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = parse_args()
_UpperCAmelCase = 5
_UpperCAmelCase = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
_UpperCAmelCase = torch.device(args.device )
_UpperCAmelCase ,_UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _A )
if model.config.decoder_start_token_id is None:
raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" )
model.to(_A )
if args.max_length:
_UpperCAmelCase = args.max_length
if args.num_beams:
_UpperCAmelCase = args.num_beams
if args.output_file_path:
_UpperCAmelCase = args.output_file_path
else:
_UpperCAmelCase = """BART.onnx"""
logger.info("""Exporting model to ONNX""" )
export_and_validate_model(_A , _A , _A , _A , _A )
if __name__ == "__main__":
main() | 19 |
"""simple docstring"""
import inspect
import unittest
from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class a_ :
def __init__( self : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : int=32 , __UpperCamelCase : Tuple=16 , __UpperCamelCase : Dict=3 , __UpperCamelCase : Dict=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=32 , __UpperCamelCase : Any=4 , __UpperCamelCase : Optional[int]=[0, 1, 2, 3] , __UpperCamelCase : str=4 , __UpperCamelCase : Optional[Any]=37 , __UpperCamelCase : str="gelu" , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Any=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : int=[1, 3_84, 24, 24] , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Any=None , ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = patch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = is_training
_UpperCAmelCase = use_labels
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = backbone_out_indices
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_labels
_UpperCAmelCase = backbone_featmap_shape
_UpperCAmelCase = scope
_UpperCAmelCase = is_hybrid
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
_UpperCAmelCase = (image_size // patch_size) ** 2
_UpperCAmelCase = num_patches + 1
def _snake_case ( self : str ) ->int:
'''simple docstring'''
_UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
_UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def _snake_case ( self : List[str] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [96, 1_92, 3_84, 7_68],
"""num_groups""": 2,
}
return DPTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , )
def _snake_case ( self : Any , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = DPTModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : List[Any] ) ->int:
'''simple docstring'''
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = DPTForDepthEstimation(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) )
def _snake_case ( self : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = DPTForSemanticSegmentation(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def _snake_case ( self : Tuple ) ->Any:
'''simple docstring'''
_UpperCAmelCase = self.prepare_config_and_inputs()
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = config_and_inputs
_UpperCAmelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class a_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
a : Dict = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
a : int = (
{
'depth-estimation': DPTForDepthEstimation,
'feature-extraction': DPTModel,
'image-segmentation': DPTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
a : str = False
a : List[str] = False
a : Dict = False
def _snake_case ( self : Any ) ->Any:
'''simple docstring'''
_UpperCAmelCase = DPTModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 )
def _snake_case ( self : Optional[int] ) ->Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""DPT does not use inputs_embeds""" )
def _snake_case ( self : Tuple ) ->Tuple:
'''simple docstring'''
pass
def _snake_case ( self : int ) ->Any:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) )
def _snake_case ( self : Optional[int] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase = [*signature.parameters.keys()]
_UpperCAmelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCamelCase )
def _snake_case ( self : Optional[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _snake_case ( self : str ) ->int:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*__UpperCamelCase )
def _snake_case ( self : Any ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase )
def _snake_case ( self : str ) ->Any:
'''simple docstring'''
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = True
if model_class in get_values(__UpperCamelCase ):
continue
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.train()
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
_UpperCAmelCase = model(**__UpperCamelCase ).loss
loss.backward()
def _snake_case ( self : List[str] ) ->Dict:
'''simple docstring'''
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = False
_UpperCAmelCase = True
if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.gradient_checkpointing_enable()
model.train()
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
_UpperCAmelCase = model(**__UpperCamelCase ).loss
loss.backward()
def _snake_case ( self : Tuple ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = _config_zero_init(__UpperCamelCase )
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(config=__UpperCamelCase )
# Skip the check for the backbone
_UpperCAmelCase = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
_UpperCAmelCase = [f"""{name}.{key}""" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def _snake_case ( self : Dict ) ->Tuple:
'''simple docstring'''
pass
@slow
def _snake_case ( self : Optional[int] ) ->List[Any]:
'''simple docstring'''
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
_UpperCAmelCase = DPTModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def _snake_case ( self : List[Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = """add"""
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = DPTForDepthEstimation(__UpperCamelCase )
def _UpperCamelCase ( ) -> int:
"""simple docstring"""
_UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
@slow
class a_ ( unittest.TestCase ):
def _snake_case ( self : Any ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" )
_UpperCAmelCase = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__UpperCamelCase )
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase )
# forward pass
with torch.no_grad():
_UpperCAmelCase = model(**__UpperCamelCase )
_UpperCAmelCase = outputs.predicted_depth
# verify the predicted depth
_UpperCAmelCase = torch.Size((1, 3_84, 3_84) )
self.assertEqual(predicted_depth.shape , __UpperCamelCase )
_UpperCAmelCase = torch.tensor(
[[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , __UpperCamelCase , atol=1e-4 ) ) | 19 | 1 |
"""simple docstring"""
import logging
import os
import sys
import warnings
from dataclasses import dataclass, field
from random import randint
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import DatasetDict, load_dataset
import transformers
from transformers import (
AutoConfig,
AutoFeatureExtractor,
AutoModelForAudioClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
a : List[str] = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''')
def _UpperCamelCase ( _A , _A , _A = 1_6_0_0_0 ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = int(round(sample_rate * max_length ) )
if len(_A ) <= sample_length:
return wav
_UpperCAmelCase = randint(0 , len(_A ) - sample_length - 1 )
return wav[random_offset : random_offset + sample_length]
@dataclass
class a_ :
a : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'Name of a dataset from the datasets package'} )
a : Optional[str] = field(
default=_UpperCAmelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} )
a : Optional[str] = field(
default=_UpperCAmelCase , metadata={'help': 'A file containing the training audio paths and labels.'} )
a : Optional[str] = field(
default=_UpperCAmelCase , metadata={'help': 'A file containing the validation audio paths and labels.'} )
a : str = field(
default='train' , metadata={
'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\''
} , )
a : str = field(
default='validation' , metadata={
'help': (
'The name of the training data set split to use (via the datasets library). Defaults to \'validation\''
)
} , )
a : str = field(
default='audio' , metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} , )
a : str = field(
default='label' , metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''} )
a : Optional[int] = field(
default=_UpperCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
a : Optional[int] = field(
default=_UpperCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
a : float = field(
default=20 , metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} , )
@dataclass
class a_ :
a : str = field(
default='facebook/wav2vec2-base' , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} , )
a : Optional[str] = field(
default=_UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
a : Optional[str] = field(
default=_UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'} )
a : str = field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
a : Optional[str] = field(
default=_UpperCAmelCase , metadata={'help': 'Name or path of preprocessor config.'} )
a : bool = field(
default=_UpperCAmelCase , metadata={'help': 'Whether to freeze the feature encoder layers of the model.'} )
a : bool = field(
default=_UpperCAmelCase , metadata={'help': 'Whether to generate an attention mask in the feature extractor.'} )
a : bool = field(
default=_UpperCAmelCase , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
a : Optional[bool] = field(
default=_UpperCAmelCase , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} )
a : bool = field(
default=_UpperCAmelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , )
def _snake_case ( self : Dict ) ->int:
'''simple docstring'''
if not self.freeze_feature_extractor and self.freeze_feature_encoder:
warnings.warn(
"""The argument `--freeze_feature_extractor` is deprecated and """
"""will be removed in a future version. Use `--freeze_feature_encoder`"""
"""instead. Setting `freeze_feature_encoder==True`.""" , __UpperCamelCase , )
if self.freeze_feature_extractor and not self.freeze_feature_encoder:
raise ValueError(
"""The argument `--freeze_feature_extractor` is deprecated and """
"""should not be used in combination with `--freeze_feature_encoder`."""
"""Only make use of `--freeze_feature_encoder`.""" )
def _UpperCamelCase ( ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_audio_classification""" , _A , _A )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_UpperCAmelCase = training_args.get_process_log_level()
logger.setLevel(_A )
transformers.utils.logging.set_verbosity(_A )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Detecting last checkpoint.
_UpperCAmelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_UpperCAmelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
"""Use --overwrite_output_dir to train from scratch.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Initialize our dataset and prepare it for the audio classification task.
_UpperCAmelCase = DatasetDict()
_UpperCAmelCase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , )
_UpperCAmelCase = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , )
if data_args.audio_column_name not in raw_datasets["train"].column_names:
raise ValueError(
F"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """
"""Make sure to set `--audio_column_name` to the correct audio column - one of """
F"""{", ".join(raw_datasets["train"].column_names )}.""" )
if data_args.label_column_name not in raw_datasets["train"].column_names:
raise ValueError(
F"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """
"""Make sure to set `--label_column_name` to the correct text column - one of """
F"""{", ".join(raw_datasets["train"].column_names )}.""" )
# Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over
# transformer outputs in the classifier, but it doesn't always lead to better accuracy
_UpperCAmelCase = AutoFeatureExtractor.from_pretrained(
model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# `datasets` takes care of automatically loading and resampling the audio,
# so we just need to set the correct target sampling rate.
_UpperCAmelCase = raw_datasets.cast_column(
data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) )
_UpperCAmelCase = feature_extractor.model_input_names[0]
def train_transforms(_A ):
_UpperCAmelCase = []
for audio in batch[data_args.audio_column_name]:
_UpperCAmelCase = random_subsample(
audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate )
subsampled_wavs.append(_A )
_UpperCAmelCase = feature_extractor(_A , sampling_rate=feature_extractor.sampling_rate )
_UpperCAmelCase = {model_input_name: inputs.get(_A )}
_UpperCAmelCase = list(batch[data_args.label_column_name] )
return output_batch
def val_transforms(_A ):
_UpperCAmelCase = [audio["""array"""] for audio in batch[data_args.audio_column_name]]
_UpperCAmelCase = feature_extractor(_A , sampling_rate=feature_extractor.sampling_rate )
_UpperCAmelCase = {model_input_name: inputs.get(_A )}
_UpperCAmelCase = list(batch[data_args.label_column_name] )
return output_batch
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
_UpperCAmelCase = raw_datasets["""train"""].features[data_args.label_column_name].names
_UpperCAmelCase ,_UpperCAmelCase = {}, {}
for i, label in enumerate(_A ):
_UpperCAmelCase = str(_A )
_UpperCAmelCase = label
# Load the accuracy metric from the datasets package
_UpperCAmelCase = evaluate.load("""accuracy""" )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with
# `predictions` and `label_ids` fields) and has to return a dictionary string to float.
def compute_metrics(_A ):
_UpperCAmelCase = np.argmax(eval_pred.predictions , axis=1 )
return metric.compute(predictions=_A , references=eval_pred.label_ids )
_UpperCAmelCase = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path , num_labels=len(_A ) , labelaid=_A , idalabel=_A , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
_UpperCAmelCase = AutoModelForAudioClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=_A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
# freeze the convolutional waveform encoder
if model_args.freeze_feature_encoder:
model.freeze_feature_encoder()
if training_args.do_train:
if data_args.max_train_samples is not None:
_UpperCAmelCase = (
raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
raw_datasets["train"].set_transform(_A , output_all_columns=_A )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
_UpperCAmelCase = (
raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
raw_datasets["eval"].set_transform(_A , output_all_columns=_A )
# Initialize our trainer
_UpperCAmelCase = Trainer(
model=_A , args=_A , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=_A , tokenizer=_A , )
# Training
if training_args.do_train:
_UpperCAmelCase = None
if training_args.resume_from_checkpoint is not None:
_UpperCAmelCase = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_UpperCAmelCase = last_checkpoint
_UpperCAmelCase = trainer.train(resume_from_checkpoint=_A )
trainer.save_model()
trainer.log_metrics("""train""" , train_result.metrics )
trainer.save_metrics("""train""" , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
_UpperCAmelCase = trainer.evaluate()
trainer.log_metrics("""eval""" , _A )
trainer.save_metrics("""eval""" , _A )
# Write model card and (optionally) push to hub
_UpperCAmelCase = {
"""finetuned_from""": model_args.model_name_or_path,
"""tasks""": """audio-classification""",
"""dataset""": data_args.dataset_name,
"""tags""": ["""audio-classification"""],
}
if training_args.push_to_hub:
trainer.push_to_hub(**_A )
else:
trainer.create_model_card(**_A )
if __name__ == "__main__":
main() | 19 |
"""simple docstring"""
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
a : List[str] = logging.get_logger(__name__)
class a_ ( enum.Enum ):
a : Optional[Any] = 0
a : Dict = 1
@add_end_docstrings(_UpperCAmelCase )
class a_ ( _UpperCAmelCase ):
a : List[Any] = 'generated'
def __init__( self : int , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : str ) ->Any:
'''simple docstring'''
super().__init__(*__UpperCamelCase , **__UpperCamelCase )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == """tf"""
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def _snake_case ( self : Optional[int] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Any=None , __UpperCamelCase : int=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Dict=None , **__UpperCamelCase : Any , ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = {}
if truncation is not None:
_UpperCAmelCase = truncation
_UpperCAmelCase = generate_kwargs
_UpperCAmelCase = {}
if return_tensors is not None and return_type is None:
_UpperCAmelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
_UpperCAmelCase = return_type
if clean_up_tokenization_spaces is not None:
_UpperCAmelCase = clean_up_tokenization_spaces
if stop_sequence is not None:
_UpperCAmelCase = self.tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
if len(__UpperCamelCase ) > 1:
warnings.warn(
"""Stopping on a multiple token sequence is not yet supported on transformers. The first token of"""
""" the stop sequence will be used as the stop sequence string in the interim.""" )
_UpperCAmelCase = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def _snake_case ( self : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->Any:
'''simple docstring'''
return True
def _snake_case ( self : Optional[Any] , *__UpperCamelCase : Any , __UpperCamelCase : Dict ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.model.config.prefix if self.model.config.prefix is not None else """"""
if isinstance(args[0] , __UpperCamelCase ):
if self.tokenizer.pad_token_id is None:
raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" )
_UpperCAmelCase = ([prefix + arg for arg in args[0]],)
_UpperCAmelCase = True
elif isinstance(args[0] , __UpperCamelCase ):
_UpperCAmelCase = (prefix + args[0],)
_UpperCAmelCase = False
else:
raise ValueError(
f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" )
_UpperCAmelCase = self.tokenizer(*__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self : Dict , *__UpperCamelCase : str , **__UpperCamelCase : Dict ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = super().__call__(*__UpperCamelCase , **__UpperCamelCase )
if (
isinstance(args[0] , __UpperCamelCase )
and all(isinstance(__UpperCamelCase , __UpperCamelCase ) for el in args[0] )
and all(len(__UpperCamelCase ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def _snake_case ( self : List[str] , __UpperCamelCase : Any , __UpperCamelCase : str=TruncationStrategy.DO_NOT_TRUNCATE , **__UpperCamelCase : Optional[int] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = self._parse_and_tokenize(__UpperCamelCase , truncation=__UpperCamelCase , **__UpperCamelCase )
return inputs
def _snake_case ( self : str , __UpperCamelCase : Dict , **__UpperCamelCase : Dict ) ->Tuple:
'''simple docstring'''
if self.framework == "pt":
_UpperCAmelCase ,_UpperCAmelCase = model_inputs["""input_ids"""].shape
elif self.framework == "tf":
_UpperCAmelCase ,_UpperCAmelCase = tf.shape(model_inputs["""input_ids"""] ).numpy()
_UpperCAmelCase = generate_kwargs.get("""min_length""" , self.model.config.min_length )
_UpperCAmelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length )
self.check_inputs(__UpperCamelCase , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] )
_UpperCAmelCase = self.model.generate(**__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = output_ids.shape[0]
if self.framework == "pt":
_UpperCAmelCase = output_ids.reshape(__UpperCamelCase , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
_UpperCAmelCase = tf.reshape(__UpperCamelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def _snake_case ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any]=ReturnType.TEXT , __UpperCamelCase : int=False ) ->Any:
'''simple docstring'''
_UpperCAmelCase = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
_UpperCAmelCase = {f"""{self.return_name}_token_ids""": output_ids}
elif return_type == ReturnType.TEXT:
_UpperCAmelCase = {
f"""{self.return_name}_text""": self.tokenizer.decode(
__UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase , )
}
records.append(__UpperCamelCase )
return records
@add_end_docstrings(_UpperCAmelCase )
class a_ ( _UpperCAmelCase ):
a : List[Any] = 'summary'
def __call__( self : Optional[Any] , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Optional[int] ) ->Any:
'''simple docstring'''
return super().__call__(*__UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : str , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->bool:
'''simple docstring'''
if max_length < min_length:
logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" )
if input_length < max_length:
logger.warning(
f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """
"""a summarization task, where outputs shorter than the input are typically wanted, you might """
f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" )
@add_end_docstrings(_UpperCAmelCase )
class a_ ( _UpperCAmelCase ):
a : Optional[int] = 'translation'
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->Any:
'''simple docstring'''
if input_length > 0.9 * max_length:
logger.warning(
f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """
"""increasing your max_length manually, e.g. translator('...', max_length=400)""" )
return True
def _snake_case ( self : Tuple , *__UpperCamelCase : List[str] , __UpperCamelCase : Tuple=TruncationStrategy.DO_NOT_TRUNCATE , __UpperCamelCase : Tuple=None , __UpperCamelCase : Union[str, Any]=None ) ->Tuple:
'''simple docstring'''
if getattr(self.tokenizer , """_build_translation_inputs""" , __UpperCamelCase ):
return self.tokenizer._build_translation_inputs(
*__UpperCamelCase , return_tensors=self.framework , truncation=__UpperCamelCase , src_lang=__UpperCamelCase , tgt_lang=__UpperCamelCase )
else:
return super()._parse_and_tokenize(*__UpperCamelCase , truncation=__UpperCamelCase )
def _snake_case ( self : List[str] , __UpperCamelCase : int=None , __UpperCamelCase : int=None , **__UpperCamelCase : Any ) ->int:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = super()._sanitize_parameters(**__UpperCamelCase )
if src_lang is not None:
_UpperCAmelCase = src_lang
if tgt_lang is not None:
_UpperCAmelCase = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
_UpperCAmelCase = kwargs.get("""task""" , self.task )
_UpperCAmelCase = task.split("""_""" )
if task and len(__UpperCamelCase ) == 4:
# translation, XX, to YY
_UpperCAmelCase = items[1]
_UpperCAmelCase = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self : List[str] , *__UpperCamelCase : str , **__UpperCamelCase : Optional[Any] ) ->int:
'''simple docstring'''
return super().__call__(*__UpperCamelCase , **__UpperCamelCase ) | 19 | 1 |
"""simple docstring"""
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
a : Any = 1.054571817E-34 # unit of ℏ : J * s
a : Optional[int] = 3E8 # unit of c : m * s^-1
def _UpperCamelCase ( _A , _A , _A ) -> dict[str, float]:
"""simple docstring"""
if (force, area, distance).count(0 ) != 1:
raise ValueError("""One and only one argument must be 0""" )
if force < 0:
raise ValueError("""Magnitude of force can not be negative""" )
if distance < 0:
raise ValueError("""Distance can not be negative""" )
if area < 0:
raise ValueError("""Area can not be negative""" )
if force == 0:
_UpperCAmelCase = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
2_4_0 * (distance) ** 4
)
return {"force": force}
elif area == 0:
_UpperCAmelCase = (2_4_0 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
_UpperCAmelCase = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError("""One and only one argument must be 0""" )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod() | 19 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class a_ ( unittest.TestCase ):
@property
def _snake_case ( self : Dict ) ->int:
'''simple docstring'''
torch.manual_seed(0 )
_UpperCAmelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , )
return model
@property
def _snake_case ( self : Optional[Any] ) ->str:
'''simple docstring'''
torch.manual_seed(0 )
_UpperCAmelCase = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , )
return model
@property
def _snake_case ( self : List[Any] ) ->Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
_UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModel(__UpperCamelCase )
def _snake_case ( self : List[str] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = self.dummy_uncond_unet
_UpperCAmelCase = DDIMScheduler()
_UpperCAmelCase = self.dummy_vq_model
_UpperCAmelCase = LDMPipeline(unet=__UpperCamelCase , vqvae=__UpperCamelCase , scheduler=__UpperCamelCase )
ldm.to(__UpperCamelCase )
ldm.set_progress_bar_config(disable=__UpperCamelCase )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type="""numpy""" ).images
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type="""numpy""" , return_dict=__UpperCamelCase )[0]
_UpperCAmelCase = image[0, -3:, -3:, -1]
_UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_UpperCAmelCase = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] )
_UpperCAmelCase = 1e-2 if torch_device != """mps""" else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance
@slow
@require_torch
class a_ ( unittest.TestCase ):
def _snake_case ( self : List[Any] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" )
ldm.to(__UpperCamelCase )
ldm.set_progress_bar_config(disable=__UpperCamelCase )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=5 , output_type="""numpy""" ).images
_UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
_UpperCAmelCase = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] )
_UpperCAmelCase = 1e-2 if torch_device != """mps""" else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance | 19 | 1 |
"""simple docstring"""
from typing import List
from .keymap import KEYMAP, get_character
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
def decorator(_A ):
_UpperCAmelCase = getattr(_A , """handle_key""" , [] )
handle += [key]
setattr(_A , """handle_key""" , _A )
return func
return decorator
def _UpperCamelCase ( *_A ) -> Optional[int]:
"""simple docstring"""
def decorator(_A ):
_UpperCAmelCase = getattr(_A , """handle_key""" , [] )
handle += keys
setattr(_A , """handle_key""" , _A )
return func
return decorator
class a_ ( _UpperCAmelCase ):
def __new__( cls : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = super().__new__(cls , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
if not hasattr(__UpperCamelCase , """key_handler""" ):
setattr(__UpperCamelCase , """key_handler""" , {} )
setattr(__UpperCamelCase , """handle_input""" , KeyHandler.handle_input )
for value in attrs.values():
_UpperCAmelCase = getattr(__UpperCamelCase , """handle_key""" , [] )
for key in handled_keys:
_UpperCAmelCase = value
return new_cls
@staticmethod
def _snake_case ( cls : Any ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = get_character()
if char != KEYMAP["undefined"]:
_UpperCAmelCase = ord(__UpperCamelCase )
_UpperCAmelCase = cls.key_handler.get(__UpperCamelCase )
if handler:
_UpperCAmelCase = char
return handler(cls )
else:
return None
def _UpperCamelCase ( cls ) -> Optional[Any]:
"""simple docstring"""
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() ) | 19 |
"""simple docstring"""
import re
from filelock import FileLock
try:
import nltk
a : str = True
except (ImportError, ModuleNotFoundError):
a : List[str] = False
if NLTK_AVAILABLE:
with FileLock('''.lock''') as lock:
nltk.download('''punkt''', quiet=True)
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
re.sub("""<n>""" , """""" , _A ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(_A ) ) | 19 | 1 |
"""simple docstring"""
import numpy as np
a : Union[str, Any] = [
['''a''', '''b''', '''c''', '''d''', '''e'''],
['''f''', '''g''', '''h''', '''i''', '''k'''],
['''l''', '''m''', '''n''', '''o''', '''p'''],
['''q''', '''r''', '''s''', '''t''', '''u'''],
['''v''', '''w''', '''x''', '''y''', '''z'''],
]
class a_ :
def __init__( self : Any ) ->None:
'''simple docstring'''
_UpperCAmelCase = np.array(__UpperCamelCase )
def _snake_case ( self : Dict , __UpperCamelCase : str ) ->np.ndarray:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = np.where(letter == self.SQUARE )
_UpperCAmelCase = np.concatenate([indexa + 1, indexa + 1] )
return indexes
def _snake_case ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : int ) ->str:
'''simple docstring'''
_UpperCAmelCase = self.SQUARE[indexa - 1, indexa - 1]
return letter
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : str ) ->str:
'''simple docstring'''
_UpperCAmelCase = message.lower()
_UpperCAmelCase = message.replace(""" """ , """""" )
_UpperCAmelCase = message.replace("""j""" , """i""" )
_UpperCAmelCase = np.empty((2, len(__UpperCamelCase )) )
for letter_index in range(len(__UpperCamelCase ) ):
_UpperCAmelCase = self.letter_to_numbers(message[letter_index] )
_UpperCAmelCase = numbers[0]
_UpperCAmelCase = numbers[1]
_UpperCAmelCase = first_step.reshape(2 * len(__UpperCamelCase ) )
_UpperCAmelCase = """"""
for numbers_index in range(len(__UpperCamelCase ) ):
_UpperCAmelCase = int(second_step[numbers_index * 2] )
_UpperCAmelCase = int(second_step[(numbers_index * 2) + 1] )
_UpperCAmelCase = self.numbers_to_letter(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = encoded_message + letter
return encoded_message
def _snake_case ( self : List[Any] , __UpperCamelCase : str ) ->str:
'''simple docstring'''
_UpperCAmelCase = message.lower()
message.replace(""" """ , """""" )
_UpperCAmelCase = np.empty(2 * len(__UpperCamelCase ) )
for letter_index in range(len(__UpperCamelCase ) ):
_UpperCAmelCase = self.letter_to_numbers(message[letter_index] )
_UpperCAmelCase = numbers[0]
_UpperCAmelCase = numbers[1]
_UpperCAmelCase = first_step.reshape((2, len(__UpperCamelCase )) )
_UpperCAmelCase = """"""
for numbers_index in range(len(__UpperCamelCase ) ):
_UpperCAmelCase = int(second_step[0, numbers_index] )
_UpperCAmelCase = int(second_step[1, numbers_index] )
_UpperCAmelCase = self.numbers_to_letter(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = decoded_message + letter
return decoded_message | 19 |
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
a : str = '''platform'''
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class a_ :
a : List[Any] = PegasusConfig
a : Dict = {}
a : List[Any] = 'gelu'
def __init__( self : Any , __UpperCamelCase : Dict , __UpperCamelCase : Tuple=13 , __UpperCamelCase : Tuple=7 , __UpperCamelCase : Tuple=True , __UpperCamelCase : Any=False , __UpperCamelCase : Any=99 , __UpperCamelCase : Optional[int]=32 , __UpperCamelCase : Dict=5 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : Dict=37 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : Optional[Any]=20 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : Optional[int]=1 , __UpperCamelCase : Tuple=0 , ) ->int:
'''simple docstring'''
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = eos_token_id
_UpperCAmelCase = pad_token_id
_UpperCAmelCase = bos_token_id
def _snake_case ( self : Union[str, Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
_UpperCAmelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
_UpperCAmelCase = np.concatenate([input_ids, eos_tensor] , axis=1 )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_UpperCAmelCase = prepare_pegasus_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
return config, inputs_dict
def _snake_case ( self : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase = 20
_UpperCAmelCase = model_class_name(__UpperCamelCase )
_UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] )
_UpperCAmelCase ,_UpperCAmelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
_UpperCAmelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_UpperCAmelCase = model.decode(
decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , )
_UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_UpperCAmelCase = model.decode(
decoder_input_ids[:, -1:] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__UpperCamelCase , )
_UpperCAmelCase = model.decode(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def _snake_case ( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase = 20
_UpperCAmelCase = model_class_name(__UpperCamelCase )
_UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] )
_UpperCAmelCase ,_UpperCAmelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_UpperCAmelCase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_UpperCAmelCase = model.decode(
decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , )
_UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_UpperCAmelCase = model.decode(
decoder_input_ids[:, -1:] , __UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , )
_UpperCAmelCase = model.decode(__UpperCamelCase , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase )
_UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def _UpperCamelCase ( _A , _A , _A , _A=None , _A=None , ) -> int:
"""simple docstring"""
if attention_mask is None:
_UpperCAmelCase = np.not_equal(_A , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
_UpperCAmelCase = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class a_ ( _UpperCAmelCase , unittest.TestCase ):
a : List[str] = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
a : Any = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
a : Any = True
a : int = False
a : Union[str, Any] = False
a : Optional[int] = False
def _snake_case ( self : Union[str, Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = FlaxPegasusModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase )
def _snake_case ( self : Optional[int] ) ->Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _snake_case ( self : Optional[int] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def _snake_case ( self : Dict ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def _snake_case ( self : Dict ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = model_class(__UpperCamelCase )
@jax.jit
def encode_jitted(__UpperCamelCase : List[Any] , __UpperCamelCase : str=None , **__UpperCamelCase : int ):
return model.encode(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase )
with self.subTest("""JIT Enabled""" ):
_UpperCAmelCase = encode_jitted(**__UpperCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_UpperCAmelCase = encode_jitted(**__UpperCamelCase ).to_tuple()
self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) )
for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def _snake_case ( self : List[Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
_UpperCAmelCase = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple ):
return model.decode(
decoder_input_ids=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , encoder_outputs=__UpperCamelCase , )
with self.subTest("""JIT Enabled""" ):
_UpperCAmelCase = decode_jitted(**__UpperCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_UpperCAmelCase = decode_jitted(**__UpperCamelCase ).to_tuple()
self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) )
for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _snake_case ( self : int ) ->int:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCAmelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=__UpperCamelCase )
_UpperCAmelCase = np.ones((1, 1) )
_UpperCAmelCase = model(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
@slow
def _snake_case ( self : Dict ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
_UpperCAmelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
_UpperCAmelCase = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
_UpperCAmelCase = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
_UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors="""np""" , truncation=__UpperCamelCase , max_length=5_12 , padding=__UpperCamelCase )
_UpperCAmelCase = model.generate(**__UpperCamelCase , num_beams=2 ).sequences
_UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase )
assert tgt_text == decoded | 19 | 1 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
a : str = logging.get_logger(__name__)
a : Dict = {
'''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''',
}
class a_ ( _UpperCAmelCase ):
a : Dict = 'instructblip_vision_model'
def __init__( self : Any , __UpperCamelCase : Any=14_08 , __UpperCamelCase : Optional[int]=61_44 , __UpperCamelCase : List[str]=39 , __UpperCamelCase : Union[str, Any]=16 , __UpperCamelCase : int=2_24 , __UpperCamelCase : int=14 , __UpperCamelCase : List[Any]="gelu" , __UpperCamelCase : Any=1e-6 , __UpperCamelCase : Tuple=0.0 , __UpperCamelCase : Union[str, Any]=1e-10 , __UpperCamelCase : Dict=True , **__UpperCamelCase : Union[str, Any] , ) ->int:
'''simple docstring'''
super().__init__(**__UpperCamelCase )
_UpperCAmelCase = hidden_size
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = patch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = attention_dropout
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = hidden_act
_UpperCAmelCase = qkv_bias
@classmethod
def _snake_case ( cls : Dict , __UpperCamelCase : Union[str, os.PathLike] , **__UpperCamelCase : str ) ->"PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(__UpperCamelCase )
_UpperCAmelCase ,_UpperCAmelCase = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get("""model_type""" ) == "instructblip":
_UpperCAmelCase = config_dict["""vision_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(__UpperCamelCase , **__UpperCamelCase )
class a_ ( _UpperCAmelCase ):
a : List[str] = 'instructblip_qformer'
def __init__( self : List[Any] , __UpperCamelCase : List[str]=3_05_22 , __UpperCamelCase : Optional[Any]=7_68 , __UpperCamelCase : Optional[int]=12 , __UpperCamelCase : Any=12 , __UpperCamelCase : Union[str, Any]=30_72 , __UpperCamelCase : Optional[Any]="gelu" , __UpperCamelCase : str=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : List[Any]=5_12 , __UpperCamelCase : List[Any]=0.0_2 , __UpperCamelCase : Tuple=1e-12 , __UpperCamelCase : Union[str, Any]=0 , __UpperCamelCase : Optional[int]="absolute" , __UpperCamelCase : Dict=2 , __UpperCamelCase : Any=14_08 , **__UpperCamelCase : str , ) ->Union[str, Any]:
'''simple docstring'''
super().__init__(pad_token_id=__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = hidden_act
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = initializer_range
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = position_embedding_type
_UpperCAmelCase = cross_attention_frequency
_UpperCAmelCase = encoder_hidden_size
@classmethod
def _snake_case ( cls : Tuple , __UpperCamelCase : Union[str, os.PathLike] , **__UpperCamelCase : List[Any] ) ->"PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(__UpperCamelCase )
_UpperCAmelCase ,_UpperCAmelCase = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get("""model_type""" ) == "instructblip":
_UpperCAmelCase = config_dict["""qformer_config"""]
if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """
f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" )
return cls.from_dict(__UpperCamelCase , **__UpperCamelCase )
class a_ ( _UpperCAmelCase ):
a : List[str] = 'instructblip'
a : Any = True
def __init__( self : Optional[int] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Optional[Any]=32 , **__UpperCamelCase : List[str] ) ->Union[str, Any]:
'''simple docstring'''
super().__init__(**__UpperCamelCase )
if vision_config is None:
_UpperCAmelCase = {}
logger.info("""vision_config is None. initializing the InstructBlipVisionConfig with default values.""" )
if qformer_config is None:
_UpperCAmelCase = {}
logger.info("""qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.""" )
if text_config is None:
_UpperCAmelCase = {}
logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" )
_UpperCAmelCase = InstructBlipVisionConfig(**__UpperCamelCase )
_UpperCAmelCase = InstructBlipQFormerConfig(**__UpperCamelCase )
_UpperCAmelCase = text_config["""model_type"""] if """model_type""" in text_config else """opt"""
_UpperCAmelCase = CONFIG_MAPPING[text_model_type](**__UpperCamelCase )
_UpperCAmelCase = self.text_config.tie_word_embeddings
_UpperCAmelCase = self.text_config.is_encoder_decoder
_UpperCAmelCase = num_query_tokens
_UpperCAmelCase = self.vision_config.hidden_size
_UpperCAmelCase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
_UpperCAmelCase = 1.0
_UpperCAmelCase = 0.0_2
@classmethod
def _snake_case ( cls : Optional[Any] , __UpperCamelCase : InstructBlipVisionConfig , __UpperCamelCase : InstructBlipQFormerConfig , __UpperCamelCase : PretrainedConfig , **__UpperCamelCase : int , ) ->Dict:
'''simple docstring'''
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__UpperCamelCase , )
def _snake_case ( self : Dict ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = copy.deepcopy(self.__dict__ )
_UpperCAmelCase = self.vision_config.to_dict()
_UpperCAmelCase = self.qformer_config.to_dict()
_UpperCAmelCase = self.text_config.to_dict()
_UpperCAmelCase = self.__class__.model_type
return output | 19 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class a_ :
def __init__( self : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any]=99 , __UpperCamelCase : Optional[int]=13 , __UpperCamelCase : List[str]=7 , __UpperCamelCase : List[Any]=9 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : str=True , __UpperCamelCase : int=False , __UpperCamelCase : int=32 , __UpperCamelCase : Dict=5 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : List[Any]=8 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : str=0.0_0_2 , __UpperCamelCase : Union[str, Any]=1 , __UpperCamelCase : List[Any]=0 , __UpperCamelCase : Tuple=0 , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Any=None , ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = encoder_seq_length
_UpperCAmelCase = decoder_seq_length
# For common tests
_UpperCAmelCase = self.decoder_seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_attention_mask
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = d_ff
_UpperCAmelCase = relative_attention_num_buckets
_UpperCAmelCase = dropout_rate
_UpperCAmelCase = initializer_factor
_UpperCAmelCase = eos_token_id
_UpperCAmelCase = pad_token_id
_UpperCAmelCase = decoder_start_token_id
_UpperCAmelCase = None
_UpperCAmelCase = decoder_layers
def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]:
'''simple docstring'''
return TaConfig.from_pretrained("""google/umt5-base""" )
def _snake_case ( self : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Any=None , __UpperCamelCase : str=None , ) ->int:
'''simple docstring'''
if attention_mask is None:
_UpperCAmelCase = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
_UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
_UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCamelCase )
if decoder_head_mask is None:
_UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase )
if cross_attn_head_mask is None:
_UpperCAmelCase = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _snake_case ( self : List[Any] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
_UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 )
_UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 )
_UpperCAmelCase = self.get_config()
_UpperCAmelCase = config.num_attention_heads
_UpperCAmelCase = self.prepare_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
return config, input_dict
def _snake_case ( self : Union[str, Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def _snake_case ( self : Dict ) ->List[str]:
'''simple docstring'''
return TaConfig(
vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _snake_case ( self : Tuple ) ->Dict:
'''simple docstring'''
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _snake_case ( self : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = UMTaModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(
input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , )
_UpperCAmelCase = model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase )
_UpperCAmelCase = result.last_hidden_state
_UpperCAmelCase = result.past_key_values
_UpperCAmelCase = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(__UpperCamelCase ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , ) ->str:
'''simple docstring'''
_UpperCAmelCase = UMTaModel(config=__UpperCamelCase ).get_decoder().to(__UpperCamelCase ).eval()
# first forward pass
_UpperCAmelCase = model(__UpperCamelCase , use_cache=__UpperCamelCase )
_UpperCAmelCase = model(__UpperCamelCase )
_UpperCAmelCase = model(__UpperCamelCase , use_cache=__UpperCamelCase )
self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) )
self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) + 1 )
_UpperCAmelCase ,_UpperCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
_UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
_UpperCAmelCase = model(__UpperCamelCase )["""last_hidden_state"""]
_UpperCAmelCase = model(__UpperCamelCase , past_key_values=__UpperCamelCase )["""last_hidden_state"""]
# select random slice
_UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach()
_UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) )
def _snake_case ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Dict , ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = UMTaModel(config=__UpperCamelCase ).to(__UpperCamelCase ).half().eval()
_UpperCAmelCase = model(**__UpperCamelCase )["""last_hidden_state"""]
self.parent.assertFalse(torch.isnan(__UpperCamelCase ).any().item() )
@require_torch
class a_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
a : List[str] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
a : Tuple = (UMTaForConditionalGeneration,) if is_torch_available() else ()
a : Optional[Any] = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
a : Any = True
a : Optional[int] = False
a : Any = False
a : Optional[int] = True
a : Optional[Any] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
a : int = [0.8, 0.9]
def _snake_case ( self : Optional[Any] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = UMTaModelTester(self )
@unittest.skip("""Test has a segmentation fault on torch 1.8.0""" )
def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
_UpperCAmelCase = UMTaModel(config_and_inputs[0] ).to(__UpperCamelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
__UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"""{tmpdirname}/t5_test.onnx""" , export_params=__UpperCamelCase , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def _snake_case ( self : Tuple ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*__UpperCamelCase )
def _snake_case ( self : Any ) ->Any:
'''simple docstring'''
_UpperCAmelCase = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""]
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
_UpperCAmelCase = config_and_inputs[0]
_UpperCAmelCase = UMTaForConditionalGeneration(__UpperCamelCase ).eval()
model.to(__UpperCamelCase )
_UpperCAmelCase = {
"""head_mask""": torch.zeros(config.num_layers , config.num_heads , device=__UpperCamelCase ),
"""decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ),
"""cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ),
}
for attn_name, (name, mask) in zip(__UpperCamelCase , head_masking.items() ):
_UpperCAmelCase = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
_UpperCAmelCase = torch.ones(
config.num_decoder_layers , config.num_heads , device=__UpperCamelCase )
_UpperCAmelCase = model.generate(
config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=__UpperCamelCase , return_dict_in_generate=__UpperCamelCase , **__UpperCamelCase , )
# We check the state of decoder_attentions and cross_attentions just from the last step
_UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" )
def _snake_case ( self : Tuple ) ->List[Any]:
'''simple docstring'''
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class a_ ( unittest.TestCase ):
@slow
@unittest.skip(
"""Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" )
def _snake_case ( self : Optional[Any] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=__UpperCamelCase ).to(__UpperCamelCase )
_UpperCAmelCase = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=__UpperCamelCase , legacy=__UpperCamelCase )
_UpperCAmelCase = [
"""Bonjour monsieur <extra_id_0> bien <extra_id_1>.""",
"""No se como puedo <extra_id_0>.""",
"""This is the reason why we <extra_id_0> them.""",
"""The <extra_id_0> walks in <extra_id_1>, seats""",
"""A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""",
]
_UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors="""pt""" , padding=__UpperCamelCase ).input_ids
# fmt: off
_UpperCAmelCase = torch.tensor(
[
[ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1],
] )
# fmt: on
torch.testing.assert_allclose(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = model.generate(input_ids.to(__UpperCamelCase ) )
_UpperCAmelCase = [
"""<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""",
"""<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
]
_UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase )
self.assertEqual(__UpperCamelCase , __UpperCamelCase ) | 19 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
a : str = {
'''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : int = [
'''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MegaForCausalLM''',
'''MegaForMaskedLM''',
'''MegaForMultipleChoice''',
'''MegaForQuestionAnswering''',
'''MegaForSequenceClassification''',
'''MegaForTokenClassification''',
'''MegaModel''',
'''MegaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
a : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 19 |
"""simple docstring"""
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class a_ ( _UpperCAmelCase ):
def _snake_case ( self : str ) ->str:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] ) )
self.assertEqual(arr.type , pa.intaa() )
def _snake_case ( self : Any ) ->List[str]:
'''simple docstring'''
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() )
def _snake_case ( self : Optional[int] ) ->Tuple:
'''simple docstring'''
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) )
def _snake_case ( self : List[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) )
self.assertEqual(arr.type , pa.intaa() )
def _snake_case ( self : str ) ->Dict:
'''simple docstring'''
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
_UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) )
def _snake_case ( self : Union[str, Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) )
self.assertEqual(arr.type , pa.intaa() )
def _snake_case ( self : List[str] ) ->Any:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) )
self.assertEqual(arr.type , pa.string() )
def _snake_case ( self : List[Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) )
def _snake_case ( self : List[Any] ) ->Optional[Any]:
'''simple docstring'''
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
_UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) )
def _snake_case ( self : List[str] ) ->int:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) )
def _snake_case ( self : Optional[int] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , pa.string() )
@require_pil
def _snake_case ( self : str ) ->Optional[Any]:
'''simple docstring'''
import PIL.Image
_UpperCAmelCase = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) )
with patch(
"""datasets.arrow_writer.cast_to_python_objects""" , side_effect=__UpperCamelCase ) as mock_cast_to_python_objects:
_UpperCAmelCase = pa.array(TypedSequence([{"""path""": None, """bytes""": b"""image_bytes"""}, pil_image] , type=Image() ) )
_UpperCAmelCase ,_UpperCAmelCase = mock_cast_to_python_objects.call_args_list[-1]
self.assertIn("""optimize_list_casting""" , __UpperCamelCase )
self.assertFalse(kwargs["""optimize_list_casting"""] )
def _UpperCamelCase ( _A , _A ) -> Any:
"""simple docstring"""
_UpperCAmelCase = pa.BufferReader(_A ) if isinstance(_A , pa.Buffer ) else pa.memory_map(_A )
_UpperCAmelCase = pa.ipc.open_stream(_A )
_UpperCAmelCase = f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( _A , _A ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = pa.schema(_A ) if fields else None
with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def _UpperCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} )
with ArrowWriter(stream=_A , features=_A ) as writer:
writer.write({"""labels""": 0} )
writer.write({"""labels""": 1} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
_UpperCAmelCase = pa.BufferReader(output.getvalue() )
_UpperCAmelCase = pa.ipc.open_stream(_A )
_UpperCAmelCase = f.read_all()
_UpperCAmelCase = pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(_A )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
with ArrowWriter(
stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer:
with pytest.raises(_A ):
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
@pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] )
def _UpperCamelCase ( _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
with ArrowWriter(
stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer:
with pytest.raises(_A ):
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1_0 )
writer.write({"""col_1""": """bar""", """col_2""": 2} , key=1_0 )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
@pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] )
def _UpperCamelCase ( _A ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
with ArrowWriter(
stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 )
writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( _A , _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = pa.schema(_A ) if fields else None
with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer:
writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} )
writer.write_batch({"""col_1""": [], """col_2""": []} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( _A , _A ) -> Any:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = pa.schema(_A ) if fields else None
with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer:
writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( _A , _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = pa.schema(_A ) if fields else None
with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer:
writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) )
writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def _UpperCamelCase ( ) -> str:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
_UpperCAmelCase = os.path.join(_A , """test.arrow""" )
with ArrowWriter(path=_A , schema=pa.schema(_A ) ) as writer:
writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(_A , 1 )
def _UpperCamelCase ( _A ) -> int:
"""simple docstring"""
if pa.types.is_list(_A ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def _UpperCamelCase ( _A , _A ) -> Any:
"""simple docstring"""
if isinstance(lst[0] , _A ):
change_first_primitive_element_in_list(lst[0] , _A )
else:
_UpperCAmelCase = value
@pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] )
@pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def _UpperCamelCase ( _A , _A , _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = pa.array(TypedSequence(_A , optimized_int_type=_A ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
"""col, expected_dtype""" , [
("""attention_mask""", pa.inta()),
("""special_tokens_mask""", pa.inta()),
("""token_type_ids""", pa.inta()),
("""input_ids""", pa.intaa()),
("""other""", pa.intaa()),
] , )
@pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def _UpperCamelCase ( _A , _A , _A ) -> str:
"""simple docstring"""
_UpperCAmelCase = pa.array(OptimizedTypedSequence(_A , col=_A ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
_UpperCAmelCase = copy.deepcopy(_A )
_UpperCAmelCase = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(_A , _A )
_UpperCAmelCase = pa.array(OptimizedTypedSequence(_A , col=_A ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize("""raise_exception""" , [False, True] )
def _UpperCamelCase ( _A , _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = str(tmp_path / """dataset-train.arrow""" )
try:
with ArrowWriter(path=_A ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = """mock://dataset-train.arrow"""
with ArrowWriter(path=_A , storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs , type(_A ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(_A )
def _UpperCamelCase ( ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
with ParquetWriter(stream=_A ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_UpperCAmelCase = pa.BufferReader(output.getvalue() )
_UpperCAmelCase = pq.read_table(_A )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize("""embed_local_files""" , [False, True] )
def _UpperCamelCase ( _A , _A ) -> Any:
"""simple docstring"""
import PIL.Image
_UpperCAmelCase = str(tmp_path / """test_image_rgb.jpg""" )
PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_A , format="""png""" )
_UpperCAmelCase = pa.BufferOutputStream()
with ParquetWriter(
stream=_A , features=Features({"""image""": Image()} ) , embed_local_files=_A ) as writer:
writer.write({"""image""": image_path} )
writer.finalize()
_UpperCAmelCase = pa.BufferReader(output.getvalue() )
_UpperCAmelCase = pq.read_table(_A )
_UpperCAmelCase = pa_table.to_pydict()
if embed_local_files:
assert isinstance(out["""image"""][0]["""path"""] , _A )
with open(_A , """rb""" ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def _UpperCamelCase ( ) -> int:
"""simple docstring"""
_UpperCAmelCase = pa.schema([pa.field("""col_1""" , pa.string() , nullable=_A )] )
_UpperCAmelCase = pa.BufferOutputStream()
with ArrowWriter(stream=_A ) as writer:
writer._build_writer(inferred_schema=_A )
assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] ) | 19 | 1 |
"""simple docstring"""
from __future__ import annotations
def _UpperCamelCase ( _A , _A , _A ) -> tuple[float, list[float]]:
"""simple docstring"""
_UpperCAmelCase = list(range(len(_A ) ) )
_UpperCAmelCase = [v / w for v, w in zip(_A , _A )]
index.sort(key=lambda _A : ratio[i] , reverse=_A )
_UpperCAmelCase = 0
_UpperCAmelCase = [0] * len(_A )
for i in index:
if weight[i] <= capacity:
_UpperCAmelCase = 1
max_value += value[i]
capacity -= weight[i]
else:
_UpperCAmelCase = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod() | 19 |
"""simple docstring"""
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
a : List[Any] = get_logger()
a : Optional[dict] = None
class a_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ):
def __init__( self : int , __UpperCamelCase : List[str]=None , __UpperCamelCase : Optional[int]=None , **__UpperCamelCase : int ) ->Tuple:
'''simple docstring'''
super().__init__(features=__UpperCamelCase )
import jax
from jaxlib.xla_client import Device
if isinstance(__UpperCamelCase , __UpperCamelCase ):
raise ValueError(
f"""Expected {device} to be a `str` not {type(__UpperCamelCase )}, as `jaxlib.xla_extension.Device` """
"""is not serializable neither with `pickle` nor with `dill`. Instead you can surround """
"""the device with `str()` to get its string identifier that will be internally mapped """
"""to the actual `jaxlib.xla_extension.Device`.""" )
_UpperCAmelCase = device if isinstance(__UpperCamelCase , __UpperCamelCase ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_UpperCAmelCase = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
f"""Device with string identifier {self.device} not listed among the available """
f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """
f"""device: {str(jax.devices()[0] )}.""" )
_UpperCAmelCase = str(jax.devices()[0] )
_UpperCAmelCase = jnp_array_kwargs
@staticmethod
def _snake_case ( ) ->Dict[str, "jaxlib.xla_extension.Device"]:
'''simple docstring'''
import jax
return {str(__UpperCamelCase ): device for device in jax.devices()}
def _snake_case ( self : Dict , __UpperCamelCase : Any ) ->Union[str, Any]:
'''simple docstring'''
import jax
import jax.numpy as jnp
if isinstance(__UpperCamelCase , __UpperCamelCase ) and column:
if all(
isinstance(__UpperCamelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(__UpperCamelCase , axis=0 )
return column
def _snake_case ( self : List[str] , __UpperCamelCase : Any ) ->Optional[int]:
'''simple docstring'''
import jax
import jax.numpy as jnp
if isinstance(__UpperCamelCase , (str, bytes, type(__UpperCamelCase )) ):
return value
elif isinstance(__UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
_UpperCAmelCase = {}
if isinstance(__UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
_UpperCAmelCase = {"""dtype""": jnp.intaa}
else:
_UpperCAmelCase = {"""dtype""": jnp.intaa}
elif isinstance(__UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
_UpperCAmelCase = {"""dtype""": jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(__UpperCamelCase , PIL.Image.Image ):
_UpperCAmelCase = np.asarray(__UpperCamelCase )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_UpperCAmelCase = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(__UpperCamelCase , **{**default_dtype, **self.jnp_array_kwargs} )
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[str] ) ->Any:
'''simple docstring'''
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(__UpperCamelCase , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(__UpperCamelCase , """__array__""" ) and not isinstance(__UpperCamelCase , jax.Array ):
_UpperCAmelCase = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(__UpperCamelCase , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(__UpperCamelCase ) for substruct in data_struct] )
elif isinstance(__UpperCamelCase , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(__UpperCamelCase ) for substruct in data_struct] )
return self._tensorize(__UpperCamelCase )
def _snake_case ( self : List[str] , __UpperCamelCase : dict ) ->int:
'''simple docstring'''
return map_nested(self._recursive_tensorize , __UpperCamelCase , map_list=__UpperCamelCase )
def _snake_case ( self : Dict , __UpperCamelCase : pa.Table ) ->Mapping:
'''simple docstring'''
_UpperCAmelCase = self.numpy_arrow_extractor().extract_row(__UpperCamelCase )
_UpperCAmelCase = self.python_features_decoder.decode_row(__UpperCamelCase )
return self.recursive_tensorize(__UpperCamelCase )
def _snake_case ( self : Optional[int] , __UpperCamelCase : pa.Table ) ->"jax.Array":
'''simple docstring'''
_UpperCAmelCase = self.numpy_arrow_extractor().extract_column(__UpperCamelCase )
_UpperCAmelCase = self.python_features_decoder.decode_column(__UpperCamelCase , pa_table.column_names[0] )
_UpperCAmelCase = self.recursive_tensorize(__UpperCamelCase )
_UpperCAmelCase = self._consolidate(__UpperCamelCase )
return column
def _snake_case ( self : Optional[Any] , __UpperCamelCase : pa.Table ) ->Mapping:
'''simple docstring'''
_UpperCAmelCase = self.numpy_arrow_extractor().extract_batch(__UpperCamelCase )
_UpperCAmelCase = self.python_features_decoder.decode_batch(__UpperCamelCase )
_UpperCAmelCase = self.recursive_tensorize(__UpperCamelCase )
for column_name in batch:
_UpperCAmelCase = self._consolidate(batch[column_name] )
return batch | 19 | 1 |
"""simple docstring"""
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
a : str = argparse.ArgumentParser(
description=(
'''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'''
''' Distillation'''
)
)
parser.add_argument('''--model_type''', default='''bert''', choices=['''bert'''])
parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str)
parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str)
parser.add_argument('''--vocab_transform''', action='''store_true''')
a : str = parser.parse_args()
if args.model_type == "bert":
a : Any = BertForMaskedLM.from_pretrained(args.model_name)
a : Tuple = '''bert'''
else:
raise ValueError('''args.model_type should be "bert".''')
a : Optional[Any] = model.state_dict()
a : Dict = {}
for w in ["word_embeddings", "position_embeddings"]:
a : List[str] = state_dict[F"{prefix}.embeddings.{w}.weight"]
for w in ["weight", "bias"]:
a : List[Any] = state_dict[F"{prefix}.embeddings.LayerNorm.{w}"]
a : Dict = 0
for teacher_idx in [0, 2, 4, 7, 9, 1_1]:
for w in ["weight", "bias"]:
a : List[str] = state_dict[
F"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"
]
a : Optional[int] = state_dict[
F"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"
]
a : int = state_dict[
F"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"
]
a : Union[str, Any] = state_dict[
F"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"
]
a : str = state_dict[
F"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"
]
a : Optional[Any] = state_dict[
F"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"
]
a : str = state_dict[
F"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"
]
a : List[Any] = state_dict[
F"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"
]
std_idx += 1
a : Tuple = state_dict['''cls.predictions.decoder.weight''']
a : Optional[Any] = state_dict['''cls.predictions.bias''']
if args.vocab_transform:
for w in ["weight", "bias"]:
a : Optional[Any] = state_dict[F"cls.predictions.transform.dense.{w}"]
a : int = state_dict[F"cls.predictions.transform.LayerNorm.{w}"]
print(F"N layers selected for distillation: {std_idx}")
print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}")
print(F"Save transferred checkpoint to {args.dump_checkpoint}.")
torch.save(compressed_sd, args.dump_checkpoint) | 19 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a : Tuple = {
'''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[str] = [
'''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PegasusXForConditionalGeneration''',
'''PegasusXModel''',
'''PegasusXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 19 | 1 |
"""simple docstring"""
import inspect
import unittest
from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class a_ :
def __init__( self : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : int=32 , __UpperCamelCase : Tuple=16 , __UpperCamelCase : Dict=3 , __UpperCamelCase : Dict=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=32 , __UpperCamelCase : Any=4 , __UpperCamelCase : Optional[int]=[0, 1, 2, 3] , __UpperCamelCase : str=4 , __UpperCamelCase : Optional[Any]=37 , __UpperCamelCase : str="gelu" , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Any=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : int=[1, 3_84, 24, 24] , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Any=None , ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = patch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = is_training
_UpperCAmelCase = use_labels
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = backbone_out_indices
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_labels
_UpperCAmelCase = backbone_featmap_shape
_UpperCAmelCase = scope
_UpperCAmelCase = is_hybrid
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
_UpperCAmelCase = (image_size // patch_size) ** 2
_UpperCAmelCase = num_patches + 1
def _snake_case ( self : str ) ->int:
'''simple docstring'''
_UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
_UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def _snake_case ( self : List[str] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [96, 1_92, 3_84, 7_68],
"""num_groups""": 2,
}
return DPTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , )
def _snake_case ( self : Any , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = DPTModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : List[Any] ) ->int:
'''simple docstring'''
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = DPTForDepthEstimation(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) )
def _snake_case ( self : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = DPTForSemanticSegmentation(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def _snake_case ( self : Tuple ) ->Any:
'''simple docstring'''
_UpperCAmelCase = self.prepare_config_and_inputs()
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = config_and_inputs
_UpperCAmelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class a_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
a : Dict = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
a : int = (
{
'depth-estimation': DPTForDepthEstimation,
'feature-extraction': DPTModel,
'image-segmentation': DPTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
a : str = False
a : List[str] = False
a : Dict = False
def _snake_case ( self : Any ) ->Any:
'''simple docstring'''
_UpperCAmelCase = DPTModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 )
def _snake_case ( self : Optional[int] ) ->Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""DPT does not use inputs_embeds""" )
def _snake_case ( self : Tuple ) ->Tuple:
'''simple docstring'''
pass
def _snake_case ( self : int ) ->Any:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) )
def _snake_case ( self : Optional[int] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase = [*signature.parameters.keys()]
_UpperCAmelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCamelCase )
def _snake_case ( self : Optional[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _snake_case ( self : str ) ->int:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*__UpperCamelCase )
def _snake_case ( self : Any ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase )
def _snake_case ( self : str ) ->Any:
'''simple docstring'''
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = True
if model_class in get_values(__UpperCamelCase ):
continue
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.train()
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
_UpperCAmelCase = model(**__UpperCamelCase ).loss
loss.backward()
def _snake_case ( self : List[str] ) ->Dict:
'''simple docstring'''
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = False
_UpperCAmelCase = True
if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.gradient_checkpointing_enable()
model.train()
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
_UpperCAmelCase = model(**__UpperCamelCase ).loss
loss.backward()
def _snake_case ( self : Tuple ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = _config_zero_init(__UpperCamelCase )
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(config=__UpperCamelCase )
# Skip the check for the backbone
_UpperCAmelCase = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
_UpperCAmelCase = [f"""{name}.{key}""" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def _snake_case ( self : Dict ) ->Tuple:
'''simple docstring'''
pass
@slow
def _snake_case ( self : Optional[int] ) ->List[Any]:
'''simple docstring'''
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
_UpperCAmelCase = DPTModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def _snake_case ( self : List[Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = """add"""
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = DPTForDepthEstimation(__UpperCamelCase )
def _UpperCamelCase ( ) -> int:
"""simple docstring"""
_UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
@slow
class a_ ( unittest.TestCase ):
def _snake_case ( self : Any ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" )
_UpperCAmelCase = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__UpperCamelCase )
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase )
# forward pass
with torch.no_grad():
_UpperCAmelCase = model(**__UpperCamelCase )
_UpperCAmelCase = outputs.predicted_depth
# verify the predicted depth
_UpperCAmelCase = torch.Size((1, 3_84, 3_84) )
self.assertEqual(predicted_depth.shape , __UpperCamelCase )
_UpperCAmelCase = torch.tensor(
[[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , __UpperCamelCase , atol=1e-4 ) ) | 19 |
"""simple docstring"""
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
a : int = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN'''])
def _UpperCamelCase ( _A ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = test_results.split(""" """ )
_UpperCAmelCase = 0
_UpperCAmelCase = 0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
_UpperCAmelCase = expressions[-2] if """=""" in expressions[-1] else expressions[-1]
for i, expression in enumerate(_A ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def _UpperCamelCase ( _A ) -> int:
"""simple docstring"""
_UpperCAmelCase = {}
_UpperCAmelCase = None
_UpperCAmelCase = False
for line in failures_short_lines.split("""\n""" ):
if re.search(R"""_ \[doctest\]""" , _A ):
_UpperCAmelCase = True
_UpperCAmelCase = line.split(""" """ )[2]
elif in_error and not line.split(""" """ )[0].isdigit():
_UpperCAmelCase = line
_UpperCAmelCase = False
return failures
class a_ :
def __init__( self : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Dict ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = title
_UpperCAmelCase = doc_test_results["""time_spent"""].split(""",""" )[0]
_UpperCAmelCase = doc_test_results["""success"""]
_UpperCAmelCase = doc_test_results["""failures"""]
_UpperCAmelCase = self.n_success + self.n_failures
# Failures and success of the modeling tests
_UpperCAmelCase = doc_test_results
@property
def _snake_case ( self : int ) ->str:
'''simple docstring'''
_UpperCAmelCase = [self._time_spent]
_UpperCAmelCase = 0
for time in time_spent:
_UpperCAmelCase = time.split(""":""" )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(__UpperCamelCase ) == 1:
_UpperCAmelCase = [0, 0, time_parts[0]]
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return f"""{int(__UpperCamelCase )}h{int(__UpperCamelCase )}m{int(__UpperCamelCase )}s"""
@property
def _snake_case ( self : List[Any] ) ->Dict:
'''simple docstring'''
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def _snake_case ( self : Optional[Any] ) ->Dict:
'''simple docstring'''
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""",
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
@property
def _snake_case ( self : Union[str, Any] ) ->Dict:
'''simple docstring'''
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in"""
f""" {self.time}."""
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
@property
def _snake_case ( self : List[str] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = 40
_UpperCAmelCase = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(__UpperCamelCase , __UpperCamelCase )}
_UpperCAmelCase = """"""
for category, failures in category_failures.items():
if len(__UpperCamelCase ) == 0:
continue
if report != "":
report += "\n\n"
report += f"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(__UpperCamelCase )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f"""The following examples had failures:\n\n\n{report}\n""",
},
}
@property
def _snake_case ( self : Union[str, Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase = [self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(__UpperCamelCase )
@staticmethod
def _snake_case ( ) ->Any:
'''simple docstring'''
_UpperCAmelCase = [
{
"""type""": """section""",
"""text""": {
"""type""": """plain_text""",
"""text""": """There was an issue running the tests.""",
},
"""accessory""": {
"""type""": """button""",
"""text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True},
"""url""": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
]
print("""Sending the following payload""" )
print(json.dumps({"""blocks""": json.loads(__UpperCamelCase )} ) )
client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=__UpperCamelCase , )
def _snake_case ( self : Tuple ) ->Optional[Any]:
'''simple docstring'''
print("""Sending the following payload""" )
print(json.dumps({"""blocks""": json.loads(self.payload )} ) )
_UpperCAmelCase = f"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else """All tests passed."""
_UpperCAmelCase = client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=__UpperCamelCase , )
def _snake_case ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : List[str] ) ->str:
'''simple docstring'''
_UpperCAmelCase = """"""
for key, value in failures.items():
_UpperCAmelCase = value[:2_00] + """ [Truncated]""" if len(__UpperCamelCase ) > 2_50 else value
failures_text += f"""*{key}*\n_{value}_\n\n"""
_UpperCAmelCase = job_name
_UpperCAmelCase = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}}
if job_link is not None:
_UpperCAmelCase = {
"""type""": """button""",
"""text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True},
"""url""": job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def _snake_case ( self : int ) ->Optional[Any]:
'''simple docstring'''
if self.thread_ts is None:
raise ValueError("""Can only post reply if a post has been made.""" )
_UpperCAmelCase = self.doc_test_results.pop("""job_link""" )
self.doc_test_results.pop("""failures""" )
self.doc_test_results.pop("""success""" )
self.doc_test_results.pop("""time_spent""" )
_UpperCAmelCase = sorted(self.doc_test_results.items() , key=lambda __UpperCamelCase : t[0] )
for job, job_result in sorted_dict:
if len(job_result["""failures"""] ):
_UpperCAmelCase = f"""*Num failures* :{len(job_result["failed"] )} \n"""
_UpperCAmelCase = job_result["""failures"""]
_UpperCAmelCase = self.get_reply_blocks(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , text=__UpperCamelCase )
print("""Sending the following reply""" )
print(json.dumps({"""blocks""": blocks} ) )
client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=f"""Results for {job}""" , blocks=__UpperCamelCase , thread_ts=self.thread_ts["""ts"""] , )
time.sleep(1 )
def _UpperCamelCase ( ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = os.environ["""GITHUB_RUN_ID"""]
_UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100"""
_UpperCAmelCase = requests.get(_A ).json()
_UpperCAmelCase = {}
try:
jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
_UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(_A ):
_UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" ).json()
jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return jobs
except Exception as e:
print("""Unknown error, could not fetch links.""" , _A )
return {}
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = {}
if os.path.exists(_A ):
_UpperCAmelCase = os.listdir(_A )
for file in files:
try:
with open(os.path.join(_A , _A ) , encoding="""utf-8""" ) as f:
_UpperCAmelCase = f.read()
except UnicodeDecodeError as e:
raise ValueError(F"""Could not open {os.path.join(_A , _A )}.""" ) from e
return _artifact
def _UpperCamelCase ( ) -> int:
"""simple docstring"""
class a_ :
def __init__( self : List[Any] , __UpperCamelCase : str ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = name
_UpperCAmelCase = []
def __str__( self : int ) ->Optional[Any]:
'''simple docstring'''
return self.name
def _snake_case ( self : Dict , __UpperCamelCase : str ) ->int:
'''simple docstring'''
self.paths.append({"""name""": self.name, """path""": path} )
_UpperCAmelCase = {}
_UpperCAmelCase = filter(os.path.isdir , os.listdir() )
for directory in directories:
_UpperCAmelCase = directory
if artifact_name not in _available_artifacts:
_UpperCAmelCase = Artifact(_A )
_available_artifacts[artifact_name].add_path(_A )
return _available_artifacts
if __name__ == "__main__":
a : Dict = get_job_links()
a : Dict = retrieve_available_artifacts()
a : Optional[int] = collections.OrderedDict(
[
('''*.py''', '''API Examples'''),
('''*.md''', '''MD Examples'''),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
a : Dict = {
v: {
'''failed''': [],
'''failures''': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
a : int = github_actions_job_links.get('''run_doctests''')
a : Tuple = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0]
a : Optional[Any] = retrieve_artifact(artifact_path['''name'''])
if "stats" in artifact:
a , a , a : str = handle_test_results(artifact['''stats'''])
a : Tuple = failed
a : int = success
a : Any = time_spent[1:-1] + ''', '''
a : Dict = extract_first_line_failure(artifact['''failures_short'''])
for line in artifact["summary_short"].split('''\n'''):
if re.search('''FAILED''', line):
a : List[Any] = line.replace('''FAILED ''', '''''')
a : Tuple = line.split()[0].replace('''\n''', '''''')
if "::" in line:
a , a : Union[str, Any] = line.split('''::''')
else:
a , a : Optional[Any] = line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
a : List[Any] = docs[file_regex]
doc_test_results[category]["failed"].append(test)
a : Optional[Any] = all_failures[test] if test in all_failures else '''N/A'''
a : List[str] = failure
break
a : List[Any] = Message('''🤗 Results of the doc tests.''', doc_test_results)
message.post()
message.post_reply() | 19 | 1 |
"""simple docstring"""
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
_UpperCAmelCase = int(_A )
if decimal in (0, 1): # Exit cases for the recursion
return str(_A )
_UpperCAmelCase ,_UpperCAmelCase = divmod(_A , 2 )
return binary_recursive(_A ) + str(_A )
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
_UpperCAmelCase = str(_A ).strip()
if not number:
raise ValueError("""No input value was provided""" )
_UpperCAmelCase = """-""" if number.startswith("""-""" ) else """"""
_UpperCAmelCase = number.lstrip("""-""" )
if not number.isnumeric():
raise ValueError("""Input value is not an integer""" )
return F"""{negative}0b{binary_recursive(int(_A ) )}"""
if __name__ == "__main__":
from doctest import testmod
testmod() | 19 |
"""simple docstring"""
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse('''3.8'''):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def _UpperCamelCase ( _A , _A=False ) -> str:
"""simple docstring"""
try:
_UpperCAmelCase = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_UpperCAmelCase = default
else:
# KEY is set, convert it to True or False.
try:
_UpperCAmelCase = strtobool(_A )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F"""If set, {key} must be yes or no.""" )
return _value
a : Union[str, Any] = parse_flag_from_env('''RUN_SLOW''', default=False)
a : Tuple = parse_flag_from_env('''RUN_REMOTE''', default=False)
a : Union[str, Any] = parse_flag_from_env('''RUN_LOCAL''', default=True)
a : int = parse_flag_from_env('''RUN_PACKAGED''', default=True)
# Compression
a : List[Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''')
a : List[Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''')
a : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''')
# Audio
a : int = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''),
reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''',
)
# Beam
a : Tuple = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''),
reason='''test requires apache-beam and a compatible dill version''',
)
# Dill-cloudpickle compatibility
a : Any = pytest.mark.skipif(
config.DILL_VERSION <= version.parse('''0.3.2'''),
reason='''test requires dill>0.3.2 for cloudpickle compatibility''',
)
# Windows
a : int = pytest.mark.skipif(
sys.platform == '''win32''',
reason='''test should not be run on Windows''',
)
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
try:
import faiss # noqa
except ImportError:
_UpperCAmelCase = unittest.skip("""test requires faiss""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Any:
"""simple docstring"""
try:
import regex # noqa
except ImportError:
_UpperCAmelCase = unittest.skip("""test requires regex""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Union[str, Any]:
"""simple docstring"""
try:
import elasticsearch # noqa
except ImportError:
_UpperCAmelCase = unittest.skip("""test requires elasticsearch""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
try:
import sqlalchemy # noqa
except ImportError:
_UpperCAmelCase = unittest.skip("""test requires sqlalchemy""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Union[str, Any]:
"""simple docstring"""
if not config.TORCH_AVAILABLE:
_UpperCAmelCase = unittest.skip("""test requires PyTorch""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Optional[Any]:
"""simple docstring"""
if not config.TF_AVAILABLE:
_UpperCAmelCase = unittest.skip("""test requires TensorFlow""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
if not config.JAX_AVAILABLE:
_UpperCAmelCase = unittest.skip("""test requires JAX""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
if not config.PIL_AVAILABLE:
_UpperCAmelCase = unittest.skip("""test requires Pillow""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
try:
import transformers # noqa F401
except ImportError:
return unittest.skip("""test requires transformers""" )(_A )
else:
return test_case
def _UpperCamelCase ( _A ) -> List[Any]:
"""simple docstring"""
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip("""test requires tiktoken""" )(_A )
else:
return test_case
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
try:
import spacy # noqa F401
except ImportError:
return unittest.skip("""test requires spacy""" )(_A )
else:
return test_case
def _UpperCamelCase ( _A ) -> int:
"""simple docstring"""
def _require_spacy_model(_A ):
try:
import spacy # noqa F401
spacy.load(_A )
except ImportError:
return unittest.skip("""test requires spacy""" )(_A )
except OSError:
return unittest.skip("""test requires spacy model '{}'""".format(_A ) )(_A )
else:
return test_case
return _require_spacy_model
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip("""test requires pyspark""" )(_A )
else:
return test_case
def _UpperCamelCase ( _A ) -> List[Any]:
"""simple docstring"""
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip("""test requires joblibspark""" )(_A )
else:
return test_case
def _UpperCamelCase ( _A ) -> Any:
"""simple docstring"""
if not _run_slow_tests or _run_slow_tests == 0:
_UpperCAmelCase = unittest.skip("""test is slow""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Any:
"""simple docstring"""
if not _run_local_tests or _run_local_tests == 0:
_UpperCAmelCase = unittest.skip("""test is local""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
if not _run_packaged_tests or _run_packaged_tests == 0:
_UpperCAmelCase = unittest.skip("""test is packaged""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
if not _run_remote_tests or _run_remote_tests == 0:
_UpperCAmelCase = unittest.skip("""test requires remote""" )(_A )
return test_case
def _UpperCamelCase ( *_A ) -> Dict:
"""simple docstring"""
def decorate(cls ):
for name, fn in cls.__dict__.items():
if callable(_A ) and name.startswith("""test""" ):
for decorator in decorators:
_UpperCAmelCase = decorator(_A )
setattr(cls , _A , _A )
return cls
return decorate
class a_ ( _UpperCAmelCase ):
pass
class a_ ( _UpperCAmelCase ):
a : Any = 0
a : Optional[Any] = 1
a : int = 2
@contextmanager
def _UpperCamelCase ( _A=OfflineSimulationMode.CONNECTION_FAILS , _A=1e-16 ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = requests.Session().request
def timeout_request(_A , _A , _A , **_A ):
# Change the url to an invalid url so that the connection hangs
_UpperCAmelCase = """https://10.255.255.1"""
if kwargs.get("""timeout""" ) is None:
raise RequestWouldHangIndefinitelyError(
F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" )
_UpperCAmelCase = timeout
try:
return online_request(_A , _A , **_A )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
_UpperCAmelCase = url
_UpperCAmelCase = e.args[0]
_UpperCAmelCase = (max_retry_error.args[0].replace("""10.255.255.1""" , F"""OfflineMock[{url}]""" ),)
_UpperCAmelCase = (max_retry_error,)
raise
def raise_connection_error(_A , _A , **_A ):
raise requests.ConnectionError("""Offline mode is enabled.""" , request=_A )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch("""requests.Session.send""" , _A ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch("""requests.Session.request""" , _A ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch("""datasets.config.HF_DATASETS_OFFLINE""" , _A ):
yield
else:
raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" )
@contextmanager
def _UpperCamelCase ( *_A , **_A ) -> str:
"""simple docstring"""
_UpperCAmelCase = str(Path().resolve() )
with tempfile.TemporaryDirectory(*_A , **_A ) as tmp_dir:
try:
os.chdir(_A )
yield
finally:
os.chdir(_A )
@contextmanager
def _UpperCamelCase ( ) -> Any:
"""simple docstring"""
import gc
gc.collect()
_UpperCAmelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def _UpperCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
import gc
gc.collect()
_UpperCAmelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def _UpperCamelCase ( _A , _A ) -> str:
"""simple docstring"""
return deepcopy(_A ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(_A ).integers(0 , 1_0_0 , 1_0 ).tolist()
def _UpperCamelCase ( _A ) -> Tuple:
"""simple docstring"""
import decorator
from requests.exceptions import HTTPError
def _wrapper(_A , *_A , **_A ):
try:
return func(*_A , **_A )
except HTTPError as err:
if str(_A ).startswith("""500""" ) or str(_A ).startswith("""502""" ):
pytest.xfail(str(_A ) )
raise err
return decorator.decorator(_wrapper , _A )
class a_ :
def __init__( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] ) ->int:
'''simple docstring'''
_UpperCAmelCase = returncode
_UpperCAmelCase = stdout
_UpperCAmelCase = stderr
async def _UpperCamelCase ( _A , _A ) -> Union[str, Any]:
"""simple docstring"""
while True:
_UpperCAmelCase = await stream.readline()
if line:
callback(_A )
else:
break
async def _UpperCamelCase ( _A , _A=None , _A=None , _A=None , _A=False , _A=False ) -> _RunOutput:
"""simple docstring"""
if echo:
print("""\nRunning: """ , """ """.join(_A ) )
_UpperCAmelCase = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=_A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_A , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
_UpperCAmelCase = []
_UpperCAmelCase = []
def tee(_A , _A , _A , _A="" ):
_UpperCAmelCase = line.decode("""utf-8""" ).rstrip()
sink.append(_A )
if not quiet:
print(_A , _A , file=_A )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout , lambda _A : tee(_A , _A , sys.stdout , label="""stdout:""" ) ),
_read_stream(p.stderr , lambda _A : tee(_A , _A , sys.stderr , label="""stderr:""" ) ),
] , timeout=_A , )
return _RunOutput(await p.wait() , _A , _A )
def _UpperCamelCase ( _A , _A=None , _A=None , _A=1_8_0 , _A=False , _A=True ) -> _RunOutput:
"""simple docstring"""
_UpperCAmelCase = asyncio.get_event_loop()
_UpperCAmelCase = loop.run_until_complete(
_stream_subprocess(_A , env=_A , stdin=_A , timeout=_A , quiet=_A , echo=_A ) )
_UpperCAmelCase = """ """.join(_A )
if result.returncode > 0:
_UpperCAmelCase = """\n""".join(result.stderr )
raise RuntimeError(
F"""'{cmd_str}' failed with returncode {result.returncode}\n\n"""
F"""The combined stderr from workers follows:\n{stderr}""" )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(F"""'{cmd_str}' produced no output.""" )
return result
def _UpperCamelCase ( ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" )
_UpperCAmelCase = re.sub(R"""^gw""" , """""" , _A , 0 , re.M )
return int(_A )
def _UpperCamelCase ( ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = 2_9_5_0_0
_UpperCAmelCase = pytest_xdist_worker_id()
return port + uniq_delta | 19 | 1 |
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
a : str = '''platform'''
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class a_ :
a : List[Any] = PegasusConfig
a : Dict = {}
a : List[Any] = 'gelu'
def __init__( self : Any , __UpperCamelCase : Dict , __UpperCamelCase : Tuple=13 , __UpperCamelCase : Tuple=7 , __UpperCamelCase : Tuple=True , __UpperCamelCase : Any=False , __UpperCamelCase : Any=99 , __UpperCamelCase : Optional[int]=32 , __UpperCamelCase : Dict=5 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : Dict=37 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : Optional[Any]=20 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : Optional[int]=1 , __UpperCamelCase : Tuple=0 , ) ->int:
'''simple docstring'''
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = eos_token_id
_UpperCAmelCase = pad_token_id
_UpperCAmelCase = bos_token_id
def _snake_case ( self : Union[str, Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
_UpperCAmelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
_UpperCAmelCase = np.concatenate([input_ids, eos_tensor] , axis=1 )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_UpperCAmelCase = prepare_pegasus_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
return config, inputs_dict
def _snake_case ( self : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase = 20
_UpperCAmelCase = model_class_name(__UpperCamelCase )
_UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] )
_UpperCAmelCase ,_UpperCAmelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
_UpperCAmelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_UpperCAmelCase = model.decode(
decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , )
_UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_UpperCAmelCase = model.decode(
decoder_input_ids[:, -1:] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__UpperCamelCase , )
_UpperCAmelCase = model.decode(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def _snake_case ( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase = 20
_UpperCAmelCase = model_class_name(__UpperCamelCase )
_UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] )
_UpperCAmelCase ,_UpperCAmelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_UpperCAmelCase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_UpperCAmelCase = model.decode(
decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , )
_UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_UpperCAmelCase = model.decode(
decoder_input_ids[:, -1:] , __UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , )
_UpperCAmelCase = model.decode(__UpperCamelCase , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase )
_UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def _UpperCamelCase ( _A , _A , _A , _A=None , _A=None , ) -> int:
"""simple docstring"""
if attention_mask is None:
_UpperCAmelCase = np.not_equal(_A , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
_UpperCAmelCase = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class a_ ( _UpperCAmelCase , unittest.TestCase ):
a : List[str] = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
a : Any = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
a : Any = True
a : int = False
a : Union[str, Any] = False
a : Optional[int] = False
def _snake_case ( self : Union[str, Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = FlaxPegasusModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase )
def _snake_case ( self : Optional[int] ) ->Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _snake_case ( self : Optional[int] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def _snake_case ( self : Dict ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def _snake_case ( self : Dict ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = model_class(__UpperCamelCase )
@jax.jit
def encode_jitted(__UpperCamelCase : List[Any] , __UpperCamelCase : str=None , **__UpperCamelCase : int ):
return model.encode(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase )
with self.subTest("""JIT Enabled""" ):
_UpperCAmelCase = encode_jitted(**__UpperCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_UpperCAmelCase = encode_jitted(**__UpperCamelCase ).to_tuple()
self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) )
for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def _snake_case ( self : List[Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
_UpperCAmelCase = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple ):
return model.decode(
decoder_input_ids=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , encoder_outputs=__UpperCamelCase , )
with self.subTest("""JIT Enabled""" ):
_UpperCAmelCase = decode_jitted(**__UpperCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_UpperCAmelCase = decode_jitted(**__UpperCamelCase ).to_tuple()
self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) )
for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _snake_case ( self : int ) ->int:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCAmelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=__UpperCamelCase )
_UpperCAmelCase = np.ones((1, 1) )
_UpperCAmelCase = model(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
@slow
def _snake_case ( self : Dict ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
_UpperCAmelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
_UpperCAmelCase = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
_UpperCAmelCase = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
_UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors="""np""" , truncation=__UpperCamelCase , max_length=5_12 , padding=__UpperCamelCase )
_UpperCAmelCase = model.generate(**__UpperCamelCase , num_beams=2 ).sequences
_UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase )
assert tgt_text == decoded | 19 |
"""simple docstring"""
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class a_ ( _UpperCAmelCase ):
a : List[Any] = ''
a : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs
def __init__( self : Tuple , __UpperCamelCase : Optional[DatasetInfo] = None , __UpperCamelCase : Optional[str] = None , **__UpperCamelCase : Any , ) ->Any:
'''simple docstring'''
super().__init__(self , **__UpperCamelCase )
_UpperCAmelCase = repo_info
_UpperCAmelCase = token
_UpperCAmelCase = None
def _snake_case ( self : List[str] ) ->List[str]:
'''simple docstring'''
if self.dir_cache is None:
_UpperCAmelCase = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
_UpperCAmelCase = {
"""name""": hf_file.rfilename,
"""size""": None,
"""type""": """file""",
}
self.dir_cache.update(
{
str(__UpperCamelCase ): {"""name""": str(__UpperCamelCase ), """size""": None, """type""": """directory"""}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def _snake_case ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : str = "rb" , **__UpperCamelCase : Any , ) ->List[str]:
'''simple docstring'''
if not isinstance(self.repo_info , __UpperCamelCase ):
raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" )
_UpperCAmelCase = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha )
return fsspec.open(
__UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open()
def _snake_case ( self : int , __UpperCamelCase : int , **__UpperCamelCase : Dict ) ->Tuple:
'''simple docstring'''
self._get_dirs()
_UpperCAmelCase = self._strip_protocol(__UpperCamelCase )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(__UpperCamelCase )
def _snake_case ( self : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple=False , **__UpperCamelCase : List[str] ) ->Optional[Any]:
'''simple docstring'''
self._get_dirs()
_UpperCAmelCase = PurePosixPath(path.strip("""/""" ) )
_UpperCAmelCase = {}
for p, f in self.dir_cache.items():
_UpperCAmelCase = PurePosixPath(p.strip("""/""" ) )
_UpperCAmelCase = p.parent
if root == path:
_UpperCAmelCase = f
_UpperCAmelCase = list(paths.values() )
if detail:
return out
else:
return sorted(f["""name"""] for f in out ) | 19 | 1 |
"""simple docstring"""
import string
from math import logaa
def _UpperCamelCase ( _A , _A ) -> int:
"""simple docstring"""
_UpperCAmelCase = document.translate(
str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" )
_UpperCAmelCase = document_without_punctuation.split(""" """ ) # word tokenization
return len([word for word in tokenize_document if word.lower() == term.lower()] )
def _UpperCamelCase ( _A , _A ) -> tuple[int, int]:
"""simple docstring"""
_UpperCAmelCase = corpus.lower().translate(
str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with ''
_UpperCAmelCase = corpus_without_punctuation.split("""\n""" )
_UpperCAmelCase = term.lower()
return (len([doc for doc in docs if term in doc] ), len(_A ))
def _UpperCamelCase ( _A , _A , _A=False ) -> float:
"""simple docstring"""
if smoothing:
if n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(1 + logaa(n / (1 + df) ) , 3 )
if df == 0:
raise ZeroDivisionError("""df must be > 0""" )
elif n == 0:
raise ValueError("""log10(0) is undefined.""" )
return round(logaa(n / df ) , 3 )
def _UpperCamelCase ( _A , _A ) -> float:
"""simple docstring"""
return round(tf * idf , 3 ) | 19 |
"""simple docstring"""
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
a : Optional[Any] = '''\
@misc{chen2021evaluating,
title={Evaluating Large Language Models Trained on Code},
author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \
and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \
and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \
and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \
and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \
and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \
and Mohammad Bavarian and Clemens Winter and Philippe Tillet \
and Felipe Petroski Such and Dave Cummings and Matthias Plappert \
and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \
and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \
and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \
and William Saunders and Christopher Hesse and Andrew N. Carr \
and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \
and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \
and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \
and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},
year={2021},
eprint={2107.03374},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
'''
a : List[str] = '''\
This metric implements the evaluation harness for the HumanEval problem solving dataset
described in the paper "Evaluating Large Language Models Trained on Code"
(https://arxiv.org/abs/2107.03374).
'''
a : Any = '''
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of candidates to evaluate. Each candidates should be a list
of strings with several code candidates to solve the problem.
references: a list with a test for each prediction. Each test should evaluate the
correctness of a code candidate.
k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])
num_workers: number of workers used to evaluate the canidate programs (Default: 4).
timeout:
Returns:
pass_at_k: dict with pass rates for each k
results: dict with granular results of each unittest
Examples:
>>> code_eval = datasets.load_metric("code_eval")
>>> test_cases = ["assert add(2,3)==5"]
>>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]
>>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])
>>> print(pass_at_k)
{\'pass@1\': 0.5, \'pass@2\': 1.0}
'''
a : int = '''
################################################################################
!!!WARNING!!!
################################################################################
The "code_eval" metric executes untrusted model-generated code in Python.
Although it is highly unlikely that model-generated code will do something
overtly malicious in response to this test suite, model-generated code may act
destructively due to a lack of model capability or alignment.
Users are strongly encouraged to sandbox this evaluation suite so that it
does not perform destructive actions on their host or network. For more
information on how OpenAI sandboxes its code, see the paper "Evaluating Large
Language Models Trained on Code" (https://arxiv.org/abs/2107.03374).
Once you have read this disclaimer and taken appropriate precautions,
set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this
with:
>>> import os
>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"
################################################################################\
'''
a : List[Any] = '''The MIT License
Copyright (c) OpenAI (https://openai.com)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
def _snake_case ( self : Tuple ) ->Tuple:
'''simple docstring'''
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , )
def _snake_case ( self : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any]=[1, 10, 1_00] , __UpperCamelCase : Dict=4 , __UpperCamelCase : Tuple=3.0 ) ->Union[str, Any]:
'''simple docstring'''
if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError("""This metric is currently not supported on Windows.""" )
with ThreadPoolExecutor(max_workers=__UpperCamelCase ) as executor:
_UpperCAmelCase = []
_UpperCAmelCase = Counter()
_UpperCAmelCase = 0
_UpperCAmelCase = defaultdict(__UpperCamelCase )
for task_id, (candidates, test_case) in enumerate(zip(__UpperCamelCase , __UpperCamelCase ) ):
for candidate in candidates:
_UpperCAmelCase = candidate + """\n""" + test_case
_UpperCAmelCase = (test_program, timeout, task_id, completion_id[task_id])
_UpperCAmelCase = executor.submit(__UpperCamelCase , *__UpperCamelCase )
futures.append(__UpperCamelCase )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(__UpperCamelCase ):
_UpperCAmelCase = future.result()
results[result["task_id"]].append((result["""completion_id"""], result) )
_UpperCAmelCase ,_UpperCAmelCase = [], []
for result in results.values():
result.sort()
_UpperCAmelCase = [r[1]["""passed"""] for r in result]
total.append(len(__UpperCamelCase ) )
correct.append(sum(__UpperCamelCase ) )
_UpperCAmelCase = np.array(__UpperCamelCase )
_UpperCAmelCase = np.array(__UpperCamelCase )
_UpperCAmelCase = k
_UpperCAmelCase = {f"""pass@{k}""": estimate_pass_at_k(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def _UpperCamelCase ( _A , _A , _A ) -> Dict:
"""simple docstring"""
def estimator(_A , _A , _A ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(_A , _A ):
_UpperCAmelCase = itertools.repeat(_A , len(_A ) )
else:
assert len(_A ) == len(_A )
_UpperCAmelCase = iter(_A )
return np.array([estimator(int(_A ) , int(_A ) , _A ) for n, c in zip(_A , _A )] ) | 19 | 1 |
"""simple docstring"""
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class a_ ( _UpperCAmelCase ):
def _snake_case ( self : str ) ->str:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] ) )
self.assertEqual(arr.type , pa.intaa() )
def _snake_case ( self : Any ) ->List[str]:
'''simple docstring'''
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() )
def _snake_case ( self : Optional[int] ) ->Tuple:
'''simple docstring'''
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) )
def _snake_case ( self : List[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) )
self.assertEqual(arr.type , pa.intaa() )
def _snake_case ( self : str ) ->Dict:
'''simple docstring'''
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
_UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) )
def _snake_case ( self : Union[str, Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) )
self.assertEqual(arr.type , pa.intaa() )
def _snake_case ( self : List[str] ) ->Any:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) )
self.assertEqual(arr.type , pa.string() )
def _snake_case ( self : List[Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) )
def _snake_case ( self : List[Any] ) ->Optional[Any]:
'''simple docstring'''
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
_UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) )
def _snake_case ( self : List[str] ) ->int:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) )
def _snake_case ( self : Optional[int] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , pa.string() )
@require_pil
def _snake_case ( self : str ) ->Optional[Any]:
'''simple docstring'''
import PIL.Image
_UpperCAmelCase = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) )
with patch(
"""datasets.arrow_writer.cast_to_python_objects""" , side_effect=__UpperCamelCase ) as mock_cast_to_python_objects:
_UpperCAmelCase = pa.array(TypedSequence([{"""path""": None, """bytes""": b"""image_bytes"""}, pil_image] , type=Image() ) )
_UpperCAmelCase ,_UpperCAmelCase = mock_cast_to_python_objects.call_args_list[-1]
self.assertIn("""optimize_list_casting""" , __UpperCamelCase )
self.assertFalse(kwargs["""optimize_list_casting"""] )
def _UpperCamelCase ( _A , _A ) -> Any:
"""simple docstring"""
_UpperCAmelCase = pa.BufferReader(_A ) if isinstance(_A , pa.Buffer ) else pa.memory_map(_A )
_UpperCAmelCase = pa.ipc.open_stream(_A )
_UpperCAmelCase = f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( _A , _A ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = pa.schema(_A ) if fields else None
with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def _UpperCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} )
with ArrowWriter(stream=_A , features=_A ) as writer:
writer.write({"""labels""": 0} )
writer.write({"""labels""": 1} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
_UpperCAmelCase = pa.BufferReader(output.getvalue() )
_UpperCAmelCase = pa.ipc.open_stream(_A )
_UpperCAmelCase = f.read_all()
_UpperCAmelCase = pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(_A )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
with ArrowWriter(
stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer:
with pytest.raises(_A ):
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
@pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] )
def _UpperCamelCase ( _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
with ArrowWriter(
stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer:
with pytest.raises(_A ):
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1_0 )
writer.write({"""col_1""": """bar""", """col_2""": 2} , key=1_0 )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
@pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] )
def _UpperCamelCase ( _A ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
with ArrowWriter(
stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 )
writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( _A , _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = pa.schema(_A ) if fields else None
with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer:
writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} )
writer.write_batch({"""col_1""": [], """col_2""": []} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( _A , _A ) -> Any:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = pa.schema(_A ) if fields else None
with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer:
writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( _A , _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = pa.schema(_A ) if fields else None
with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer:
writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) )
writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def _UpperCamelCase ( ) -> str:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
_UpperCAmelCase = os.path.join(_A , """test.arrow""" )
with ArrowWriter(path=_A , schema=pa.schema(_A ) ) as writer:
writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(_A , 1 )
def _UpperCamelCase ( _A ) -> int:
"""simple docstring"""
if pa.types.is_list(_A ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def _UpperCamelCase ( _A , _A ) -> Any:
"""simple docstring"""
if isinstance(lst[0] , _A ):
change_first_primitive_element_in_list(lst[0] , _A )
else:
_UpperCAmelCase = value
@pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] )
@pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def _UpperCamelCase ( _A , _A , _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = pa.array(TypedSequence(_A , optimized_int_type=_A ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
"""col, expected_dtype""" , [
("""attention_mask""", pa.inta()),
("""special_tokens_mask""", pa.inta()),
("""token_type_ids""", pa.inta()),
("""input_ids""", pa.intaa()),
("""other""", pa.intaa()),
] , )
@pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def _UpperCamelCase ( _A , _A , _A ) -> str:
"""simple docstring"""
_UpperCAmelCase = pa.array(OptimizedTypedSequence(_A , col=_A ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
_UpperCAmelCase = copy.deepcopy(_A )
_UpperCAmelCase = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(_A , _A )
_UpperCAmelCase = pa.array(OptimizedTypedSequence(_A , col=_A ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize("""raise_exception""" , [False, True] )
def _UpperCamelCase ( _A , _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = str(tmp_path / """dataset-train.arrow""" )
try:
with ArrowWriter(path=_A ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = """mock://dataset-train.arrow"""
with ArrowWriter(path=_A , storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs , type(_A ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(_A )
def _UpperCamelCase ( ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
with ParquetWriter(stream=_A ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_UpperCAmelCase = pa.BufferReader(output.getvalue() )
_UpperCAmelCase = pq.read_table(_A )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize("""embed_local_files""" , [False, True] )
def _UpperCamelCase ( _A , _A ) -> Any:
"""simple docstring"""
import PIL.Image
_UpperCAmelCase = str(tmp_path / """test_image_rgb.jpg""" )
PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_A , format="""png""" )
_UpperCAmelCase = pa.BufferOutputStream()
with ParquetWriter(
stream=_A , features=Features({"""image""": Image()} ) , embed_local_files=_A ) as writer:
writer.write({"""image""": image_path} )
writer.finalize()
_UpperCAmelCase = pa.BufferReader(output.getvalue() )
_UpperCAmelCase = pq.read_table(_A )
_UpperCAmelCase = pa_table.to_pydict()
if embed_local_files:
assert isinstance(out["""image"""][0]["""path"""] , _A )
with open(_A , """rb""" ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def _UpperCamelCase ( ) -> int:
"""simple docstring"""
_UpperCAmelCase = pa.schema([pa.field("""col_1""" , pa.string() , nullable=_A )] )
_UpperCAmelCase = pa.BufferOutputStream()
with ArrowWriter(stream=_A ) as writer:
writer._build_writer(inferred_schema=_A )
assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] ) | 19 |
"""simple docstring"""
from collections.abc import Callable
import numpy as np
def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> np.array:
"""simple docstring"""
_UpperCAmelCase = int(np.ceil((x_end - xa) / step_size ) )
_UpperCAmelCase = np.zeros((n + 1,) )
_UpperCAmelCase = ya
_UpperCAmelCase = xa
for k in range(_A ):
_UpperCAmelCase = y[k] + step_size * ode_func(_A , y[k] )
_UpperCAmelCase = y[k] + (
(step_size / 2) * (ode_func(_A , y[k] ) + ode_func(x + step_size , _A ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod() | 19 | 1 |
"""simple docstring"""
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class a_ ( _UpperCAmelCase ):
# to overwrite at feature extractactor specific tests
a : Any = None
a : str = None
@property
def _snake_case ( self : int ) ->Optional[Any]:
'''simple docstring'''
return self.feat_extract_tester.prepare_feat_extract_dict()
def _snake_case ( self : Optional[Any] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(__UpperCamelCase , """feature_size""" ) )
self.assertTrue(hasattr(__UpperCamelCase , """sampling_rate""" ) )
self.assertTrue(hasattr(__UpperCamelCase , """padding_value""" ) )
def _snake_case ( self : List[Any] ) ->int:
'''simple docstring'''
_UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_common()
_UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
_UpperCAmelCase = feat_extract.model_input_names[0]
_UpperCAmelCase = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(__UpperCamelCase ) == len(__UpperCamelCase ) for x, y in zip(__UpperCamelCase , processed_features[input_name] ) ) )
_UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__UpperCamelCase )
_UpperCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="""np""" )
_UpperCAmelCase = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
_UpperCAmelCase = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_torch
def _snake_case ( self : List[Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__UpperCamelCase )
_UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
_UpperCAmelCase = feat_extract.model_input_names[0]
_UpperCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="""pt""" )
_UpperCAmelCase = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
_UpperCAmelCase = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_tf
def _snake_case ( self : Union[str, Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=__UpperCamelCase )
_UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
_UpperCAmelCase = feat_extract.model_input_names[0]
_UpperCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="""tf""" )
_UpperCAmelCase = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
_UpperCAmelCase = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
def _snake_case ( self : Tuple , __UpperCamelCase : List[str]=False ) ->Union[str, Any]:
'''simple docstring'''
def _inputs_have_equal_length(__UpperCamelCase : Any ):
_UpperCAmelCase = len(input[0] )
for input_slice in input[1:]:
if len(__UpperCamelCase ) != length:
return False
return True
def _inputs_are_equal(__UpperCamelCase : Union[str, Any] , __UpperCamelCase : int ):
if len(__UpperCamelCase ) != len(__UpperCamelCase ):
return False
for input_slice_a, input_slice_a in zip(__UpperCamelCase , __UpperCamelCase ):
if not np.allclose(np.asarray(__UpperCamelCase ) , np.asarray(__UpperCamelCase ) , atol=1e-3 ):
return False
return True
_UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
_UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=__UpperCamelCase )
_UpperCAmelCase = feat_extract.model_input_names[0]
_UpperCAmelCase = BatchFeature({input_name: speech_inputs} )
_UpperCAmelCase = self.feat_extract_tester.seq_length_diff
_UpperCAmelCase = self.feat_extract_tester.max_seq_length + pad_diff
_UpperCAmelCase = self.feat_extract_tester.min_seq_length
_UpperCAmelCase = self.feat_extract_tester.batch_size
_UpperCAmelCase = self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
_UpperCAmelCase = feat_extract.pad(__UpperCamelCase , padding=__UpperCamelCase )
_UpperCAmelCase = input_a[input_name]
_UpperCAmelCase = feat_extract.pad(__UpperCamelCase , padding="""longest""" )
_UpperCAmelCase = input_a[input_name]
_UpperCAmelCase = feat_extract.pad(__UpperCamelCase , padding="""max_length""" , max_length=len(speech_inputs[-1] ) )
_UpperCAmelCase = input_a[input_name]
_UpperCAmelCase = feat_extract.pad(__UpperCamelCase , padding="""longest""" , return_tensors="""np""" )
_UpperCAmelCase = input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(__UpperCamelCase ):
feat_extract.pad(__UpperCamelCase , padding="""max_length""" )[input_name]
_UpperCAmelCase = feat_extract.pad(
__UpperCamelCase , padding="""max_length""" , max_length=__UpperCamelCase , return_tensors="""np""" )
_UpperCAmelCase = input_a[input_name]
self.assertFalse(_inputs_have_equal_length(__UpperCamelCase ) )
self.assertTrue(_inputs_have_equal_length(__UpperCamelCase ) )
self.assertTrue(_inputs_have_equal_length(__UpperCamelCase ) )
self.assertTrue(_inputs_are_equal(__UpperCamelCase , __UpperCamelCase ) )
self.assertTrue(len(input_a[0] ) == pad_min_length )
self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff )
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) )
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size )
# test padding for `pad_to_multiple_of` for List[int] + numpy
_UpperCAmelCase = feat_extract.pad(__UpperCamelCase , pad_to_multiple_of=10 )
_UpperCAmelCase = input_a[input_name]
_UpperCAmelCase = feat_extract.pad(__UpperCamelCase , padding="""longest""" , pad_to_multiple_of=10 )
_UpperCAmelCase = input_a[input_name]
_UpperCAmelCase = feat_extract.pad(
__UpperCamelCase , padding="""max_length""" , pad_to_multiple_of=10 , max_length=__UpperCamelCase )
_UpperCAmelCase = input_a[input_name]
_UpperCAmelCase = feat_extract.pad(
__UpperCamelCase , padding="""max_length""" , pad_to_multiple_of=10 , max_length=__UpperCamelCase , return_tensors="""np""" , )
_UpperCAmelCase = input_a[input_name]
self.assertTrue(all(len(__UpperCamelCase ) % 10 == 0 for x in input_a ) )
self.assertTrue(_inputs_are_equal(__UpperCamelCase , __UpperCamelCase ) )
_UpperCAmelCase = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(__UpperCamelCase ) == expected_mult_pad_length for x in input_a ) )
self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size )
# Check padding value is correct
_UpperCAmelCase = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) )
< 1e-3 )
self.assertTrue(
abs(
np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) )
< 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) )
< 1e-3 )
def _snake_case ( self : Dict , __UpperCamelCase : str=False ) ->List[Any]:
'''simple docstring'''
def _inputs_have_equal_length(__UpperCamelCase : Union[str, Any] ):
_UpperCAmelCase = len(input[0] )
for input_slice in input[1:]:
if len(__UpperCamelCase ) != length:
return False
return True
def _inputs_are_equal(__UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] ):
if len(__UpperCamelCase ) != len(__UpperCamelCase ):
return False
for input_slice_a, input_slice_a in zip(__UpperCamelCase , __UpperCamelCase ):
if not np.allclose(np.asarray(__UpperCamelCase ) , np.asarray(__UpperCamelCase ) , atol=1e-3 ):
return False
return True
_UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
_UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=__UpperCamelCase )
_UpperCAmelCase = feat_extract.model_input_names[0]
_UpperCAmelCase = BatchFeature({input_name: speech_inputs} )
# truncate to smallest
_UpperCAmelCase = feat_extract.pad(
__UpperCamelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , truncation=__UpperCamelCase )
_UpperCAmelCase = input_a[input_name]
_UpperCAmelCase = feat_extract.pad(__UpperCamelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) )
_UpperCAmelCase = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(__UpperCamelCase ) )
self.assertFalse(_inputs_have_equal_length(__UpperCamelCase ) )
# truncate to smallest with np
_UpperCAmelCase = feat_extract.pad(
__UpperCamelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" , truncation=__UpperCamelCase , )
_UpperCAmelCase = input_a[input_name]
_UpperCAmelCase = feat_extract.pad(
__UpperCamelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , return_tensors="""np""" )
_UpperCAmelCase = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(__UpperCamelCase ) )
self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(__UpperCamelCase ) )
# truncate to middle
_UpperCAmelCase = feat_extract.pad(
__UpperCamelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=__UpperCamelCase , return_tensors="""np""" , )
_UpperCAmelCase = input_a[input_name]
_UpperCAmelCase = feat_extract.pad(
__UpperCamelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , truncation=__UpperCamelCase )
_UpperCAmelCase = input_a[input_name]
_UpperCAmelCase = feat_extract.pad(
__UpperCamelCase , padding="""max_length""" , max_length=len(speech_inputs[1] ) , return_tensors="""np""" )
_UpperCAmelCase = input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) )
self.assertTrue(_inputs_have_equal_length(__UpperCamelCase ) )
self.assertTrue(_inputs_have_equal_length(__UpperCamelCase ) )
self.assertTrue(_inputs_are_equal(__UpperCamelCase , __UpperCamelCase ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(__UpperCamelCase ) )
self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) )
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(__UpperCamelCase ):
feat_extract.pad(__UpperCamelCase , truncation=__UpperCamelCase )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(__UpperCamelCase ):
feat_extract.pad(__UpperCamelCase , padding="""longest""" , truncation=__UpperCamelCase )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(__UpperCamelCase ):
feat_extract.pad(__UpperCamelCase , padding="""longest""" , truncation=__UpperCamelCase )[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(__UpperCamelCase ):
feat_extract.pad(__UpperCamelCase , padding="""max_length""" , truncation=__UpperCamelCase )[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
_UpperCAmelCase = 12
_UpperCAmelCase = feat_extract.pad(
__UpperCamelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__UpperCamelCase , truncation=__UpperCamelCase , )
_UpperCAmelCase = input_a[input_name]
_UpperCAmelCase = feat_extract.pad(
__UpperCamelCase , padding="""max_length""" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=__UpperCamelCase , )
_UpperCAmelCase = input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
_UpperCAmelCase = len(speech_inputs[0] )
if expected_length % pad_to_multiple_of != 0:
_UpperCAmelCase = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0] ) == expected_length )
self.assertTrue(_inputs_have_equal_length(__UpperCamelCase ) )
self.assertFalse(_inputs_have_equal_length(__UpperCamelCase ) )
def _snake_case ( self : List[Any] ) ->Union[str, Any]:
'''simple docstring'''
self._check_padding(numpify=__UpperCamelCase )
def _snake_case ( self : Dict ) ->Dict:
'''simple docstring'''
self._check_padding(numpify=__UpperCamelCase )
def _snake_case ( self : str ) ->Dict:
'''simple docstring'''
self._check_truncation(numpify=__UpperCamelCase )
def _snake_case ( self : List[str] ) ->Optional[Any]:
'''simple docstring'''
self._check_truncation(numpify=__UpperCamelCase )
@require_torch
def _snake_case ( self : int ) ->Any:
'''simple docstring'''
_UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
_UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_common()
_UpperCAmelCase = feat_extract.model_input_names[0]
_UpperCAmelCase = BatchFeature({input_name: speech_inputs} )
_UpperCAmelCase = feat_extract.pad(__UpperCamelCase , padding="""longest""" , return_tensors="""np""" )[input_name]
_UpperCAmelCase = feat_extract.pad(__UpperCamelCase , padding="""longest""" , return_tensors="""pt""" )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 )
@require_tf
def _snake_case ( self : Dict ) ->int:
'''simple docstring'''
_UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict )
_UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_common()
_UpperCAmelCase = feat_extract.model_input_names[0]
_UpperCAmelCase = BatchFeature({input_name: speech_inputs} )
_UpperCAmelCase = feat_extract.pad(__UpperCamelCase , padding="""longest""" , return_tensors="""np""" )[input_name]
_UpperCAmelCase = feat_extract.pad(__UpperCamelCase , padding="""longest""" , return_tensors="""tf""" )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 )
def _snake_case ( self : Dict ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = self.feat_extract_dict
_UpperCAmelCase = True
_UpperCAmelCase = self.feature_extraction_class(**__UpperCamelCase )
_UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_common()
_UpperCAmelCase = [len(__UpperCamelCase ) for x in speech_inputs]
_UpperCAmelCase = feat_extract.model_input_names[0]
_UpperCAmelCase = BatchFeature({input_name: speech_inputs} )
_UpperCAmelCase = feat_extract.pad(__UpperCamelCase , padding="""longest""" , return_tensors="""np""" )
self.assertIn("""attention_mask""" , __UpperCamelCase )
self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , __UpperCamelCase )
def _snake_case ( self : Any ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = self.feat_extract_dict
_UpperCAmelCase = True
_UpperCAmelCase = self.feature_extraction_class(**__UpperCamelCase )
_UpperCAmelCase = self.feat_extract_tester.prepare_inputs_for_common()
_UpperCAmelCase = [len(__UpperCamelCase ) for x in speech_inputs]
_UpperCAmelCase = feat_extract.model_input_names[0]
_UpperCAmelCase = BatchFeature({input_name: speech_inputs} )
_UpperCAmelCase = min(__UpperCamelCase )
_UpperCAmelCase = feat_extract.pad(
__UpperCamelCase , padding="""max_length""" , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="""np""" )
self.assertIn("""attention_mask""" , __UpperCamelCase )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) | 19 |
"""simple docstring"""
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''',
datefmt='''%Y-%m-%d %H:%M:%S''',
level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(),
stream=sys.stdout,
)
a : List[str] = logging.getLogger(__name__)
a : int = {'''facebook/bart-base''': BartForConditionalGeneration}
a : Dict = {'''facebook/bart-base''': BartTokenizer}
def _UpperCamelCase ( ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" )
parser.add_argument(
"""--validation_file""" , type=_A , default=_A , help="""A csv or a json file containing the validation data.""" )
parser.add_argument(
"""--max_length""" , type=_A , default=5 , help="""The maximum total input sequence length after tokenization.""" , )
parser.add_argument(
"""--num_beams""" , type=_A , default=_A , help=(
"""Number of beams to use for evaluation. This argument will be """
"""passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."""
) , )
parser.add_argument(
"""--model_name_or_path""" , type=_A , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_A , )
parser.add_argument(
"""--config_name""" , type=_A , default=_A , help="""Pretrained config name or path if not the same as model_name""" , )
parser.add_argument(
"""--device""" , type=_A , default="""cpu""" , help="""Device where the model will be run""" , )
parser.add_argument("""--output_file_path""" , type=_A , default=_A , help="""Where to store the final ONNX file.""" )
_UpperCAmelCase = parser.parse_args()
return args
def _UpperCamelCase ( _A , _A="cpu" ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = model_dict[model_name].from_pretrained(_A ).to(_A )
_UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_A )
if model_name in ["facebook/bart-base"]:
_UpperCAmelCase = 0
_UpperCAmelCase = None
_UpperCAmelCase = 0
return huggingface_model, tokenizer
def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> Optional[int]:
"""simple docstring"""
model.eval()
_UpperCAmelCase = None
_UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_A ) )
with torch.no_grad():
_UpperCAmelCase = """My friends are cool but they eat too many carbs."""
_UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="""pt""" ).to(model.device )
_UpperCAmelCase = model.generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=_A , max_length=_A , early_stopping=_A , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
_A , (
inputs["""input_ids"""],
inputs["""attention_mask"""],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , _A , opset_version=1_4 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={
"""input_ids""": {0: """batch""", 1: """seq"""},
"""output_ids""": {0: """batch""", 1: """seq_out"""},
} , example_outputs=_A , )
logger.info("""Model exported to {}""".format(_A ) )
_UpperCAmelCase = remove_dup_initializers(os.path.abspath(_A ) )
logger.info("""Deduplicated and optimized model written to {}""".format(_A ) )
_UpperCAmelCase = onnxruntime.InferenceSession(_A )
_UpperCAmelCase = ort_sess.run(
_A , {
"""input_ids""": inputs["""input_ids"""].cpu().numpy(),
"""attention_mask""": inputs["""attention_mask"""].cpu().numpy(),
"""num_beams""": np.array(_A ),
"""max_length""": np.array(_A ),
"""decoder_start_token_id""": np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 )
logger.info("""Model outputs from torch and ONNX Runtime are similar.""" )
logger.info("""Success.""" )
def _UpperCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = parse_args()
_UpperCAmelCase = 5
_UpperCAmelCase = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
_UpperCAmelCase = torch.device(args.device )
_UpperCAmelCase ,_UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _A )
if model.config.decoder_start_token_id is None:
raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" )
model.to(_A )
if args.max_length:
_UpperCAmelCase = args.max_length
if args.num_beams:
_UpperCAmelCase = args.num_beams
if args.output_file_path:
_UpperCAmelCase = args.output_file_path
else:
_UpperCAmelCase = """BART.onnx"""
logger.info("""Exporting model to ONNX""" )
export_and_validate_model(_A , _A , _A , _A , _A )
if __name__ == "__main__":
main() | 19 | 1 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
a : Optional[int] = Path(__file__).resolve().parents[3] / '''src'''
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(4_2)
a : str = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''}
a : List[Any] = '''zero2'''
a : Any = '''zero3'''
a : List[str] = [ZEROa, ZEROa]
def _UpperCamelCase ( _A , _A , _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = parameterized.to_safe_name("""_""".join(str(_A ) for x in param.args ) )
return F"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
a : List[str] = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class a_ ( _UpperCAmelCase ):
@parameterized.expand(__UpperCamelCase , name_func=__UpperCamelCase )
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ) ->Optional[int]:
'''simple docstring'''
self.run_and_check(
stage=__UpperCamelCase , model=__UpperCamelCase , distributed=__UpperCamelCase , fpaa=__UpperCamelCase , )
@require_torch_multi_gpu
@parameterized.expand(__UpperCamelCase , name_func=__UpperCamelCase )
def _snake_case ( self : Dict , __UpperCamelCase : int , __UpperCamelCase : Union[str, Any] ) ->int:
'''simple docstring'''
self.run_and_check(
stage=__UpperCamelCase , model=__UpperCamelCase , distributed=__UpperCamelCase , fpaa=__UpperCamelCase , )
@parameterized.expand(__UpperCamelCase , name_func=__UpperCamelCase )
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : int ) ->Dict:
'''simple docstring'''
self.run_and_check(
stage=__UpperCamelCase , model=__UpperCamelCase , distributed=__UpperCamelCase , fpaa=__UpperCamelCase , )
@require_torch_multi_gpu
@parameterized.expand(__UpperCamelCase , name_func=__UpperCamelCase )
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] ) ->Any:
'''simple docstring'''
self.run_and_check(
stage=__UpperCamelCase , model=__UpperCamelCase , distributed=__UpperCamelCase , fpaa=__UpperCamelCase , )
def _snake_case ( self : Tuple , __UpperCamelCase : Tuple ) ->Optional[Any]:
'''simple docstring'''
pass
def _snake_case ( self : str , __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : int = 10 , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = models[model]
_UpperCAmelCase = self.run_trainer(
stage=__UpperCamelCase , model_name=__UpperCamelCase , eval_steps=__UpperCamelCase , num_train_epochs=1 , distributed=__UpperCamelCase , fpaa=__UpperCamelCase , )
self.do_checks(__UpperCamelCase )
return output_dir
def _snake_case ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : int = 10 , __UpperCamelCase : int = 1 , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , ) ->Any:
'''simple docstring'''
_UpperCAmelCase = self.get_auto_remove_tmp_dir("""./xxx""" , after=__UpperCamelCase )
_UpperCAmelCase = f"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(__UpperCamelCase )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
_UpperCAmelCase = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
_UpperCAmelCase = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
_UpperCAmelCase = self.get_launcher(__UpperCamelCase )
_UpperCAmelCase = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(__UpperCamelCase , env=self.get_env() )
return output_dir
def _snake_case ( self : Optional[int] , __UpperCamelCase : int=False ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = min(2 , get_gpu_count() ) if distributed else 1
return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split() | 19 |
"""simple docstring"""
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def _UpperCamelCase ( _A , _A=None ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = None
if token is not None:
_UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
_UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
_UpperCAmelCase = requests.get(_A , headers=_A ).json()
_UpperCAmelCase = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
_UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(_A ):
_UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" , headers=_A ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCamelCase ( _A , _A=None ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = None
if token is not None:
_UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
_UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"""
_UpperCAmelCase = requests.get(_A , headers=_A ).json()
_UpperCAmelCase = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
_UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(_A ):
_UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" , headers=_A ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCamelCase ( _A , _A , _A , _A ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = None
if token is not None:
_UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
_UpperCAmelCase = requests.get(_A , headers=_A , allow_redirects=_A )
_UpperCAmelCase = result.headers["""Location"""]
_UpperCAmelCase = requests.get(_A , allow_redirects=_A )
_UpperCAmelCase = os.path.join(_A , F"""{artifact_name}.zip""" )
with open(_A , """wb""" ) as fp:
fp.write(response.content )
def _UpperCamelCase ( _A , _A=None ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = []
_UpperCAmelCase = []
_UpperCAmelCase = None
with zipfile.ZipFile(_A ) as z:
for filename in z.namelist():
if not os.path.isdir(_A ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(_A ) as f:
for line in f:
_UpperCAmelCase = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_UpperCAmelCase = line[: line.index(""": """ )]
_UpperCAmelCase = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
_UpperCAmelCase = line[len("""FAILED """ ) :]
failed_tests.append(_A )
elif filename == "job_name.txt":
_UpperCAmelCase = line
if len(_A ) != len(_A ):
raise ValueError(
F"""`errors` and `failed_tests` should have the same number of elements. Got {len(_A )} for `errors` """
F"""and {len(_A )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"""
""" problem.""" )
_UpperCAmelCase = None
if job_name and job_links:
_UpperCAmelCase = job_links.get(_A , _A )
# A list with elements of the form (line of error, error, failed test)
_UpperCAmelCase = [x + [y] + [job_link] for x, y in zip(_A , _A )]
return result
def _UpperCamelCase ( _A , _A=None ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = []
_UpperCAmelCase = [os.path.join(_A , _A ) for p in os.listdir(_A ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(_A , job_links=_A ) )
return errors
def _UpperCamelCase ( _A , _A=None ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = Counter()
counter.update([x[1] for x in logs] )
_UpperCAmelCase = counter.most_common()
_UpperCAmelCase = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_UpperCAmelCase = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
_UpperCAmelCase = dict(sorted(r.items() , key=lambda _A : item[1]["count"] , reverse=_A ) )
return r
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
_UpperCAmelCase = test.split("""/""" )[2]
else:
_UpperCAmelCase = None
return test
def _UpperCamelCase ( _A , _A=None ) -> Any:
"""simple docstring"""
_UpperCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs]
_UpperCAmelCase = [x for x in logs if x[2] is not None]
_UpperCAmelCase = {x[2] for x in logs}
_UpperCAmelCase = {}
for test in tests:
_UpperCAmelCase = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_UpperCAmelCase = counter.most_common()
_UpperCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_UpperCAmelCase = sum(error_counts.values() )
if n_errors > 0:
_UpperCAmelCase = {"""count""": n_errors, """errors""": error_counts}
_UpperCAmelCase = dict(sorted(r.items() , key=lambda _A : item[1]["count"] , reverse=_A ) )
return r
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = """| no. | error | status |"""
_UpperCAmelCase = """|-:|:-|:-|"""
_UpperCAmelCase = [header, sep]
for error in reduced_by_error:
_UpperCAmelCase = reduced_by_error[error]["""count"""]
_UpperCAmelCase = F"""| {count} | {error[:1_0_0]} | |"""
lines.append(_A )
return "\n".join(_A )
def _UpperCamelCase ( _A ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = """| model | no. of errors | major error | count |"""
_UpperCAmelCase = """|-:|-:|-:|-:|"""
_UpperCAmelCase = [header, sep]
for model in reduced_by_model:
_UpperCAmelCase = reduced_by_model[model]["""count"""]
_UpperCAmelCase ,_UpperCAmelCase = list(reduced_by_model[model]["""errors"""].items() )[0]
_UpperCAmelCase = F"""| {model} | {count} | {error[:6_0]} | {_count} |"""
lines.append(_A )
return "\n".join(_A )
if __name__ == "__main__":
a : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''')
parser.add_argument(
'''--output_dir''',
type=str,
required=True,
help='''Where to store the downloaded artifacts and other result files.''',
)
parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''')
a : Dict = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
a : Tuple = get_job_links(args.workflow_run_id, token=args.token)
a : Tuple = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
a : List[Any] = k.find(''' / ''')
a : Tuple = k[index + len(''' / ''') :]
a : int = v
with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
a : Tuple = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
a : Optional[int] = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
a : Union[str, Any] = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
a : Optional[int] = counter.most_common(3_0)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
a : int = reduce_by_error(errors)
a : str = reduce_by_model(errors)
a : int = make_github_table(reduced_by_error)
a : Optional[int] = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa) | 19 | 1 |
"""simple docstring"""
import math
import sys
import cva
import numpy as np
def _UpperCamelCase ( _A , _A ) -> np.ndarray:
"""simple docstring"""
_UpperCAmelCase = math.sqrt(_A )
_UpperCAmelCase = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def _UpperCamelCase ( _A , _A , _A , _A ) -> np.ndarray:
"""simple docstring"""
_UpperCAmelCase = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def _UpperCamelCase ( _A , _A ) -> np.ndarray:
"""simple docstring"""
_UpperCAmelCase = np.zeros((kernel_size, kernel_size) )
for i in range(0 , _A ):
for j in range(0 , _A ):
_UpperCAmelCase = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(_A , _A )
def _UpperCamelCase ( _A , _A , _A , _A , ) -> np.ndarray:
"""simple docstring"""
_UpperCAmelCase = np.zeros(img.shape )
_UpperCAmelCase = get_gauss_kernel(_A , _A )
_UpperCAmelCase ,_UpperCAmelCase = img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
_UpperCAmelCase = get_slice(_A , _A , _A , _A )
_UpperCAmelCase = img_s - img_s[kernel_size // 2, kernel_size // 2]
_UpperCAmelCase = vec_gaussian(_A , _A )
_UpperCAmelCase = np.multiply(_A , _A )
_UpperCAmelCase = np.multiply(_A , _A )
_UpperCAmelCase = np.sum(_A ) / np.sum(_A )
_UpperCAmelCase = val
return imga
def _UpperCamelCase ( _A ) -> tuple:
"""simple docstring"""
_UpperCAmelCase = args[1] if args[1:] else """../image_data/lena.jpg"""
_UpperCAmelCase = float(args[2] ) if args[2:] else 1.0
_UpperCAmelCase = float(args[3] ) if args[3:] else 1.0
if args[4:]:
_UpperCAmelCase = int(args[4] )
_UpperCAmelCase = kernel_size + abs(kernel_size % 2 - 1 )
else:
_UpperCAmelCase = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
a , a , a , a : int = parse_args(sys.argv)
a : Union[str, Any] = cva.imread(filename, 0)
cva.imshow('''input image''', img)
a : str = img / 2_5_5
a : Union[str, Any] = out.astype('''float32''')
a : str = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
a : List[str] = out * 2_5_5
a : Any = np.uinta(out)
cva.imshow('''output image''', out)
cva.waitKey(0)
cva.destroyAllWindows() | 19 |
"""simple docstring"""
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class a_ ( _UpperCAmelCase ):
a : Any = ['image_processor', 'tokenizer']
a : Optional[int] = 'AutoImageProcessor'
a : Any = 'AutoTokenizer'
def __init__( self : List[str] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=None , **__UpperCamelCase : List[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCamelCase , )
_UpperCAmelCase = kwargs.pop("""feature_extractor""" )
_UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = self.image_processor
_UpperCAmelCase = False
def __call__( self : Union[str, Any] , *__UpperCamelCase : str , **__UpperCamelCase : Optional[Any] ) ->List[str]:
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = kwargs.pop("""images""" , __UpperCamelCase )
_UpperCAmelCase = kwargs.pop("""text""" , __UpperCamelCase )
if len(__UpperCamelCase ) > 0:
_UpperCAmelCase = args[0]
_UpperCAmelCase = args[1:]
if images is None and text is None:
raise ValueError("""You need to specify either an `images` or `text` input to process.""" )
if images is not None:
_UpperCAmelCase = self.image_processor(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase )
if text is not None:
_UpperCAmelCase = self.tokenizer(__UpperCamelCase , **__UpperCamelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
_UpperCAmelCase = encodings["""input_ids"""]
return inputs
def _snake_case ( self : Union[str, Any] , *__UpperCamelCase : int , **__UpperCamelCase : Tuple ) ->Tuple:
'''simple docstring'''
return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : Tuple , *__UpperCamelCase : int , **__UpperCamelCase : Union[str, Any] ) ->int:
'''simple docstring'''
return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase )
@contextmanager
def _snake_case ( self : Tuple ) ->Union[str, Any]:
'''simple docstring'''
warnings.warn(
"""`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """
"""labels by using the argument `text` of the regular `__call__` method (either in the same call as """
"""your images inputs, or in a separate call.""" )
_UpperCAmelCase = True
_UpperCAmelCase = self.tokenizer
yield
_UpperCAmelCase = self.image_processor
_UpperCAmelCase = False
def _snake_case ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : Union[str, Any]=None ) ->List[str]:
'''simple docstring'''
if added_vocab is None:
_UpperCAmelCase = self.tokenizer.get_added_vocab()
_UpperCAmelCase = {}
while tokens:
_UpperCAmelCase = re.search(r"""<s_(.*?)>""" , __UpperCamelCase , re.IGNORECASE )
if start_token is None:
break
_UpperCAmelCase = start_token.group(1 )
_UpperCAmelCase = re.search(rf"""</s_{key}>""" , __UpperCamelCase , re.IGNORECASE )
_UpperCAmelCase = start_token.group()
if end_token is None:
_UpperCAmelCase = tokens.replace(__UpperCamelCase , """""" )
else:
_UpperCAmelCase = end_token.group()
_UpperCAmelCase = re.escape(__UpperCamelCase )
_UpperCAmelCase = re.escape(__UpperCamelCase )
_UpperCAmelCase = re.search(f"""{start_token_escaped}(.*?){end_token_escaped}""" , __UpperCamelCase , re.IGNORECASE )
if content is not None:
_UpperCAmelCase = content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
_UpperCAmelCase = self.tokenajson(__UpperCamelCase , is_inner_value=__UpperCamelCase , added_vocab=__UpperCamelCase )
if value:
if len(__UpperCamelCase ) == 1:
_UpperCAmelCase = value[0]
_UpperCAmelCase = value
else: # leaf nodes
_UpperCAmelCase = []
for leaf in content.split(r"""<sep/>""" ):
_UpperCAmelCase = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
_UpperCAmelCase = leaf[1:-2] # for categorical special tokens
output[key].append(__UpperCamelCase )
if len(output[key] ) == 1:
_UpperCAmelCase = output[key][0]
_UpperCAmelCase = tokens[tokens.find(__UpperCamelCase ) + len(__UpperCamelCase ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:] , is_inner_value=__UpperCamelCase , added_vocab=__UpperCamelCase )
if len(__UpperCamelCase ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def _snake_case ( self : Tuple ) ->Optional[int]:
'''simple docstring'''
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __UpperCamelCase , )
return self.image_processor_class
@property
def _snake_case ( self : List[str] ) ->Dict:
'''simple docstring'''
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __UpperCamelCase , )
return self.image_processor | 19 | 1 |
"""simple docstring"""
def _UpperCamelCase ( _A = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int:
"""simple docstring"""
try:
_UpperCAmelCase = int(_A )
except (TypeError, ValueError):
raise TypeError("""Parameter n must be int or castable to int.""" )
if n <= 0:
raise ValueError("""Parameter n must be greater than or equal to one.""" )
_UpperCAmelCase = 2
_UpperCAmelCase = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
_UpperCAmelCase = i
while n % i == 0:
_UpperCAmelCase = n // i
i += 1
return int(_A )
if __name__ == "__main__":
print(F"{solution() = }") | 19 |
"""simple docstring"""
import colorsys
from PIL import Image # type: ignore
def _UpperCamelCase ( _A , _A , _A ) -> float:
"""simple docstring"""
_UpperCAmelCase = x
_UpperCAmelCase = y
for step in range(_A ): # noqa: B007
_UpperCAmelCase = a * a - b * b + x
_UpperCAmelCase = 2 * a * b + y
_UpperCAmelCase = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def _UpperCamelCase ( _A ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return (2_5_5, 2_5_5, 2_5_5)
def _UpperCamelCase ( _A ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(_A , 1 , 1 ) )
def _UpperCamelCase ( _A = 8_0_0 , _A = 6_0_0 , _A = -0.6 , _A = 0 , _A = 3.2 , _A = 5_0 , _A = True , ) -> Image.Image:
"""simple docstring"""
_UpperCAmelCase = Image.new("""RGB""" , (image_width, image_height) )
_UpperCAmelCase = img.load()
# loop through the image-coordinates
for image_x in range(_A ):
for image_y in range(_A ):
# determine the figure-coordinates based on the image-coordinates
_UpperCAmelCase = figure_width / image_width * image_height
_UpperCAmelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width
_UpperCAmelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height
_UpperCAmelCase = get_distance(_A , _A , _A )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
_UpperCAmelCase = get_color_coded_rgb(_A )
else:
_UpperCAmelCase = get_black_and_white_rgb(_A )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
a : List[str] = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show() | 19 | 1 |
"""simple docstring"""
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
a : Union[str, Any] = logging.getLogger(__name__)
def _UpperCamelCase ( ) -> int:
"""simple docstring"""
_UpperCAmelCase = argparse.ArgumentParser(
description="""Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.""" )
parser.add_argument(
"""--dataset_name""" , type=_A , default="""wikitext""" , help="""Name of the training. Explore datasets at: hf.co/datasets.""" , )
parser.add_argument(
"""--dataset_config""" , type=_A , default="""wikitext-103-raw-v1""" , help="""Configuration name of the dataset.""" )
parser.add_argument(
"""--tokenizer_name_or_path""" , type=_A , default="""sayakpaul/unigram-tokenizer-wikitext""" , help="""Tokenizer identifier. Can be a local filepath or a Hub identifier.""" , )
parser.add_argument(
"""--shard_size""" , type=_A , default=1_0_0_0 , help="""Number of entries to go in a single shard.""" , )
parser.add_argument("""--split""" , type=_A , default="""train""" , choices=["""train""", """test""", """validation"""] )
parser.add_argument(
"""--limit""" , default=_A , type=_A , help="""Limit the number of shards (used for debugging).""" , )
parser.add_argument(
"""--max_length""" , type=_A , default=5_1_2 , help="""Maximum sequence length. For training on TPUs, it helps to have a maximum"""
""" sequence length that is a multiple of 8.""" , )
parser.add_argument(
"""--output_dir""" , default="""tf-tpu""" , type=_A , help="""Output directory where the TFRecord shards will be saved. If the"""
""" path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord"""
""" shards will be directly saved to a Google Cloud Storage bucket.""" , )
_UpperCAmelCase = parser.parse_args()
return args
def _UpperCamelCase ( _A ) -> Tuple:
"""simple docstring"""
def fn(_A ):
return tokenizer(examples["""text"""] )
return fn
def _UpperCamelCase ( _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = []
for i in range(len(tokenized_data["""input_ids"""] ) ):
_UpperCAmelCase = {
"""input_ids""": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["""input_ids"""][i] ) ),
"""attention_mask""": tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data["""attention_mask"""][i] ) ),
}
_UpperCAmelCase = tf.train.Features(feature=_A )
_UpperCAmelCase = tf.train.Example(features=_A )
_UpperCAmelCase = example.SerializeToString()
records.append(_A )
return records
def _UpperCamelCase ( _A ) -> int:
"""simple docstring"""
_UpperCAmelCase = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
_UpperCAmelCase = min(len(_A ) , args.limit )
_UpperCAmelCase = dataset.select(range(_A ) )
print(F"""Limiting the dataset to {args.limit} entries.""" )
_UpperCAmelCase = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
_UpperCAmelCase = os.path.join(args.output_dir , args.split )
if not os.path.exists(_A ):
os.makedirs(_A )
else:
_UpperCAmelCase = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
_UpperCAmelCase = tokenize_function(_A )
_UpperCAmelCase = dataset.map(_A , batched=_A , num_proc=4 , remove_columns=["""text"""] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(_A ):
# Concatenate all texts.
_UpperCAmelCase = {k: sum(examples[k] , [] ) for k in examples.keys()}
_UpperCAmelCase = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
_UpperCAmelCase = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
_UpperCAmelCase = {
k: [t[i : i + args.max_length] for i in range(0 , _A , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
_UpperCAmelCase = dataset_tokenized.map(_A , batched=_A , batch_size=1_0_0_0 , num_proc=4 )
_UpperCAmelCase = 0
_UpperCAmelCase = 0
for shard in range(0 , len(_A ) , args.shard_size ):
_UpperCAmelCase = grouped_dataset[shard : shard + args.shard_size]
_UpperCAmelCase = len(dataset_snapshot["""input_ids"""] )
_UpperCAmelCase = os.path.join(_A , F"""dataset-{shard_count}-{records_containing}.tfrecord""" )
_UpperCAmelCase = get_serialized_examples(_A )
with tf.io.TFRecordWriter(_A ) as out_file:
for i in range(len(_A ) ):
_UpperCAmelCase = serialized_examples[i]
out_file.write(_A )
print("""Wrote file {} containing {} records""".format(_A , _A ) )
shard_count += 1
total_records += records_containing
with open(F"""split-{args.split}-records-count.txt""" , """w""" ) as f:
print(F"""Total {args.split} records: {total_records}""" , file=_A )
if __name__ == "__main__":
a : str = parse_args()
main(args) | 19 |
"""simple docstring"""
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class a_ ( nn.Module ):
def __init__( self : List[str] , __UpperCamelCase : int = 16 , __UpperCamelCase : int = 88 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 1 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 32 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : str = "geglu" , __UpperCamelCase : Optional[int] = None , ) ->Dict:
'''simple docstring'''
super().__init__()
_UpperCAmelCase = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=__UpperCamelCase , attention_head_dim=__UpperCamelCase , in_channels=__UpperCamelCase , num_layers=__UpperCamelCase , dropout=__UpperCamelCase , norm_num_groups=__UpperCamelCase , cross_attention_dim=__UpperCamelCase , attention_bias=__UpperCamelCase , sample_size=__UpperCamelCase , num_vector_embeds=__UpperCamelCase , activation_fn=__UpperCamelCase , num_embeds_ada_norm=__UpperCamelCase , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
_UpperCAmelCase = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
_UpperCAmelCase = [77, 2_57]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
_UpperCAmelCase = [1, 0]
def _snake_case ( self : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : bool = True , ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = hidden_states
_UpperCAmelCase = []
_UpperCAmelCase = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
_UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
_UpperCAmelCase = self.transformer_index_for_condition[i]
_UpperCAmelCase = self.transformers[transformer_index](
__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , timestep=__UpperCamelCase , cross_attention_kwargs=__UpperCamelCase , return_dict=__UpperCamelCase , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
_UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
_UpperCAmelCase = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=__UpperCamelCase ) | 19 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
a : List[Any] = logging.get_logger(__name__)
a : Tuple = '''▁'''
a : int = {'''vocab_file''': '''sentencepiece.bpe.model'''}
a : Optional[int] = {
'''vocab_file''': {
'''facebook/mbart-large-en-ro''': (
'''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model'''
),
'''facebook/mbart-large-cc25''': (
'''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model'''
),
}
}
a : List[str] = {
'''facebook/mbart-large-en-ro''': 1_0_2_4,
'''facebook/mbart-large-cc25''': 1_0_2_4,
}
# fmt: off
a : List[Any] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''']
class a_ ( _UpperCAmelCase ):
a : Tuple = VOCAB_FILES_NAMES
a : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
a : Optional[Any] = ['input_ids', 'attention_mask']
a : List[int] = []
a : List[int] = []
def __init__( self : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Any="<s>" , __UpperCamelCase : Any="</s>" , __UpperCamelCase : Dict="</s>" , __UpperCamelCase : Optional[Any]="<s>" , __UpperCamelCase : str="<unk>" , __UpperCamelCase : Optional[Any]="<pad>" , __UpperCamelCase : List[Any]="<mask>" , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Optional[Dict[str, Any]] = None , __UpperCamelCase : Any=None , **__UpperCamelCase : Tuple , ) ->Any:
'''simple docstring'''
_UpperCAmelCase = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token
_UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , tokenizer_file=__UpperCamelCase , src_lang=__UpperCamelCase , tgt_lang=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , )
_UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__UpperCamelCase ) )
_UpperCAmelCase = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
_UpperCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
_UpperCAmelCase = 1
_UpperCAmelCase = len(self.sp_model )
_UpperCAmelCase = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__UpperCamelCase )
}
_UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()}
_UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
_UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
_UpperCAmelCase = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
_UpperCAmelCase = src_lang if src_lang is not None else """en_XX"""
_UpperCAmelCase = self.lang_code_to_id[self._src_lang]
_UpperCAmelCase = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self : List[str] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.__dict__.copy()
_UpperCAmelCase = None
_UpperCAmelCase = self.sp_model.serialized_model_proto()
return state
def __setstate__( self : Union[str, Any] , __UpperCamelCase : Dict ) ->str:
'''simple docstring'''
_UpperCAmelCase = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
_UpperCAmelCase = {}
_UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def _snake_case ( self : Any ) ->List[str]:
'''simple docstring'''
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def _snake_case ( self : Optional[Any] ) ->str:
'''simple docstring'''
return self._src_lang
@src_lang.setter
def _snake_case ( self : int , __UpperCamelCase : str ) ->None:
'''simple docstring'''
_UpperCAmelCase = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def _snake_case ( self : List[str] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ) ->List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase )
_UpperCAmelCase = [1] * len(self.prefix_tokens )
_UpperCAmelCase = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(__UpperCamelCase )) + suffix_ones
return prefix_ones + ([0] * len(__UpperCamelCase )) + ([0] * len(__UpperCamelCase )) + suffix_ones
def _snake_case ( self : str , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) ->List[int]:
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _snake_case ( self : List[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) ->List[int]:
'''simple docstring'''
_UpperCAmelCase = [self.sep_token_id]
_UpperCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] , __UpperCamelCase : Optional[str] , **__UpperCamelCase : Tuple ) ->int:
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
_UpperCAmelCase = src_lang
_UpperCAmelCase = self(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = self.convert_tokens_to_ids(__UpperCamelCase )
_UpperCAmelCase = tgt_lang_id
return inputs
def _snake_case ( self : Optional[int] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _snake_case ( self : Tuple , __UpperCamelCase : str ) ->List[str]:
'''simple docstring'''
return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase )
def _snake_case ( self : Dict , __UpperCamelCase : Any ) ->Union[str, Any]:
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
_UpperCAmelCase = self.sp_model.PieceToId(__UpperCamelCase )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _snake_case ( self : int , __UpperCamelCase : List[Any] ) ->Tuple:
'''simple docstring'''
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _snake_case ( self : Dict , __UpperCamelCase : Dict ) ->Any:
'''simple docstring'''
_UpperCAmelCase = """""".join(__UpperCamelCase ).replace(__UpperCamelCase , """ """ ).strip()
return out_string
def _snake_case ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) ->Tuple[str]:
'''simple docstring'''
if not os.path.isdir(__UpperCamelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_UpperCAmelCase = os.path.join(
__UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCamelCase , """wb""" ) as fi:
_UpperCAmelCase = self.sp_model.serialized_model_proto()
fi.write(__UpperCamelCase )
return (out_vocab_file,)
def _snake_case ( self : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : str = "en_XX" , __UpperCamelCase : Optional[List[str]] = None , __UpperCamelCase : str = "ro_RO" , **__UpperCamelCase : Tuple , ) ->BatchEncoding:
'''simple docstring'''
_UpperCAmelCase = src_lang
_UpperCAmelCase = tgt_lang
return super().prepare_seqaseq_batch(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : Tuple ) ->Any:
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def _snake_case ( self : Optional[int] ) ->Union[str, Any]:
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def _snake_case ( self : List[str] , __UpperCamelCase : Tuple ) ->None:
'''simple docstring'''
_UpperCAmelCase = self.lang_code_to_id[src_lang]
_UpperCAmelCase = []
_UpperCAmelCase = [self.eos_token_id, self.cur_lang_code]
def _snake_case ( self : Optional[int] , __UpperCamelCase : str ) ->None:
'''simple docstring'''
_UpperCAmelCase = self.lang_code_to_id[lang]
_UpperCAmelCase = []
_UpperCAmelCase = [self.eos_token_id, self.cur_lang_code] | 19 |
"""simple docstring"""
import argparse
import torch
from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCamelCase ( _A , _A , _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = LxmertConfig.from_json_file(_A )
print(F"""Building PyTorch model from configuration: {config}""" )
_UpperCAmelCase = LxmertForPreTraining(_A )
# Load weights from tf checkpoint
load_tf_weights_in_lxmert(_A , _A , _A )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , _A )
if __name__ == "__main__":
a : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
a : Union[str, Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path) | 19 | 1 |
"""simple docstring"""
import numpy as np
import torch
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
import datasets
from datasets import logging
a : List[Any] = '''\
'''
a : List[Any] = '''
Perplexity (PPL) is one of the most common metrics for evaluating language models.
It is defined as the exponentiated average negative log-likelihood of a sequence.
For more information, see https://huggingface.co/docs/transformers/perplexity
'''
a : Union[str, Any] = '''
Args:
model_id (str): model used for calculating Perplexity
NOTE: Perplexity can only be calculated for causal language models.
This includes models such as gpt2, causal variations of bert,
causal versions of t5, and more (the full list can be found
in the AutoModelForCausalLM documentation here:
https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )
input_texts (list of str): input text, each separate text snippet
is one list entry.
batch_size (int): the batch size to run texts through the model. Defaults to 16.
add_start_token (bool): whether to add the start token to the texts,
so the perplexity can include the probability of the first word. Defaults to True.
device (str): device to run on, defaults to \'cuda\' when available
Returns:
perplexity: dictionary containing the perplexity scores for the texts
in the input list, as well as the mean perplexity. If one of the input texts is
longer than the max input length of the model, then it is truncated to the
max length for the perplexity computation.
Examples:
Example 1:
>>> perplexity = datasets.load_metric("perplexity")
>>> input_texts = ["lorem ipsum", "Happy Birthday!", "Bienvenue"]
>>> results = perplexity.compute(model_id=\'gpt2\',
... add_start_token=False,
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
[\'perplexities\', \'mean_perplexity\']
>>> print(round(results["mean_perplexity"], 2))
78.22
>>> print(round(results["perplexities"][0], 2))
11.11
Example 2:
>>> perplexity = datasets.load_metric("perplexity")
>>> input_texts = datasets.load_dataset("wikitext",
... "wikitext-2-raw-v1",
... split="test")["text"][:50] # doctest:+ELLIPSIS
[...]
>>> input_texts = [s for s in input_texts if s!=\'\']
>>> results = perplexity.compute(model_id=\'gpt2\',
... input_texts=input_texts) # doctest:+ELLIPSIS
>>> print(list(results.keys()))
[\'perplexities\', \'mean_perplexity\']
>>> print(round(results["mean_perplexity"], 2))
60.35
>>> print(round(results["perplexities"][0], 2))
81.12
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
def _snake_case ( self : Any ) ->List[str]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""input_texts""": datasets.Value("""string""" ),
} ) , reference_urls=["""https://huggingface.co/docs/transformers/perplexity"""] , )
def _snake_case ( self : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : int = 16 , __UpperCamelCase : bool = True , __UpperCamelCase : Any=None ) ->Union[str, Any]:
'''simple docstring'''
if device is not None:
assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu."
if device == "gpu":
_UpperCAmelCase = """cuda"""
else:
_UpperCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu"""
_UpperCAmelCase = AutoModelForCausalLM.from_pretrained(__UpperCamelCase )
_UpperCAmelCase = model.to(__UpperCamelCase )
_UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase )
# if batch_size > 1 (which generally leads to padding being required), and
# if there is not an already assigned pad_token, assign an existing
# special token to also be the padding token
if tokenizer.pad_token is None and batch_size > 1:
_UpperCAmelCase = list(tokenizer.special_tokens_map_extended.values() )
# check that the model already has at least one special token defined
assert (
len(__UpperCamelCase ) > 0
), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1."
# assign one of the special tokens to also be the pad token
tokenizer.add_special_tokens({"""pad_token""": existing_special_tokens[0]} )
if add_start_token:
# leave room for <BOS> token to be added:
assert (
tokenizer.bos_token is not None
), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False"
_UpperCAmelCase = model.config.max_length - 1
else:
_UpperCAmelCase = model.config.max_length
_UpperCAmelCase = tokenizer(
__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , return_tensors="""pt""" , return_attention_mask=__UpperCamelCase , ).to(__UpperCamelCase )
_UpperCAmelCase = encodings["""input_ids"""]
_UpperCAmelCase = encodings["""attention_mask"""]
# check that each input is long enough:
if add_start_token:
assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long."
else:
assert torch.all(
torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings."
_UpperCAmelCase = []
_UpperCAmelCase = CrossEntropyLoss(reduction="""none""" )
for start_index in logging.tqdm(range(0 , len(__UpperCamelCase ) , __UpperCamelCase ) ):
_UpperCAmelCase = min(start_index + batch_size , len(__UpperCamelCase ) )
_UpperCAmelCase = encoded_texts[start_index:end_index]
_UpperCAmelCase = attn_masks[start_index:end_index]
if add_start_token:
_UpperCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(__UpperCamelCase )
_UpperCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 )
_UpperCAmelCase = torch.cat(
[torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(__UpperCamelCase ), attn_mask] , dim=1 )
_UpperCAmelCase = encoded_batch
with torch.no_grad():
_UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase ).logits
_UpperCAmelCase = out_logits[..., :-1, :].contiguous()
_UpperCAmelCase = labels[..., 1:].contiguous()
_UpperCAmelCase = attn_mask[..., 1:].contiguous()
_UpperCAmelCase = torch.expa(
(loss_fct(shift_logits.transpose(1 , 2 ) , __UpperCamelCase ) * shift_attention_mask_batch).sum(1 )
/ shift_attention_mask_batch.sum(1 ) )
ppls += perplexity_batch.tolist()
return {"perplexities": ppls, "mean_perplexity": np.mean(__UpperCamelCase )} | 19 |
"""simple docstring"""
import argparse
import os
import re
import packaging.version
a : str = '''examples/'''
a : List[str] = {
'''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''),
'''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''),
'''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''),
'''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''),
}
a : Tuple = {
'''init''': '''src/diffusers/__init__.py''',
'''setup''': '''setup.py''',
}
a : List[str] = '''README.md'''
def _UpperCamelCase ( _A , _A , _A ) -> Dict:
"""simple docstring"""
with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_UpperCAmelCase = f.read()
_UpperCAmelCase ,_UpperCAmelCase = REPLACE_PATTERNS[pattern]
_UpperCAmelCase = replace.replace("""VERSION""" , _A )
_UpperCAmelCase = re_pattern.sub(_A , _A )
with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(_A )
def _UpperCamelCase ( _A ) -> Union[str, Any]:
"""simple docstring"""
for folder, directories, fnames in os.walk(_A ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(_A , _A ) , _A , pattern="""examples""" )
def _UpperCamelCase ( _A , _A=False ) -> int:
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_A , _A , _A )
if not patch:
update_version_in_examples(_A )
def _UpperCamelCase ( ) -> Any:
"""simple docstring"""
_UpperCAmelCase = """🤗 Transformers currently provides the following architectures"""
_UpperCAmelCase = """1. Want to contribute a new model?"""
with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_UpperCAmelCase = f.readlines()
# Find the start of the list.
_UpperCAmelCase = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
_UpperCAmelCase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
_UpperCAmelCase = lines[index].replace(
"""https://huggingface.co/docs/diffusers/main/model_doc""" , """https://huggingface.co/docs/diffusers/model_doc""" , )
index += 1
with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(_A )
def _UpperCamelCase ( ) -> Optional[int]:
"""simple docstring"""
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
_UpperCAmelCase = f.read()
_UpperCAmelCase = REPLACE_PATTERNS["""init"""][0].search(_A ).groups()[0]
return packaging.version.parse(_A )
def _UpperCamelCase ( _A=False ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
_UpperCAmelCase = default_version.base_version
elif patch:
_UpperCAmelCase = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
_UpperCAmelCase = F"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
_UpperCAmelCase = input(F"""Which version are you releasing? [{default_version}]""" )
if len(_A ) == 0:
_UpperCAmelCase = default_version
print(F"""Updating version to {version}.""" )
global_version_update(_A , patch=_A )
def _UpperCamelCase ( ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = get_version()
_UpperCAmelCase = F"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
_UpperCAmelCase = current_version.base_version
# Check with the user we got that right.
_UpperCAmelCase = input(F"""Which version are we developing now? [{dev_version}]""" )
if len(_A ) == 0:
_UpperCAmelCase = dev_version
print(F"""Updating version to {version}.""" )
global_version_update(_A )
# print("Cleaning main README, don't forget to run `make fix-copies`.")
# clean_main_ref_in_model_list()
if __name__ == "__main__":
a : Dict = argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
a : Tuple = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work() | 19 | 1 |
"""simple docstring"""
def _UpperCamelCase ( _A , _A ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = """"""
for i in table:
res += inp[i - 1]
return res
def _UpperCamelCase ( _A ) -> Optional[Any]:
"""simple docstring"""
return data[1:] + data[0]
def _UpperCamelCase ( _A , _A ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = """"""
for i in range(len(_A ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def _UpperCamelCase ( _A , _A ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = int("""0b""" + data[0] + data[-1] , 2 )
_UpperCAmelCase = int("""0b""" + data[1:3] , 2 )
return bin(s[row][col] )[2:]
def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> str:
"""simple docstring"""
_UpperCAmelCase = message[:4]
_UpperCAmelCase = message[4:]
_UpperCAmelCase = apply_table(_A , _A )
_UpperCAmelCase = xor(_A , _A )
_UpperCAmelCase = apply_sbox(_A , temp[:4] ) # noqa: E741
_UpperCAmelCase = apply_sbox(_A , temp[4:] )
_UpperCAmelCase = """0""" * (2 - len(_A )) + l # noqa: E741
_UpperCAmelCase = """0""" * (2 - len(_A )) + r
_UpperCAmelCase = apply_table(l + r , _A )
_UpperCAmelCase = xor(_A , _A )
return temp + right
if __name__ == "__main__":
a : Optional[Any] = input('''Enter 10 bit key: ''')
a : Dict = input('''Enter 8 bit message: ''')
a : List[Any] = [6, 3, 7, 4, 8, 5, 1_0, 9]
a : Optional[int] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6]
a : Dict = [2, 4, 3, 1]
a : Union[str, Any] = [2, 6, 3, 1, 4, 8, 5, 7]
a : str = [4, 1, 3, 5, 7, 2, 8, 6]
a : List[str] = [4, 1, 2, 3, 2, 3, 4, 1]
a : Tuple = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
a : Optional[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
a : Optional[Any] = apply_table(key, paa_table)
a : Union[str, Any] = temp[:5]
a : Tuple = temp[5:]
a : Dict = left_shift(left)
a : Any = left_shift(right)
a : Dict = apply_table(left + right, pa_table)
a : str = left_shift(left)
a : Union[str, Any] = left_shift(right)
a : Dict = left_shift(left)
a : Optional[int] = left_shift(right)
a : Any = apply_table(left + right, pa_table)
# encryption
a : List[Any] = apply_table(message, IP)
a : Tuple = function(expansion, sa, sa, keya, temp)
a : Optional[Any] = temp[4:] + temp[:4]
a : Dict = function(expansion, sa, sa, keya, temp)
a : int = apply_table(temp, IP_inv)
print('''Cipher text is:''', CT)
# decryption
a : Tuple = apply_table(CT, IP)
a : Optional[Any] = function(expansion, sa, sa, keya, temp)
a : List[str] = temp[4:] + temp[:4]
a : str = function(expansion, sa, sa, keya, temp)
a : List[Any] = apply_table(temp, IP_inv)
print('''Plain text after decypting is:''', PT) | 19 |
"""simple docstring"""
from __future__ import annotations
def _UpperCamelCase ( _A ) -> None:
"""simple docstring"""
create_state_space_tree(_A , [] , 0 , [0 for i in range(len(_A ) )] )
def _UpperCamelCase ( _A , _A , _A , _A , ) -> None:
"""simple docstring"""
if index == len(_A ):
print(_A )
return
for i in range(len(_A ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_UpperCAmelCase = True
create_state_space_tree(_A , _A , index + 1 , _A )
current_sequence.pop()
_UpperCAmelCase = False
a : list[int | str] = [3, 1, 2, 4]
generate_all_permutations(sequence)
a : list[int | str] = ["A", "B", "C"]
generate_all_permutations(sequence_a) | 19 | 1 |
"""simple docstring"""
import random
import unittest
import numpy as np
import transformers
from transformers import is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax
if is_flax_available():
import os
import jax.numpy as jnp
from jax import jit
from transformers import AutoTokenizer, FlaxAutoModelForCausalLM
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
a : Optional[int] = '''0.12''' # assumed parallelism: 8
if is_torch_available():
import torch
def _UpperCamelCase ( _A , _A , _A=None ) -> Union[str, Any]:
"""simple docstring"""
if rng is None:
_UpperCAmelCase = random.Random()
_UpperCAmelCase = 1
for dim in shape:
total_dims *= dim
_UpperCAmelCase = []
for _ in range(_A ):
values.append(rng.randint(0 , vocab_size - 1 ) )
_UpperCAmelCase = np.array(_A , dtype=jnp.intaa ).reshape(_A )
return output
def _UpperCamelCase ( _A , _A=None ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = ids_tensor(_A , vocab_size=2 , rng=_A )
# make sure that at least one token is attended to for each batch
_UpperCAmelCase = 1
return attn_mask
@require_flax
class a_ :
a : Union[str, Any] = None
a : List[str] = ()
def _snake_case ( self : int ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
# cut to half length & take max batch_size 3
_UpperCAmelCase = 2
_UpperCAmelCase = inputs["""input_ids"""].shape[-1] // 2
_UpperCAmelCase = inputs["""input_ids"""][:max_batch_size, :sequence_length]
_UpperCAmelCase = jnp.ones_like(__UpperCamelCase )
_UpperCAmelCase = attention_mask[:max_batch_size, :sequence_length]
# generate max 5 tokens
_UpperCAmelCase = input_ids.shape[-1] + 5
if config.eos_token_id is not None and config.pad_token_id is None:
# hack to allow generate for models such as GPT2 as is done in `generate()`
_UpperCAmelCase = config.eos_token_id
return config, input_ids, attention_mask, max_length
@is_pt_flax_cross_test
def _snake_case ( self : Any ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = self._get_input_ids_and_config()
_UpperCAmelCase = False
_UpperCAmelCase = max_length
_UpperCAmelCase = 0
for model_class in self.all_generative_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
_UpperCAmelCase = getattr(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = pt_model_class(__UpperCamelCase ).eval()
_UpperCAmelCase = load_flax_weights_in_pytorch_model(__UpperCamelCase , flax_model.params )
_UpperCAmelCase = flax_model.generate(__UpperCamelCase ).sequences
_UpperCAmelCase = pt_model.generate(torch.tensor(__UpperCamelCase , dtype=torch.long ) )
if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]:
_UpperCAmelCase = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]]
self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() )
def _snake_case ( self : List[Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = self._get_input_ids_and_config()
_UpperCAmelCase = False
_UpperCAmelCase = max_length
for model_class in self.all_generative_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = model.generate(__UpperCamelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __UpperCamelCase )
_UpperCAmelCase = jit(model.generate )
_UpperCAmelCase = jit_generate(__UpperCamelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _snake_case ( self : List[str] ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = self._get_input_ids_and_config()
_UpperCAmelCase = True
_UpperCAmelCase = max_length
for model_class in self.all_generative_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = model.generate(__UpperCamelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __UpperCamelCase )
_UpperCAmelCase = jit(model.generate )
_UpperCAmelCase = jit_generate(__UpperCamelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _snake_case ( self : Any ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = self._get_input_ids_and_config()
_UpperCAmelCase = False
_UpperCAmelCase = max_length
_UpperCAmelCase = 2
for model_class in self.all_generative_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = model.generate(__UpperCamelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __UpperCamelCase )
_UpperCAmelCase = jit(model.generate )
_UpperCAmelCase = jit_generate(__UpperCamelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _snake_case ( self : Tuple ) ->Dict:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = self._get_input_ids_and_config()
_UpperCAmelCase = False
_UpperCAmelCase = max_length
_UpperCAmelCase = 2
_UpperCAmelCase = 2
for model_class in self.all_generative_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = model.generate(__UpperCamelCase ).sequences
self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences )
def _snake_case ( self : Dict ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = self._get_input_ids_and_config()
_UpperCAmelCase = True
_UpperCAmelCase = max_length
_UpperCAmelCase = 0.8
_UpperCAmelCase = 10
_UpperCAmelCase = 0.3
_UpperCAmelCase = 1
_UpperCAmelCase = 8
_UpperCAmelCase = 9
for model_class in self.all_generative_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = model.generate(__UpperCamelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __UpperCamelCase )
_UpperCAmelCase = jit(model.generate )
_UpperCAmelCase = jit_generate(__UpperCamelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _snake_case ( self : Dict ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = self._get_input_ids_and_config()
_UpperCAmelCase = max_length
_UpperCAmelCase = 1
_UpperCAmelCase = 8
_UpperCAmelCase = 9
for model_class in self.all_generative_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = model.generate(__UpperCamelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __UpperCamelCase )
_UpperCAmelCase = jit(model.generate )
_UpperCAmelCase = jit_generate(__UpperCamelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _snake_case ( self : Optional[Any] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = self._get_input_ids_and_config()
_UpperCAmelCase = max_length
_UpperCAmelCase = 2
_UpperCAmelCase = 1
_UpperCAmelCase = 8
_UpperCAmelCase = 9
for model_class in self.all_generative_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = model.generate(__UpperCamelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __UpperCamelCase )
_UpperCAmelCase = jit(model.generate )
_UpperCAmelCase = jit_generate(__UpperCamelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _snake_case ( self : str ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = self._get_input_ids_and_config()
# pad attention mask on the left
_UpperCAmelCase = attention_mask.at[(0, 0)].set(0 )
_UpperCAmelCase = False
_UpperCAmelCase = max_length
for model_class in self.all_generative_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = model.generate(__UpperCamelCase , attention_mask=__UpperCamelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __UpperCamelCase )
_UpperCAmelCase = jit(model.generate )
_UpperCAmelCase = jit_generate(__UpperCamelCase , attention_mask=__UpperCamelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _snake_case ( self : List[str] ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = self._get_input_ids_and_config()
# pad attention mask on the left
_UpperCAmelCase = attention_mask.at[(0, 0)].set(0 )
_UpperCAmelCase = True
_UpperCAmelCase = max_length
for model_class in self.all_generative_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = model.generate(__UpperCamelCase , attention_mask=__UpperCamelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __UpperCamelCase )
_UpperCAmelCase = jit(model.generate )
_UpperCAmelCase = jit_generate(__UpperCamelCase , attention_mask=__UpperCamelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
def _snake_case ( self : List[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = self._get_input_ids_and_config()
# pad attention mask on the left
_UpperCAmelCase = attention_mask.at[(0, 0)].set(0 )
_UpperCAmelCase = 2
_UpperCAmelCase = max_length
for model_class in self.all_generative_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = model.generate(__UpperCamelCase , attention_mask=__UpperCamelCase ).sequences
self.assertEqual(generation_outputs.shape[-1] , __UpperCamelCase )
_UpperCAmelCase = jit(model.generate )
_UpperCAmelCase = jit_generate(__UpperCamelCase , attention_mask=__UpperCamelCase ).sequences
self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() )
@require_flax
class a_ ( unittest.TestCase ):
def _snake_case ( self : int ) ->int:
'''simple docstring'''
_UpperCAmelCase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-bert""" )
_UpperCAmelCase = FlaxAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-bert-flax-only""" )
_UpperCAmelCase = """Hello world"""
_UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors="""np""" ).input_ids
# typos are quickly detected (the correct argument is `do_sample`)
with self.assertRaisesRegex(__UpperCamelCase , """do_samples""" ):
model.generate(__UpperCamelCase , do_samples=__UpperCamelCase )
# arbitrary arguments that will not be used anywhere are also not accepted
with self.assertRaisesRegex(__UpperCamelCase , """foo""" ):
_UpperCAmelCase = {"""foo""": """bar"""}
model.generate(__UpperCamelCase , **__UpperCamelCase ) | 19 |
"""simple docstring"""
import inspect
import unittest
from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class a_ :
def __init__( self : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : int=32 , __UpperCamelCase : Tuple=16 , __UpperCamelCase : Dict=3 , __UpperCamelCase : Dict=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=32 , __UpperCamelCase : Any=4 , __UpperCamelCase : Optional[int]=[0, 1, 2, 3] , __UpperCamelCase : str=4 , __UpperCamelCase : Optional[Any]=37 , __UpperCamelCase : str="gelu" , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Any=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : int=[1, 3_84, 24, 24] , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Any=None , ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = patch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = is_training
_UpperCAmelCase = use_labels
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = backbone_out_indices
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_labels
_UpperCAmelCase = backbone_featmap_shape
_UpperCAmelCase = scope
_UpperCAmelCase = is_hybrid
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
_UpperCAmelCase = (image_size // patch_size) ** 2
_UpperCAmelCase = num_patches + 1
def _snake_case ( self : str ) ->int:
'''simple docstring'''
_UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
_UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def _snake_case ( self : List[str] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [96, 1_92, 3_84, 7_68],
"""num_groups""": 2,
}
return DPTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , )
def _snake_case ( self : Any , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = DPTModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : List[Any] ) ->int:
'''simple docstring'''
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = DPTForDepthEstimation(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) )
def _snake_case ( self : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = DPTForSemanticSegmentation(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def _snake_case ( self : Tuple ) ->Any:
'''simple docstring'''
_UpperCAmelCase = self.prepare_config_and_inputs()
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = config_and_inputs
_UpperCAmelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class a_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
a : Dict = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
a : int = (
{
'depth-estimation': DPTForDepthEstimation,
'feature-extraction': DPTModel,
'image-segmentation': DPTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
a : str = False
a : List[str] = False
a : Dict = False
def _snake_case ( self : Any ) ->Any:
'''simple docstring'''
_UpperCAmelCase = DPTModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 )
def _snake_case ( self : Optional[int] ) ->Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""DPT does not use inputs_embeds""" )
def _snake_case ( self : Tuple ) ->Tuple:
'''simple docstring'''
pass
def _snake_case ( self : int ) ->Any:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) )
def _snake_case ( self : Optional[int] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase = [*signature.parameters.keys()]
_UpperCAmelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCamelCase )
def _snake_case ( self : Optional[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _snake_case ( self : str ) ->int:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*__UpperCamelCase )
def _snake_case ( self : Any ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase )
def _snake_case ( self : str ) ->Any:
'''simple docstring'''
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = True
if model_class in get_values(__UpperCamelCase ):
continue
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.train()
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
_UpperCAmelCase = model(**__UpperCamelCase ).loss
loss.backward()
def _snake_case ( self : List[str] ) ->Dict:
'''simple docstring'''
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = False
_UpperCAmelCase = True
if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.gradient_checkpointing_enable()
model.train()
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
_UpperCAmelCase = model(**__UpperCamelCase ).loss
loss.backward()
def _snake_case ( self : Tuple ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = _config_zero_init(__UpperCamelCase )
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(config=__UpperCamelCase )
# Skip the check for the backbone
_UpperCAmelCase = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
_UpperCAmelCase = [f"""{name}.{key}""" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def _snake_case ( self : Dict ) ->Tuple:
'''simple docstring'''
pass
@slow
def _snake_case ( self : Optional[int] ) ->List[Any]:
'''simple docstring'''
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
_UpperCAmelCase = DPTModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def _snake_case ( self : List[Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = """add"""
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = DPTForDepthEstimation(__UpperCamelCase )
def _UpperCamelCase ( ) -> int:
"""simple docstring"""
_UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
@slow
class a_ ( unittest.TestCase ):
def _snake_case ( self : Any ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" )
_UpperCAmelCase = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__UpperCamelCase )
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase )
# forward pass
with torch.no_grad():
_UpperCAmelCase = model(**__UpperCamelCase )
_UpperCAmelCase = outputs.predicted_depth
# verify the predicted depth
_UpperCAmelCase = torch.Size((1, 3_84, 3_84) )
self.assertEqual(predicted_depth.shape , __UpperCamelCase )
_UpperCAmelCase = torch.tensor(
[[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , __UpperCamelCase , atol=1e-4 ) ) | 19 | 1 |
"""simple docstring"""
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
a : List[Any] = logging.get_logger(__name__)
a : Dict = {
'''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class a_ ( _UpperCAmelCase ):
a : str = 'detr'
a : Union[str, Any] = ['past_key_values']
a : List[Any] = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : int , __UpperCamelCase : int=True , __UpperCamelCase : Tuple=None , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : int=1_00 , __UpperCamelCase : Tuple=6 , __UpperCamelCase : Union[str, Any]=20_48 , __UpperCamelCase : Dict=8 , __UpperCamelCase : Any=6 , __UpperCamelCase : Tuple=20_48 , __UpperCamelCase : Dict=8 , __UpperCamelCase : str=0.0 , __UpperCamelCase : str=0.0 , __UpperCamelCase : str=True , __UpperCamelCase : Any="relu" , __UpperCamelCase : List[str]=2_56 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : Union[str, Any]=0.0 , __UpperCamelCase : List[str]=0.0 , __UpperCamelCase : int=0.0_2 , __UpperCamelCase : Tuple=1.0 , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : Optional[Any]="sine" , __UpperCamelCase : Tuple="resnet50" , __UpperCamelCase : int=True , __UpperCamelCase : Any=False , __UpperCamelCase : str=1 , __UpperCamelCase : Union[str, Any]=5 , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : Optional[Any]=1 , __UpperCamelCase : Optional[int]=1 , __UpperCamelCase : List[Any]=5 , __UpperCamelCase : int=2 , __UpperCamelCase : Tuple=0.1 , **__UpperCamelCase : Union[str, Any] , ) ->int:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
_UpperCAmelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(__UpperCamelCase , __UpperCamelCase ):
_UpperCAmelCase = backbone_config.get("""model_type""" )
_UpperCAmelCase = CONFIG_MAPPING[backbone_model_type]
_UpperCAmelCase = config_class.from_dict(__UpperCamelCase )
# set timm attributes to None
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = None, None, None
_UpperCAmelCase = use_timm_backbone
_UpperCAmelCase = backbone_config
_UpperCAmelCase = num_channels
_UpperCAmelCase = num_queries
_UpperCAmelCase = d_model
_UpperCAmelCase = encoder_ffn_dim
_UpperCAmelCase = encoder_layers
_UpperCAmelCase = encoder_attention_heads
_UpperCAmelCase = decoder_ffn_dim
_UpperCAmelCase = decoder_layers
_UpperCAmelCase = decoder_attention_heads
_UpperCAmelCase = dropout
_UpperCAmelCase = attention_dropout
_UpperCAmelCase = activation_dropout
_UpperCAmelCase = activation_function
_UpperCAmelCase = init_std
_UpperCAmelCase = init_xavier_std
_UpperCAmelCase = encoder_layerdrop
_UpperCAmelCase = decoder_layerdrop
_UpperCAmelCase = encoder_layers
_UpperCAmelCase = auxiliary_loss
_UpperCAmelCase = position_embedding_type
_UpperCAmelCase = backbone
_UpperCAmelCase = use_pretrained_backbone
_UpperCAmelCase = dilation
# Hungarian matcher
_UpperCAmelCase = class_cost
_UpperCAmelCase = bbox_cost
_UpperCAmelCase = giou_cost
# Loss coefficients
_UpperCAmelCase = mask_loss_coefficient
_UpperCAmelCase = dice_loss_coefficient
_UpperCAmelCase = bbox_loss_coefficient
_UpperCAmelCase = giou_loss_coefficient
_UpperCAmelCase = eos_coefficient
super().__init__(is_encoder_decoder=__UpperCamelCase , **__UpperCamelCase )
@property
def _snake_case ( self : Optional[int] ) ->int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def _snake_case ( self : Any ) ->int:
'''simple docstring'''
return self.d_model
@classmethod
def _snake_case ( cls : Tuple , __UpperCamelCase : PretrainedConfig , **__UpperCamelCase : List[Any] ) ->List[str]:
'''simple docstring'''
return cls(backbone_config=__UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : Optional[Any] ) ->Dict[str, any]:
'''simple docstring'''
_UpperCAmelCase = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
_UpperCAmelCase = self.backbone_config.to_dict()
_UpperCAmelCase = self.__class__.model_type
return output
class a_ ( _UpperCAmelCase ):
a : List[str] = version.parse('1.11' )
@property
def _snake_case ( self : Any ) ->Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _snake_case ( self : Optional[int] ) ->float:
'''simple docstring'''
return 1e-5
@property
def _snake_case ( self : Any ) ->int:
'''simple docstring'''
return 12 | 19 |
"""simple docstring"""
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
a : List[str] = logging.get_logger(__name__)
class a_ ( enum.Enum ):
a : Optional[Any] = 0
a : Dict = 1
@add_end_docstrings(_UpperCAmelCase )
class a_ ( _UpperCAmelCase ):
a : List[Any] = 'generated'
def __init__( self : int , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : str ) ->Any:
'''simple docstring'''
super().__init__(*__UpperCamelCase , **__UpperCamelCase )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == """tf"""
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def _snake_case ( self : Optional[int] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Any=None , __UpperCamelCase : int=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Dict=None , **__UpperCamelCase : Any , ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = {}
if truncation is not None:
_UpperCAmelCase = truncation
_UpperCAmelCase = generate_kwargs
_UpperCAmelCase = {}
if return_tensors is not None and return_type is None:
_UpperCAmelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
_UpperCAmelCase = return_type
if clean_up_tokenization_spaces is not None:
_UpperCAmelCase = clean_up_tokenization_spaces
if stop_sequence is not None:
_UpperCAmelCase = self.tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
if len(__UpperCamelCase ) > 1:
warnings.warn(
"""Stopping on a multiple token sequence is not yet supported on transformers. The first token of"""
""" the stop sequence will be used as the stop sequence string in the interim.""" )
_UpperCAmelCase = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def _snake_case ( self : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->Any:
'''simple docstring'''
return True
def _snake_case ( self : Optional[Any] , *__UpperCamelCase : Any , __UpperCamelCase : Dict ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.model.config.prefix if self.model.config.prefix is not None else """"""
if isinstance(args[0] , __UpperCamelCase ):
if self.tokenizer.pad_token_id is None:
raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" )
_UpperCAmelCase = ([prefix + arg for arg in args[0]],)
_UpperCAmelCase = True
elif isinstance(args[0] , __UpperCamelCase ):
_UpperCAmelCase = (prefix + args[0],)
_UpperCAmelCase = False
else:
raise ValueError(
f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" )
_UpperCAmelCase = self.tokenizer(*__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self : Dict , *__UpperCamelCase : str , **__UpperCamelCase : Dict ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = super().__call__(*__UpperCamelCase , **__UpperCamelCase )
if (
isinstance(args[0] , __UpperCamelCase )
and all(isinstance(__UpperCamelCase , __UpperCamelCase ) for el in args[0] )
and all(len(__UpperCamelCase ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def _snake_case ( self : List[str] , __UpperCamelCase : Any , __UpperCamelCase : str=TruncationStrategy.DO_NOT_TRUNCATE , **__UpperCamelCase : Optional[int] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = self._parse_and_tokenize(__UpperCamelCase , truncation=__UpperCamelCase , **__UpperCamelCase )
return inputs
def _snake_case ( self : str , __UpperCamelCase : Dict , **__UpperCamelCase : Dict ) ->Tuple:
'''simple docstring'''
if self.framework == "pt":
_UpperCAmelCase ,_UpperCAmelCase = model_inputs["""input_ids"""].shape
elif self.framework == "tf":
_UpperCAmelCase ,_UpperCAmelCase = tf.shape(model_inputs["""input_ids"""] ).numpy()
_UpperCAmelCase = generate_kwargs.get("""min_length""" , self.model.config.min_length )
_UpperCAmelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length )
self.check_inputs(__UpperCamelCase , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] )
_UpperCAmelCase = self.model.generate(**__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = output_ids.shape[0]
if self.framework == "pt":
_UpperCAmelCase = output_ids.reshape(__UpperCamelCase , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
_UpperCAmelCase = tf.reshape(__UpperCamelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def _snake_case ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any]=ReturnType.TEXT , __UpperCamelCase : int=False ) ->Any:
'''simple docstring'''
_UpperCAmelCase = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
_UpperCAmelCase = {f"""{self.return_name}_token_ids""": output_ids}
elif return_type == ReturnType.TEXT:
_UpperCAmelCase = {
f"""{self.return_name}_text""": self.tokenizer.decode(
__UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase , )
}
records.append(__UpperCamelCase )
return records
@add_end_docstrings(_UpperCAmelCase )
class a_ ( _UpperCAmelCase ):
a : List[Any] = 'summary'
def __call__( self : Optional[Any] , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Optional[int] ) ->Any:
'''simple docstring'''
return super().__call__(*__UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : str , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->bool:
'''simple docstring'''
if max_length < min_length:
logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" )
if input_length < max_length:
logger.warning(
f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """
"""a summarization task, where outputs shorter than the input are typically wanted, you might """
f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" )
@add_end_docstrings(_UpperCAmelCase )
class a_ ( _UpperCAmelCase ):
a : Optional[int] = 'translation'
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->Any:
'''simple docstring'''
if input_length > 0.9 * max_length:
logger.warning(
f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """
"""increasing your max_length manually, e.g. translator('...', max_length=400)""" )
return True
def _snake_case ( self : Tuple , *__UpperCamelCase : List[str] , __UpperCamelCase : Tuple=TruncationStrategy.DO_NOT_TRUNCATE , __UpperCamelCase : Tuple=None , __UpperCamelCase : Union[str, Any]=None ) ->Tuple:
'''simple docstring'''
if getattr(self.tokenizer , """_build_translation_inputs""" , __UpperCamelCase ):
return self.tokenizer._build_translation_inputs(
*__UpperCamelCase , return_tensors=self.framework , truncation=__UpperCamelCase , src_lang=__UpperCamelCase , tgt_lang=__UpperCamelCase )
else:
return super()._parse_and_tokenize(*__UpperCamelCase , truncation=__UpperCamelCase )
def _snake_case ( self : List[str] , __UpperCamelCase : int=None , __UpperCamelCase : int=None , **__UpperCamelCase : Any ) ->int:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = super()._sanitize_parameters(**__UpperCamelCase )
if src_lang is not None:
_UpperCAmelCase = src_lang
if tgt_lang is not None:
_UpperCAmelCase = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
_UpperCAmelCase = kwargs.get("""task""" , self.task )
_UpperCAmelCase = task.split("""_""" )
if task and len(__UpperCamelCase ) == 4:
# translation, XX, to YY
_UpperCAmelCase = items[1]
_UpperCAmelCase = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self : List[str] , *__UpperCamelCase : str , **__UpperCamelCase : Optional[Any] ) ->int:
'''simple docstring'''
return super().__call__(*__UpperCamelCase , **__UpperCamelCase ) | 19 | 1 |
"""simple docstring"""
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def _UpperCamelCase ( ) -> List[str]:
"""simple docstring"""
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
_UpperCAmelCase = """__test_patch_submodule_mock__"""
with patch_submodule(_test_patching , """os.path.join""" , _A ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def _UpperCamelCase ( ) -> List[str]:
"""simple docstring"""
assert _test_patching.open is open
_UpperCAmelCase = """__test_patch_submodule_builtin_mock__"""
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , """open""" , _A ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def _UpperCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = """__test_patch_submodule_missing_mock__"""
with patch_submodule(_test_patching , """pandas.read_csv""" , _A ):
pass
def _UpperCamelCase ( ) -> int:
"""simple docstring"""
_UpperCAmelCase = """__test_patch_submodule_missing_builtin_mock__"""
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , """len""" , _A ) is None
with patch_submodule(_test_patching , """len""" , _A ):
assert _test_patching.len is mock
assert _test_patching.len is len
def _UpperCamelCase ( ) -> str:
"""simple docstring"""
_UpperCAmelCase = """__test_patch_submodule_start_and_stop_mock__"""
_UpperCAmelCase = patch_submodule(_test_patching , """open""" , _A )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def _UpperCamelCase ( ) -> List[Any]:
"""simple docstring"""
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
_UpperCAmelCase = """__test_patch_submodule_successive_join__"""
_UpperCAmelCase = """__test_patch_submodule_successive_dirname__"""
_UpperCAmelCase = """__test_patch_submodule_successive_rename__"""
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , """os.path.join""" , _A ):
with patch_submodule(_test_patching , """os.rename""" , _A ):
with patch_submodule(_test_patching , """os.path.dirname""" , _A ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , """os.rename""" , _A ):
with patch_submodule(_test_patching , """os.path.join""" , _A ):
with patch_submodule(_test_patching , """os.path.dirname""" , _A ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def _UpperCamelCase ( ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = """__test_patch_submodule_doesnt_exist_mock__"""
with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , _A ):
pass
with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , _A ):
pass | 19 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class a_ ( unittest.TestCase ):
@property
def _snake_case ( self : Dict ) ->int:
'''simple docstring'''
torch.manual_seed(0 )
_UpperCAmelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , )
return model
@property
def _snake_case ( self : Optional[Any] ) ->str:
'''simple docstring'''
torch.manual_seed(0 )
_UpperCAmelCase = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , )
return model
@property
def _snake_case ( self : List[Any] ) ->Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
_UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModel(__UpperCamelCase )
def _snake_case ( self : List[str] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = self.dummy_uncond_unet
_UpperCAmelCase = DDIMScheduler()
_UpperCAmelCase = self.dummy_vq_model
_UpperCAmelCase = LDMPipeline(unet=__UpperCamelCase , vqvae=__UpperCamelCase , scheduler=__UpperCamelCase )
ldm.to(__UpperCamelCase )
ldm.set_progress_bar_config(disable=__UpperCamelCase )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type="""numpy""" ).images
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type="""numpy""" , return_dict=__UpperCamelCase )[0]
_UpperCAmelCase = image[0, -3:, -3:, -1]
_UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_UpperCAmelCase = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] )
_UpperCAmelCase = 1e-2 if torch_device != """mps""" else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance
@slow
@require_torch
class a_ ( unittest.TestCase ):
def _snake_case ( self : List[Any] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" )
ldm.to(__UpperCamelCase )
ldm.set_progress_bar_config(disable=__UpperCamelCase )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=5 , output_type="""numpy""" ).images
_UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
_UpperCAmelCase = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] )
_UpperCAmelCase = 1e-2 if torch_device != """mps""" else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance | 19 | 1 |
"""simple docstring"""
def _UpperCamelCase ( _A ) -> list[int]:
"""simple docstring"""
_UpperCAmelCase = len(_A )
for i in range(_A ):
for j in range(i + 1 , _A ):
if numbers[j] < numbers[i]:
_UpperCAmelCase ,_UpperCAmelCase = numbers[j], numbers[i]
return numbers
if __name__ == "__main__":
a : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip()
a : Optional[int] = [int(item) for item in user_input.split(''',''')]
print(exchange_sort(unsorted)) | 19 |
"""simple docstring"""
import re
from filelock import FileLock
try:
import nltk
a : str = True
except (ImportError, ModuleNotFoundError):
a : List[str] = False
if NLTK_AVAILABLE:
with FileLock('''.lock''') as lock:
nltk.download('''punkt''', quiet=True)
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
re.sub("""<n>""" , """""" , _A ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(_A ) ) | 19 | 1 |
"""simple docstring"""
class a_ :
def __init__( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = name
_UpperCAmelCase = val
def __str__( self : Union[str, Any] ) ->Optional[Any]:
'''simple docstring'''
return f"""{self.__class__.__name__}({self.name}, {self.val})"""
def __lt__( self : Optional[Any] , __UpperCamelCase : List[str] ) ->Any:
'''simple docstring'''
return self.val < other.val
class a_ :
def __init__( self : str , __UpperCamelCase : str ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = {}
_UpperCAmelCase = {}
_UpperCAmelCase = self.build_heap(__UpperCamelCase )
def __getitem__( self : List[str] , __UpperCamelCase : str ) ->Optional[int]:
'''simple docstring'''
return self.get_value(__UpperCamelCase )
def _snake_case ( self : Tuple , __UpperCamelCase : int ) ->Union[str, Any]:
'''simple docstring'''
return (idx - 1) // 2
def _snake_case ( self : Optional[Any] , __UpperCamelCase : Dict ) ->List[Any]:
'''simple docstring'''
return idx * 2 + 1
def _snake_case ( self : Any , __UpperCamelCase : Optional[int] ) ->Tuple:
'''simple docstring'''
return idx * 2 + 2
def _snake_case ( self : List[str] , __UpperCamelCase : str ) ->List[Any]:
'''simple docstring'''
return self.heap_dict[key]
def _snake_case ( self : Tuple , __UpperCamelCase : int ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = len(__UpperCamelCase ) - 1
_UpperCAmelCase = self.get_parent_idx(__UpperCamelCase )
for idx, i in enumerate(__UpperCamelCase ):
_UpperCAmelCase = idx
_UpperCAmelCase = i.val
for i in range(__UpperCamelCase , -1 , -1 ):
self.sift_down(__UpperCamelCase , __UpperCamelCase )
return array
def _snake_case ( self : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple ) ->Optional[Any]:
'''simple docstring'''
while True:
_UpperCAmelCase = self.get_left_child_idx(__UpperCamelCase ) # noqa: E741
_UpperCAmelCase = self.get_right_child_idx(__UpperCamelCase )
_UpperCAmelCase = idx
if l < len(__UpperCamelCase ) and array[l] < array[idx]:
_UpperCAmelCase = l
if r < len(__UpperCamelCase ) and array[r] < array[smallest]:
_UpperCAmelCase = r
if smallest != idx:
_UpperCAmelCase ,_UpperCAmelCase = array[smallest], array[idx]
(
(
_UpperCAmelCase
) ,(
_UpperCAmelCase
) ,
) = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)
_UpperCAmelCase = smallest
else:
break
def _snake_case ( self : Optional[Any] , __UpperCamelCase : Any ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = self.get_parent_idx(__UpperCamelCase )
while p >= 0 and self.heap[p] > self.heap[idx]:
_UpperCAmelCase ,_UpperCAmelCase = self.heap[idx], self.heap[p]
_UpperCAmelCase ,_UpperCAmelCase = (
self.idx_of_element[self.heap[idx]],
self.idx_of_element[self.heap[p]],
)
_UpperCAmelCase = p
_UpperCAmelCase = self.get_parent_idx(__UpperCamelCase )
def _snake_case ( self : List[Any] ) ->Union[str, Any]:
'''simple docstring'''
return self.heap[0]
def _snake_case ( self : Union[str, Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.heap[-1], self.heap[0]
_UpperCAmelCase ,_UpperCAmelCase = (
self.idx_of_element[self.heap[-1]],
self.idx_of_element[self.heap[0]],
)
_UpperCAmelCase = self.heap.pop()
del self.idx_of_element[x]
self.sift_down(0 , self.heap )
return x
def _snake_case ( self : Optional[Any] , __UpperCamelCase : Tuple ) ->Tuple:
'''simple docstring'''
self.heap.append(__UpperCamelCase )
_UpperCAmelCase = len(self.heap ) - 1
_UpperCAmelCase = node.val
self.sift_up(len(self.heap ) - 1 )
def _snake_case ( self : List[Any] ) ->str:
'''simple docstring'''
return len(self.heap ) == 0
def _snake_case ( self : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] ) ->Optional[Any]:
'''simple docstring'''
assert (
self.heap[self.idx_of_element[node]].val > new_value
), "newValue must be less that current value"
_UpperCAmelCase = new_value
_UpperCAmelCase = new_value
self.sift_up(self.idx_of_element[node] )
a : int = Node('''R''', -1)
a : Tuple = Node('''B''', 6)
a : Union[str, Any] = Node('''A''', 3)
a : List[str] = Node('''X''', 1)
a : Dict = Node('''E''', 4)
# Use one of these two ways to generate Min-Heap
# Generating Min-Heap from array
a : Tuple = MinHeap([r, b, a, x, e])
# Generating Min-Heap by Insert method
# myMinHeap.insert(a)
# myMinHeap.insert(b)
# myMinHeap.insert(x)
# myMinHeap.insert(r)
# myMinHeap.insert(e)
# Before
print('''Min Heap - before decrease key''')
for i in my_min_heap.heap:
print(i)
print('''Min Heap - After decrease key of node [B -> -17]''')
my_min_heap.decrease_key(b, -1_7)
# After
for i in my_min_heap.heap:
print(i)
if __name__ == "__main__":
import doctest
doctest.testmod() | 19 |
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
a : str = '''platform'''
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class a_ :
a : List[Any] = PegasusConfig
a : Dict = {}
a : List[Any] = 'gelu'
def __init__( self : Any , __UpperCamelCase : Dict , __UpperCamelCase : Tuple=13 , __UpperCamelCase : Tuple=7 , __UpperCamelCase : Tuple=True , __UpperCamelCase : Any=False , __UpperCamelCase : Any=99 , __UpperCamelCase : Optional[int]=32 , __UpperCamelCase : Dict=5 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : Dict=37 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : Optional[Any]=20 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : Optional[int]=1 , __UpperCamelCase : Tuple=0 , ) ->int:
'''simple docstring'''
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = eos_token_id
_UpperCAmelCase = pad_token_id
_UpperCAmelCase = bos_token_id
def _snake_case ( self : Union[str, Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
_UpperCAmelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
_UpperCAmelCase = np.concatenate([input_ids, eos_tensor] , axis=1 )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_UpperCAmelCase = prepare_pegasus_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
return config, inputs_dict
def _snake_case ( self : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase = 20
_UpperCAmelCase = model_class_name(__UpperCamelCase )
_UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] )
_UpperCAmelCase ,_UpperCAmelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
_UpperCAmelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_UpperCAmelCase = model.decode(
decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , )
_UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_UpperCAmelCase = model.decode(
decoder_input_ids[:, -1:] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__UpperCamelCase , )
_UpperCAmelCase = model.decode(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def _snake_case ( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase = 20
_UpperCAmelCase = model_class_name(__UpperCamelCase )
_UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] )
_UpperCAmelCase ,_UpperCAmelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_UpperCAmelCase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_UpperCAmelCase = model.decode(
decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , )
_UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_UpperCAmelCase = model.decode(
decoder_input_ids[:, -1:] , __UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , )
_UpperCAmelCase = model.decode(__UpperCamelCase , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase )
_UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def _UpperCamelCase ( _A , _A , _A , _A=None , _A=None , ) -> int:
"""simple docstring"""
if attention_mask is None:
_UpperCAmelCase = np.not_equal(_A , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
_UpperCAmelCase = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class a_ ( _UpperCAmelCase , unittest.TestCase ):
a : List[str] = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
a : Any = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
a : Any = True
a : int = False
a : Union[str, Any] = False
a : Optional[int] = False
def _snake_case ( self : Union[str, Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = FlaxPegasusModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase )
def _snake_case ( self : Optional[int] ) ->Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _snake_case ( self : Optional[int] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def _snake_case ( self : Dict ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def _snake_case ( self : Dict ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = model_class(__UpperCamelCase )
@jax.jit
def encode_jitted(__UpperCamelCase : List[Any] , __UpperCamelCase : str=None , **__UpperCamelCase : int ):
return model.encode(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase )
with self.subTest("""JIT Enabled""" ):
_UpperCAmelCase = encode_jitted(**__UpperCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_UpperCAmelCase = encode_jitted(**__UpperCamelCase ).to_tuple()
self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) )
for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def _snake_case ( self : List[Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
_UpperCAmelCase = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple ):
return model.decode(
decoder_input_ids=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , encoder_outputs=__UpperCamelCase , )
with self.subTest("""JIT Enabled""" ):
_UpperCAmelCase = decode_jitted(**__UpperCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_UpperCAmelCase = decode_jitted(**__UpperCamelCase ).to_tuple()
self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) )
for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _snake_case ( self : int ) ->int:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCAmelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=__UpperCamelCase )
_UpperCAmelCase = np.ones((1, 1) )
_UpperCAmelCase = model(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
@slow
def _snake_case ( self : Dict ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
_UpperCAmelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
_UpperCAmelCase = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
_UpperCAmelCase = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
_UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors="""np""" , truncation=__UpperCamelCase , max_length=5_12 , padding=__UpperCamelCase )
_UpperCAmelCase = model.generate(**__UpperCamelCase , num_beams=2 ).sequences
_UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase )
assert tgt_text == decoded | 19 | 1 |
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a : Optional[int] = logging.get_logger(__name__)
def _UpperCamelCase ( _A , _A , _A , _A ) -> int:
"""simple docstring"""
_UpperCAmelCase = original_name.split(""".""" )[0]
_UpperCAmelCase = key.split(""".""" )
_UpperCAmelCase = int(key_list[key_list.index(_A ) - 2] )
_UpperCAmelCase = int(key_list[key_list.index(_A ) - 1] )
_UpperCAmelCase = orig_block_num - offset
_UpperCAmelCase = key.replace(F"""{orig_block_num}.{layer_num}.{original_name}""" , F"""block.{new_block_num}.{layer_num}.{new_name}""" )
return key
def _UpperCamelCase ( _A ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = OrderedDict()
_UpperCAmelCase ,_UpperCAmelCase = 0, 0
for key, value in state_dict.items():
if key.startswith("""network""" ):
_UpperCAmelCase = key.replace("""network""" , """poolformer.encoder""" )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith("""bias""" ) and "patch_embed" not in key:
patch_emb_offset += 1
_UpperCAmelCase = key[: key.find("""proj""" )]
_UpperCAmelCase = key.replace(_A , F"""patch_embeddings.{total_embed_found}.""" )
_UpperCAmelCase = key.replace("""proj""" , """projection""" )
if key.endswith("""bias""" ):
total_embed_found += 1
if "patch_embeddings" in key:
_UpperCAmelCase = """poolformer.encoder.""" + key
if "mlp.fc1" in key:
_UpperCAmelCase = replace_key_with_offset(_A , _A , """mlp.fc1""" , """output.conv1""" )
if "mlp.fc2" in key:
_UpperCAmelCase = replace_key_with_offset(_A , _A , """mlp.fc2""" , """output.conv2""" )
if "norm1" in key:
_UpperCAmelCase = replace_key_with_offset(_A , _A , """norm1""" , """before_norm""" )
if "norm2" in key:
_UpperCAmelCase = replace_key_with_offset(_A , _A , """norm2""" , """after_norm""" )
if "layer_scale_1" in key:
_UpperCAmelCase = replace_key_with_offset(_A , _A , """layer_scale_1""" , """layer_scale_1""" )
if "layer_scale_2" in key:
_UpperCAmelCase = replace_key_with_offset(_A , _A , """layer_scale_2""" , """layer_scale_2""" )
if "head" in key:
_UpperCAmelCase = key.replace("""head""" , """classifier""" )
_UpperCAmelCase = value
return new_state_dict
def _UpperCamelCase ( ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
_UpperCAmelCase = Image.open(requests.get(_A , stream=_A ).raw )
return image
@torch.no_grad()
def _UpperCamelCase ( _A , _A , _A ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = PoolFormerConfig()
# set attributes based on model_name
_UpperCAmelCase = """huggingface/label-files"""
_UpperCAmelCase = model_name[-3:]
_UpperCAmelCase = 1_0_0_0
_UpperCAmelCase = """imagenet-1k-id2label.json"""
_UpperCAmelCase = (1, 1_0_0_0)
# set config attributes
_UpperCAmelCase = json.load(open(hf_hub_download(_A , _A , repo_type="""dataset""" ) , """r""" ) )
_UpperCAmelCase = {int(_A ): v for k, v in idalabel.items()}
_UpperCAmelCase = idalabel
_UpperCAmelCase = {v: k for k, v in idalabel.items()}
if size == "s12":
_UpperCAmelCase = [2, 2, 6, 2]
_UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 0.9
elif size == "s24":
_UpperCAmelCase = [4, 4, 1_2, 4]
_UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 0.9
elif size == "s36":
_UpperCAmelCase = [6, 6, 1_8, 6]
_UpperCAmelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 1e-6
_UpperCAmelCase = 0.9
elif size == "m36":
_UpperCAmelCase = [6, 6, 1_8, 6]
_UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 1e-6
_UpperCAmelCase = 0.95
elif size == "m48":
_UpperCAmelCase = [8, 8, 2_4, 8]
_UpperCAmelCase = [9_6, 1_9_2, 3_8_4, 7_6_8]
_UpperCAmelCase = 4.0
_UpperCAmelCase = 1e-6
_UpperCAmelCase = 0.95
else:
raise ValueError(F"""Size {size} not supported""" )
# load image processor
_UpperCAmelCase = PoolFormerImageProcessor(crop_pct=_A )
# Prepare image
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=_A , return_tensors="""pt""" ).pixel_values
logger.info(F"""Converting model {model_name}...""" )
# load original state dict
_UpperCAmelCase = torch.load(_A , map_location=torch.device("""cpu""" ) )
# rename keys
_UpperCAmelCase = rename_keys(_A )
# create HuggingFace model and load state dict
_UpperCAmelCase = PoolFormerForImageClassification(_A )
model.load_state_dict(_A )
model.eval()
# Define image processor
_UpperCAmelCase = PoolFormerImageProcessor(crop_pct=_A )
_UpperCAmelCase = image_processor(images=prepare_img() , return_tensors="""pt""" ).pixel_values
# forward pass
_UpperCAmelCase = model(_A )
_UpperCAmelCase = outputs.logits
# define expected logit slices for different models
if size == "s12":
_UpperCAmelCase = torch.tensor([-0.3_045, -0.6_758, -0.4_869] )
elif size == "s24":
_UpperCAmelCase = torch.tensor([0.4_402, -0.1_374, -0.8_045] )
elif size == "s36":
_UpperCAmelCase = torch.tensor([-0.6_080, -0.5_133, -0.5_898] )
elif size == "m36":
_UpperCAmelCase = torch.tensor([0.3_952, 0.2_263, -1.2_668] )
elif size == "m48":
_UpperCAmelCase = torch.tensor([0.1_167, -0.0_656, -0.3_423] )
else:
raise ValueError(F"""Size {size} not supported""" )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] , _A , atol=1e-2 )
# finally, save model and image processor
logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(_A ).mkdir(exist_ok=_A )
model.save_pretrained(_A )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(_A )
if __name__ == "__main__":
a : Optional[int] = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''poolformer_s12''',
type=str,
help='''Name of the model you\'d like to convert.''',
)
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
a : Union[str, Any] = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path) | 19 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class a_ :
def __init__( self : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any]=99 , __UpperCamelCase : Optional[int]=13 , __UpperCamelCase : List[str]=7 , __UpperCamelCase : List[Any]=9 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : str=True , __UpperCamelCase : int=False , __UpperCamelCase : int=32 , __UpperCamelCase : Dict=5 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : List[Any]=8 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : str=0.0_0_2 , __UpperCamelCase : Union[str, Any]=1 , __UpperCamelCase : List[Any]=0 , __UpperCamelCase : Tuple=0 , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Any=None , ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = encoder_seq_length
_UpperCAmelCase = decoder_seq_length
# For common tests
_UpperCAmelCase = self.decoder_seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_attention_mask
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = d_ff
_UpperCAmelCase = relative_attention_num_buckets
_UpperCAmelCase = dropout_rate
_UpperCAmelCase = initializer_factor
_UpperCAmelCase = eos_token_id
_UpperCAmelCase = pad_token_id
_UpperCAmelCase = decoder_start_token_id
_UpperCAmelCase = None
_UpperCAmelCase = decoder_layers
def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]:
'''simple docstring'''
return TaConfig.from_pretrained("""google/umt5-base""" )
def _snake_case ( self : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Any=None , __UpperCamelCase : str=None , ) ->int:
'''simple docstring'''
if attention_mask is None:
_UpperCAmelCase = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
_UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
_UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCamelCase )
if decoder_head_mask is None:
_UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase )
if cross_attn_head_mask is None:
_UpperCAmelCase = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _snake_case ( self : List[Any] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
_UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 )
_UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 )
_UpperCAmelCase = self.get_config()
_UpperCAmelCase = config.num_attention_heads
_UpperCAmelCase = self.prepare_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
return config, input_dict
def _snake_case ( self : Union[str, Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def _snake_case ( self : Dict ) ->List[str]:
'''simple docstring'''
return TaConfig(
vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _snake_case ( self : Tuple ) ->Dict:
'''simple docstring'''
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _snake_case ( self : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = UMTaModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(
input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , )
_UpperCAmelCase = model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase )
_UpperCAmelCase = result.last_hidden_state
_UpperCAmelCase = result.past_key_values
_UpperCAmelCase = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(__UpperCamelCase ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , ) ->str:
'''simple docstring'''
_UpperCAmelCase = UMTaModel(config=__UpperCamelCase ).get_decoder().to(__UpperCamelCase ).eval()
# first forward pass
_UpperCAmelCase = model(__UpperCamelCase , use_cache=__UpperCamelCase )
_UpperCAmelCase = model(__UpperCamelCase )
_UpperCAmelCase = model(__UpperCamelCase , use_cache=__UpperCamelCase )
self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) )
self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) + 1 )
_UpperCAmelCase ,_UpperCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
_UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
_UpperCAmelCase = model(__UpperCamelCase )["""last_hidden_state"""]
_UpperCAmelCase = model(__UpperCamelCase , past_key_values=__UpperCamelCase )["""last_hidden_state"""]
# select random slice
_UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach()
_UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) )
def _snake_case ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Dict , ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = UMTaModel(config=__UpperCamelCase ).to(__UpperCamelCase ).half().eval()
_UpperCAmelCase = model(**__UpperCamelCase )["""last_hidden_state"""]
self.parent.assertFalse(torch.isnan(__UpperCamelCase ).any().item() )
@require_torch
class a_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
a : List[str] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
a : Tuple = (UMTaForConditionalGeneration,) if is_torch_available() else ()
a : Optional[Any] = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
a : Any = True
a : Optional[int] = False
a : Any = False
a : Optional[int] = True
a : Optional[Any] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
a : int = [0.8, 0.9]
def _snake_case ( self : Optional[Any] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = UMTaModelTester(self )
@unittest.skip("""Test has a segmentation fault on torch 1.8.0""" )
def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
_UpperCAmelCase = UMTaModel(config_and_inputs[0] ).to(__UpperCamelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
__UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"""{tmpdirname}/t5_test.onnx""" , export_params=__UpperCamelCase , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def _snake_case ( self : Tuple ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*__UpperCamelCase )
def _snake_case ( self : Any ) ->Any:
'''simple docstring'''
_UpperCAmelCase = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""]
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
_UpperCAmelCase = config_and_inputs[0]
_UpperCAmelCase = UMTaForConditionalGeneration(__UpperCamelCase ).eval()
model.to(__UpperCamelCase )
_UpperCAmelCase = {
"""head_mask""": torch.zeros(config.num_layers , config.num_heads , device=__UpperCamelCase ),
"""decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ),
"""cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ),
}
for attn_name, (name, mask) in zip(__UpperCamelCase , head_masking.items() ):
_UpperCAmelCase = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
_UpperCAmelCase = torch.ones(
config.num_decoder_layers , config.num_heads , device=__UpperCamelCase )
_UpperCAmelCase = model.generate(
config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=__UpperCamelCase , return_dict_in_generate=__UpperCamelCase , **__UpperCamelCase , )
# We check the state of decoder_attentions and cross_attentions just from the last step
_UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" )
def _snake_case ( self : Tuple ) ->List[Any]:
'''simple docstring'''
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class a_ ( unittest.TestCase ):
@slow
@unittest.skip(
"""Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" )
def _snake_case ( self : Optional[Any] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=__UpperCamelCase ).to(__UpperCamelCase )
_UpperCAmelCase = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=__UpperCamelCase , legacy=__UpperCamelCase )
_UpperCAmelCase = [
"""Bonjour monsieur <extra_id_0> bien <extra_id_1>.""",
"""No se como puedo <extra_id_0>.""",
"""This is the reason why we <extra_id_0> them.""",
"""The <extra_id_0> walks in <extra_id_1>, seats""",
"""A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""",
]
_UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors="""pt""" , padding=__UpperCamelCase ).input_ids
# fmt: off
_UpperCAmelCase = torch.tensor(
[
[ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1],
] )
# fmt: on
torch.testing.assert_allclose(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = model.generate(input_ids.to(__UpperCamelCase ) )
_UpperCAmelCase = [
"""<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""",
"""<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
]
_UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase )
self.assertEqual(__UpperCamelCase , __UpperCamelCase ) | 19 | 1 |
"""simple docstring"""
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
a : Tuple = 2_0_0
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
a : Dict = 5_0
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
a : Optional[int] = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1_0_0_0))
def _UpperCamelCase ( _A , _A ) -> tuple[str, float]:
"""simple docstring"""
_UpperCAmelCase = len([g for position, g in enumerate(_A ) if g == main_target[position]] )
return (item, float(_A ))
def _UpperCamelCase ( _A , _A ) -> tuple[str, str]:
"""simple docstring"""
_UpperCAmelCase = random.randint(0 , len(_A ) - 1 )
_UpperCAmelCase = parent_a[:random_slice] + parent_a[random_slice:]
_UpperCAmelCase = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def _UpperCamelCase ( _A , _A ) -> str:
"""simple docstring"""
_UpperCAmelCase = list(_A )
if random.uniform(0 , 1 ) < MUTATION_PROBABILITY:
_UpperCAmelCase = random.choice(_A )
return "".join(_A )
def _UpperCamelCase ( _A , _A , _A , ) -> list[str]:
"""simple docstring"""
_UpperCAmelCase = []
# Generate more children proportionally to the fitness score.
_UpperCAmelCase = int(parent_a[1] * 1_0_0 ) + 1
_UpperCAmelCase = 1_0 if child_n >= 1_0 else child_n
for _ in range(_A ):
_UpperCAmelCase = population_score[random.randint(0 , _A )][0]
_UpperCAmelCase ,_UpperCAmelCase = crossover(parent_a[0] , _A )
# Append new string to the population list.
pop.append(mutate(_A , _A ) )
pop.append(mutate(_A , _A ) )
return pop
def _UpperCamelCase ( _A , _A , _A = True ) -> tuple[int, int, str]:
"""simple docstring"""
if N_POPULATION < N_SELECTED:
_UpperCAmelCase = F"""{N_POPULATION} must be bigger than {N_SELECTED}"""
raise ValueError(_A )
# Verify that the target contains no genes besides the ones inside genes variable.
_UpperCAmelCase = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
_UpperCAmelCase = F"""{not_in_genes_list} is not in genes list, evolution cannot converge"""
raise ValueError(_A )
# Generate random starting population.
_UpperCAmelCase = []
for _ in range(_A ):
population.append("""""".join([random.choice(_A ) for i in range(len(_A ) )] ) )
# Just some logs to know what the algorithms is doing.
_UpperCAmelCase ,_UpperCAmelCase = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(_A )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
_UpperCAmelCase = [evaluate(_A , _A ) for item in population]
# Check if there is a matching evolution.
_UpperCAmelCase = sorted(_A , key=lambda _A : x[1] , reverse=_A )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 1_0 == 0:
print(
F"""\nGeneration: {generation}"""
F"""\nTotal Population:{total_population}"""
F"""\nBest score: {population_score[0][1]}"""
F"""\nBest string: {population_score[0][0]}""" )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
_UpperCAmelCase = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(_A )
# Normalize population score to be between 0 and 1.
_UpperCAmelCase = [
(item, score / len(_A )) for item, score in population_score
]
# This is selection
for i in range(_A ):
population.extend(select(population_score[int(_A )] , _A , _A ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(_A ) > N_POPULATION:
break
if __name__ == "__main__":
a : str = (
'''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!'''
)
a : int = list(
''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm'''
'''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\'''
)
a , a , a : str = basic(target_str, genes_list)
print(
F"\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}"
) | 19 |
"""simple docstring"""
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class a_ ( _UpperCAmelCase ):
def _snake_case ( self : str ) ->str:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] ) )
self.assertEqual(arr.type , pa.intaa() )
def _snake_case ( self : Any ) ->List[str]:
'''simple docstring'''
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() )
def _snake_case ( self : Optional[int] ) ->Tuple:
'''simple docstring'''
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) )
def _snake_case ( self : List[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) )
self.assertEqual(arr.type , pa.intaa() )
def _snake_case ( self : str ) ->Dict:
'''simple docstring'''
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
_UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) )
def _snake_case ( self : Union[str, Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) )
self.assertEqual(arr.type , pa.intaa() )
def _snake_case ( self : List[str] ) ->Any:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) )
self.assertEqual(arr.type , pa.string() )
def _snake_case ( self : List[Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) )
def _snake_case ( self : List[Any] ) ->Optional[Any]:
'''simple docstring'''
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
_UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) )
def _snake_case ( self : List[str] ) ->int:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) )
def _snake_case ( self : Optional[int] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , pa.string() )
@require_pil
def _snake_case ( self : str ) ->Optional[Any]:
'''simple docstring'''
import PIL.Image
_UpperCAmelCase = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) )
with patch(
"""datasets.arrow_writer.cast_to_python_objects""" , side_effect=__UpperCamelCase ) as mock_cast_to_python_objects:
_UpperCAmelCase = pa.array(TypedSequence([{"""path""": None, """bytes""": b"""image_bytes"""}, pil_image] , type=Image() ) )
_UpperCAmelCase ,_UpperCAmelCase = mock_cast_to_python_objects.call_args_list[-1]
self.assertIn("""optimize_list_casting""" , __UpperCamelCase )
self.assertFalse(kwargs["""optimize_list_casting"""] )
def _UpperCamelCase ( _A , _A ) -> Any:
"""simple docstring"""
_UpperCAmelCase = pa.BufferReader(_A ) if isinstance(_A , pa.Buffer ) else pa.memory_map(_A )
_UpperCAmelCase = pa.ipc.open_stream(_A )
_UpperCAmelCase = f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( _A , _A ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = pa.schema(_A ) if fields else None
with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def _UpperCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} )
with ArrowWriter(stream=_A , features=_A ) as writer:
writer.write({"""labels""": 0} )
writer.write({"""labels""": 1} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
_UpperCAmelCase = pa.BufferReader(output.getvalue() )
_UpperCAmelCase = pa.ipc.open_stream(_A )
_UpperCAmelCase = f.read_all()
_UpperCAmelCase = pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(_A )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
with ArrowWriter(
stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer:
with pytest.raises(_A ):
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
@pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] )
def _UpperCamelCase ( _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
with ArrowWriter(
stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer:
with pytest.raises(_A ):
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1_0 )
writer.write({"""col_1""": """bar""", """col_2""": 2} , key=1_0 )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
@pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] )
def _UpperCamelCase ( _A ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
with ArrowWriter(
stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 )
writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( _A , _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = pa.schema(_A ) if fields else None
with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer:
writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} )
writer.write_batch({"""col_1""": [], """col_2""": []} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( _A , _A ) -> Any:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = pa.schema(_A ) if fields else None
with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer:
writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( _A , _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = pa.schema(_A ) if fields else None
with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer:
writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) )
writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def _UpperCamelCase ( ) -> str:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
_UpperCAmelCase = os.path.join(_A , """test.arrow""" )
with ArrowWriter(path=_A , schema=pa.schema(_A ) ) as writer:
writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(_A , 1 )
def _UpperCamelCase ( _A ) -> int:
"""simple docstring"""
if pa.types.is_list(_A ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def _UpperCamelCase ( _A , _A ) -> Any:
"""simple docstring"""
if isinstance(lst[0] , _A ):
change_first_primitive_element_in_list(lst[0] , _A )
else:
_UpperCAmelCase = value
@pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] )
@pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def _UpperCamelCase ( _A , _A , _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = pa.array(TypedSequence(_A , optimized_int_type=_A ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
"""col, expected_dtype""" , [
("""attention_mask""", pa.inta()),
("""special_tokens_mask""", pa.inta()),
("""token_type_ids""", pa.inta()),
("""input_ids""", pa.intaa()),
("""other""", pa.intaa()),
] , )
@pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def _UpperCamelCase ( _A , _A , _A ) -> str:
"""simple docstring"""
_UpperCAmelCase = pa.array(OptimizedTypedSequence(_A , col=_A ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
_UpperCAmelCase = copy.deepcopy(_A )
_UpperCAmelCase = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(_A , _A )
_UpperCAmelCase = pa.array(OptimizedTypedSequence(_A , col=_A ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize("""raise_exception""" , [False, True] )
def _UpperCamelCase ( _A , _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = str(tmp_path / """dataset-train.arrow""" )
try:
with ArrowWriter(path=_A ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = """mock://dataset-train.arrow"""
with ArrowWriter(path=_A , storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs , type(_A ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(_A )
def _UpperCamelCase ( ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
with ParquetWriter(stream=_A ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_UpperCAmelCase = pa.BufferReader(output.getvalue() )
_UpperCAmelCase = pq.read_table(_A )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize("""embed_local_files""" , [False, True] )
def _UpperCamelCase ( _A , _A ) -> Any:
"""simple docstring"""
import PIL.Image
_UpperCAmelCase = str(tmp_path / """test_image_rgb.jpg""" )
PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_A , format="""png""" )
_UpperCAmelCase = pa.BufferOutputStream()
with ParquetWriter(
stream=_A , features=Features({"""image""": Image()} ) , embed_local_files=_A ) as writer:
writer.write({"""image""": image_path} )
writer.finalize()
_UpperCAmelCase = pa.BufferReader(output.getvalue() )
_UpperCAmelCase = pq.read_table(_A )
_UpperCAmelCase = pa_table.to_pydict()
if embed_local_files:
assert isinstance(out["""image"""][0]["""path"""] , _A )
with open(_A , """rb""" ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def _UpperCamelCase ( ) -> int:
"""simple docstring"""
_UpperCAmelCase = pa.schema([pa.field("""col_1""" , pa.string() , nullable=_A )] )
_UpperCAmelCase = pa.BufferOutputStream()
with ArrowWriter(stream=_A ) as writer:
writer._build_writer(inferred_schema=_A )
assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] ) | 19 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class a_ ( unittest.TestCase ):
def __init__( self : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any]=7 , __UpperCamelCase : Dict=3 , __UpperCamelCase : int=18 , __UpperCamelCase : int=30 , __UpperCamelCase : Dict=4_00 , __UpperCamelCase : int=True , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Any=None , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : str=[0.5, 0.5, 0.5] , __UpperCamelCase : Tuple=[0.5, 0.5, 0.5] , ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = size if size is not None else {"""shortest_edge""": 18}
_UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = image_size
_UpperCAmelCase = min_resolution
_UpperCAmelCase = max_resolution
_UpperCAmelCase = do_resize
_UpperCAmelCase = size
_UpperCAmelCase = do_center_crop
_UpperCAmelCase = crop_size
_UpperCAmelCase = do_normalize
_UpperCAmelCase = image_mean
_UpperCAmelCase = image_std
def _snake_case ( self : int ) ->Any:
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class a_ ( _UpperCAmelCase , unittest.TestCase ):
a : Optional[Any] = LevitImageProcessor if is_vision_available() else None
def _snake_case ( self : Union[str, Any] ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = LevitImageProcessingTester(self )
@property
def _snake_case ( self : Optional[int] ) ->List[Any]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case ( self : Optional[int] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__UpperCamelCase , """image_mean""" ) )
self.assertTrue(hasattr(__UpperCamelCase , """image_std""" ) )
self.assertTrue(hasattr(__UpperCamelCase , """do_normalize""" ) )
self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) )
self.assertTrue(hasattr(__UpperCamelCase , """do_center_crop""" ) )
self.assertTrue(hasattr(__UpperCamelCase , """size""" ) )
def _snake_case ( self : Tuple ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18} )
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} )
_UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42} )
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} )
def _snake_case ( self : Optional[int] ) ->Optional[Any]:
'''simple docstring'''
pass
def _snake_case ( self : str ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCamelCase , Image.Image )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_UpperCAmelCase = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def _snake_case ( self : Dict ) ->int:
'''simple docstring'''
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCamelCase , np.ndarray )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_UpperCAmelCase = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def _snake_case ( self : List[str] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_UpperCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCamelCase , torch.Tensor )
# Test not batched input
_UpperCAmelCase = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_UpperCAmelCase = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , ) | 19 |
"""simple docstring"""
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
a : List[Any] = get_logger()
a : Optional[dict] = None
class a_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ):
def __init__( self : int , __UpperCamelCase : List[str]=None , __UpperCamelCase : Optional[int]=None , **__UpperCamelCase : int ) ->Tuple:
'''simple docstring'''
super().__init__(features=__UpperCamelCase )
import jax
from jaxlib.xla_client import Device
if isinstance(__UpperCamelCase , __UpperCamelCase ):
raise ValueError(
f"""Expected {device} to be a `str` not {type(__UpperCamelCase )}, as `jaxlib.xla_extension.Device` """
"""is not serializable neither with `pickle` nor with `dill`. Instead you can surround """
"""the device with `str()` to get its string identifier that will be internally mapped """
"""to the actual `jaxlib.xla_extension.Device`.""" )
_UpperCAmelCase = device if isinstance(__UpperCamelCase , __UpperCamelCase ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_UpperCAmelCase = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
f"""Device with string identifier {self.device} not listed among the available """
f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """
f"""device: {str(jax.devices()[0] )}.""" )
_UpperCAmelCase = str(jax.devices()[0] )
_UpperCAmelCase = jnp_array_kwargs
@staticmethod
def _snake_case ( ) ->Dict[str, "jaxlib.xla_extension.Device"]:
'''simple docstring'''
import jax
return {str(__UpperCamelCase ): device for device in jax.devices()}
def _snake_case ( self : Dict , __UpperCamelCase : Any ) ->Union[str, Any]:
'''simple docstring'''
import jax
import jax.numpy as jnp
if isinstance(__UpperCamelCase , __UpperCamelCase ) and column:
if all(
isinstance(__UpperCamelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(__UpperCamelCase , axis=0 )
return column
def _snake_case ( self : List[str] , __UpperCamelCase : Any ) ->Optional[int]:
'''simple docstring'''
import jax
import jax.numpy as jnp
if isinstance(__UpperCamelCase , (str, bytes, type(__UpperCamelCase )) ):
return value
elif isinstance(__UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
_UpperCAmelCase = {}
if isinstance(__UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
_UpperCAmelCase = {"""dtype""": jnp.intaa}
else:
_UpperCAmelCase = {"""dtype""": jnp.intaa}
elif isinstance(__UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
_UpperCAmelCase = {"""dtype""": jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(__UpperCamelCase , PIL.Image.Image ):
_UpperCAmelCase = np.asarray(__UpperCamelCase )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_UpperCAmelCase = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(__UpperCamelCase , **{**default_dtype, **self.jnp_array_kwargs} )
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[str] ) ->Any:
'''simple docstring'''
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(__UpperCamelCase , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(__UpperCamelCase , """__array__""" ) and not isinstance(__UpperCamelCase , jax.Array ):
_UpperCAmelCase = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(__UpperCamelCase , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(__UpperCamelCase ) for substruct in data_struct] )
elif isinstance(__UpperCamelCase , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(__UpperCamelCase ) for substruct in data_struct] )
return self._tensorize(__UpperCamelCase )
def _snake_case ( self : List[str] , __UpperCamelCase : dict ) ->int:
'''simple docstring'''
return map_nested(self._recursive_tensorize , __UpperCamelCase , map_list=__UpperCamelCase )
def _snake_case ( self : Dict , __UpperCamelCase : pa.Table ) ->Mapping:
'''simple docstring'''
_UpperCAmelCase = self.numpy_arrow_extractor().extract_row(__UpperCamelCase )
_UpperCAmelCase = self.python_features_decoder.decode_row(__UpperCamelCase )
return self.recursive_tensorize(__UpperCamelCase )
def _snake_case ( self : Optional[int] , __UpperCamelCase : pa.Table ) ->"jax.Array":
'''simple docstring'''
_UpperCAmelCase = self.numpy_arrow_extractor().extract_column(__UpperCamelCase )
_UpperCAmelCase = self.python_features_decoder.decode_column(__UpperCamelCase , pa_table.column_names[0] )
_UpperCAmelCase = self.recursive_tensorize(__UpperCamelCase )
_UpperCAmelCase = self._consolidate(__UpperCamelCase )
return column
def _snake_case ( self : Optional[Any] , __UpperCamelCase : pa.Table ) ->Mapping:
'''simple docstring'''
_UpperCAmelCase = self.numpy_arrow_extractor().extract_batch(__UpperCamelCase )
_UpperCAmelCase = self.python_features_decoder.decode_batch(__UpperCamelCase )
_UpperCAmelCase = self.recursive_tensorize(__UpperCamelCase )
for column_name in batch:
_UpperCAmelCase = self._consolidate(batch[column_name] )
return batch | 19 | 1 |
"""simple docstring"""
from typing import List, Optional, Union
import numpy as np
import PIL.Image
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
PILImageResampling,
get_image_size,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
a : List[str] = logging.get_logger(__name__)
class a_ ( _UpperCAmelCase ):
a : int = ['pixel_values']
def __init__( self : List[Any] , __UpperCamelCase : bool = True , __UpperCamelCase : int = 32 , __UpperCamelCase : Optional[Any]=PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , **__UpperCamelCase : Any , ) ->None:
'''simple docstring'''
_UpperCAmelCase = do_resize
_UpperCAmelCase = do_rescale
_UpperCAmelCase = size_divisor
_UpperCAmelCase = resample
super().__init__(**__UpperCamelCase )
def _snake_case ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[ChannelDimension] = None , **__UpperCamelCase : Any ) ->np.ndarray:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = get_image_size(__UpperCamelCase )
# Rounds the height and width down to the closest multiple of size_divisor
_UpperCAmelCase = height // size_divisor * size_divisor
_UpperCAmelCase = width // size_divisor * size_divisor
_UpperCAmelCase = resize(__UpperCamelCase , (new_h, new_w) , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase )
return image
def _snake_case ( self : str , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[ChannelDimension] = None , **__UpperCamelCase : Optional[Any] ) ->np.ndarray:
'''simple docstring'''
return rescale(image=__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : int , __UpperCamelCase : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Dict=None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[TensorType, str]] = None , __UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **__UpperCamelCase : Optional[int] , ) ->BatchFeature:
'''simple docstring'''
_UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
_UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCAmelCase = size_divisor if size_divisor is not None else self.size_divisor
_UpperCAmelCase = resample if resample is not None else self.resample
if do_resize and size_divisor is None:
raise ValueError("""size_divisor is required for resizing""" )
_UpperCAmelCase = make_list_of_images(__UpperCamelCase )
if not valid_images(__UpperCamelCase ):
raise ValueError("""Invalid image(s)""" )
# All transformations expect numpy arrays.
_UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for img in images]
if do_resize:
_UpperCAmelCase = [self.resize(__UpperCamelCase , size_divisor=__UpperCamelCase , resample=__UpperCamelCase ) for image in images]
if do_rescale:
_UpperCAmelCase = [self.rescale(__UpperCamelCase , scale=1 / 2_55 ) for image in images]
_UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images]
_UpperCAmelCase = {"""pixel_values""": images}
return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase ) | 19 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a : Tuple = {
'''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[str] = [
'''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PegasusXForConditionalGeneration''',
'''PegasusXModel''',
'''PegasusXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 19 | 1 |
"""simple docstring"""
import argparse
import os
import transformers
from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from .utils import logging
logging.set_verbosity_info()
a : Dict = logging.get_logger(__name__)
a : Tuple = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS}
def _UpperCamelCase ( _A , _A , _A , _A ) -> int:
"""simple docstring"""
if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES:
raise ValueError(F"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" )
if tokenizer_name is None:
_UpperCAmelCase = TOKENIZER_CLASSES
else:
_UpperCAmelCase = {tokenizer_name: getattr(_A , tokenizer_name + """Fast""" )}
logger.info(F"""Loading tokenizer classes: {tokenizer_names}""" )
for tokenizer_name in tokenizer_names:
_UpperCAmelCase = TOKENIZER_CLASSES[tokenizer_name]
_UpperCAmelCase = True
if checkpoint_name is None:
_UpperCAmelCase = list(tokenizer_class.max_model_input_sizes.keys() )
else:
_UpperCAmelCase = [checkpoint_name]
logger.info(F"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" )
for checkpoint in checkpoint_names:
logger.info(F"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" )
# Load tokenizer
_UpperCAmelCase = tokenizer_class.from_pretrained(_A , force_download=_A )
# Save fast tokenizer
logger.info(F"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" )
# For organization names we create sub-directories
if "/" in checkpoint:
_UpperCAmelCase ,_UpperCAmelCase = checkpoint.split("""/""" )
_UpperCAmelCase = os.path.join(_A , _A )
elif add_prefix:
_UpperCAmelCase = checkpoint
_UpperCAmelCase = dump_path
else:
_UpperCAmelCase = None
_UpperCAmelCase = dump_path
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]:
_UpperCAmelCase = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint]
_UpperCAmelCase = file_path.split(_A )[-1][0]
if next_char == "/":
_UpperCAmelCase = os.path.join(_A , _A )
_UpperCAmelCase = None
logger.info(F"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" )
_UpperCAmelCase = tokenizer.save_pretrained(
_A , legacy_format=_A , filename_prefix=_A )
logger.info(F"""=> File names {file_names}""" )
for file_name in file_names:
if not file_name.endswith("""tokenizer.json""" ):
os.remove(_A )
logger.info(F"""=> removing {file_name}""" )
if __name__ == "__main__":
a : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.'''
)
parser.add_argument(
'''--tokenizer_name''',
default=None,
type=str,
help=(
F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will "
'''download and convert all the checkpoints from AWS.'''
),
)
parser.add_argument(
'''--checkpoint_name''',
default=None,
type=str,
help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''',
)
parser.add_argument(
'''--force_download''',
action='''store_true''',
help='''Re-download checkpoints.''',
)
a : Optional[int] = parser.parse_args()
convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download) | 19 |
"""simple docstring"""
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
a : int = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN'''])
def _UpperCamelCase ( _A ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = test_results.split(""" """ )
_UpperCAmelCase = 0
_UpperCAmelCase = 0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
_UpperCAmelCase = expressions[-2] if """=""" in expressions[-1] else expressions[-1]
for i, expression in enumerate(_A ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def _UpperCamelCase ( _A ) -> int:
"""simple docstring"""
_UpperCAmelCase = {}
_UpperCAmelCase = None
_UpperCAmelCase = False
for line in failures_short_lines.split("""\n""" ):
if re.search(R"""_ \[doctest\]""" , _A ):
_UpperCAmelCase = True
_UpperCAmelCase = line.split(""" """ )[2]
elif in_error and not line.split(""" """ )[0].isdigit():
_UpperCAmelCase = line
_UpperCAmelCase = False
return failures
class a_ :
def __init__( self : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Dict ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = title
_UpperCAmelCase = doc_test_results["""time_spent"""].split(""",""" )[0]
_UpperCAmelCase = doc_test_results["""success"""]
_UpperCAmelCase = doc_test_results["""failures"""]
_UpperCAmelCase = self.n_success + self.n_failures
# Failures and success of the modeling tests
_UpperCAmelCase = doc_test_results
@property
def _snake_case ( self : int ) ->str:
'''simple docstring'''
_UpperCAmelCase = [self._time_spent]
_UpperCAmelCase = 0
for time in time_spent:
_UpperCAmelCase = time.split(""":""" )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(__UpperCamelCase ) == 1:
_UpperCAmelCase = [0, 0, time_parts[0]]
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return f"""{int(__UpperCamelCase )}h{int(__UpperCamelCase )}m{int(__UpperCamelCase )}s"""
@property
def _snake_case ( self : List[Any] ) ->Dict:
'''simple docstring'''
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def _snake_case ( self : Optional[Any] ) ->Dict:
'''simple docstring'''
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""",
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
@property
def _snake_case ( self : Union[str, Any] ) ->Dict:
'''simple docstring'''
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in"""
f""" {self.time}."""
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
@property
def _snake_case ( self : List[str] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = 40
_UpperCAmelCase = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(__UpperCamelCase , __UpperCamelCase )}
_UpperCAmelCase = """"""
for category, failures in category_failures.items():
if len(__UpperCamelCase ) == 0:
continue
if report != "":
report += "\n\n"
report += f"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(__UpperCamelCase )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f"""The following examples had failures:\n\n\n{report}\n""",
},
}
@property
def _snake_case ( self : Union[str, Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase = [self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(__UpperCamelCase )
@staticmethod
def _snake_case ( ) ->Any:
'''simple docstring'''
_UpperCAmelCase = [
{
"""type""": """section""",
"""text""": {
"""type""": """plain_text""",
"""text""": """There was an issue running the tests.""",
},
"""accessory""": {
"""type""": """button""",
"""text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True},
"""url""": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
]
print("""Sending the following payload""" )
print(json.dumps({"""blocks""": json.loads(__UpperCamelCase )} ) )
client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=__UpperCamelCase , )
def _snake_case ( self : Tuple ) ->Optional[Any]:
'''simple docstring'''
print("""Sending the following payload""" )
print(json.dumps({"""blocks""": json.loads(self.payload )} ) )
_UpperCAmelCase = f"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else """All tests passed."""
_UpperCAmelCase = client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=__UpperCamelCase , )
def _snake_case ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : List[str] ) ->str:
'''simple docstring'''
_UpperCAmelCase = """"""
for key, value in failures.items():
_UpperCAmelCase = value[:2_00] + """ [Truncated]""" if len(__UpperCamelCase ) > 2_50 else value
failures_text += f"""*{key}*\n_{value}_\n\n"""
_UpperCAmelCase = job_name
_UpperCAmelCase = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}}
if job_link is not None:
_UpperCAmelCase = {
"""type""": """button""",
"""text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True},
"""url""": job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def _snake_case ( self : int ) ->Optional[Any]:
'''simple docstring'''
if self.thread_ts is None:
raise ValueError("""Can only post reply if a post has been made.""" )
_UpperCAmelCase = self.doc_test_results.pop("""job_link""" )
self.doc_test_results.pop("""failures""" )
self.doc_test_results.pop("""success""" )
self.doc_test_results.pop("""time_spent""" )
_UpperCAmelCase = sorted(self.doc_test_results.items() , key=lambda __UpperCamelCase : t[0] )
for job, job_result in sorted_dict:
if len(job_result["""failures"""] ):
_UpperCAmelCase = f"""*Num failures* :{len(job_result["failed"] )} \n"""
_UpperCAmelCase = job_result["""failures"""]
_UpperCAmelCase = self.get_reply_blocks(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , text=__UpperCamelCase )
print("""Sending the following reply""" )
print(json.dumps({"""blocks""": blocks} ) )
client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=f"""Results for {job}""" , blocks=__UpperCamelCase , thread_ts=self.thread_ts["""ts"""] , )
time.sleep(1 )
def _UpperCamelCase ( ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = os.environ["""GITHUB_RUN_ID"""]
_UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100"""
_UpperCAmelCase = requests.get(_A ).json()
_UpperCAmelCase = {}
try:
jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
_UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(_A ):
_UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" ).json()
jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return jobs
except Exception as e:
print("""Unknown error, could not fetch links.""" , _A )
return {}
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = {}
if os.path.exists(_A ):
_UpperCAmelCase = os.listdir(_A )
for file in files:
try:
with open(os.path.join(_A , _A ) , encoding="""utf-8""" ) as f:
_UpperCAmelCase = f.read()
except UnicodeDecodeError as e:
raise ValueError(F"""Could not open {os.path.join(_A , _A )}.""" ) from e
return _artifact
def _UpperCamelCase ( ) -> int:
"""simple docstring"""
class a_ :
def __init__( self : List[Any] , __UpperCamelCase : str ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = name
_UpperCAmelCase = []
def __str__( self : int ) ->Optional[Any]:
'''simple docstring'''
return self.name
def _snake_case ( self : Dict , __UpperCamelCase : str ) ->int:
'''simple docstring'''
self.paths.append({"""name""": self.name, """path""": path} )
_UpperCAmelCase = {}
_UpperCAmelCase = filter(os.path.isdir , os.listdir() )
for directory in directories:
_UpperCAmelCase = directory
if artifact_name not in _available_artifacts:
_UpperCAmelCase = Artifact(_A )
_available_artifacts[artifact_name].add_path(_A )
return _available_artifacts
if __name__ == "__main__":
a : Dict = get_job_links()
a : Dict = retrieve_available_artifacts()
a : Optional[int] = collections.OrderedDict(
[
('''*.py''', '''API Examples'''),
('''*.md''', '''MD Examples'''),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
a : Dict = {
v: {
'''failed''': [],
'''failures''': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
a : int = github_actions_job_links.get('''run_doctests''')
a : Tuple = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0]
a : Optional[Any] = retrieve_artifact(artifact_path['''name'''])
if "stats" in artifact:
a , a , a : str = handle_test_results(artifact['''stats'''])
a : Tuple = failed
a : int = success
a : Any = time_spent[1:-1] + ''', '''
a : Dict = extract_first_line_failure(artifact['''failures_short'''])
for line in artifact["summary_short"].split('''\n'''):
if re.search('''FAILED''', line):
a : List[Any] = line.replace('''FAILED ''', '''''')
a : Tuple = line.split()[0].replace('''\n''', '''''')
if "::" in line:
a , a : Union[str, Any] = line.split('''::''')
else:
a , a : Optional[Any] = line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
a : List[Any] = docs[file_regex]
doc_test_results[category]["failed"].append(test)
a : Optional[Any] = all_failures[test] if test in all_failures else '''N/A'''
a : List[str] = failure
break
a : List[Any] = Message('''🤗 Results of the doc tests.''', doc_test_results)
message.post()
message.post_reply() | 19 | 1 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
a : Union[str, Any] = logging.get_logger(__name__)
a : Tuple = {
'''microsoft/deberta-v2-xlarge''': '''https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xxlarge''': '''https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json''',
'''microsoft/deberta-v2-xlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'''
),
'''microsoft/deberta-v2-xxlarge-mnli''': (
'''https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'''
),
}
class a_ ( _UpperCAmelCase ):
a : int = 'deberta-v2'
def __init__( self : List[str] , __UpperCamelCase : List[str]=12_81_00 , __UpperCamelCase : Optional[Any]=15_36 , __UpperCamelCase : Dict=24 , __UpperCamelCase : Tuple=24 , __UpperCamelCase : Optional[int]=61_44 , __UpperCamelCase : str="gelu" , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Union[str, Any]=5_12 , __UpperCamelCase : str=0 , __UpperCamelCase : Dict=0.0_2 , __UpperCamelCase : str=1e-7 , __UpperCamelCase : List[str]=False , __UpperCamelCase : Optional[Any]=-1 , __UpperCamelCase : Union[str, Any]=0 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : List[str]=None , __UpperCamelCase : str=0 , __UpperCamelCase : str="gelu" , **__UpperCamelCase : Optional[Any] , ) ->Optional[int]:
'''simple docstring'''
super().__init__(**__UpperCamelCase )
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = relative_attention
_UpperCAmelCase = max_relative_positions
_UpperCAmelCase = pad_token_id
_UpperCAmelCase = position_biased_input
# Backwards compatibility
if type(__UpperCamelCase ) == str:
_UpperCAmelCase = [x.strip() for x in pos_att_type.lower().split("""|""" )]
_UpperCAmelCase = pos_att_type
_UpperCAmelCase = vocab_size
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = kwargs.get("""pooler_hidden_size""" , __UpperCamelCase )
_UpperCAmelCase = pooler_dropout
_UpperCAmelCase = pooler_hidden_act
class a_ ( _UpperCAmelCase ):
@property
def _snake_case ( self : int ) ->Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
_UpperCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_UpperCAmelCase = {0: """batch""", 1: """sequence"""}
if self._config.type_vocab_size > 0:
return OrderedDict(
[("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] )
else:
return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] )
@property
def _snake_case ( self : Union[str, Any] ) ->int:
'''simple docstring'''
return 12
def _snake_case ( self : Any , __UpperCamelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __UpperCamelCase : int = -1 , __UpperCamelCase : int = -1 , __UpperCamelCase : int = -1 , __UpperCamelCase : bool = False , __UpperCamelCase : Optional["TensorType"] = None , __UpperCamelCase : int = 3 , __UpperCamelCase : int = 40 , __UpperCamelCase : int = 40 , __UpperCamelCase : "PreTrainedTokenizerBase" = None , ) ->Mapping[str, Any]:
'''simple docstring'''
_UpperCAmelCase = super().generate_dummy_inputs(preprocessor=__UpperCamelCase , framework=__UpperCamelCase )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs | 19 |
"""simple docstring"""
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse('''3.8'''):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def _UpperCamelCase ( _A , _A=False ) -> str:
"""simple docstring"""
try:
_UpperCAmelCase = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_UpperCAmelCase = default
else:
# KEY is set, convert it to True or False.
try:
_UpperCAmelCase = strtobool(_A )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F"""If set, {key} must be yes or no.""" )
return _value
a : Union[str, Any] = parse_flag_from_env('''RUN_SLOW''', default=False)
a : Tuple = parse_flag_from_env('''RUN_REMOTE''', default=False)
a : Union[str, Any] = parse_flag_from_env('''RUN_LOCAL''', default=True)
a : int = parse_flag_from_env('''RUN_PACKAGED''', default=True)
# Compression
a : List[Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''')
a : List[Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''')
a : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''')
# Audio
a : int = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''),
reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''',
)
# Beam
a : Tuple = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''),
reason='''test requires apache-beam and a compatible dill version''',
)
# Dill-cloudpickle compatibility
a : Any = pytest.mark.skipif(
config.DILL_VERSION <= version.parse('''0.3.2'''),
reason='''test requires dill>0.3.2 for cloudpickle compatibility''',
)
# Windows
a : int = pytest.mark.skipif(
sys.platform == '''win32''',
reason='''test should not be run on Windows''',
)
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
try:
import faiss # noqa
except ImportError:
_UpperCAmelCase = unittest.skip("""test requires faiss""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Any:
"""simple docstring"""
try:
import regex # noqa
except ImportError:
_UpperCAmelCase = unittest.skip("""test requires regex""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Union[str, Any]:
"""simple docstring"""
try:
import elasticsearch # noqa
except ImportError:
_UpperCAmelCase = unittest.skip("""test requires elasticsearch""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
try:
import sqlalchemy # noqa
except ImportError:
_UpperCAmelCase = unittest.skip("""test requires sqlalchemy""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Union[str, Any]:
"""simple docstring"""
if not config.TORCH_AVAILABLE:
_UpperCAmelCase = unittest.skip("""test requires PyTorch""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Optional[Any]:
"""simple docstring"""
if not config.TF_AVAILABLE:
_UpperCAmelCase = unittest.skip("""test requires TensorFlow""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
if not config.JAX_AVAILABLE:
_UpperCAmelCase = unittest.skip("""test requires JAX""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
if not config.PIL_AVAILABLE:
_UpperCAmelCase = unittest.skip("""test requires Pillow""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
try:
import transformers # noqa F401
except ImportError:
return unittest.skip("""test requires transformers""" )(_A )
else:
return test_case
def _UpperCamelCase ( _A ) -> List[Any]:
"""simple docstring"""
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip("""test requires tiktoken""" )(_A )
else:
return test_case
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
try:
import spacy # noqa F401
except ImportError:
return unittest.skip("""test requires spacy""" )(_A )
else:
return test_case
def _UpperCamelCase ( _A ) -> int:
"""simple docstring"""
def _require_spacy_model(_A ):
try:
import spacy # noqa F401
spacy.load(_A )
except ImportError:
return unittest.skip("""test requires spacy""" )(_A )
except OSError:
return unittest.skip("""test requires spacy model '{}'""".format(_A ) )(_A )
else:
return test_case
return _require_spacy_model
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip("""test requires pyspark""" )(_A )
else:
return test_case
def _UpperCamelCase ( _A ) -> List[Any]:
"""simple docstring"""
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip("""test requires joblibspark""" )(_A )
else:
return test_case
def _UpperCamelCase ( _A ) -> Any:
"""simple docstring"""
if not _run_slow_tests or _run_slow_tests == 0:
_UpperCAmelCase = unittest.skip("""test is slow""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Any:
"""simple docstring"""
if not _run_local_tests or _run_local_tests == 0:
_UpperCAmelCase = unittest.skip("""test is local""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
if not _run_packaged_tests or _run_packaged_tests == 0:
_UpperCAmelCase = unittest.skip("""test is packaged""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
if not _run_remote_tests or _run_remote_tests == 0:
_UpperCAmelCase = unittest.skip("""test requires remote""" )(_A )
return test_case
def _UpperCamelCase ( *_A ) -> Dict:
"""simple docstring"""
def decorate(cls ):
for name, fn in cls.__dict__.items():
if callable(_A ) and name.startswith("""test""" ):
for decorator in decorators:
_UpperCAmelCase = decorator(_A )
setattr(cls , _A , _A )
return cls
return decorate
class a_ ( _UpperCAmelCase ):
pass
class a_ ( _UpperCAmelCase ):
a : Any = 0
a : Optional[Any] = 1
a : int = 2
@contextmanager
def _UpperCamelCase ( _A=OfflineSimulationMode.CONNECTION_FAILS , _A=1e-16 ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = requests.Session().request
def timeout_request(_A , _A , _A , **_A ):
# Change the url to an invalid url so that the connection hangs
_UpperCAmelCase = """https://10.255.255.1"""
if kwargs.get("""timeout""" ) is None:
raise RequestWouldHangIndefinitelyError(
F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" )
_UpperCAmelCase = timeout
try:
return online_request(_A , _A , **_A )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
_UpperCAmelCase = url
_UpperCAmelCase = e.args[0]
_UpperCAmelCase = (max_retry_error.args[0].replace("""10.255.255.1""" , F"""OfflineMock[{url}]""" ),)
_UpperCAmelCase = (max_retry_error,)
raise
def raise_connection_error(_A , _A , **_A ):
raise requests.ConnectionError("""Offline mode is enabled.""" , request=_A )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch("""requests.Session.send""" , _A ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch("""requests.Session.request""" , _A ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch("""datasets.config.HF_DATASETS_OFFLINE""" , _A ):
yield
else:
raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" )
@contextmanager
def _UpperCamelCase ( *_A , **_A ) -> str:
"""simple docstring"""
_UpperCAmelCase = str(Path().resolve() )
with tempfile.TemporaryDirectory(*_A , **_A ) as tmp_dir:
try:
os.chdir(_A )
yield
finally:
os.chdir(_A )
@contextmanager
def _UpperCamelCase ( ) -> Any:
"""simple docstring"""
import gc
gc.collect()
_UpperCAmelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def _UpperCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
import gc
gc.collect()
_UpperCAmelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def _UpperCamelCase ( _A , _A ) -> str:
"""simple docstring"""
return deepcopy(_A ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(_A ).integers(0 , 1_0_0 , 1_0 ).tolist()
def _UpperCamelCase ( _A ) -> Tuple:
"""simple docstring"""
import decorator
from requests.exceptions import HTTPError
def _wrapper(_A , *_A , **_A ):
try:
return func(*_A , **_A )
except HTTPError as err:
if str(_A ).startswith("""500""" ) or str(_A ).startswith("""502""" ):
pytest.xfail(str(_A ) )
raise err
return decorator.decorator(_wrapper , _A )
class a_ :
def __init__( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] ) ->int:
'''simple docstring'''
_UpperCAmelCase = returncode
_UpperCAmelCase = stdout
_UpperCAmelCase = stderr
async def _UpperCamelCase ( _A , _A ) -> Union[str, Any]:
"""simple docstring"""
while True:
_UpperCAmelCase = await stream.readline()
if line:
callback(_A )
else:
break
async def _UpperCamelCase ( _A , _A=None , _A=None , _A=None , _A=False , _A=False ) -> _RunOutput:
"""simple docstring"""
if echo:
print("""\nRunning: """ , """ """.join(_A ) )
_UpperCAmelCase = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=_A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_A , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
_UpperCAmelCase = []
_UpperCAmelCase = []
def tee(_A , _A , _A , _A="" ):
_UpperCAmelCase = line.decode("""utf-8""" ).rstrip()
sink.append(_A )
if not quiet:
print(_A , _A , file=_A )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout , lambda _A : tee(_A , _A , sys.stdout , label="""stdout:""" ) ),
_read_stream(p.stderr , lambda _A : tee(_A , _A , sys.stderr , label="""stderr:""" ) ),
] , timeout=_A , )
return _RunOutput(await p.wait() , _A , _A )
def _UpperCamelCase ( _A , _A=None , _A=None , _A=1_8_0 , _A=False , _A=True ) -> _RunOutput:
"""simple docstring"""
_UpperCAmelCase = asyncio.get_event_loop()
_UpperCAmelCase = loop.run_until_complete(
_stream_subprocess(_A , env=_A , stdin=_A , timeout=_A , quiet=_A , echo=_A ) )
_UpperCAmelCase = """ """.join(_A )
if result.returncode > 0:
_UpperCAmelCase = """\n""".join(result.stderr )
raise RuntimeError(
F"""'{cmd_str}' failed with returncode {result.returncode}\n\n"""
F"""The combined stderr from workers follows:\n{stderr}""" )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(F"""'{cmd_str}' produced no output.""" )
return result
def _UpperCamelCase ( ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" )
_UpperCAmelCase = re.sub(R"""^gw""" , """""" , _A , 0 , re.M )
return int(_A )
def _UpperCamelCase ( ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = 2_9_5_0_0
_UpperCAmelCase = pytest_xdist_worker_id()
return port + uniq_delta | 19 | 1 |
"""simple docstring"""
import math
def _UpperCamelCase ( _A ) -> bool:
"""simple docstring"""
assert isinstance(_A , _A ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
_UpperCAmelCase = range(3 , int(math.sqrt(_A ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def _UpperCamelCase ( _A , _A=1 , **_A ) -> Any:
"""simple docstring"""
_UpperCAmelCase = factor * value
_UpperCAmelCase = value
while not is_prime(_A ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **_A )
return value | 19 |
"""simple docstring"""
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class a_ ( _UpperCAmelCase ):
a : List[Any] = ''
a : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs
def __init__( self : Tuple , __UpperCamelCase : Optional[DatasetInfo] = None , __UpperCamelCase : Optional[str] = None , **__UpperCamelCase : Any , ) ->Any:
'''simple docstring'''
super().__init__(self , **__UpperCamelCase )
_UpperCAmelCase = repo_info
_UpperCAmelCase = token
_UpperCAmelCase = None
def _snake_case ( self : List[str] ) ->List[str]:
'''simple docstring'''
if self.dir_cache is None:
_UpperCAmelCase = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
_UpperCAmelCase = {
"""name""": hf_file.rfilename,
"""size""": None,
"""type""": """file""",
}
self.dir_cache.update(
{
str(__UpperCamelCase ): {"""name""": str(__UpperCamelCase ), """size""": None, """type""": """directory"""}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def _snake_case ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : str = "rb" , **__UpperCamelCase : Any , ) ->List[str]:
'''simple docstring'''
if not isinstance(self.repo_info , __UpperCamelCase ):
raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" )
_UpperCAmelCase = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha )
return fsspec.open(
__UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open()
def _snake_case ( self : int , __UpperCamelCase : int , **__UpperCamelCase : Dict ) ->Tuple:
'''simple docstring'''
self._get_dirs()
_UpperCAmelCase = self._strip_protocol(__UpperCamelCase )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(__UpperCamelCase )
def _snake_case ( self : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple=False , **__UpperCamelCase : List[str] ) ->Optional[Any]:
'''simple docstring'''
self._get_dirs()
_UpperCAmelCase = PurePosixPath(path.strip("""/""" ) )
_UpperCAmelCase = {}
for p, f in self.dir_cache.items():
_UpperCAmelCase = PurePosixPath(p.strip("""/""" ) )
_UpperCAmelCase = p.parent
if root == path:
_UpperCAmelCase = f
_UpperCAmelCase = list(paths.values() )
if detail:
return out
else:
return sorted(f["""name"""] for f in out ) | 19 | 1 |
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
ImageTextPipelineOutput,
UniDiffuserPipeline,
)
else:
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel, UTransformeraDModel
from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline | 19 |
"""simple docstring"""
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
a : Optional[Any] = '''\
@misc{chen2021evaluating,
title={Evaluating Large Language Models Trained on Code},
author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \
and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \
and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \
and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \
and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \
and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \
and Mohammad Bavarian and Clemens Winter and Philippe Tillet \
and Felipe Petroski Such and Dave Cummings and Matthias Plappert \
and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \
and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \
and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \
and William Saunders and Christopher Hesse and Andrew N. Carr \
and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \
and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \
and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \
and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},
year={2021},
eprint={2107.03374},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
'''
a : List[str] = '''\
This metric implements the evaluation harness for the HumanEval problem solving dataset
described in the paper "Evaluating Large Language Models Trained on Code"
(https://arxiv.org/abs/2107.03374).
'''
a : Any = '''
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of candidates to evaluate. Each candidates should be a list
of strings with several code candidates to solve the problem.
references: a list with a test for each prediction. Each test should evaluate the
correctness of a code candidate.
k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])
num_workers: number of workers used to evaluate the canidate programs (Default: 4).
timeout:
Returns:
pass_at_k: dict with pass rates for each k
results: dict with granular results of each unittest
Examples:
>>> code_eval = datasets.load_metric("code_eval")
>>> test_cases = ["assert add(2,3)==5"]
>>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]
>>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])
>>> print(pass_at_k)
{\'pass@1\': 0.5, \'pass@2\': 1.0}
'''
a : int = '''
################################################################################
!!!WARNING!!!
################################################################################
The "code_eval" metric executes untrusted model-generated code in Python.
Although it is highly unlikely that model-generated code will do something
overtly malicious in response to this test suite, model-generated code may act
destructively due to a lack of model capability or alignment.
Users are strongly encouraged to sandbox this evaluation suite so that it
does not perform destructive actions on their host or network. For more
information on how OpenAI sandboxes its code, see the paper "Evaluating Large
Language Models Trained on Code" (https://arxiv.org/abs/2107.03374).
Once you have read this disclaimer and taken appropriate precautions,
set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this
with:
>>> import os
>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"
################################################################################\
'''
a : List[Any] = '''The MIT License
Copyright (c) OpenAI (https://openai.com)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
def _snake_case ( self : Tuple ) ->Tuple:
'''simple docstring'''
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , )
def _snake_case ( self : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any]=[1, 10, 1_00] , __UpperCamelCase : Dict=4 , __UpperCamelCase : Tuple=3.0 ) ->Union[str, Any]:
'''simple docstring'''
if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError("""This metric is currently not supported on Windows.""" )
with ThreadPoolExecutor(max_workers=__UpperCamelCase ) as executor:
_UpperCAmelCase = []
_UpperCAmelCase = Counter()
_UpperCAmelCase = 0
_UpperCAmelCase = defaultdict(__UpperCamelCase )
for task_id, (candidates, test_case) in enumerate(zip(__UpperCamelCase , __UpperCamelCase ) ):
for candidate in candidates:
_UpperCAmelCase = candidate + """\n""" + test_case
_UpperCAmelCase = (test_program, timeout, task_id, completion_id[task_id])
_UpperCAmelCase = executor.submit(__UpperCamelCase , *__UpperCamelCase )
futures.append(__UpperCamelCase )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(__UpperCamelCase ):
_UpperCAmelCase = future.result()
results[result["task_id"]].append((result["""completion_id"""], result) )
_UpperCAmelCase ,_UpperCAmelCase = [], []
for result in results.values():
result.sort()
_UpperCAmelCase = [r[1]["""passed"""] for r in result]
total.append(len(__UpperCamelCase ) )
correct.append(sum(__UpperCamelCase ) )
_UpperCAmelCase = np.array(__UpperCamelCase )
_UpperCAmelCase = np.array(__UpperCamelCase )
_UpperCAmelCase = k
_UpperCAmelCase = {f"""pass@{k}""": estimate_pass_at_k(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def _UpperCamelCase ( _A , _A , _A ) -> Dict:
"""simple docstring"""
def estimator(_A , _A , _A ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(_A , _A ):
_UpperCAmelCase = itertools.repeat(_A , len(_A ) )
else:
assert len(_A ) == len(_A )
_UpperCAmelCase = iter(_A )
return np.array([estimator(int(_A ) , int(_A ) , _A ) for n, c in zip(_A , _A )] ) | 19 | 1 |
"""simple docstring"""
from collections.abc import Callable
import numpy as np
def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> np.array:
"""simple docstring"""
_UpperCAmelCase = int(np.ceil((x_end - xa) / step_size ) )
_UpperCAmelCase = np.zeros((n + 1,) )
_UpperCAmelCase = ya
_UpperCAmelCase = xa
for k in range(_A ):
_UpperCAmelCase = y[k] + step_size * ode_func(_A , y[k] )
_UpperCAmelCase = y[k] + (
(step_size / 2) * (ode_func(_A , y[k] ) + ode_func(x + step_size , _A ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod() | 19 |
"""simple docstring"""
from collections.abc import Callable
import numpy as np
def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> np.array:
"""simple docstring"""
_UpperCAmelCase = int(np.ceil((x_end - xa) / step_size ) )
_UpperCAmelCase = np.zeros((n + 1,) )
_UpperCAmelCase = ya
_UpperCAmelCase = xa
for k in range(_A ):
_UpperCAmelCase = y[k] + step_size * ode_func(_A , y[k] )
_UpperCAmelCase = y[k] + (
(step_size / 2) * (ode_func(_A , y[k] ) + ode_func(x + step_size , _A ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod() | 19 | 1 |
"""simple docstring"""
import math
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
_UpperCAmelCase = 0
_UpperCAmelCase = 0
while num > 0:
_UpperCAmelCase = num % 8
_UpperCAmelCase = octal + (remainder * math.floor(math.pow(1_0 , _A ) ))
counter += 1
_UpperCAmelCase = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return F"""0o{int(_A )}"""
def _UpperCamelCase ( ) -> None:
"""simple docstring"""
print("""\n2 in octal is:""" )
print(decimal_to_octal(2 ) ) # = 2
print("""\n8 in octal is:""" )
print(decimal_to_octal(8 ) ) # = 10
print("""\n65 in octal is:""" )
print(decimal_to_octal(6_5 ) ) # = 101
print("""\n216 in octal is:""" )
print(decimal_to_octal(2_1_6 ) ) # = 330
print("""\n512 in octal is:""" )
print(decimal_to_octal(5_1_2 ) ) # = 1000
print("""\n""" )
if __name__ == "__main__":
main() | 19 |
"""simple docstring"""
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''',
datefmt='''%Y-%m-%d %H:%M:%S''',
level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(),
stream=sys.stdout,
)
a : List[str] = logging.getLogger(__name__)
a : int = {'''facebook/bart-base''': BartForConditionalGeneration}
a : Dict = {'''facebook/bart-base''': BartTokenizer}
def _UpperCamelCase ( ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" )
parser.add_argument(
"""--validation_file""" , type=_A , default=_A , help="""A csv or a json file containing the validation data.""" )
parser.add_argument(
"""--max_length""" , type=_A , default=5 , help="""The maximum total input sequence length after tokenization.""" , )
parser.add_argument(
"""--num_beams""" , type=_A , default=_A , help=(
"""Number of beams to use for evaluation. This argument will be """
"""passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."""
) , )
parser.add_argument(
"""--model_name_or_path""" , type=_A , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_A , )
parser.add_argument(
"""--config_name""" , type=_A , default=_A , help="""Pretrained config name or path if not the same as model_name""" , )
parser.add_argument(
"""--device""" , type=_A , default="""cpu""" , help="""Device where the model will be run""" , )
parser.add_argument("""--output_file_path""" , type=_A , default=_A , help="""Where to store the final ONNX file.""" )
_UpperCAmelCase = parser.parse_args()
return args
def _UpperCamelCase ( _A , _A="cpu" ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = model_dict[model_name].from_pretrained(_A ).to(_A )
_UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_A )
if model_name in ["facebook/bart-base"]:
_UpperCAmelCase = 0
_UpperCAmelCase = None
_UpperCAmelCase = 0
return huggingface_model, tokenizer
def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> Optional[int]:
"""simple docstring"""
model.eval()
_UpperCAmelCase = None
_UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_A ) )
with torch.no_grad():
_UpperCAmelCase = """My friends are cool but they eat too many carbs."""
_UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="""pt""" ).to(model.device )
_UpperCAmelCase = model.generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=_A , max_length=_A , early_stopping=_A , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
_A , (
inputs["""input_ids"""],
inputs["""attention_mask"""],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , _A , opset_version=1_4 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={
"""input_ids""": {0: """batch""", 1: """seq"""},
"""output_ids""": {0: """batch""", 1: """seq_out"""},
} , example_outputs=_A , )
logger.info("""Model exported to {}""".format(_A ) )
_UpperCAmelCase = remove_dup_initializers(os.path.abspath(_A ) )
logger.info("""Deduplicated and optimized model written to {}""".format(_A ) )
_UpperCAmelCase = onnxruntime.InferenceSession(_A )
_UpperCAmelCase = ort_sess.run(
_A , {
"""input_ids""": inputs["""input_ids"""].cpu().numpy(),
"""attention_mask""": inputs["""attention_mask"""].cpu().numpy(),
"""num_beams""": np.array(_A ),
"""max_length""": np.array(_A ),
"""decoder_start_token_id""": np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 )
logger.info("""Model outputs from torch and ONNX Runtime are similar.""" )
logger.info("""Success.""" )
def _UpperCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = parse_args()
_UpperCAmelCase = 5
_UpperCAmelCase = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
_UpperCAmelCase = torch.device(args.device )
_UpperCAmelCase ,_UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _A )
if model.config.decoder_start_token_id is None:
raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" )
model.to(_A )
if args.max_length:
_UpperCAmelCase = args.max_length
if args.num_beams:
_UpperCAmelCase = args.num_beams
if args.output_file_path:
_UpperCAmelCase = args.output_file_path
else:
_UpperCAmelCase = """BART.onnx"""
logger.info("""Exporting model to ONNX""" )
export_and_validate_model(_A , _A , _A , _A , _A )
if __name__ == "__main__":
main() | 19 | 1 |
"""simple docstring"""
a : dict[tuple[int, int, int], int] = {}
def _UpperCamelCase ( _A , _A , _A ) -> int:
"""simple docstring"""
if late == 3 or absent == 2:
return 0
# if we have no days left, and have not failed any other rules,
# we have a prize string
if days == 0:
return 1
# No easy solution, so now we need to do the recursive calculation
# First, check if the combination is already in the cache, and
# if yes, return the stored value from there since we already
# know the number of possible prize strings from this point on
_UpperCAmelCase = (days, absent, late)
if key in cache:
return cache[key]
# now we calculate the three possible ways that can unfold from
# this point on, depending on our attendance today
# 1) if we are late (but not absent), the "absent" counter stays as
# it is, but the "late" counter increases by one
_UpperCAmelCase = _calculate(days - 1 , _A , late + 1 )
# 2) if we are absent, the "absent" counter increases by 1, and the
# "late" counter resets to 0
_UpperCAmelCase = _calculate(days - 1 , absent + 1 , 0 )
# 3) if we are on time, this resets the "late" counter and keeps the
# absent counter
_UpperCAmelCase = _calculate(days - 1 , _A , 0 )
_UpperCAmelCase = state_late + state_absent + state_ontime
_UpperCAmelCase = prizestrings
return prizestrings
def _UpperCamelCase ( _A = 3_0 ) -> int:
"""simple docstring"""
return _calculate(_A , absent=0 , late=0 )
if __name__ == "__main__":
print(solution()) | 19 |
"""simple docstring"""
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def _UpperCamelCase ( _A , _A=None ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = None
if token is not None:
_UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
_UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
_UpperCAmelCase = requests.get(_A , headers=_A ).json()
_UpperCAmelCase = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
_UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(_A ):
_UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" , headers=_A ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCamelCase ( _A , _A=None ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = None
if token is not None:
_UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
_UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"""
_UpperCAmelCase = requests.get(_A , headers=_A ).json()
_UpperCAmelCase = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
_UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(_A ):
_UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" , headers=_A ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCamelCase ( _A , _A , _A , _A ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = None
if token is not None:
_UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
_UpperCAmelCase = requests.get(_A , headers=_A , allow_redirects=_A )
_UpperCAmelCase = result.headers["""Location"""]
_UpperCAmelCase = requests.get(_A , allow_redirects=_A )
_UpperCAmelCase = os.path.join(_A , F"""{artifact_name}.zip""" )
with open(_A , """wb""" ) as fp:
fp.write(response.content )
def _UpperCamelCase ( _A , _A=None ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = []
_UpperCAmelCase = []
_UpperCAmelCase = None
with zipfile.ZipFile(_A ) as z:
for filename in z.namelist():
if not os.path.isdir(_A ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(_A ) as f:
for line in f:
_UpperCAmelCase = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_UpperCAmelCase = line[: line.index(""": """ )]
_UpperCAmelCase = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
_UpperCAmelCase = line[len("""FAILED """ ) :]
failed_tests.append(_A )
elif filename == "job_name.txt":
_UpperCAmelCase = line
if len(_A ) != len(_A ):
raise ValueError(
F"""`errors` and `failed_tests` should have the same number of elements. Got {len(_A )} for `errors` """
F"""and {len(_A )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"""
""" problem.""" )
_UpperCAmelCase = None
if job_name and job_links:
_UpperCAmelCase = job_links.get(_A , _A )
# A list with elements of the form (line of error, error, failed test)
_UpperCAmelCase = [x + [y] + [job_link] for x, y in zip(_A , _A )]
return result
def _UpperCamelCase ( _A , _A=None ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = []
_UpperCAmelCase = [os.path.join(_A , _A ) for p in os.listdir(_A ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(_A , job_links=_A ) )
return errors
def _UpperCamelCase ( _A , _A=None ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = Counter()
counter.update([x[1] for x in logs] )
_UpperCAmelCase = counter.most_common()
_UpperCAmelCase = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_UpperCAmelCase = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
_UpperCAmelCase = dict(sorted(r.items() , key=lambda _A : item[1]["count"] , reverse=_A ) )
return r
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
_UpperCAmelCase = test.split("""/""" )[2]
else:
_UpperCAmelCase = None
return test
def _UpperCamelCase ( _A , _A=None ) -> Any:
"""simple docstring"""
_UpperCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs]
_UpperCAmelCase = [x for x in logs if x[2] is not None]
_UpperCAmelCase = {x[2] for x in logs}
_UpperCAmelCase = {}
for test in tests:
_UpperCAmelCase = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_UpperCAmelCase = counter.most_common()
_UpperCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_UpperCAmelCase = sum(error_counts.values() )
if n_errors > 0:
_UpperCAmelCase = {"""count""": n_errors, """errors""": error_counts}
_UpperCAmelCase = dict(sorted(r.items() , key=lambda _A : item[1]["count"] , reverse=_A ) )
return r
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = """| no. | error | status |"""
_UpperCAmelCase = """|-:|:-|:-|"""
_UpperCAmelCase = [header, sep]
for error in reduced_by_error:
_UpperCAmelCase = reduced_by_error[error]["""count"""]
_UpperCAmelCase = F"""| {count} | {error[:1_0_0]} | |"""
lines.append(_A )
return "\n".join(_A )
def _UpperCamelCase ( _A ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = """| model | no. of errors | major error | count |"""
_UpperCAmelCase = """|-:|-:|-:|-:|"""
_UpperCAmelCase = [header, sep]
for model in reduced_by_model:
_UpperCAmelCase = reduced_by_model[model]["""count"""]
_UpperCAmelCase ,_UpperCAmelCase = list(reduced_by_model[model]["""errors"""].items() )[0]
_UpperCAmelCase = F"""| {model} | {count} | {error[:6_0]} | {_count} |"""
lines.append(_A )
return "\n".join(_A )
if __name__ == "__main__":
a : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''')
parser.add_argument(
'''--output_dir''',
type=str,
required=True,
help='''Where to store the downloaded artifacts and other result files.''',
)
parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''')
a : Dict = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
a : Tuple = get_job_links(args.workflow_run_id, token=args.token)
a : Tuple = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
a : List[Any] = k.find(''' / ''')
a : Tuple = k[index + len(''' / ''') :]
a : int = v
with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
a : Tuple = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
a : Optional[int] = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
a : Union[str, Any] = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
a : Optional[int] = counter.most_common(3_0)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
a : int = reduce_by_error(errors)
a : str = reduce_by_model(errors)
a : int = make_github_table(reduced_by_error)
a : Optional[int] = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa) | 19 | 1 |
"""simple docstring"""
import fire
from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer
def _UpperCamelCase ( _A , _A , **_A ) -> str:
"""simple docstring"""
_UpperCAmelCase = AutoConfig.from_pretrained(_A , **_A )
_UpperCAmelCase = AutoModelForSeqaSeqLM.from_config(_A )
model.save_pretrained(_A )
AutoTokenizer.from_pretrained(_A ).save_pretrained(_A )
return model
if __name__ == "__main__":
fire.Fire(save_randomly_initialized_version) | 19 |
"""simple docstring"""
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class a_ ( _UpperCAmelCase ):
a : Any = ['image_processor', 'tokenizer']
a : Optional[int] = 'AutoImageProcessor'
a : Any = 'AutoTokenizer'
def __init__( self : List[str] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=None , **__UpperCamelCase : List[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCamelCase , )
_UpperCAmelCase = kwargs.pop("""feature_extractor""" )
_UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = self.image_processor
_UpperCAmelCase = False
def __call__( self : Union[str, Any] , *__UpperCamelCase : str , **__UpperCamelCase : Optional[Any] ) ->List[str]:
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = kwargs.pop("""images""" , __UpperCamelCase )
_UpperCAmelCase = kwargs.pop("""text""" , __UpperCamelCase )
if len(__UpperCamelCase ) > 0:
_UpperCAmelCase = args[0]
_UpperCAmelCase = args[1:]
if images is None and text is None:
raise ValueError("""You need to specify either an `images` or `text` input to process.""" )
if images is not None:
_UpperCAmelCase = self.image_processor(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase )
if text is not None:
_UpperCAmelCase = self.tokenizer(__UpperCamelCase , **__UpperCamelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
_UpperCAmelCase = encodings["""input_ids"""]
return inputs
def _snake_case ( self : Union[str, Any] , *__UpperCamelCase : int , **__UpperCamelCase : Tuple ) ->Tuple:
'''simple docstring'''
return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : Tuple , *__UpperCamelCase : int , **__UpperCamelCase : Union[str, Any] ) ->int:
'''simple docstring'''
return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase )
@contextmanager
def _snake_case ( self : Tuple ) ->Union[str, Any]:
'''simple docstring'''
warnings.warn(
"""`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """
"""labels by using the argument `text` of the regular `__call__` method (either in the same call as """
"""your images inputs, or in a separate call.""" )
_UpperCAmelCase = True
_UpperCAmelCase = self.tokenizer
yield
_UpperCAmelCase = self.image_processor
_UpperCAmelCase = False
def _snake_case ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : Union[str, Any]=None ) ->List[str]:
'''simple docstring'''
if added_vocab is None:
_UpperCAmelCase = self.tokenizer.get_added_vocab()
_UpperCAmelCase = {}
while tokens:
_UpperCAmelCase = re.search(r"""<s_(.*?)>""" , __UpperCamelCase , re.IGNORECASE )
if start_token is None:
break
_UpperCAmelCase = start_token.group(1 )
_UpperCAmelCase = re.search(rf"""</s_{key}>""" , __UpperCamelCase , re.IGNORECASE )
_UpperCAmelCase = start_token.group()
if end_token is None:
_UpperCAmelCase = tokens.replace(__UpperCamelCase , """""" )
else:
_UpperCAmelCase = end_token.group()
_UpperCAmelCase = re.escape(__UpperCamelCase )
_UpperCAmelCase = re.escape(__UpperCamelCase )
_UpperCAmelCase = re.search(f"""{start_token_escaped}(.*?){end_token_escaped}""" , __UpperCamelCase , re.IGNORECASE )
if content is not None:
_UpperCAmelCase = content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
_UpperCAmelCase = self.tokenajson(__UpperCamelCase , is_inner_value=__UpperCamelCase , added_vocab=__UpperCamelCase )
if value:
if len(__UpperCamelCase ) == 1:
_UpperCAmelCase = value[0]
_UpperCAmelCase = value
else: # leaf nodes
_UpperCAmelCase = []
for leaf in content.split(r"""<sep/>""" ):
_UpperCAmelCase = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
_UpperCAmelCase = leaf[1:-2] # for categorical special tokens
output[key].append(__UpperCamelCase )
if len(output[key] ) == 1:
_UpperCAmelCase = output[key][0]
_UpperCAmelCase = tokens[tokens.find(__UpperCamelCase ) + len(__UpperCamelCase ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:] , is_inner_value=__UpperCamelCase , added_vocab=__UpperCamelCase )
if len(__UpperCamelCase ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def _snake_case ( self : Tuple ) ->Optional[int]:
'''simple docstring'''
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __UpperCamelCase , )
return self.image_processor_class
@property
def _snake_case ( self : List[str] ) ->Dict:
'''simple docstring'''
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __UpperCamelCase , )
return self.image_processor | 19 | 1 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_batched,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
a : Tuple = logging.get_logger(__name__)
class a_ ( _UpperCAmelCase ):
a : Union[str, Any] = ['pixel_values']
def __init__( self : Union[str, Any] , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_55 , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : Any , ) ->None:
'''simple docstring'''
super().__init__(**__UpperCamelCase )
_UpperCAmelCase = size if size is not None else {"""height""": 2_24, """width""": 2_24}
_UpperCAmelCase = get_size_dict(__UpperCamelCase )
_UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24}
_UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase , param_name="""crop_size""" )
_UpperCAmelCase = do_resize
_UpperCAmelCase = do_rescale
_UpperCAmelCase = do_normalize
_UpperCAmelCase = do_center_crop
_UpperCAmelCase = crop_size
_UpperCAmelCase = size
_UpperCAmelCase = resample
_UpperCAmelCase = rescale_factor
_UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
_UpperCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def _snake_case ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : str , ) ->np.ndarray:
'''simple docstring'''
_UpperCAmelCase = get_size_dict(__UpperCamelCase )
if "shortest_edge" in size:
_UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=__UpperCamelCase )
# size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"])
elif "height" in size and "width" in size:
_UpperCAmelCase = (size["""height"""], size["""width"""])
else:
raise ValueError(f"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" )
return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : str , ) ->np.ndarray:
'''simple docstring'''
_UpperCAmelCase = get_size_dict(__UpperCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" )
return center_crop(__UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] ) ->np.ndarray:
'''simple docstring'''
return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Dict , ) ->np.ndarray:
'''simple docstring'''
return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : Any , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : int = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : Dict , ) ->BatchFeature:
'''simple docstring'''
_UpperCAmelCase = do_resize if do_resize is not None else self.do_resize
_UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale
_UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize
_UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCAmelCase = crop_size if crop_size is not None else self.crop_size
_UpperCAmelCase = get_size_dict(__UpperCamelCase , param_name="""crop_size""" , default_to_square=__UpperCamelCase )
_UpperCAmelCase = resample if resample is not None else self.resample
_UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCAmelCase = image_mean if image_mean is not None else self.image_mean
_UpperCAmelCase = image_std if image_std is not None else self.image_std
_UpperCAmelCase = size if size is not None else self.size
_UpperCAmelCase = get_size_dict(__UpperCamelCase )
if not is_batched(__UpperCamelCase ):
_UpperCAmelCase = [images]
if not valid_images(__UpperCamelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
# All transformations expect numpy arrays.
_UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images]
if do_resize:
_UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images]
if do_center_crop:
_UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images]
if do_rescale:
_UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images]
if do_normalize:
_UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images]
_UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images]
_UpperCAmelCase = {"""pixel_values""": images}
return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase ) | 19 |
"""simple docstring"""
import colorsys
from PIL import Image # type: ignore
def _UpperCamelCase ( _A , _A , _A ) -> float:
"""simple docstring"""
_UpperCAmelCase = x
_UpperCAmelCase = y
for step in range(_A ): # noqa: B007
_UpperCAmelCase = a * a - b * b + x
_UpperCAmelCase = 2 * a * b + y
_UpperCAmelCase = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def _UpperCamelCase ( _A ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return (2_5_5, 2_5_5, 2_5_5)
def _UpperCamelCase ( _A ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(_A , 1 , 1 ) )
def _UpperCamelCase ( _A = 8_0_0 , _A = 6_0_0 , _A = -0.6 , _A = 0 , _A = 3.2 , _A = 5_0 , _A = True , ) -> Image.Image:
"""simple docstring"""
_UpperCAmelCase = Image.new("""RGB""" , (image_width, image_height) )
_UpperCAmelCase = img.load()
# loop through the image-coordinates
for image_x in range(_A ):
for image_y in range(_A ):
# determine the figure-coordinates based on the image-coordinates
_UpperCAmelCase = figure_width / image_width * image_height
_UpperCAmelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width
_UpperCAmelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height
_UpperCAmelCase = get_distance(_A , _A , _A )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
_UpperCAmelCase = get_color_coded_rgb(_A )
else:
_UpperCAmelCase = get_black_and_white_rgb(_A )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
a : List[str] = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show() | 19 | 1 |
"""simple docstring"""
import argparse
import torch
from torch import nn
from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""decoder.output_projection.weight""",
"""_float_tensor""",
"""encoder.embed_positions._float_tensor""",
"""decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
state_dict.pop(_A , _A )
def _UpperCamelCase ( _A ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase ,_UpperCAmelCase = emb.weight.shape
_UpperCAmelCase = nn.Linear(_A , _A , bias=_A )
_UpperCAmelCase = emb.weight.data
return lin_layer
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = torch.load(_A , map_location="""cpu""" )
_UpperCAmelCase = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""]
_UpperCAmelCase = mam_aaa["""model"""]
remove_ignore_keys_(_A )
_UpperCAmelCase = state_dict["""encoder.embed_tokens.weight"""].shape[0]
_UpperCAmelCase = MaMaaaConfig(
vocab_size=_A , max_position_embeddings=1_0_2_4 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , )
_UpperCAmelCase = state_dict["""decoder.embed_tokens.weight"""]
_UpperCAmelCase = MaMaaaForConditionalGeneration(_A )
model.model.load_state_dict(_A , strict=_A )
_UpperCAmelCase = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
a : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
a : Optional[Any] = parser.parse_args()
a : List[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß)
model.save_pretrained(args.pytorch_dump_folder_path) | 19 |
"""simple docstring"""
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class a_ ( nn.Module ):
def __init__( self : List[str] , __UpperCamelCase : int = 16 , __UpperCamelCase : int = 88 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 1 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 32 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : str = "geglu" , __UpperCamelCase : Optional[int] = None , ) ->Dict:
'''simple docstring'''
super().__init__()
_UpperCAmelCase = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=__UpperCamelCase , attention_head_dim=__UpperCamelCase , in_channels=__UpperCamelCase , num_layers=__UpperCamelCase , dropout=__UpperCamelCase , norm_num_groups=__UpperCamelCase , cross_attention_dim=__UpperCamelCase , attention_bias=__UpperCamelCase , sample_size=__UpperCamelCase , num_vector_embeds=__UpperCamelCase , activation_fn=__UpperCamelCase , num_embeds_ada_norm=__UpperCamelCase , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
_UpperCAmelCase = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
_UpperCAmelCase = [77, 2_57]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
_UpperCAmelCase = [1, 0]
def _snake_case ( self : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : bool = True , ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = hidden_states
_UpperCAmelCase = []
_UpperCAmelCase = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
_UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
_UpperCAmelCase = self.transformer_index_for_condition[i]
_UpperCAmelCase = self.transformers[transformer_index](
__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , timestep=__UpperCamelCase , cross_attention_kwargs=__UpperCamelCase , return_dict=__UpperCamelCase , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
_UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
_UpperCAmelCase = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=__UpperCamelCase ) | 19 | 1 |
"""simple docstring"""
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
a : str = logging.get_logger(__name__)
a : Union[str, Any] = {
'''b0''': efficientnet.EfficientNetBa,
'''b1''': efficientnet.EfficientNetBa,
'''b2''': efficientnet.EfficientNetBa,
'''b3''': efficientnet.EfficientNetBa,
'''b4''': efficientnet.EfficientNetBa,
'''b5''': efficientnet.EfficientNetBa,
'''b6''': efficientnet.EfficientNetBa,
'''b7''': efficientnet.EfficientNetBa,
}
a : Dict = {
'''b0''': {
'''hidden_dim''': 1_2_8_0,
'''width_coef''': 1.0,
'''depth_coef''': 1.0,
'''image_size''': 2_2_4,
'''dropout_rate''': 0.2,
'''dw_padding''': [],
},
'''b1''': {
'''hidden_dim''': 1_2_8_0,
'''width_coef''': 1.0,
'''depth_coef''': 1.1,
'''image_size''': 2_4_0,
'''dropout_rate''': 0.2,
'''dw_padding''': [1_6],
},
'''b2''': {
'''hidden_dim''': 1_4_0_8,
'''width_coef''': 1.1,
'''depth_coef''': 1.2,
'''image_size''': 2_6_0,
'''dropout_rate''': 0.3,
'''dw_padding''': [5, 8, 1_6],
},
'''b3''': {
'''hidden_dim''': 1_5_3_6,
'''width_coef''': 1.2,
'''depth_coef''': 1.4,
'''image_size''': 3_0_0,
'''dropout_rate''': 0.3,
'''dw_padding''': [5, 1_8],
},
'''b4''': {
'''hidden_dim''': 1_7_9_2,
'''width_coef''': 1.4,
'''depth_coef''': 1.8,
'''image_size''': 3_8_0,
'''dropout_rate''': 0.4,
'''dw_padding''': [6],
},
'''b5''': {
'''hidden_dim''': 2_0_4_8,
'''width_coef''': 1.6,
'''depth_coef''': 2.2,
'''image_size''': 4_5_6,
'''dropout_rate''': 0.4,
'''dw_padding''': [1_3, 2_7],
},
'''b6''': {
'''hidden_dim''': 2_3_0_4,
'''width_coef''': 1.8,
'''depth_coef''': 2.6,
'''image_size''': 5_2_8,
'''dropout_rate''': 0.5,
'''dw_padding''': [3_1],
},
'''b7''': {
'''hidden_dim''': 2_5_6_0,
'''width_coef''': 2.0,
'''depth_coef''': 3.1,
'''image_size''': 6_0_0,
'''dropout_rate''': 0.5,
'''dw_padding''': [1_8],
},
}
def _UpperCamelCase ( _A ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = EfficientNetConfig()
_UpperCAmelCase = CONFIG_MAP[model_name]["""hidden_dim"""]
_UpperCAmelCase = CONFIG_MAP[model_name]["""width_coef"""]
_UpperCAmelCase = CONFIG_MAP[model_name]["""depth_coef"""]
_UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""]
_UpperCAmelCase = CONFIG_MAP[model_name]["""dropout_rate"""]
_UpperCAmelCase = CONFIG_MAP[model_name]["""dw_padding"""]
_UpperCAmelCase = """huggingface/label-files"""
_UpperCAmelCase = """imagenet-1k-id2label.json"""
_UpperCAmelCase = 1_0_0_0
_UpperCAmelCase = json.load(open(hf_hub_download(_A , _A , repo_type="""dataset""" ) , """r""" ) )
_UpperCAmelCase = {int(_A ): v for k, v in idalabel.items()}
_UpperCAmelCase = idalabel
_UpperCAmelCase = {v: k for k, v in idalabel.items()}
return config
def _UpperCamelCase ( ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg"""
_UpperCAmelCase = Image.open(requests.get(_A , stream=_A ).raw )
return im
def _UpperCamelCase ( _A ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""]
_UpperCAmelCase = EfficientNetImageProcessor(
size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=_A , )
return preprocessor
def _UpperCamelCase ( _A ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )]
_UpperCAmelCase = sorted(set(_A ) )
_UpperCAmelCase = len(_A )
_UpperCAmelCase = {b: str(_A ) for b, i in zip(_A , range(_A ) )}
_UpperCAmelCase = []
rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") )
rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") )
rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") )
rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") )
rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") )
for b in block_names:
_UpperCAmelCase = block_name_mapping[b]
rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") )
rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") )
rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") )
rename_keys.append(
(F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") )
rename_keys.append(
(F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") )
rename_keys.append(
(F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") )
rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") )
rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") )
rename_keys.append(
(F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") )
rename_keys.append(
(F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") )
rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") )
rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") )
rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") )
rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") )
rename_keys.append(
(F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") )
rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") )
rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") )
rename_keys.append(
(F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") )
rename_keys.append(
(F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") )
rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") )
rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") )
rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") )
rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") )
rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") )
_UpperCAmelCase = {}
for item in rename_keys:
if item[0] in original_param_names:
_UpperCAmelCase = """efficientnet.""" + item[1]
_UpperCAmelCase = """classifier.weight"""
_UpperCAmelCase = """classifier.bias"""
return key_mapping
def _UpperCamelCase ( _A , _A , _A ) -> List[str]:
"""simple docstring"""
for key, value in tf_params.items():
if "normalization" in key:
continue
_UpperCAmelCase = key_mapping[key]
if "_conv" in key and "kernel" in key:
_UpperCAmelCase = torch.from_numpy(_A ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
_UpperCAmelCase = torch.from_numpy(_A ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
_UpperCAmelCase = torch.from_numpy(np.transpose(_A ) )
else:
_UpperCAmelCase = torch.from_numpy(_A )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(_A )
@torch.no_grad()
def _UpperCamelCase ( _A , _A , _A , _A ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = model_classes[model_name](
include_top=_A , weights="""imagenet""" , input_tensor=_A , input_shape=_A , pooling=_A , classes=1_0_0_0 , classifier_activation="""softmax""" , )
_UpperCAmelCase = original_model.trainable_variables
_UpperCAmelCase = original_model.non_trainable_variables
_UpperCAmelCase = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
_UpperCAmelCase = param.numpy()
_UpperCAmelCase = list(tf_params.keys() )
# Load HuggingFace model
_UpperCAmelCase = get_efficientnet_config(_A )
_UpperCAmelCase = EfficientNetForImageClassification(_A ).eval()
_UpperCAmelCase = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print("""Converting parameters...""" )
_UpperCAmelCase = rename_keys(_A )
replace_params(_A , _A , _A )
# Initialize preprocessor and preprocess input image
_UpperCAmelCase = convert_image_processor(_A )
_UpperCAmelCase = preprocessor(images=prepare_img() , return_tensors="""pt""" )
# HF model inference
hf_model.eval()
with torch.no_grad():
_UpperCAmelCase = hf_model(**_A )
_UpperCAmelCase = outputs.logits.detach().numpy()
# Original model inference
_UpperCAmelCase = False
_UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""]
_UpperCAmelCase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
_UpperCAmelCase = image.img_to_array(_A )
_UpperCAmelCase = np.expand_dims(_A , axis=0 )
_UpperCAmelCase = original_model.predict(_A )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(_A , _A , atol=1e-3 ), "The predicted logits are not the same."
print("""Model outputs match!""" )
if save_model:
# Create folder to save model
if not os.path.isdir(_A ):
os.mkdir(_A )
# Save converted model and image processor
hf_model.save_pretrained(_A )
preprocessor.save_pretrained(_A )
if push_to_hub:
# Push model and image processor to hub
print(F"""Pushing converted {model_name} to the hub...""" )
_UpperCAmelCase = F"""efficientnet-{model_name}"""
preprocessor.push_to_hub(_A )
hf_model.push_to_hub(_A )
if __name__ == "__main__":
a : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''b0''',
type=str,
help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''hf_model''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''')
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''')
a : Any = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub) | 19 |
"""simple docstring"""
import argparse
import torch
from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCamelCase ( _A , _A , _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = LxmertConfig.from_json_file(_A )
print(F"""Building PyTorch model from configuration: {config}""" )
_UpperCAmelCase = LxmertForPreTraining(_A )
# Load weights from tf checkpoint
load_tf_weights_in_lxmert(_A , _A , _A )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , _A )
if __name__ == "__main__":
a : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
a : Union[str, Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path) | 19 | 1 |
"""simple docstring"""
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : str = logging.get_logger(__name__)
a : List[str] = {
'''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''',
'''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''',
}
class a_ ( _UpperCAmelCase ):
a : str = 'encodec'
def __init__( self : Dict , __UpperCamelCase : Optional[Any]=[1.5, 3.0, 6.0, 1_2.0, 2_4.0] , __UpperCamelCase : str=2_40_00 , __UpperCamelCase : List[str]=1 , __UpperCamelCase : List[str]=False , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Union[str, Any]=1_28 , __UpperCamelCase : Dict=32 , __UpperCamelCase : int=1 , __UpperCamelCase : List[str]=[8, 5, 4, 2] , __UpperCamelCase : str="weight_norm" , __UpperCamelCase : Union[str, Any]=7 , __UpperCamelCase : int=7 , __UpperCamelCase : Tuple=3 , __UpperCamelCase : Dict=2 , __UpperCamelCase : int=True , __UpperCamelCase : Any="reflect" , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : List[str]=2 , __UpperCamelCase : Tuple=1.0 , __UpperCamelCase : int=10_24 , __UpperCamelCase : Tuple=None , __UpperCamelCase : Tuple=True , **__UpperCamelCase : int , ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = target_bandwidths
_UpperCAmelCase = sampling_rate
_UpperCAmelCase = audio_channels
_UpperCAmelCase = normalize
_UpperCAmelCase = chunk_length_s
_UpperCAmelCase = overlap
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_filters
_UpperCAmelCase = num_residual_layers
_UpperCAmelCase = upsampling_ratios
_UpperCAmelCase = norm_type
_UpperCAmelCase = kernel_size
_UpperCAmelCase = last_kernel_size
_UpperCAmelCase = residual_kernel_size
_UpperCAmelCase = dilation_growth_rate
_UpperCAmelCase = use_causal_conv
_UpperCAmelCase = pad_mode
_UpperCAmelCase = compress
_UpperCAmelCase = num_lstm_layers
_UpperCAmelCase = trim_right_ratio
_UpperCAmelCase = codebook_size
_UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size
_UpperCAmelCase = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" )
super().__init__(**__UpperCamelCase )
@property
def _snake_case ( self : List[Any] ) ->Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def _snake_case ( self : Tuple ) ->Optional[int]:
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def _snake_case ( self : Union[str, Any] ) ->int:
'''simple docstring'''
_UpperCAmelCase = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def _snake_case ( self : List[str] ) ->int:
'''simple docstring'''
return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) ) | 19 |
"""simple docstring"""
import argparse
import os
import re
import packaging.version
a : str = '''examples/'''
a : List[str] = {
'''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''),
'''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''),
'''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''),
'''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''),
}
a : Tuple = {
'''init''': '''src/diffusers/__init__.py''',
'''setup''': '''setup.py''',
}
a : List[str] = '''README.md'''
def _UpperCamelCase ( _A , _A , _A ) -> Dict:
"""simple docstring"""
with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_UpperCAmelCase = f.read()
_UpperCAmelCase ,_UpperCAmelCase = REPLACE_PATTERNS[pattern]
_UpperCAmelCase = replace.replace("""VERSION""" , _A )
_UpperCAmelCase = re_pattern.sub(_A , _A )
with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(_A )
def _UpperCamelCase ( _A ) -> Union[str, Any]:
"""simple docstring"""
for folder, directories, fnames in os.walk(_A ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(_A , _A ) , _A , pattern="""examples""" )
def _UpperCamelCase ( _A , _A=False ) -> int:
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_A , _A , _A )
if not patch:
update_version_in_examples(_A )
def _UpperCamelCase ( ) -> Any:
"""simple docstring"""
_UpperCAmelCase = """🤗 Transformers currently provides the following architectures"""
_UpperCAmelCase = """1. Want to contribute a new model?"""
with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_UpperCAmelCase = f.readlines()
# Find the start of the list.
_UpperCAmelCase = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
_UpperCAmelCase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
_UpperCAmelCase = lines[index].replace(
"""https://huggingface.co/docs/diffusers/main/model_doc""" , """https://huggingface.co/docs/diffusers/model_doc""" , )
index += 1
with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(_A )
def _UpperCamelCase ( ) -> Optional[int]:
"""simple docstring"""
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
_UpperCAmelCase = f.read()
_UpperCAmelCase = REPLACE_PATTERNS["""init"""][0].search(_A ).groups()[0]
return packaging.version.parse(_A )
def _UpperCamelCase ( _A=False ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
_UpperCAmelCase = default_version.base_version
elif patch:
_UpperCAmelCase = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
_UpperCAmelCase = F"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
_UpperCAmelCase = input(F"""Which version are you releasing? [{default_version}]""" )
if len(_A ) == 0:
_UpperCAmelCase = default_version
print(F"""Updating version to {version}.""" )
global_version_update(_A , patch=_A )
def _UpperCamelCase ( ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = get_version()
_UpperCAmelCase = F"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
_UpperCAmelCase = current_version.base_version
# Check with the user we got that right.
_UpperCAmelCase = input(F"""Which version are we developing now? [{dev_version}]""" )
if len(_A ) == 0:
_UpperCAmelCase = dev_version
print(F"""Updating version to {version}.""" )
global_version_update(_A )
# print("Cleaning main README, don't forget to run `make fix-copies`.")
# clean_main_ref_in_model_list()
if __name__ == "__main__":
a : Dict = argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
a : Tuple = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work() | 19 | 1 |
"""simple docstring"""
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
a : Optional[Any] = '''\
@misc{chen2021evaluating,
title={Evaluating Large Language Models Trained on Code},
author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \
and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \
and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \
and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \
and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \
and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \
and Mohammad Bavarian and Clemens Winter and Philippe Tillet \
and Felipe Petroski Such and Dave Cummings and Matthias Plappert \
and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \
and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \
and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \
and William Saunders and Christopher Hesse and Andrew N. Carr \
and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \
and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \
and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \
and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},
year={2021},
eprint={2107.03374},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
'''
a : List[str] = '''\
This metric implements the evaluation harness for the HumanEval problem solving dataset
described in the paper "Evaluating Large Language Models Trained on Code"
(https://arxiv.org/abs/2107.03374).
'''
a : Any = '''
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of candidates to evaluate. Each candidates should be a list
of strings with several code candidates to solve the problem.
references: a list with a test for each prediction. Each test should evaluate the
correctness of a code candidate.
k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])
num_workers: number of workers used to evaluate the canidate programs (Default: 4).
timeout:
Returns:
pass_at_k: dict with pass rates for each k
results: dict with granular results of each unittest
Examples:
>>> code_eval = datasets.load_metric("code_eval")
>>> test_cases = ["assert add(2,3)==5"]
>>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]
>>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])
>>> print(pass_at_k)
{\'pass@1\': 0.5, \'pass@2\': 1.0}
'''
a : int = '''
################################################################################
!!!WARNING!!!
################################################################################
The "code_eval" metric executes untrusted model-generated code in Python.
Although it is highly unlikely that model-generated code will do something
overtly malicious in response to this test suite, model-generated code may act
destructively due to a lack of model capability or alignment.
Users are strongly encouraged to sandbox this evaluation suite so that it
does not perform destructive actions on their host or network. For more
information on how OpenAI sandboxes its code, see the paper "Evaluating Large
Language Models Trained on Code" (https://arxiv.org/abs/2107.03374).
Once you have read this disclaimer and taken appropriate precautions,
set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this
with:
>>> import os
>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"
################################################################################\
'''
a : List[Any] = '''The MIT License
Copyright (c) OpenAI (https://openai.com)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
def _snake_case ( self : Tuple ) ->Tuple:
'''simple docstring'''
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , )
def _snake_case ( self : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any]=[1, 10, 1_00] , __UpperCamelCase : Dict=4 , __UpperCamelCase : Tuple=3.0 ) ->Union[str, Any]:
'''simple docstring'''
if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError("""This metric is currently not supported on Windows.""" )
with ThreadPoolExecutor(max_workers=__UpperCamelCase ) as executor:
_UpperCAmelCase = []
_UpperCAmelCase = Counter()
_UpperCAmelCase = 0
_UpperCAmelCase = defaultdict(__UpperCamelCase )
for task_id, (candidates, test_case) in enumerate(zip(__UpperCamelCase , __UpperCamelCase ) ):
for candidate in candidates:
_UpperCAmelCase = candidate + """\n""" + test_case
_UpperCAmelCase = (test_program, timeout, task_id, completion_id[task_id])
_UpperCAmelCase = executor.submit(__UpperCamelCase , *__UpperCamelCase )
futures.append(__UpperCamelCase )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(__UpperCamelCase ):
_UpperCAmelCase = future.result()
results[result["task_id"]].append((result["""completion_id"""], result) )
_UpperCAmelCase ,_UpperCAmelCase = [], []
for result in results.values():
result.sort()
_UpperCAmelCase = [r[1]["""passed"""] for r in result]
total.append(len(__UpperCamelCase ) )
correct.append(sum(__UpperCamelCase ) )
_UpperCAmelCase = np.array(__UpperCamelCase )
_UpperCAmelCase = np.array(__UpperCamelCase )
_UpperCAmelCase = k
_UpperCAmelCase = {f"""pass@{k}""": estimate_pass_at_k(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def _UpperCamelCase ( _A , _A , _A ) -> Dict:
"""simple docstring"""
def estimator(_A , _A , _A ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(_A , _A ):
_UpperCAmelCase = itertools.repeat(_A , len(_A ) )
else:
assert len(_A ) == len(_A )
_UpperCAmelCase = iter(_A )
return np.array([estimator(int(_A ) , int(_A ) , _A ) for n, c in zip(_A , _A )] ) | 19 |
"""simple docstring"""
from __future__ import annotations
def _UpperCamelCase ( _A ) -> None:
"""simple docstring"""
create_state_space_tree(_A , [] , 0 , [0 for i in range(len(_A ) )] )
def _UpperCamelCase ( _A , _A , _A , _A , ) -> None:
"""simple docstring"""
if index == len(_A ):
print(_A )
return
for i in range(len(_A ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_UpperCAmelCase = True
create_state_space_tree(_A , _A , index + 1 , _A )
current_sequence.pop()
_UpperCAmelCase = False
a : list[int | str] = [3, 1, 2, 4]
generate_all_permutations(sequence)
a : list[int | str] = ["A", "B", "C"]
generate_all_permutations(sequence_a) | 19 | 1 |
"""simple docstring"""
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def _UpperCamelCase ( ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = ArgumentParser(
description=(
"""PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes"""
) )
# Optional arguments for the launch helper
parser.add_argument("""--num_cores""" , type=_A , default=1 , help="""Number of TPU cores to use (1 or 8).""" )
# positional
parser.add_argument(
"""training_script""" , type=_A , help=(
"""The full path to the single TPU training """
"""program/script to be launched in parallel, """
"""followed by all the arguments for the """
"""training script"""
) , )
# rest from the training program
parser.add_argument("""training_script_args""" , nargs=_A )
return parser.parse_args()
def _UpperCamelCase ( ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = parse_args()
# Import training_script as a module.
_UpperCAmelCase = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
_UpperCAmelCase = script_fpath.stem
_UpperCAmelCase = importlib.import_module(_A )
# Patch sys.argv
_UpperCAmelCase = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main() | 19 |
"""simple docstring"""
import inspect
import unittest
from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class a_ :
def __init__( self : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : int=32 , __UpperCamelCase : Tuple=16 , __UpperCamelCase : Dict=3 , __UpperCamelCase : Dict=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=32 , __UpperCamelCase : Any=4 , __UpperCamelCase : Optional[int]=[0, 1, 2, 3] , __UpperCamelCase : str=4 , __UpperCamelCase : Optional[Any]=37 , __UpperCamelCase : str="gelu" , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Any=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : int=[1, 3_84, 24, 24] , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Any=None , ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = patch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = is_training
_UpperCAmelCase = use_labels
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = backbone_out_indices
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_labels
_UpperCAmelCase = backbone_featmap_shape
_UpperCAmelCase = scope
_UpperCAmelCase = is_hybrid
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
_UpperCAmelCase = (image_size // patch_size) ** 2
_UpperCAmelCase = num_patches + 1
def _snake_case ( self : str ) ->int:
'''simple docstring'''
_UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
_UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def _snake_case ( self : List[str] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [96, 1_92, 3_84, 7_68],
"""num_groups""": 2,
}
return DPTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , )
def _snake_case ( self : Any , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = DPTModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : List[Any] ) ->int:
'''simple docstring'''
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = DPTForDepthEstimation(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) )
def _snake_case ( self : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = DPTForSemanticSegmentation(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def _snake_case ( self : Tuple ) ->Any:
'''simple docstring'''
_UpperCAmelCase = self.prepare_config_and_inputs()
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = config_and_inputs
_UpperCAmelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class a_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
a : Dict = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
a : int = (
{
'depth-estimation': DPTForDepthEstimation,
'feature-extraction': DPTModel,
'image-segmentation': DPTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
a : str = False
a : List[str] = False
a : Dict = False
def _snake_case ( self : Any ) ->Any:
'''simple docstring'''
_UpperCAmelCase = DPTModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 )
def _snake_case ( self : Optional[int] ) ->Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""DPT does not use inputs_embeds""" )
def _snake_case ( self : Tuple ) ->Tuple:
'''simple docstring'''
pass
def _snake_case ( self : int ) ->Any:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) )
def _snake_case ( self : Optional[int] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase = [*signature.parameters.keys()]
_UpperCAmelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCamelCase )
def _snake_case ( self : Optional[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _snake_case ( self : str ) ->int:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*__UpperCamelCase )
def _snake_case ( self : Any ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase )
def _snake_case ( self : str ) ->Any:
'''simple docstring'''
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = True
if model_class in get_values(__UpperCamelCase ):
continue
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.train()
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
_UpperCAmelCase = model(**__UpperCamelCase ).loss
loss.backward()
def _snake_case ( self : List[str] ) ->Dict:
'''simple docstring'''
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = False
_UpperCAmelCase = True
if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.gradient_checkpointing_enable()
model.train()
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
_UpperCAmelCase = model(**__UpperCamelCase ).loss
loss.backward()
def _snake_case ( self : Tuple ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = _config_zero_init(__UpperCamelCase )
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(config=__UpperCamelCase )
# Skip the check for the backbone
_UpperCAmelCase = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
_UpperCAmelCase = [f"""{name}.{key}""" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def _snake_case ( self : Dict ) ->Tuple:
'''simple docstring'''
pass
@slow
def _snake_case ( self : Optional[int] ) ->List[Any]:
'''simple docstring'''
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
_UpperCAmelCase = DPTModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def _snake_case ( self : List[Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = """add"""
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = DPTForDepthEstimation(__UpperCamelCase )
def _UpperCamelCase ( ) -> int:
"""simple docstring"""
_UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
@slow
class a_ ( unittest.TestCase ):
def _snake_case ( self : Any ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" )
_UpperCAmelCase = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__UpperCamelCase )
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase )
# forward pass
with torch.no_grad():
_UpperCAmelCase = model(**__UpperCamelCase )
_UpperCAmelCase = outputs.predicted_depth
# verify the predicted depth
_UpperCAmelCase = torch.Size((1, 3_84, 3_84) )
self.assertEqual(predicted_depth.shape , __UpperCamelCase )
_UpperCAmelCase = torch.tensor(
[[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , __UpperCamelCase , atol=1e-4 ) ) | 19 | 1 |
"""simple docstring"""
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
a : Optional[int] = logging.get_logger(__name__)
a : Any = {'''vocab_file''': '''vocab.txt''', '''emoji_file''': '''emoji.json'''}
a : Union[str, Any] = {
'''vocab_file''': {
'''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt''',
},
'''emoji_file''': {
'''abeja/gpt-neox-japanese-2.7b''': '''https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json''',
},
}
a : Optional[Any] = {
'''abeja/gpt-neox-japanese-2.7b''': 2_0_4_8,
}
def _UpperCamelCase ( _A , _A ) -> str:
"""simple docstring"""
with open(_A , """r""" , encoding="""utf-8""" ) as f:
_UpperCAmelCase = json.loads(f.read() )
_UpperCAmelCase = collections.OrderedDict()
_UpperCAmelCase = collections.OrderedDict()
_UpperCAmelCase = collections.OrderedDict()
with open(_A , """r""" , encoding="""utf-8""" ) as f:
_UpperCAmelCase = f.readlines()
_UpperCAmelCase = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token]
for idx, b in enumerate(_A ):
_UpperCAmelCase = b
_UpperCAmelCase = idx
for wd in b:
_UpperCAmelCase = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class a_ ( _UpperCAmelCase ):
a : int = VOCAB_FILES_NAMES
a : Any = PRETRAINED_VOCAB_FILES_MAP
a : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a : Optional[Any] = ['input_ids', 'attention_mask']
def __init__( self : Any , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any]="<|endoftext|>" , __UpperCamelCase : str="<|endoftext|>" , __UpperCamelCase : str="<|startoftext|>" , __UpperCamelCase : Any="<|endoftext|>" , __UpperCamelCase : Optional[int]=False , **__UpperCamelCase : Optional[Any] , ) ->List[Any]:
'''simple docstring'''
super().__init__(
unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , do_clean_text=__UpperCamelCase , **__UpperCamelCase , )
if not os.path.isfile(__UpperCamelCase ):
raise ValueError(
f"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"""
""" model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" )
if not os.path.isfile(__UpperCamelCase ):
raise ValueError(
f"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google"""
""" pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" )
_UpperCAmelCase = do_clean_text
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = load_vocab_and_emoji(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = SubWordJapaneseTokenizer(
vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji )
@property
def _snake_case ( self : Union[str, Any] ) ->Tuple:
'''simple docstring'''
return len(self.raw_vocab )
def _snake_case ( self : Any ) ->List[str]:
'''simple docstring'''
return dict(self.raw_vocab , **self.added_tokens_encoder )
def _snake_case ( self : Optional[int] , __UpperCamelCase : Tuple ) ->List[str]:
'''simple docstring'''
return self.subword_tokenizer.tokenize(__UpperCamelCase , clean=self.do_clean_text )
def _snake_case ( self : Any , __UpperCamelCase : List[str] ) ->Any:
'''simple docstring'''
return self.vocab.get(__UpperCamelCase , self.vocab.get(self.unk_token ) )
def _snake_case ( self : int , __UpperCamelCase : Union[str, Any] ) ->str:
'''simple docstring'''
return self.subword_tokenizer.convert_id_to_token(__UpperCamelCase )
def _snake_case ( self : Optional[Any] , __UpperCamelCase : Optional[int] ) ->int:
'''simple docstring'''
_UpperCAmelCase = """""".join(__UpperCamelCase ).strip()
return out_string
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : "Conversation" ) ->List[int]:
'''simple docstring'''
_UpperCAmelCase = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) + [self.eos_token_id] )
if len(__UpperCamelCase ) > self.model_max_length:
_UpperCAmelCase = input_ids[-self.model_max_length :]
return input_ids
def _snake_case ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) ->Tuple[str]:
'''simple docstring'''
_UpperCAmelCase = 0
if os.path.isdir(__UpperCamelCase ):
_UpperCAmelCase = os.path.join(
__UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
_UpperCAmelCase = os.path.join(
__UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] )
else:
_UpperCAmelCase = (
(filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""]
)
_UpperCAmelCase = (
(filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""]
)
with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."""
""" Please check that the vocabulary is not corrupted!""" )
_UpperCAmelCase = token_index
writer.write(""",""".join(__UpperCamelCase ) + """\n""" )
index += 1
with open(__UpperCamelCase , """w""" , encoding="""utf-8""" ) as writer:
json.dump(self.emoji , __UpperCamelCase )
return vocab_file, emoji_file
class a_ ( _UpperCAmelCase ):
def __init__( self : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = vocab # same as swe
_UpperCAmelCase = ids_to_tokens # same as bpe
_UpperCAmelCase = emoji
_UpperCAmelCase = np.max([len(__UpperCamelCase ) for w in self.vocab.keys()] )
_UpperCAmelCase = re.compile(r"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" )
_UpperCAmelCase = re.compile(r"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" )
_UpperCAmelCase = re.compile(r"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" )
_UpperCAmelCase = re.compile(
r"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" )
_UpperCAmelCase = re.compile(
r"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" )
_UpperCAmelCase = re.compile(
r"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" )
_UpperCAmelCase = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"""
_UpperCAmelCase = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"""
_UpperCAmelCase = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} )
def __len__( self : str ) ->List[Any]:
'''simple docstring'''
return len(self.ids_to_tokens )
def _snake_case ( self : Optional[Any] , __UpperCamelCase : str ) ->str:
'''simple docstring'''
_UpperCAmelCase = self.content_repattera.sub("""<URL>""" , __UpperCamelCase )
_UpperCAmelCase = self.content_repattera.sub("""<EMAIL>""" , __UpperCamelCase )
_UpperCAmelCase = self.content_repattera.sub("""<TEL>""" , __UpperCamelCase )
_UpperCAmelCase = self.content_repattera.sub("""<DATE>""" , __UpperCamelCase )
_UpperCAmelCase = self.content_repattera.sub("""<DATE>""" , __UpperCamelCase )
_UpperCAmelCase = self.content_repattera.sub("""<PRICE>""" , __UpperCamelCase )
_UpperCAmelCase = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
_UpperCAmelCase = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" )
return content
def _snake_case ( self : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any]=False ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = text.replace(""" """ , """<SP>""" )
_UpperCAmelCase = text.replace(""" """ , """<SP>""" )
_UpperCAmelCase = text.replace("""\r\n""" , """<BR>""" )
_UpperCAmelCase = text.replace("""\n""" , """<BR>""" )
_UpperCAmelCase = text.replace("""\r""" , """<BR>""" )
_UpperCAmelCase = text.replace("""\t""" , """<TAB>""" )
_UpperCAmelCase = text.replace("""—""" , """ー""" )
_UpperCAmelCase = text.replace("""−""" , """ー""" )
for k, v in self.emoji["emoji"].items():
if k in text:
_UpperCAmelCase = text.replace(__UpperCamelCase , __UpperCamelCase )
if clean:
_UpperCAmelCase = self.clean_text(__UpperCamelCase )
def check_simbol(__UpperCamelCase : Any ):
_UpperCAmelCase = x.encode()
if len(__UpperCamelCase ) == 1 and len(__UpperCamelCase ) == 2:
_UpperCAmelCase = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0xc2a1 and c <= 0xc2bf)
or (c >= 0xc780 and c <= 0xc783)
or (c >= 0xcab9 and c <= 0xcbbf)
or (c >= 0xcc80 and c <= 0xcda2)
):
return True
return False
def checkuae(__UpperCamelCase : List[Any] ):
_UpperCAmelCase = x.encode()
if len(__UpperCamelCase ) == 1 and len(__UpperCamelCase ) == 3:
_UpperCAmelCase = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0xe28080 and c <= 0xe2b07f:
return True
return False
_UpperCAmelCase = 0
_UpperCAmelCase = []
while pos < len(__UpperCamelCase ):
_UpperCAmelCase = min(len(__UpperCamelCase ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3
_UpperCAmelCase = [] # (token_id, token, pos)
for e in range(__UpperCamelCase , __UpperCamelCase , -1 ):
_UpperCAmelCase = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(__UpperCamelCase ) > 2:
_UpperCAmelCase = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(__UpperCamelCase ) > 0:
# the smallest token_id is adopted
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = sorted(__UpperCamelCase , key=lambda __UpperCamelCase : x[0] )[0]
result.append(__UpperCamelCase )
_UpperCAmelCase = e
else:
_UpperCAmelCase = pos + 1
_UpperCAmelCase = text[pos:end]
if check_simbol(__UpperCamelCase ):
result.append("""<KIGOU>""" )
elif checkuae(__UpperCamelCase ):
result.append("""<U2000U2BFF>""" )
else:
for i in wd.encode("""utf-8""" ):
result.append("""<|byte%d|>""" % i )
_UpperCAmelCase = end
return result
def _snake_case ( self : int , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int]="\n" ) ->Any:
'''simple docstring'''
_UpperCAmelCase = []
_UpperCAmelCase = []
_UpperCAmelCase = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(__UpperCamelCase ) > 0:
words.append(bytearray(__UpperCamelCase ).decode("""utf-8""" , errors="""replace""" ) )
_UpperCAmelCase = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji["""emoji_inv"""][word] )
elif word == "<SP>":
words.append(""" """ )
elif word == "<BR>":
words.append(__UpperCamelCase )
elif word == "<TAB>":
words.append("""\t""" )
elif word == "<BLOCK>":
words.append("""▀""" )
elif word == "<KIGOU>":
words.append("""ǀ""" )
elif word == "<U2000U2BFF>":
words.append("""‖""" )
else:
words.append(__UpperCamelCase )
if len(__UpperCamelCase ) > 0:
words.append(bytearray(__UpperCamelCase ).decode("""utf-8""" , errors="""replace""" ) )
_UpperCAmelCase = """""".join(__UpperCamelCase )
return text | 19 |
"""simple docstring"""
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
a : List[str] = logging.get_logger(__name__)
class a_ ( enum.Enum ):
a : Optional[Any] = 0
a : Dict = 1
@add_end_docstrings(_UpperCAmelCase )
class a_ ( _UpperCAmelCase ):
a : List[Any] = 'generated'
def __init__( self : int , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : str ) ->Any:
'''simple docstring'''
super().__init__(*__UpperCamelCase , **__UpperCamelCase )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == """tf"""
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def _snake_case ( self : Optional[int] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Any=None , __UpperCamelCase : int=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Dict=None , **__UpperCamelCase : Any , ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = {}
if truncation is not None:
_UpperCAmelCase = truncation
_UpperCAmelCase = generate_kwargs
_UpperCAmelCase = {}
if return_tensors is not None and return_type is None:
_UpperCAmelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
_UpperCAmelCase = return_type
if clean_up_tokenization_spaces is not None:
_UpperCAmelCase = clean_up_tokenization_spaces
if stop_sequence is not None:
_UpperCAmelCase = self.tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase )
if len(__UpperCamelCase ) > 1:
warnings.warn(
"""Stopping on a multiple token sequence is not yet supported on transformers. The first token of"""
""" the stop sequence will be used as the stop sequence string in the interim.""" )
_UpperCAmelCase = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def _snake_case ( self : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->Any:
'''simple docstring'''
return True
def _snake_case ( self : Optional[Any] , *__UpperCamelCase : Any , __UpperCamelCase : Dict ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.model.config.prefix if self.model.config.prefix is not None else """"""
if isinstance(args[0] , __UpperCamelCase ):
if self.tokenizer.pad_token_id is None:
raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" )
_UpperCAmelCase = ([prefix + arg for arg in args[0]],)
_UpperCAmelCase = True
elif isinstance(args[0] , __UpperCamelCase ):
_UpperCAmelCase = (prefix + args[0],)
_UpperCAmelCase = False
else:
raise ValueError(
f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" )
_UpperCAmelCase = self.tokenizer(*__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self : Dict , *__UpperCamelCase : str , **__UpperCamelCase : Dict ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = super().__call__(*__UpperCamelCase , **__UpperCamelCase )
if (
isinstance(args[0] , __UpperCamelCase )
and all(isinstance(__UpperCamelCase , __UpperCamelCase ) for el in args[0] )
and all(len(__UpperCamelCase ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def _snake_case ( self : List[str] , __UpperCamelCase : Any , __UpperCamelCase : str=TruncationStrategy.DO_NOT_TRUNCATE , **__UpperCamelCase : Optional[int] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = self._parse_and_tokenize(__UpperCamelCase , truncation=__UpperCamelCase , **__UpperCamelCase )
return inputs
def _snake_case ( self : str , __UpperCamelCase : Dict , **__UpperCamelCase : Dict ) ->Tuple:
'''simple docstring'''
if self.framework == "pt":
_UpperCAmelCase ,_UpperCAmelCase = model_inputs["""input_ids"""].shape
elif self.framework == "tf":
_UpperCAmelCase ,_UpperCAmelCase = tf.shape(model_inputs["""input_ids"""] ).numpy()
_UpperCAmelCase = generate_kwargs.get("""min_length""" , self.model.config.min_length )
_UpperCAmelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length )
self.check_inputs(__UpperCamelCase , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] )
_UpperCAmelCase = self.model.generate(**__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = output_ids.shape[0]
if self.framework == "pt":
_UpperCAmelCase = output_ids.reshape(__UpperCamelCase , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
_UpperCAmelCase = tf.reshape(__UpperCamelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def _snake_case ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any]=ReturnType.TEXT , __UpperCamelCase : int=False ) ->Any:
'''simple docstring'''
_UpperCAmelCase = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
_UpperCAmelCase = {f"""{self.return_name}_token_ids""": output_ids}
elif return_type == ReturnType.TEXT:
_UpperCAmelCase = {
f"""{self.return_name}_text""": self.tokenizer.decode(
__UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase , )
}
records.append(__UpperCamelCase )
return records
@add_end_docstrings(_UpperCAmelCase )
class a_ ( _UpperCAmelCase ):
a : List[Any] = 'summary'
def __call__( self : Optional[Any] , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Optional[int] ) ->Any:
'''simple docstring'''
return super().__call__(*__UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : str , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->bool:
'''simple docstring'''
if max_length < min_length:
logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" )
if input_length < max_length:
logger.warning(
f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """
"""a summarization task, where outputs shorter than the input are typically wanted, you might """
f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" )
@add_end_docstrings(_UpperCAmelCase )
class a_ ( _UpperCAmelCase ):
a : Optional[int] = 'translation'
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->Any:
'''simple docstring'''
if input_length > 0.9 * max_length:
logger.warning(
f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """
"""increasing your max_length manually, e.g. translator('...', max_length=400)""" )
return True
def _snake_case ( self : Tuple , *__UpperCamelCase : List[str] , __UpperCamelCase : Tuple=TruncationStrategy.DO_NOT_TRUNCATE , __UpperCamelCase : Tuple=None , __UpperCamelCase : Union[str, Any]=None ) ->Tuple:
'''simple docstring'''
if getattr(self.tokenizer , """_build_translation_inputs""" , __UpperCamelCase ):
return self.tokenizer._build_translation_inputs(
*__UpperCamelCase , return_tensors=self.framework , truncation=__UpperCamelCase , src_lang=__UpperCamelCase , tgt_lang=__UpperCamelCase )
else:
return super()._parse_and_tokenize(*__UpperCamelCase , truncation=__UpperCamelCase )
def _snake_case ( self : List[str] , __UpperCamelCase : int=None , __UpperCamelCase : int=None , **__UpperCamelCase : Any ) ->int:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = super()._sanitize_parameters(**__UpperCamelCase )
if src_lang is not None:
_UpperCAmelCase = src_lang
if tgt_lang is not None:
_UpperCAmelCase = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
_UpperCAmelCase = kwargs.get("""task""" , self.task )
_UpperCAmelCase = task.split("""_""" )
if task and len(__UpperCamelCase ) == 4:
# translation, XX, to YY
_UpperCAmelCase = items[1]
_UpperCAmelCase = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self : List[str] , *__UpperCamelCase : str , **__UpperCamelCase : Optional[Any] ) ->int:
'''simple docstring'''
return super().__call__(*__UpperCamelCase , **__UpperCamelCase ) | 19 | 1 |
"""simple docstring"""
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ...utils import TensorType, logging
a : Tuple = logging.get_logger(__name__)
class a_ ( _UpperCAmelCase ):
a : Tuple = ['audio_values', 'audio_mask']
def __init__( self : Optional[Any] , __UpperCamelCase : Optional[Any]=20_48 , __UpperCamelCase : Any=1 , __UpperCamelCase : Any=[16, 16] , __UpperCamelCase : Optional[int]=1_28 , __UpperCamelCase : Union[str, Any]=4_41_00 , __UpperCamelCase : List[str]=86 , __UpperCamelCase : int=20_48 , __UpperCamelCase : Optional[Any]=0.0 , **__UpperCamelCase : Dict , ) ->Dict:
'''simple docstring'''
super().__init__(
feature_size=__UpperCamelCase , sampling_rate=__UpperCamelCase , padding_value=__UpperCamelCase , **__UpperCamelCase , )
_UpperCAmelCase = spectrogram_length
_UpperCAmelCase = num_channels
_UpperCAmelCase = patch_size
_UpperCAmelCase = feature_size // self.patch_size[1]
_UpperCAmelCase = n_fft
_UpperCAmelCase = sampling_rate // hop_length_to_sampling_rate
_UpperCAmelCase = sampling_rate
_UpperCAmelCase = padding_value
_UpperCAmelCase = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__UpperCamelCase , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=__UpperCamelCase , norm="""slaney""" , mel_scale="""slaney""" , ).T
def _snake_case ( self : Dict , __UpperCamelCase : np.array ) ->np.ndarray:
'''simple docstring'''
_UpperCAmelCase = spectrogram(
__UpperCamelCase , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=8_0.0 , )
_UpperCAmelCase = log_spec[:, :-1]
_UpperCAmelCase = log_spec - 2_0.0
_UpperCAmelCase = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0
return log_spec
def __call__( self : Optional[Any] , __UpperCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Optional[bool] = True , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , **__UpperCamelCase : str , ) ->BatchFeature:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
"""This feature extractor is set to support sampling rate"""
f""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"""
f""" with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
_UpperCAmelCase = isinstance(__UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" )
_UpperCAmelCase = is_batched_numpy or (
isinstance(__UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_UpperCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(__UpperCamelCase , np.ndarray ):
_UpperCAmelCase = np.asarray(__UpperCamelCase , dtype=np.floataa )
elif isinstance(__UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
_UpperCAmelCase = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
_UpperCAmelCase = [np.asarray([raw_speech] ).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
_UpperCAmelCase = [
self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0] , __UpperCamelCase ):
_UpperCAmelCase = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for feature in audio_features]
# Create audio attention mask
_UpperCAmelCase = max(
[ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch
if return_attention_mask:
_UpperCAmelCase = [
(ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0]
for feature in audio_features
]
_UpperCAmelCase = np.array(__UpperCamelCase ).astype(np.floataa )
# convert into correct format for padding
_UpperCAmelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
_UpperCAmelCase = np.ones([len(__UpperCamelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa )
_UpperCAmelCase = padded_audio_features * self.padding_value
for i in range(len(__UpperCamelCase ) ):
_UpperCAmelCase = audio_features[i]
_UpperCAmelCase = feature
# return as BatchFeature
if return_attention_mask:
_UpperCAmelCase = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask}
else:
_UpperCAmelCase = {"""audio_values""": padded_audio_features}
_UpperCAmelCase = BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
return encoded_inputs | 19 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel
from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class a_ ( unittest.TestCase ):
@property
def _snake_case ( self : Dict ) ->int:
'''simple docstring'''
torch.manual_seed(0 )
_UpperCAmelCase = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , )
return model
@property
def _snake_case ( self : Optional[Any] ) ->str:
'''simple docstring'''
torch.manual_seed(0 )
_UpperCAmelCase = VQModel(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , )
return model
@property
def _snake_case ( self : List[Any] ) ->Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
_UpperCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )
return CLIPTextModel(__UpperCamelCase )
def _snake_case ( self : List[str] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = self.dummy_uncond_unet
_UpperCAmelCase = DDIMScheduler()
_UpperCAmelCase = self.dummy_vq_model
_UpperCAmelCase = LDMPipeline(unet=__UpperCamelCase , vqvae=__UpperCamelCase , scheduler=__UpperCamelCase )
ldm.to(__UpperCamelCase )
ldm.set_progress_bar_config(disable=__UpperCamelCase )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type="""numpy""" ).images
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type="""numpy""" , return_dict=__UpperCamelCase )[0]
_UpperCAmelCase = image[0, -3:, -3:, -1]
_UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_UpperCAmelCase = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] )
_UpperCAmelCase = 1e-2 if torch_device != """mps""" else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance
@slow
@require_torch
class a_ ( unittest.TestCase ):
def _snake_case ( self : List[Any] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" )
ldm.to(__UpperCamelCase )
ldm.set_progress_bar_config(disable=__UpperCamelCase )
_UpperCAmelCase = torch.manual_seed(0 )
_UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=5 , output_type="""numpy""" ).images
_UpperCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
_UpperCAmelCase = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] )
_UpperCAmelCase = 1e-2 if torch_device != """mps""" else 3e-2
assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance | 19 | 1 |
"""simple docstring"""
import random
class a_ :
@staticmethod
def _snake_case ( __UpperCamelCase : str ) ->tuple[list[int], list[int]]:
'''simple docstring'''
_UpperCAmelCase = [ord(__UpperCamelCase ) for i in text]
_UpperCAmelCase = []
_UpperCAmelCase = []
for i in plain:
_UpperCAmelCase = random.randint(1 , 3_00 )
_UpperCAmelCase = (i + k) * k
cipher.append(__UpperCamelCase )
key.append(__UpperCamelCase )
return cipher, key
@staticmethod
def _snake_case ( __UpperCamelCase : list[int] , __UpperCamelCase : list[int] ) ->str:
'''simple docstring'''
_UpperCAmelCase = []
for i in range(len(__UpperCamelCase ) ):
_UpperCAmelCase = int((cipher[i] - (key[i]) ** 2) / key[i] )
plain.append(chr(__UpperCamelCase ) )
return "".join(__UpperCamelCase )
if __name__ == "__main__":
a , a : Union[str, Any] = Onepad().encrypt('''Hello''')
print(c, k)
print(Onepad().decrypt(c, k)) | 19 |
"""simple docstring"""
import re
from filelock import FileLock
try:
import nltk
a : str = True
except (ImportError, ModuleNotFoundError):
a : List[str] = False
if NLTK_AVAILABLE:
with FileLock('''.lock''') as lock:
nltk.download('''punkt''', quiet=True)
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
re.sub("""<n>""" , """""" , _A ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(_A ) ) | 19 | 1 |
"""simple docstring"""
import argparse
import logging
import os
import time
import timeit
import datasets
import numpy as np
import pycuda.autoinit # noqa: F401
import pycuda.driver as cuda
import tensorrt as trt
import torch
from absl import logging as absl_logging
from accelerate import Accelerator
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from utils_qa import postprocess_qa_predictions
import transformers
from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed
from transformers.trainer_pt_utils import nested_concat, nested_truncate
a : Optional[Any] = trt.Logger(trt.Logger.WARNING)
a : str = absl_logging.get_absl_logger()
absl_logger.setLevel(logging.WARNING)
a : Union[str, Any] = logging.getLogger(__name__)
a : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--onnx_model_path''',
default=None,
type=str,
required=True,
help='''Path to ONNX model: ''',
)
parser.add_argument(
'''--output_dir''',
default=None,
type=str,
required=True,
help='''The output directory where the model checkpoints and predictions will be written.''',
)
# Other parameters
parser.add_argument(
'''--tokenizer_name''',
default='''''',
type=str,
required=True,
help='''Pretrained tokenizer name or path if not the same as model_name''',
)
parser.add_argument(
'''--version_2_with_negative''',
action='''store_true''',
help='''If true, the SQuAD examples contain some that do not have an answer.''',
)
parser.add_argument(
'''--null_score_diff_threshold''',
type=float,
default=0.0,
help='''If null_score - best_non_null is greater than the threshold predict null.''',
)
parser.add_argument(
'''--max_seq_length''',
default=3_8_4,
type=int,
help=(
'''The maximum total input sequence length after WordPiece tokenization. Sequences '''
'''longer than this will be truncated, and sequences shorter than this will be padded.'''
),
)
parser.add_argument(
'''--doc_stride''',
default=1_2_8,
type=int,
help='''When splitting up a long document into chunks, how much stride to take between chunks.''',
)
parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''')
parser.add_argument(
'''--n_best_size''',
default=2_0,
type=int,
help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''',
)
parser.add_argument(
'''--max_answer_length''',
default=3_0,
type=int,
help=(
'''The maximum length of an answer that can be generated. This is needed because the start '''
'''and end predictions are not conditioned on one another.'''
),
)
parser.add_argument('''--seed''', type=int, default=4_2, help='''random seed for initialization''')
parser.add_argument(
'''--dataset_name''',
type=str,
default=None,
required=True,
help='''The name of the dataset to use (via the datasets library).''',
)
parser.add_argument(
'''--dataset_config_name''',
type=str,
default=None,
help='''The configuration name of the dataset to use (via the datasets library).''',
)
parser.add_argument(
'''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.'''
)
parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''')
parser.add_argument(
'''--fp16''',
action='''store_true''',
help='''Whether to use 16-bit (mixed) precision instead of 32-bit''',
)
parser.add_argument(
'''--int8''',
action='''store_true''',
help='''Whether to use INT8''',
)
a : Any = parser.parse_args()
if args.tokenizer_name:
a : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True)
else:
raise ValueError(
'''You are instantiating a new tokenizer from scratch. This is not supported by this script.'''
'''You can do it from another script, save it, and load it from here, using --tokenizer_name.'''
)
logger.info('''Training/evaluation parameters %s''', args)
a : Any = args.per_device_eval_batch_size
a : Optional[int] = (args.eval_batch_size, args.max_seq_length)
# TRT Engine properties
a : int = True
a : str = '''temp_engine/bert-fp32.engine'''
if args.fpaa:
a : Optional[Any] = '''temp_engine/bert-fp16.engine'''
if args.inta:
a : List[str] = '''temp_engine/bert-int8.engine'''
# import ONNX file
if not os.path.exists('''temp_engine'''):
os.makedirs('''temp_engine''')
a : List[Any] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(
network, TRT_LOGGER
) as parser:
with open(args.onnx_model_path, '''rb''') as model:
if not parser.parse(model.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
# Query input names and shapes from parsed TensorRT network
a : List[Any] = [network.get_input(i) for i in range(network.num_inputs)]
a : Tuple = [_input.name for _input in network_inputs] # ex: ["actual_input1"]
with builder.create_builder_config() as config:
a : Optional[Any] = 1 << 5_0
if STRICT_TYPES:
config.set_flag(trt.BuilderFlag.STRICT_TYPES)
if args.fpaa:
config.set_flag(trt.BuilderFlag.FPaa)
if args.inta:
config.set_flag(trt.BuilderFlag.INTa)
a : int = builder.create_optimization_profile()
config.add_optimization_profile(profile)
for i in range(len(input_names)):
profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE)
a : Union[str, Any] = builder.build_engine(network, config)
# serialize_engine and store in file (can be directly loaded and deserialized):
with open(engine_name, '''wb''') as f:
f.write(engine.serialize())
def _UpperCamelCase ( _A , _A , _A , _A , _A , _A , _A , _A ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = np.asarray(inputs["""input_ids"""] , dtype=np.intaa )
_UpperCAmelCase = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa )
_UpperCAmelCase = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa )
# Copy inputs
cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , _A )
cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , _A )
cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , _A )
# start time
_UpperCAmelCase = time.time()
# Run inference
context.execute_async(
bindings=[int(_A ) for d_inp in d_inputs] + [int(_A ), int(_A )] , stream_handle=stream.handle )
# Transfer predictions back from GPU
cuda.memcpy_dtoh_async(_A , _A , _A )
cuda.memcpy_dtoh_async(_A , _A , _A )
# Synchronize the stream and take time
stream.synchronize()
# end time
_UpperCAmelCase = time.time()
_UpperCAmelCase = end_time - start_time
_UpperCAmelCase = (h_outputa, h_outputa)
# print(outputs)
return outputs, infer_time
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
a : Union[str, Any] = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
a : Dict = load_dataset(args.dataset_name, args.dataset_config_name)
else:
raise ValueError('''Evaluation requires a dataset name''')
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Preprocessing the datasets.
# Preprocessing is slighlty different for training and evaluation.
a : Optional[Any] = raw_datasets['''validation'''].column_names
a : Dict = '''question''' if '''question''' in column_names else column_names[0]
a : Any = '''context''' if '''context''' in column_names else column_names[1]
a : List[Any] = '''answers''' if '''answers''' in column_names else column_names[2]
# Padding side determines if we do (question|context) or (context|question).
a : str = tokenizer.padding_side == '''right'''
if args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the"
F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
a : List[Any] = min(args.max_seq_length, tokenizer.model_max_length)
def _UpperCamelCase ( _A ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = [q.lstrip() for q in examples[question_column_name]]
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
_UpperCAmelCase = tokenizer(
examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=_A , stride=args.doc_stride , return_overflowing_tokens=_A , return_offsets_mapping=_A , padding="""max_length""" , )
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
_UpperCAmelCase = tokenized_examples.pop("""overflow_to_sample_mapping""" )
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
_UpperCAmelCase = []
for i in range(len(tokenized_examples["""input_ids"""] ) ):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
_UpperCAmelCase = tokenized_examples.sequence_ids(_A )
_UpperCAmelCase = 1 if pad_on_right else 0
# One example can give several spans, this is the index of the example containing this span of text.
_UpperCAmelCase = sample_mapping[i]
tokenized_examples["example_id"].append(examples["""id"""][sample_index] )
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
_UpperCAmelCase = [
(o if sequence_ids[k] == context_index else None)
for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] )
]
return tokenized_examples
a : str = raw_datasets['''validation''']
# Validation Feature Creation
a : int = eval_examples.map(
prepare_validation_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc='''Running tokenizer on validation dataset''',
)
a : List[str] = default_data_collator
a : Any = eval_dataset.remove_columns(['''example_id''', '''offset_mapping'''])
a : Optional[int] = DataLoader(
eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
def _UpperCamelCase ( _A , _A , _A , _A="eval" ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = postprocess_qa_predictions(
examples=_A , features=_A , predictions=_A , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=_A , )
# Format the result to the format the metric expects.
if args.version_2_with_negative:
_UpperCAmelCase = [
{"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items()
]
else:
_UpperCAmelCase = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()]
_UpperCAmelCase = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples]
return EvalPrediction(predictions=_A , label_ids=_A )
a : Any = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''')
# Evaluation!
logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path)
with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine(
f.read()
) as engine, engine.create_execution_context() as context:
# setup for TRT inferrence
for i in range(len(input_names)):
context.set_binding_shape(i, INPUT_SHAPE)
assert context.all_binding_shapes_specified
def _UpperCamelCase ( _A ) -> Union[str, Any]:
"""simple docstring"""
return trt.volume(engine.get_binding_shape(_A ) ) * engine.get_binding_dtype(_A ).itemsize
# Allocate device memory for inputs and outputs.
a : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)]
# Allocate output buffer
a : Tuple = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa)
a : Optional[Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa)
a : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes)
a : Tuple = cuda.mem_alloc(h_outputa.nbytes)
# Create a stream in which to copy inputs/outputs and run inference.
a : Tuple = cuda.Stream()
# Evaluation
logger.info('''***** Running Evaluation *****''')
logger.info(F" Num examples = {len(eval_dataset)}")
logger.info(F" Batch size = {args.per_device_eval_batch_size}")
a : Tuple = 0.0
a : Any = 0
a : Tuple = timeit.default_timer()
a : Optional[Any] = None
for step, batch in enumerate(eval_dataloader):
a , a : int = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream)
total_time += infer_time
niter += 1
a , a : Any = outputs
a : Optional[int] = torch.tensor(start_logits)
a : Union[str, Any] = torch.tensor(end_logits)
# necessary to pad predictions and labels for being gathered
a : Tuple = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_0_0)
a : str = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_0_0)
a : Any = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy())
a : Union[str, Any] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_0_0)
if all_preds is not None:
a : str = nested_truncate(all_preds, len(eval_dataset))
a : Union[str, Any] = timeit.default_timer() - start_time
logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset))
# Inference time from TRT
logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1_0_0_0 / niter))
logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1_0_0_0))
logger.info('''Total Number of Inference = %d''', niter)
a : Tuple = post_processing_function(eval_examples, eval_dataset, all_preds)
a : Optional[int] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
logger.info(F"Evaluation metrics: {eval_metric}") | 19 |
"""simple docstring"""
import unittest
from transformers import PegasusConfig, PegasusTokenizer, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
a : str = '''platform'''
import jax
import jax.numpy as jnp
import numpy as np
from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel
@require_flax
class a_ :
a : List[Any] = PegasusConfig
a : Dict = {}
a : List[Any] = 'gelu'
def __init__( self : Any , __UpperCamelCase : Dict , __UpperCamelCase : Tuple=13 , __UpperCamelCase : Tuple=7 , __UpperCamelCase : Tuple=True , __UpperCamelCase : Any=False , __UpperCamelCase : Any=99 , __UpperCamelCase : Optional[int]=32 , __UpperCamelCase : Dict=5 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : Dict=37 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : Optional[Any]=20 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : Optional[int]=1 , __UpperCamelCase : Tuple=0 , ) ->int:
'''simple docstring'''
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = eos_token_id
_UpperCAmelCase = pad_token_id
_UpperCAmelCase = bos_token_id
def _snake_case ( self : Union[str, Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size )
_UpperCAmelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 )
_UpperCAmelCase = np.concatenate([input_ids, eos_tensor] , axis=1 )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_UpperCAmelCase = prepare_pegasus_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
return config, inputs_dict
def _snake_case ( self : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase = 20
_UpperCAmelCase = model_class_name(__UpperCamelCase )
_UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] )
_UpperCAmelCase ,_UpperCAmelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
_UpperCAmelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_UpperCAmelCase = model.decode(
decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , )
_UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_UpperCAmelCase = model.decode(
decoder_input_ids[:, -1:] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__UpperCamelCase , )
_UpperCAmelCase = model.decode(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def _snake_case ( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase = 20
_UpperCAmelCase = model_class_name(__UpperCamelCase )
_UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] )
_UpperCAmelCase ,_UpperCAmelCase = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_UpperCAmelCase = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_UpperCAmelCase = model.decode(
decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , )
_UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_UpperCAmelCase = model.decode(
decoder_input_ids[:, -1:] , __UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , )
_UpperCAmelCase = model.decode(__UpperCamelCase , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase )
_UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def _UpperCamelCase ( _A , _A , _A , _A=None , _A=None , ) -> int:
"""simple docstring"""
if attention_mask is None:
_UpperCAmelCase = np.not_equal(_A , config.pad_token_id ).astype(np.inta )
if decoder_attention_mask is None:
_UpperCAmelCase = np.concatenate(
[
np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ),
np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ),
] , axis=-1 , )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
}
@require_flax
class a_ ( _UpperCAmelCase , unittest.TestCase ):
a : List[str] = (
(
FlaxPegasusForConditionalGeneration,
FlaxPegasusModel,
)
if is_flax_available()
else ()
)
a : Any = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else ()
a : Any = True
a : int = False
a : Union[str, Any] = False
a : Optional[int] = False
def _snake_case ( self : Union[str, Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = FlaxPegasusModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase )
def _snake_case ( self : Optional[int] ) ->Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _snake_case ( self : Optional[int] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def _snake_case ( self : Dict ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def _snake_case ( self : Dict ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = model_class(__UpperCamelCase )
@jax.jit
def encode_jitted(__UpperCamelCase : List[Any] , __UpperCamelCase : str=None , **__UpperCamelCase : int ):
return model.encode(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase )
with self.subTest("""JIT Enabled""" ):
_UpperCAmelCase = encode_jitted(**__UpperCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_UpperCAmelCase = encode_jitted(**__UpperCamelCase ).to_tuple()
self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) )
for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def _snake_case ( self : List[Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
_UpperCAmelCase = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple ):
return model.decode(
decoder_input_ids=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , encoder_outputs=__UpperCamelCase , )
with self.subTest("""JIT Enabled""" ):
_UpperCAmelCase = decode_jitted(**__UpperCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_UpperCAmelCase = decode_jitted(**__UpperCamelCase ).to_tuple()
self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) )
for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _snake_case ( self : int ) ->int:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_UpperCAmelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=__UpperCamelCase )
_UpperCAmelCase = np.ones((1, 1) )
_UpperCAmelCase = model(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
@slow
def _snake_case ( self : Dict ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" )
_UpperCAmelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" )
_UpperCAmelCase = [
""" PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""",
""" The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """,
]
_UpperCAmelCase = [
"""California's largest electricity provider has turned off power to hundreds of thousands of customers.""",
"""Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""",
]
_UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors="""np""" , truncation=__UpperCamelCase , max_length=5_12 , padding=__UpperCamelCase )
_UpperCAmelCase = model.generate(**__UpperCamelCase , num_beams=2 ).sequences
_UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase )
assert tgt_text == decoded | 19 | 1 |
"""simple docstring"""
import contextlib
import csv
import json
import os
import sqlitea
import tarfile
import textwrap
import zipfile
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
import datasets
import datasets.config
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = 1_0
_UpperCAmelCase = datasets.Features(
{
"""tokens""": datasets.Sequence(datasets.Value("""string""" ) ),
"""labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ),
"""answers""": datasets.Sequence(
{
"""text""": datasets.Value("""string""" ),
"""answer_start""": datasets.Value("""int32""" ),
} ),
"""id""": datasets.Value("""int64""" ),
} )
_UpperCAmelCase = datasets.Dataset.from_dict(
{
"""tokens""": [["""foo"""] * 5] * n,
"""labels""": [[1] * 5] * n,
"""answers""": [{"""answer_start""": [9_7], """text""": ["""1976"""]}] * 1_0,
"""id""": list(range(_A ) ),
} , features=_A , )
return dataset
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A , _A ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" )
dataset.map(cache_file_name=_A )
return filename
# FILE_CONTENT + files
a : Dict = '''\
Text data.
Second line of data.'''
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt"""
_UpperCAmelCase = FILE_CONTENT
with open(_A , """w""" ) as f:
f.write(_A )
return filename
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
import bza
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2"""
_UpperCAmelCase = bytes(_A , """utf-8""" )
with bza.open(_A , """wb""" ) as f:
f.write(_A )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> int:
"""simple docstring"""
import gzip
_UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" )
_UpperCAmelCase = bytes(_A , """utf-8""" )
with gzip.open(_A , """wb""" ) as f:
f.write(_A )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> Optional[Any]:
"""simple docstring"""
if datasets.config.LZ4_AVAILABLE:
import lza.frame
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4"""
_UpperCAmelCase = bytes(_A , """utf-8""" )
with lza.frame.open(_A , """wb""" ) as f:
f.write(_A )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A , _A ) -> List[Any]:
"""simple docstring"""
if datasets.config.PY7ZR_AVAILABLE:
import pyazr
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z"""
with pyazr.SevenZipFile(_A , """w""" ) as archive:
archive.write(_A , arcname=os.path.basename(_A ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A , _A ) -> Union[str, Any]:
"""simple docstring"""
import tarfile
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar"""
with tarfile.TarFile(_A , """w""" ) as f:
f.add(_A , arcname=os.path.basename(_A ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> int:
"""simple docstring"""
import lzma
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz"""
_UpperCAmelCase = bytes(_A , """utf-8""" )
with lzma.open(_A , """wb""" ) as f:
f.write(_A )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A , _A ) -> Optional[Any]:
"""simple docstring"""
import zipfile
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip"""
with zipfile.ZipFile(_A , """w""" ) as f:
f.write(_A , arcname=os.path.basename(_A ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> int:
"""simple docstring"""
if datasets.config.ZSTANDARD_AVAILABLE:
import zstandard as zstd
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst"""
_UpperCAmelCase = bytes(_A , """utf-8""" )
with zstd.open(_A , """wb""" ) as f:
f.write(_A )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.xml"""
_UpperCAmelCase = textwrap.dedent(
"""\
<?xml version=\"1.0\" encoding=\"UTF-8\" ?>
<tmx version=\"1.4\">
<header segtype=\"sentence\" srclang=\"ca\" />
<body>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>
</tu>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>
</tu>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>
</tu>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>
</tu>
<tu>
<tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>
<tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>
</tu>
</body>
</tmx>""" )
with open(_A , """w""" ) as f:
f.write(_A )
return filename
a : Tuple = [
{'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0},
{'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0},
{'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0},
{'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0},
]
a : Optional[Any] = [
{'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0},
{'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0},
]
a : Union[str, Any] = {
'''col_1''': ['''0''', '''1''', '''2''', '''3'''],
'''col_2''': [0, 1, 2, 3],
'''col_3''': [0.0, 1.0, 2.0, 3.0],
}
a : Optional[int] = [
{'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0},
{'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1},
]
a : str = [
{'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0},
{'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0},
{'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0},
{'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0},
]
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( ) -> Any:
"""simple docstring"""
return DATA_DICT_OF_LISTS
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> Any:
"""simple docstring"""
_UpperCAmelCase = datasets.Dataset.from_dict(_A )
_UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" )
dataset.map(cache_file_name=_A )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
_UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" )
with contextlib.closing(sqlitea.connect(_A ) ) as con:
_UpperCAmelCase = con.cursor()
cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" )
for item in DATA:
cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) )
con.commit()
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" )
with open(_A , """w""" , newline="""""" ) as f:
_UpperCAmelCase = csv.DictWriter(_A , fieldnames=["""col_1""", """col_2""", """col_3"""] )
writer.writeheader()
for item in DATA:
writer.writerow(_A )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" )
with open(_A , """w""" , newline="""""" ) as f:
_UpperCAmelCase = csv.DictWriter(_A , fieldnames=["""col_1""", """col_2""", """col_3"""] )
writer.writeheader()
for item in DATA:
writer.writerow(_A )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A , _A ) -> Union[str, Any]:
"""simple docstring"""
import bza
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2"""
with open(_A , """rb""" ) as f:
_UpperCAmelCase = f.read()
# data = bytes(FILE_CONTENT, "utf-8")
with bza.open(_A , """wb""" ) as f:
f.write(_A )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A , _A , _A ) -> Any:
"""simple docstring"""
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip"""
with zipfile.ZipFile(_A , """w""" ) as f:
f.write(_A , arcname=os.path.basename(_A ) )
f.write(_A , arcname=os.path.basename(_A ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A , _A , _A ) -> str:
"""simple docstring"""
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip"""
with zipfile.ZipFile(_A , """w""" ) as f:
f.write(_A , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) )
f.write(_A , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A , _A , _A ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip"""
with zipfile.ZipFile(_A , """w""" ) as f:
f.write(_A , arcname=os.path.join("""main_dir""" , os.path.basename(_A ) ) )
f.write(_A , arcname=os.path.join("""main_dir""" , os.path.basename(_A ) ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" )
_UpperCAmelCase = pa.schema(
{
"""col_1""": pa.string(),
"""col_2""": pa.intaa(),
"""col_3""": pa.floataa(),
} )
with open(_A , """wb""" ) as f:
_UpperCAmelCase = pq.ParquetWriter(_A , schema=_A )
_UpperCAmelCase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(_A ) )] for k in DATA[0]} , schema=_A )
writer.write_table(_A )
writer.close()
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" )
_UpperCAmelCase = {"""data""": DATA}
with open(_A , """w""" ) as f:
json.dump(_A , _A )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" )
_UpperCAmelCase = {"""data""": DATA_DICT_OF_LISTS}
with open(_A , """w""" ) as f:
json.dump(_A , _A )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" )
with open(_A , """w""" ) as f:
for item in DATA:
f.write(json.dumps(_A ) + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" )
with open(_A , """w""" ) as f:
for item in DATA:
f.write(json.dumps(_A ) + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" )
with open(_A , """w""" ) as f:
for item in DATA_312:
f.write(json.dumps(_A ) + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" )
with open(_A , """w""" ) as f:
for item in DATA_STR:
f.write(json.dumps(_A ) + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A , _A ) -> str:
"""simple docstring"""
import gzip
_UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" )
with open(_A , """rb""" ) as orig_file:
with gzip.open(_A , """wb""" ) as zipped_file:
zipped_file.writelines(_A )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A , _A ) -> Optional[Any]:
"""simple docstring"""
import gzip
_UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" )
with open(_A , """rb""" ) as orig_file:
with gzip.open(_A , """wb""" ) as zipped_file:
zipped_file.writelines(_A )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A , _A , _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip"""
with zipfile.ZipFile(_A , """w""" ) as f:
f.write(_A , arcname=os.path.basename(_A ) )
f.write(_A , arcname=os.path.basename(_A ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A , _A , _A , _A ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip"""
with zipfile.ZipFile(_A , """w""" ) as f:
f.write(_A , arcname=os.path.join("""nested""" , os.path.basename(_A ) ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A , _A , _A ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip"""
with zipfile.ZipFile(_A , """w""" ) as f:
f.write(_A , arcname=os.path.join("""main_dir""" , os.path.basename(_A ) ) )
f.write(_A , arcname=os.path.join("""main_dir""" , os.path.basename(_A ) ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A , _A , _A ) -> Any:
"""simple docstring"""
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar"""
with tarfile.TarFile(_A , """w""" ) as f:
f.add(_A , arcname=os.path.basename(_A ) )
f.add(_A , arcname=os.path.basename(_A ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A , _A , _A , _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar"""
with tarfile.TarFile(_A , """w""" ) as f:
f.add(_A , arcname=os.path.join("""nested""" , os.path.basename(_A ) ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = ["""0""", """1""", """2""", """3"""]
_UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" )
with open(_A , """w""" ) as f:
for item in data:
f.write(item + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = ["""0""", """1""", """2""", """3"""]
_UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" )
with open(_A , """w""" ) as f:
for item in data:
f.write(item + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = ["""0""", """1""", """2""", """3"""]
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.abc"""
with open(_A , """w""" ) as f:
for item in data:
f.write(item + """\n""" )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A , _A , _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip"""
with zipfile.ZipFile(_A , """w""" ) as f:
f.write(_A , arcname=os.path.basename(_A ) )
f.write(_A , arcname=os.path.basename(_A ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A , _A , _A ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip"""
with zipfile.ZipFile(_A , """w""" ) as f:
f.write(_A , arcname=os.path.join("""main_dir""" , os.path.basename(_A ) ) )
f.write(_A , arcname=os.path.join("""main_dir""" , os.path.basename(_A ) ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A , _A , _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip"""
with zipfile.ZipFile(_A , """w""" ) as f:
f.write(_A , arcname=os.path.basename("""unsupported.ext""" ) )
f.write(_A , arcname=os.path.basename("""unsupported_2.ext""" ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] )
_UpperCAmelCase = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" )
with open(_A , """w""" , encoding="""utf-8""" ) as f:
f.write(_A )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( ) -> List[Any]:
"""simple docstring"""
return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" )
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( ) -> str:
"""simple docstring"""
return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" )
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A , _A ) -> int:
"""simple docstring"""
_UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip"""
with zipfile.ZipFile(_A , """w""" ) as f:
f.write(_A , arcname=os.path.basename(_A ) )
f.write(_A , arcname=os.path.basename(_A ).replace(""".jpg""" , """2.jpg""" ) )
return path
@pytest.fixture(scope="""session""" )
def _UpperCamelCase ( _A ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = tmp_path_factory.mktemp("""data_dir""" )
(data_dir / "subdir").mkdir()
with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f:
f.write("""foo\n""" * 1_0 )
with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f:
f.write("""bar\n""" * 1_0 )
# hidden file
with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f:
f.write("""bar\n""" * 1_0 )
# hidden directory
(data_dir / ".subdir").mkdir()
with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f:
f.write("""foo\n""" * 1_0 )
with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f:
f.write("""bar\n""" * 1_0 )
return data_dir | 19 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class a_ :
def __init__( self : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any]=99 , __UpperCamelCase : Optional[int]=13 , __UpperCamelCase : List[str]=7 , __UpperCamelCase : List[Any]=9 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : str=True , __UpperCamelCase : int=False , __UpperCamelCase : int=32 , __UpperCamelCase : Dict=5 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : List[Any]=8 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : str=0.0_0_2 , __UpperCamelCase : Union[str, Any]=1 , __UpperCamelCase : List[Any]=0 , __UpperCamelCase : Tuple=0 , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Any=None , ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = encoder_seq_length
_UpperCAmelCase = decoder_seq_length
# For common tests
_UpperCAmelCase = self.decoder_seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_attention_mask
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = d_ff
_UpperCAmelCase = relative_attention_num_buckets
_UpperCAmelCase = dropout_rate
_UpperCAmelCase = initializer_factor
_UpperCAmelCase = eos_token_id
_UpperCAmelCase = pad_token_id
_UpperCAmelCase = decoder_start_token_id
_UpperCAmelCase = None
_UpperCAmelCase = decoder_layers
def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]:
'''simple docstring'''
return TaConfig.from_pretrained("""google/umt5-base""" )
def _snake_case ( self : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Any=None , __UpperCamelCase : str=None , ) ->int:
'''simple docstring'''
if attention_mask is None:
_UpperCAmelCase = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
_UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
_UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCamelCase )
if decoder_head_mask is None:
_UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase )
if cross_attn_head_mask is None:
_UpperCAmelCase = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _snake_case ( self : List[Any] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
_UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 )
_UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 )
_UpperCAmelCase = self.get_config()
_UpperCAmelCase = config.num_attention_heads
_UpperCAmelCase = self.prepare_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
return config, input_dict
def _snake_case ( self : Union[str, Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def _snake_case ( self : Dict ) ->List[str]:
'''simple docstring'''
return TaConfig(
vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _snake_case ( self : Tuple ) ->Dict:
'''simple docstring'''
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _snake_case ( self : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = UMTaModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(
input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , )
_UpperCAmelCase = model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase )
_UpperCAmelCase = result.last_hidden_state
_UpperCAmelCase = result.past_key_values
_UpperCAmelCase = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(__UpperCamelCase ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , ) ->str:
'''simple docstring'''
_UpperCAmelCase = UMTaModel(config=__UpperCamelCase ).get_decoder().to(__UpperCamelCase ).eval()
# first forward pass
_UpperCAmelCase = model(__UpperCamelCase , use_cache=__UpperCamelCase )
_UpperCAmelCase = model(__UpperCamelCase )
_UpperCAmelCase = model(__UpperCamelCase , use_cache=__UpperCamelCase )
self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) )
self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) + 1 )
_UpperCAmelCase ,_UpperCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
_UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
_UpperCAmelCase = model(__UpperCamelCase )["""last_hidden_state"""]
_UpperCAmelCase = model(__UpperCamelCase , past_key_values=__UpperCamelCase )["""last_hidden_state"""]
# select random slice
_UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach()
_UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) )
def _snake_case ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Dict , ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = UMTaModel(config=__UpperCamelCase ).to(__UpperCamelCase ).half().eval()
_UpperCAmelCase = model(**__UpperCamelCase )["""last_hidden_state"""]
self.parent.assertFalse(torch.isnan(__UpperCamelCase ).any().item() )
@require_torch
class a_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
a : List[str] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
a : Tuple = (UMTaForConditionalGeneration,) if is_torch_available() else ()
a : Optional[Any] = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
a : Any = True
a : Optional[int] = False
a : Any = False
a : Optional[int] = True
a : Optional[Any] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
a : int = [0.8, 0.9]
def _snake_case ( self : Optional[Any] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = UMTaModelTester(self )
@unittest.skip("""Test has a segmentation fault on torch 1.8.0""" )
def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
_UpperCAmelCase = UMTaModel(config_and_inputs[0] ).to(__UpperCamelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
__UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"""{tmpdirname}/t5_test.onnx""" , export_params=__UpperCamelCase , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def _snake_case ( self : Tuple ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*__UpperCamelCase )
def _snake_case ( self : Any ) ->Any:
'''simple docstring'''
_UpperCAmelCase = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""]
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
_UpperCAmelCase = config_and_inputs[0]
_UpperCAmelCase = UMTaForConditionalGeneration(__UpperCamelCase ).eval()
model.to(__UpperCamelCase )
_UpperCAmelCase = {
"""head_mask""": torch.zeros(config.num_layers , config.num_heads , device=__UpperCamelCase ),
"""decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ),
"""cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ),
}
for attn_name, (name, mask) in zip(__UpperCamelCase , head_masking.items() ):
_UpperCAmelCase = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
_UpperCAmelCase = torch.ones(
config.num_decoder_layers , config.num_heads , device=__UpperCamelCase )
_UpperCAmelCase = model.generate(
config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=__UpperCamelCase , return_dict_in_generate=__UpperCamelCase , **__UpperCamelCase , )
# We check the state of decoder_attentions and cross_attentions just from the last step
_UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" )
def _snake_case ( self : Tuple ) ->List[Any]:
'''simple docstring'''
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class a_ ( unittest.TestCase ):
@slow
@unittest.skip(
"""Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" )
def _snake_case ( self : Optional[Any] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=__UpperCamelCase ).to(__UpperCamelCase )
_UpperCAmelCase = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=__UpperCamelCase , legacy=__UpperCamelCase )
_UpperCAmelCase = [
"""Bonjour monsieur <extra_id_0> bien <extra_id_1>.""",
"""No se como puedo <extra_id_0>.""",
"""This is the reason why we <extra_id_0> them.""",
"""The <extra_id_0> walks in <extra_id_1>, seats""",
"""A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""",
]
_UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors="""pt""" , padding=__UpperCamelCase ).input_ids
# fmt: off
_UpperCAmelCase = torch.tensor(
[
[ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1],
] )
# fmt: on
torch.testing.assert_allclose(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = model.generate(input_ids.to(__UpperCamelCase ) )
_UpperCAmelCase = [
"""<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""",
"""<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
]
_UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase )
self.assertEqual(__UpperCamelCase , __UpperCamelCase ) | 19 | 1 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
@require_tf
class a_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
a : int = (
(
TFMobileBertModel,
TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertForMultipleChoice,
)
if is_tf_available()
else ()
)
a : Tuple = (
{
'feature-extraction': TFMobileBertModel,
'fill-mask': TFMobileBertForMaskedLM,
'question-answering': TFMobileBertForQuestionAnswering,
'text-classification': TFMobileBertForSequenceClassification,
'token-classification': TFMobileBertForTokenClassification,
'zero-shot': TFMobileBertForSequenceClassification,
}
if is_tf_available()
else {}
)
a : Tuple = False
a : List[Any] = False
def _snake_case ( self : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any]=False ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
if return_labels:
if model_class in get_values(__UpperCamelCase ):
_UpperCAmelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
return inputs_dict
class a_ ( _UpperCAmelCase ):
def __init__( self : Dict , __UpperCamelCase : int , __UpperCamelCase : Optional[Any]=13 , __UpperCamelCase : Optional[Any]=7 , __UpperCamelCase : int=True , __UpperCamelCase : Tuple=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : Any=True , __UpperCamelCase : Union[str, Any]=99 , __UpperCamelCase : Dict=32 , __UpperCamelCase : List[str]=32 , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : Optional[Any]=4 , __UpperCamelCase : List[Any]=37 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Dict=5_12 , __UpperCamelCase : Any=16 , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : str=0.0_2 , __UpperCamelCase : int=3 , __UpperCamelCase : List[Any]=4 , __UpperCamelCase : List[Any]=None , ) ->Any:
'''simple docstring'''
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_input_mask
_UpperCAmelCase = use_token_type_ids
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_labels
_UpperCAmelCase = num_choices
_UpperCAmelCase = scope
_UpperCAmelCase = embedding_size
def _snake_case ( self : str ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase = None
if self.use_input_mask:
_UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase = None
if self.use_token_type_ids:
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_UpperCAmelCase = None
_UpperCAmelCase = None
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices )
_UpperCAmelCase = MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _snake_case ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = TFMobileBertModel(config=__UpperCamelCase )
_UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
_UpperCAmelCase = [input_ids, input_mask]
_UpperCAmelCase = model(__UpperCamelCase )
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _snake_case ( self : Any , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = TFMobileBertForMaskedLM(config=__UpperCamelCase )
_UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = TFMobileBertForNextSentencePrediction(config=__UpperCamelCase )
_UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def _snake_case ( self : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : int ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = TFMobileBertForPreTraining(config=__UpperCamelCase )
_UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(
result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = TFMobileBertForSequenceClassification(config=__UpperCamelCase )
_UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self : List[Any] , __UpperCamelCase : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = self.num_choices
_UpperCAmelCase = TFMobileBertForMultipleChoice(config=__UpperCamelCase )
_UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
_UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
_UpperCAmelCase = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
_UpperCAmelCase = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
"""token_type_ids""": multiple_choice_token_type_ids,
}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = TFMobileBertForTokenClassification(config=__UpperCamelCase )
_UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] ) ->Any:
'''simple docstring'''
_UpperCAmelCase = TFMobileBertForQuestionAnswering(config=__UpperCamelCase )
_UpperCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _snake_case ( self : str ) ->int:
'''simple docstring'''
_UpperCAmelCase = self.prepare_config_and_inputs()
(
(
_UpperCAmelCase
) ,(
_UpperCAmelCase
) ,(
_UpperCAmelCase
) ,(
_UpperCAmelCase
) ,(
_UpperCAmelCase
) ,(
_UpperCAmelCase
) ,(
_UpperCAmelCase
) ,
) = config_and_inputs
_UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
def _snake_case ( self : List[Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = TFMobileBertModelTest.TFMobileBertModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 )
def _snake_case ( self : Any ) ->int:
'''simple docstring'''
self.config_tester.run_common_tests()
def _snake_case ( self : Tuple ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*__UpperCamelCase )
def _snake_case ( self : Union[str, Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*__UpperCamelCase )
def _snake_case ( self : int ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__UpperCamelCase )
def _snake_case ( self : int ) ->Any:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__UpperCamelCase )
def _snake_case ( self : List[str] ) ->int:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*__UpperCamelCase )
def _snake_case ( self : Any ) ->int:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*__UpperCamelCase )
def _snake_case ( self : Dict ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__UpperCamelCase )
def _snake_case ( self : Union[str, Any] ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*__UpperCamelCase )
@slow
def _snake_case ( self : Optional[Any] ) ->Dict:
'''simple docstring'''
for model_name in ["google/mobilebert-uncased"]:
_UpperCAmelCase = TFMobileBertModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
@require_tf
class a_ ( unittest.TestCase ):
@slow
def _snake_case ( self : Optional[Any] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""" )
_UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] )
_UpperCAmelCase = model(__UpperCamelCase )[0]
_UpperCAmelCase = [1, 6, 3_05_22]
self.assertEqual(output.shape , __UpperCamelCase )
_UpperCAmelCase = tf.constant(
[
[
[-4.5_9_1_9_5_4_7, -9.2_4_8_2_9_5, -9.6_4_5_2_5_6],
[-6.7_3_0_6_1_7_5, -6.4_4_0_2_8_4, -6.6_0_5_2_8_3_7],
[-7.2_7_4_3_5_0_6, -6.7_8_4_7_9_1_5, -6.0_2_4_6_7_3],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1e-4 ) | 19 |
"""simple docstring"""
import copy
import os
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
import pyarrow as pa
import pyarrow.parquet as pq
import pytest
from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence
from datasets.features import ArrayaD, ClassLabel, Features, Image, Value
from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects
from datasets.keyhash import DuplicatedKeysError, InvalidKeyError
from .utils import require_pil
class a_ ( _UpperCAmelCase ):
def _snake_case ( self : str ) ->str:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] ) )
self.assertEqual(arr.type , pa.intaa() )
def _snake_case ( self : Any ) ->List[str]:
'''simple docstring'''
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() )
def _snake_case ( self : Optional[int] ) ->Tuple:
'''simple docstring'''
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) )
def _snake_case ( self : List[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) )
self.assertEqual(arr.type , pa.intaa() )
def _snake_case ( self : str ) ->Dict:
'''simple docstring'''
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
_UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) )
def _snake_case ( self : Union[str, Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) )
self.assertEqual(arr.type , pa.intaa() )
def _snake_case ( self : List[str] ) ->Any:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) )
self.assertEqual(arr.type , pa.string() )
def _snake_case ( self : List[Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) )
def _snake_case ( self : List[Any] ) ->Optional[Any]:
'''simple docstring'''
with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ):
_UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) )
def _snake_case ( self : List[str] ) ->int:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) )
def _snake_case ( self : Optional[int] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) )
self.assertEqual(arr.type , pa.string() )
@require_pil
def _snake_case ( self : str ) ->Optional[Any]:
'''simple docstring'''
import PIL.Image
_UpperCAmelCase = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) )
with patch(
"""datasets.arrow_writer.cast_to_python_objects""" , side_effect=__UpperCamelCase ) as mock_cast_to_python_objects:
_UpperCAmelCase = pa.array(TypedSequence([{"""path""": None, """bytes""": b"""image_bytes"""}, pil_image] , type=Image() ) )
_UpperCAmelCase ,_UpperCAmelCase = mock_cast_to_python_objects.call_args_list[-1]
self.assertIn("""optimize_list_casting""" , __UpperCamelCase )
self.assertFalse(kwargs["""optimize_list_casting"""] )
def _UpperCamelCase ( _A , _A ) -> Any:
"""simple docstring"""
_UpperCAmelCase = pa.BufferReader(_A ) if isinstance(_A , pa.Buffer ) else pa.memory_map(_A )
_UpperCAmelCase = pa.ipc.open_stream(_A )
_UpperCAmelCase = f.read_all()
assert len(pa_table.to_batches() ) == expected_num_chunks
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
del pa_table
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( _A , _A ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = pa.schema(_A ) if fields else None
with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def _UpperCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} )
with ArrowWriter(stream=_A , features=_A ) as writer:
writer.write({"""labels""": 0} )
writer.write({"""labels""": 1} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == features.arrow_schema
assert writer._schema.metadata == features.arrow_schema.metadata
_UpperCAmelCase = pa.BufferReader(output.getvalue() )
_UpperCAmelCase = pa.ipc.open_stream(_A )
_UpperCAmelCase = f.read_all()
_UpperCAmelCase = pa_table.schema
assert pa_table.num_rows == 2
assert schema == features.arrow_schema
assert schema.metadata == features.arrow_schema.metadata
assert features == Features.from_arrow_schema(_A )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
with ArrowWriter(
stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer:
with pytest.raises(_A ):
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
@pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] )
def _UpperCamelCase ( _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
with ArrowWriter(
stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer:
with pytest.raises(_A ):
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1_0 )
writer.write({"""col_1""": """bar""", """col_2""": 2} , key=1_0 )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
@pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] )
def _UpperCamelCase ( _A ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
with ArrowWriter(
stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 )
writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( _A , _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = pa.schema(_A ) if fields else None
with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer:
writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} )
writer.write_batch({"""col_1""": [], """col_2""": []} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( _A , _A ) -> Any:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = pa.schema(_A ) if fields else None
with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer:
writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
@pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] )
@pytest.mark.parametrize(
"""fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] )
def _UpperCamelCase ( _A , _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
_UpperCAmelCase = pa.schema(_A ) if fields else None
with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer:
writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) )
writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
if not fields:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 )
def _UpperCamelCase ( ) -> str:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
_UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()}
_UpperCAmelCase = os.path.join(_A , """test.arrow""" )
with ArrowWriter(path=_A , schema=pa.schema(_A ) ) as writer:
writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata )
_check_output(_A , 1 )
def _UpperCamelCase ( _A ) -> int:
"""simple docstring"""
if pa.types.is_list(_A ):
return get_base_dtype(arr_type.value_type )
else:
return arr_type
def _UpperCamelCase ( _A , _A ) -> Any:
"""simple docstring"""
if isinstance(lst[0] , _A ):
change_first_primitive_element_in_list(lst[0] , _A )
else:
_UpperCAmelCase = value
@pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] )
@pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def _UpperCamelCase ( _A , _A , _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = pa.array(TypedSequence(_A , optimized_int_type=_A ) )
assert get_base_dtype(arr.type ) == expected_dtype
@pytest.mark.parametrize(
"""col, expected_dtype""" , [
("""attention_mask""", pa.inta()),
("""special_tokens_mask""", pa.inta()),
("""token_type_ids""", pa.inta()),
("""input_ids""", pa.intaa()),
("""other""", pa.intaa()),
] , )
@pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] )
def _UpperCamelCase ( _A , _A , _A ) -> str:
"""simple docstring"""
_UpperCAmelCase = pa.array(OptimizedTypedSequence(_A , col=_A ) )
assert get_base_dtype(arr.type ) == expected_dtype
# not in range
if col != "other":
# avoids errors due to in-place modifications
_UpperCAmelCase = copy.deepcopy(_A )
_UpperCAmelCase = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1
change_first_primitive_element_in_list(_A , _A )
_UpperCAmelCase = pa.array(OptimizedTypedSequence(_A , col=_A ) )
assert get_base_dtype(arr.type ) == pa.intaa()
@pytest.mark.parametrize("""raise_exception""" , [False, True] )
def _UpperCamelCase ( _A , _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = str(tmp_path / """dataset-train.arrow""" )
try:
with ArrowWriter(path=_A ) as writer:
if raise_exception:
raise pa.lib.ArrowInvalid()
else:
writer.stream.close()
except pa.lib.ArrowInvalid:
pass
finally:
assert writer.stream.closed
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = """mock://dataset-train.arrow"""
with ArrowWriter(path=_A , storage_options=mockfs.storage_options ) as writer:
assert isinstance(writer._fs , type(_A ) )
assert writer._fs.storage_options == mockfs.storage_options
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
assert mockfs.exists(_A )
def _UpperCamelCase ( ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = pa.BufferOutputStream()
with ParquetWriter(stream=_A ) as writer:
writer.write({"""col_1""": """foo""", """col_2""": 1} )
writer.write({"""col_1""": """bar""", """col_2""": 2} )
_UpperCAmelCase ,_UpperCAmelCase = writer.finalize()
assert num_examples == 2
assert num_bytes > 0
_UpperCAmelCase = pa.BufferReader(output.getvalue() )
_UpperCAmelCase = pq.read_table(_A )
assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]}
@require_pil
@pytest.mark.parametrize("""embed_local_files""" , [False, True] )
def _UpperCamelCase ( _A , _A ) -> Any:
"""simple docstring"""
import PIL.Image
_UpperCAmelCase = str(tmp_path / """test_image_rgb.jpg""" )
PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_A , format="""png""" )
_UpperCAmelCase = pa.BufferOutputStream()
with ParquetWriter(
stream=_A , features=Features({"""image""": Image()} ) , embed_local_files=_A ) as writer:
writer.write({"""image""": image_path} )
writer.finalize()
_UpperCAmelCase = pa.BufferReader(output.getvalue() )
_UpperCAmelCase = pq.read_table(_A )
_UpperCAmelCase = pa_table.to_pydict()
if embed_local_files:
assert isinstance(out["""image"""][0]["""path"""] , _A )
with open(_A , """rb""" ) as f:
assert out["image"][0]["bytes"] == f.read()
else:
assert out["image"][0]["path"] == image_path
assert out["image"][0]["bytes"] is None
def _UpperCamelCase ( ) -> int:
"""simple docstring"""
_UpperCAmelCase = pa.schema([pa.field("""col_1""" , pa.string() , nullable=_A )] )
_UpperCAmelCase = pa.BufferOutputStream()
with ArrowWriter(stream=_A ) as writer:
writer._build_writer(inferred_schema=_A )
assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] ) | 19 | 1 |
"""simple docstring"""
def _UpperCamelCase ( _A , _A ) -> str:
"""simple docstring"""
if not isinstance(_A , _A ):
raise ValueError("""iterations must be defined as integers""" )
if not isinstance(_A , _A ) or not number >= 1:
raise ValueError(
"""starting number must be
and integer and be more than 0""" )
if not iterations >= 1:
raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" )
_UpperCAmelCase = """"""
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(_A )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod() | 19 |
"""simple docstring"""
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
a : List[Any] = get_logger()
a : Optional[dict] = None
class a_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ):
def __init__( self : int , __UpperCamelCase : List[str]=None , __UpperCamelCase : Optional[int]=None , **__UpperCamelCase : int ) ->Tuple:
'''simple docstring'''
super().__init__(features=__UpperCamelCase )
import jax
from jaxlib.xla_client import Device
if isinstance(__UpperCamelCase , __UpperCamelCase ):
raise ValueError(
f"""Expected {device} to be a `str` not {type(__UpperCamelCase )}, as `jaxlib.xla_extension.Device` """
"""is not serializable neither with `pickle` nor with `dill`. Instead you can surround """
"""the device with `str()` to get its string identifier that will be internally mapped """
"""to the actual `jaxlib.xla_extension.Device`.""" )
_UpperCAmelCase = device if isinstance(__UpperCamelCase , __UpperCamelCase ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_UpperCAmelCase = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
f"""Device with string identifier {self.device} not listed among the available """
f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """
f"""device: {str(jax.devices()[0] )}.""" )
_UpperCAmelCase = str(jax.devices()[0] )
_UpperCAmelCase = jnp_array_kwargs
@staticmethod
def _snake_case ( ) ->Dict[str, "jaxlib.xla_extension.Device"]:
'''simple docstring'''
import jax
return {str(__UpperCamelCase ): device for device in jax.devices()}
def _snake_case ( self : Dict , __UpperCamelCase : Any ) ->Union[str, Any]:
'''simple docstring'''
import jax
import jax.numpy as jnp
if isinstance(__UpperCamelCase , __UpperCamelCase ) and column:
if all(
isinstance(__UpperCamelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(__UpperCamelCase , axis=0 )
return column
def _snake_case ( self : List[str] , __UpperCamelCase : Any ) ->Optional[int]:
'''simple docstring'''
import jax
import jax.numpy as jnp
if isinstance(__UpperCamelCase , (str, bytes, type(__UpperCamelCase )) ):
return value
elif isinstance(__UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
_UpperCAmelCase = {}
if isinstance(__UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
_UpperCAmelCase = {"""dtype""": jnp.intaa}
else:
_UpperCAmelCase = {"""dtype""": jnp.intaa}
elif isinstance(__UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
_UpperCAmelCase = {"""dtype""": jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(__UpperCamelCase , PIL.Image.Image ):
_UpperCAmelCase = np.asarray(__UpperCamelCase )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_UpperCAmelCase = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(__UpperCamelCase , **{**default_dtype, **self.jnp_array_kwargs} )
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[str] ) ->Any:
'''simple docstring'''
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(__UpperCamelCase , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(__UpperCamelCase , """__array__""" ) and not isinstance(__UpperCamelCase , jax.Array ):
_UpperCAmelCase = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(__UpperCamelCase , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(__UpperCamelCase ) for substruct in data_struct] )
elif isinstance(__UpperCamelCase , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(__UpperCamelCase ) for substruct in data_struct] )
return self._tensorize(__UpperCamelCase )
def _snake_case ( self : List[str] , __UpperCamelCase : dict ) ->int:
'''simple docstring'''
return map_nested(self._recursive_tensorize , __UpperCamelCase , map_list=__UpperCamelCase )
def _snake_case ( self : Dict , __UpperCamelCase : pa.Table ) ->Mapping:
'''simple docstring'''
_UpperCAmelCase = self.numpy_arrow_extractor().extract_row(__UpperCamelCase )
_UpperCAmelCase = self.python_features_decoder.decode_row(__UpperCamelCase )
return self.recursive_tensorize(__UpperCamelCase )
def _snake_case ( self : Optional[int] , __UpperCamelCase : pa.Table ) ->"jax.Array":
'''simple docstring'''
_UpperCAmelCase = self.numpy_arrow_extractor().extract_column(__UpperCamelCase )
_UpperCAmelCase = self.python_features_decoder.decode_column(__UpperCamelCase , pa_table.column_names[0] )
_UpperCAmelCase = self.recursive_tensorize(__UpperCamelCase )
_UpperCAmelCase = self._consolidate(__UpperCamelCase )
return column
def _snake_case ( self : Optional[Any] , __UpperCamelCase : pa.Table ) ->Mapping:
'''simple docstring'''
_UpperCAmelCase = self.numpy_arrow_extractor().extract_batch(__UpperCamelCase )
_UpperCAmelCase = self.python_features_decoder.decode_batch(__UpperCamelCase )
_UpperCAmelCase = self.recursive_tensorize(__UpperCamelCase )
for column_name in batch:
_UpperCAmelCase = self._consolidate(batch[column_name] )
return batch | 19 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
a : Dict = {
'''configuration_groupvit''': [
'''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''GroupViTConfig''',
'''GroupViTOnnxConfig''',
'''GroupViTTextConfig''',
'''GroupViTVisionConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : str = [
'''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GroupViTModel''',
'''GroupViTPreTrainedModel''',
'''GroupViTTextModel''',
'''GroupViTVisionModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : Tuple = [
'''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFGroupViTModel''',
'''TFGroupViTPreTrainedModel''',
'''TFGroupViTTextModel''',
'''TFGroupViTVisionModel''',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 19 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a : Tuple = {
'''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a : List[str] = [
'''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''PegasusXForConditionalGeneration''',
'''PegasusXModel''',
'''PegasusXPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__) | 19 | 1 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class a_ :
def __init__( self : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any]=99 , __UpperCamelCase : Optional[int]=13 , __UpperCamelCase : List[str]=7 , __UpperCamelCase : List[Any]=9 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : str=True , __UpperCamelCase : int=False , __UpperCamelCase : int=32 , __UpperCamelCase : Dict=5 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : List[Any]=8 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : str=0.0_0_2 , __UpperCamelCase : Union[str, Any]=1 , __UpperCamelCase : List[Any]=0 , __UpperCamelCase : Tuple=0 , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Any=None , ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = encoder_seq_length
_UpperCAmelCase = decoder_seq_length
# For common tests
_UpperCAmelCase = self.decoder_seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_attention_mask
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = d_ff
_UpperCAmelCase = relative_attention_num_buckets
_UpperCAmelCase = dropout_rate
_UpperCAmelCase = initializer_factor
_UpperCAmelCase = eos_token_id
_UpperCAmelCase = pad_token_id
_UpperCAmelCase = decoder_start_token_id
_UpperCAmelCase = None
_UpperCAmelCase = decoder_layers
def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]:
'''simple docstring'''
return TaConfig.from_pretrained("""google/umt5-base""" )
def _snake_case ( self : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Any=None , __UpperCamelCase : str=None , ) ->int:
'''simple docstring'''
if attention_mask is None:
_UpperCAmelCase = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
_UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
_UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCamelCase )
if decoder_head_mask is None:
_UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase )
if cross_attn_head_mask is None:
_UpperCAmelCase = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _snake_case ( self : List[Any] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
_UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
_UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 )
_UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 )
_UpperCAmelCase = self.get_config()
_UpperCAmelCase = config.num_attention_heads
_UpperCAmelCase = self.prepare_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
return config, input_dict
def _snake_case ( self : Union[str, Any] ) ->Any:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.prepare_config_and_inputs()
return config, inputs_dict
def _snake_case ( self : Dict ) ->List[str]:
'''simple docstring'''
return TaConfig(
vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _snake_case ( self : Tuple ) ->Dict:
'''simple docstring'''
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _snake_case ( self : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = UMTaModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(
input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , )
_UpperCAmelCase = model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase )
_UpperCAmelCase = result.last_hidden_state
_UpperCAmelCase = result.past_key_values
_UpperCAmelCase = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(__UpperCamelCase ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , ) ->str:
'''simple docstring'''
_UpperCAmelCase = UMTaModel(config=__UpperCamelCase ).get_decoder().to(__UpperCamelCase ).eval()
# first forward pass
_UpperCAmelCase = model(__UpperCamelCase , use_cache=__UpperCamelCase )
_UpperCAmelCase = model(__UpperCamelCase )
_UpperCAmelCase = model(__UpperCamelCase , use_cache=__UpperCamelCase )
self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) )
self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) + 1 )
_UpperCAmelCase ,_UpperCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
_UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
_UpperCAmelCase = model(__UpperCamelCase )["""last_hidden_state"""]
_UpperCAmelCase = model(__UpperCamelCase , past_key_values=__UpperCamelCase )["""last_hidden_state"""]
# select random slice
_UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach()
_UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) )
def _snake_case ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Dict , ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = UMTaModel(config=__UpperCamelCase ).to(__UpperCamelCase ).half().eval()
_UpperCAmelCase = model(**__UpperCamelCase )["""last_hidden_state"""]
self.parent.assertFalse(torch.isnan(__UpperCamelCase ).any().item() )
@require_torch
class a_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
a : List[str] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
a : Tuple = (UMTaForConditionalGeneration,) if is_torch_available() else ()
a : Optional[Any] = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
a : Any = True
a : Optional[int] = False
a : Any = False
a : Optional[int] = True
a : Optional[Any] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
a : int = [0.8, 0.9]
def _snake_case ( self : Optional[Any] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = UMTaModelTester(self )
@unittest.skip("""Test has a segmentation fault on torch 1.8.0""" )
def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
_UpperCAmelCase = UMTaModel(config_and_inputs[0] ).to(__UpperCamelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
__UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"""{tmpdirname}/t5_test.onnx""" , export_params=__UpperCamelCase , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def _snake_case ( self : Tuple ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*__UpperCamelCase )
def _snake_case ( self : Any ) ->Any:
'''simple docstring'''
_UpperCAmelCase = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""]
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
_UpperCAmelCase = config_and_inputs[0]
_UpperCAmelCase = UMTaForConditionalGeneration(__UpperCamelCase ).eval()
model.to(__UpperCamelCase )
_UpperCAmelCase = {
"""head_mask""": torch.zeros(config.num_layers , config.num_heads , device=__UpperCamelCase ),
"""decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ),
"""cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ),
}
for attn_name, (name, mask) in zip(__UpperCamelCase , head_masking.items() ):
_UpperCAmelCase = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
_UpperCAmelCase = torch.ones(
config.num_decoder_layers , config.num_heads , device=__UpperCamelCase )
_UpperCAmelCase = model.generate(
config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=__UpperCamelCase , return_dict_in_generate=__UpperCamelCase , **__UpperCamelCase , )
# We check the state of decoder_attentions and cross_attentions just from the last step
_UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" )
def _snake_case ( self : Tuple ) ->List[Any]:
'''simple docstring'''
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class a_ ( unittest.TestCase ):
@slow
@unittest.skip(
"""Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" )
def _snake_case ( self : Optional[Any] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=__UpperCamelCase ).to(__UpperCamelCase )
_UpperCAmelCase = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=__UpperCamelCase , legacy=__UpperCamelCase )
_UpperCAmelCase = [
"""Bonjour monsieur <extra_id_0> bien <extra_id_1>.""",
"""No se como puedo <extra_id_0>.""",
"""This is the reason why we <extra_id_0> them.""",
"""The <extra_id_0> walks in <extra_id_1>, seats""",
"""A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""",
]
_UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors="""pt""" , padding=__UpperCamelCase ).input_ids
# fmt: off
_UpperCAmelCase = torch.tensor(
[
[ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1],
] )
# fmt: on
torch.testing.assert_allclose(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = model.generate(input_ids.to(__UpperCamelCase ) )
_UpperCAmelCase = [
"""<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""",
"""<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
]
_UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase )
self.assertEqual(__UpperCamelCase , __UpperCamelCase ) | 19 |
"""simple docstring"""
import collections
import json
import math
import os
import re
import time
from fnmatch import fnmatch
from typing import Dict
import requests
from slack_sdk import WebClient
a : int = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN'''])
def _UpperCamelCase ( _A ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = test_results.split(""" """ )
_UpperCAmelCase = 0
_UpperCAmelCase = 0
# When the output is short enough, the output is surrounded by = signs: "== OUTPUT =="
# When it is too long, those signs are not present.
_UpperCAmelCase = expressions[-2] if """=""" in expressions[-1] else expressions[-1]
for i, expression in enumerate(_A ):
if "failed" in expression:
failed += int(expressions[i - 1] )
if "passed" in expression:
success += int(expressions[i - 1] )
return failed, success, time_spent
def _UpperCamelCase ( _A ) -> int:
"""simple docstring"""
_UpperCAmelCase = {}
_UpperCAmelCase = None
_UpperCAmelCase = False
for line in failures_short_lines.split("""\n""" ):
if re.search(R"""_ \[doctest\]""" , _A ):
_UpperCAmelCase = True
_UpperCAmelCase = line.split(""" """ )[2]
elif in_error and not line.split(""" """ )[0].isdigit():
_UpperCAmelCase = line
_UpperCAmelCase = False
return failures
class a_ :
def __init__( self : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Dict ) ->Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase = title
_UpperCAmelCase = doc_test_results["""time_spent"""].split(""",""" )[0]
_UpperCAmelCase = doc_test_results["""success"""]
_UpperCAmelCase = doc_test_results["""failures"""]
_UpperCAmelCase = self.n_success + self.n_failures
# Failures and success of the modeling tests
_UpperCAmelCase = doc_test_results
@property
def _snake_case ( self : int ) ->str:
'''simple docstring'''
_UpperCAmelCase = [self._time_spent]
_UpperCAmelCase = 0
for time in time_spent:
_UpperCAmelCase = time.split(""":""" )
# Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute.
if len(__UpperCamelCase ) == 1:
_UpperCAmelCase = [0, 0, time_parts[0]]
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] )
total_secs += hours * 36_00 + minutes * 60 + seconds
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60
return f"""{int(__UpperCamelCase )}h{int(__UpperCamelCase )}m{int(__UpperCamelCase )}s"""
@property
def _snake_case ( self : List[Any] ) ->Dict:
'''simple docstring'''
return {"type": "header", "text": {"type": "plain_text", "text": self.title}}
@property
def _snake_case ( self : Optional[Any] ) ->Dict:
'''simple docstring'''
return {
"type": "section",
"text": {
"type": "plain_text",
"text": f"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""",
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
@property
def _snake_case ( self : Union[str, Any] ) ->Dict:
'''simple docstring'''
return {
"type": "section",
"text": {
"type": "plain_text",
"text": (
f"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in"""
f""" {self.time}."""
),
"emoji": True,
},
"accessory": {
"type": "button",
"text": {"type": "plain_text", "text": "Check Action results", "emoji": True},
"url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
@property
def _snake_case ( self : List[str] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = 40
_UpperCAmelCase = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(__UpperCamelCase , __UpperCamelCase )}
_UpperCAmelCase = """"""
for category, failures in category_failures.items():
if len(__UpperCamelCase ) == 0:
continue
if report != "":
report += "\n\n"
report += f"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n"
report += "`"
report += "`\n`".join(__UpperCamelCase )
report += "`"
return {
"type": "section",
"text": {
"type": "mrkdwn",
"text": f"""The following examples had failures:\n\n\n{report}\n""",
},
}
@property
def _snake_case ( self : Union[str, Any] ) ->str:
'''simple docstring'''
_UpperCAmelCase = [self.header]
if self.n_failures > 0:
blocks.append(self.failures )
if self.n_failures > 0:
blocks.extend([self.category_failures] )
if self.n_failures == 0:
blocks.append(self.no_failures )
return json.dumps(__UpperCamelCase )
@staticmethod
def _snake_case ( ) ->Any:
'''simple docstring'''
_UpperCAmelCase = [
{
"""type""": """section""",
"""text""": {
"""type""": """plain_text""",
"""text""": """There was an issue running the tests.""",
},
"""accessory""": {
"""type""": """button""",
"""text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True},
"""url""": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""",
},
}
]
print("""Sending the following payload""" )
print(json.dumps({"""blocks""": json.loads(__UpperCamelCase )} ) )
client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=__UpperCamelCase , )
def _snake_case ( self : Tuple ) ->Optional[Any]:
'''simple docstring'''
print("""Sending the following payload""" )
print(json.dumps({"""blocks""": json.loads(self.payload )} ) )
_UpperCAmelCase = f"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else """All tests passed."""
_UpperCAmelCase = client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=__UpperCamelCase , )
def _snake_case ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : List[str] ) ->str:
'''simple docstring'''
_UpperCAmelCase = """"""
for key, value in failures.items():
_UpperCAmelCase = value[:2_00] + """ [Truncated]""" if len(__UpperCamelCase ) > 2_50 else value
failures_text += f"""*{key}*\n_{value}_\n\n"""
_UpperCAmelCase = job_name
_UpperCAmelCase = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}}
if job_link is not None:
_UpperCAmelCase = {
"""type""": """button""",
"""text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True},
"""url""": job_link,
}
return [
{"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}},
content,
{"type": "section", "text": {"type": "mrkdwn", "text": failures_text}},
]
def _snake_case ( self : int ) ->Optional[Any]:
'''simple docstring'''
if self.thread_ts is None:
raise ValueError("""Can only post reply if a post has been made.""" )
_UpperCAmelCase = self.doc_test_results.pop("""job_link""" )
self.doc_test_results.pop("""failures""" )
self.doc_test_results.pop("""success""" )
self.doc_test_results.pop("""time_spent""" )
_UpperCAmelCase = sorted(self.doc_test_results.items() , key=lambda __UpperCamelCase : t[0] )
for job, job_result in sorted_dict:
if len(job_result["""failures"""] ):
_UpperCAmelCase = f"""*Num failures* :{len(job_result["failed"] )} \n"""
_UpperCAmelCase = job_result["""failures"""]
_UpperCAmelCase = self.get_reply_blocks(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , text=__UpperCamelCase )
print("""Sending the following reply""" )
print(json.dumps({"""blocks""": blocks} ) )
client.chat_postMessage(
channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=f"""Results for {job}""" , blocks=__UpperCamelCase , thread_ts=self.thread_ts["""ts"""] , )
time.sleep(1 )
def _UpperCamelCase ( ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = os.environ["""GITHUB_RUN_ID"""]
_UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100"""
_UpperCAmelCase = requests.get(_A ).json()
_UpperCAmelCase = {}
try:
jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
_UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(_A ):
_UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" ).json()
jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return jobs
except Exception as e:
print("""Unknown error, could not fetch links.""" , _A )
return {}
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = {}
if os.path.exists(_A ):
_UpperCAmelCase = os.listdir(_A )
for file in files:
try:
with open(os.path.join(_A , _A ) , encoding="""utf-8""" ) as f:
_UpperCAmelCase = f.read()
except UnicodeDecodeError as e:
raise ValueError(F"""Could not open {os.path.join(_A , _A )}.""" ) from e
return _artifact
def _UpperCamelCase ( ) -> int:
"""simple docstring"""
class a_ :
def __init__( self : List[Any] , __UpperCamelCase : str ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = name
_UpperCAmelCase = []
def __str__( self : int ) ->Optional[Any]:
'''simple docstring'''
return self.name
def _snake_case ( self : Dict , __UpperCamelCase : str ) ->int:
'''simple docstring'''
self.paths.append({"""name""": self.name, """path""": path} )
_UpperCAmelCase = {}
_UpperCAmelCase = filter(os.path.isdir , os.listdir() )
for directory in directories:
_UpperCAmelCase = directory
if artifact_name not in _available_artifacts:
_UpperCAmelCase = Artifact(_A )
_available_artifacts[artifact_name].add_path(_A )
return _available_artifacts
if __name__ == "__main__":
a : Dict = get_job_links()
a : Dict = retrieve_available_artifacts()
a : Optional[int] = collections.OrderedDict(
[
('''*.py''', '''API Examples'''),
('''*.md''', '''MD Examples'''),
]
)
# This dict will contain all the information relative to each doc test category:
# - failed: list of failed tests
# - failures: dict in the format 'test': 'error_message'
a : Dict = {
v: {
'''failed''': [],
'''failures''': {},
}
for v in docs.values()
}
# Link to the GitHub Action job
a : int = github_actions_job_links.get('''run_doctests''')
a : Tuple = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0]
a : Optional[Any] = retrieve_artifact(artifact_path['''name'''])
if "stats" in artifact:
a , a , a : str = handle_test_results(artifact['''stats'''])
a : Tuple = failed
a : int = success
a : Any = time_spent[1:-1] + ''', '''
a : Dict = extract_first_line_failure(artifact['''failures_short'''])
for line in artifact["summary_short"].split('''\n'''):
if re.search('''FAILED''', line):
a : List[Any] = line.replace('''FAILED ''', '''''')
a : Tuple = line.split()[0].replace('''\n''', '''''')
if "::" in line:
a , a : Union[str, Any] = line.split('''::''')
else:
a , a : Optional[Any] = line, line
for file_regex in docs.keys():
if fnmatch(file_path, file_regex):
a : List[Any] = docs[file_regex]
doc_test_results[category]["failed"].append(test)
a : Optional[Any] = all_failures[test] if test in all_failures else '''N/A'''
a : List[str] = failure
break
a : List[Any] = Message('''🤗 Results of the doc tests.''', doc_test_results)
message.post()
message.post_reply() | 19 | 1 |
"""simple docstring"""
def _UpperCamelCase ( _A = 1_0_0_0_0_0_0 ) -> int:
"""simple docstring"""
_UpperCAmelCase = [i - 1 for i in range(limit + 1 )]
for i in range(2 , limit + 1 ):
if phi[i] == i - 1:
for j in range(2 * i , limit + 1 , _A ):
phi[j] -= phi[j] // i
return sum(phi[2 : limit + 1] )
if __name__ == "__main__":
print(solution()) | 19 |
"""simple docstring"""
import asyncio
import os
import re
import sys
import tempfile
import unittest
from contextlib import contextmanager
from copy import deepcopy
from distutils.util import strtobool
from enum import Enum
from importlib.util import find_spec
from pathlib import Path
from unittest.mock import patch
import pyarrow as pa
import pytest
import requests
from packaging import version
from datasets import config
if config.PY_VERSION < version.parse('''3.8'''):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
def _UpperCamelCase ( _A , _A=False ) -> str:
"""simple docstring"""
try:
_UpperCAmelCase = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_UpperCAmelCase = default
else:
# KEY is set, convert it to True or False.
try:
_UpperCAmelCase = strtobool(_A )
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(F"""If set, {key} must be yes or no.""" )
return _value
a : Union[str, Any] = parse_flag_from_env('''RUN_SLOW''', default=False)
a : Tuple = parse_flag_from_env('''RUN_REMOTE''', default=False)
a : Union[str, Any] = parse_flag_from_env('''RUN_LOCAL''', default=True)
a : int = parse_flag_from_env('''RUN_PACKAGED''', default=True)
# Compression
a : List[Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''')
a : List[Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''')
a : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''')
# Audio
a : int = pytest.mark.skipif(
# On Windows and OS X, soundfile installs sndfile
find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''),
reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''',
)
# Beam
a : Tuple = pytest.mark.skipif(
not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''),
reason='''test requires apache-beam and a compatible dill version''',
)
# Dill-cloudpickle compatibility
a : Any = pytest.mark.skipif(
config.DILL_VERSION <= version.parse('''0.3.2'''),
reason='''test requires dill>0.3.2 for cloudpickle compatibility''',
)
# Windows
a : int = pytest.mark.skipif(
sys.platform == '''win32''',
reason='''test should not be run on Windows''',
)
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
try:
import faiss # noqa
except ImportError:
_UpperCAmelCase = unittest.skip("""test requires faiss""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Any:
"""simple docstring"""
try:
import regex # noqa
except ImportError:
_UpperCAmelCase = unittest.skip("""test requires regex""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Union[str, Any]:
"""simple docstring"""
try:
import elasticsearch # noqa
except ImportError:
_UpperCAmelCase = unittest.skip("""test requires elasticsearch""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
try:
import sqlalchemy # noqa
except ImportError:
_UpperCAmelCase = unittest.skip("""test requires sqlalchemy""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Union[str, Any]:
"""simple docstring"""
if not config.TORCH_AVAILABLE:
_UpperCAmelCase = unittest.skip("""test requires PyTorch""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Optional[Any]:
"""simple docstring"""
if not config.TF_AVAILABLE:
_UpperCAmelCase = unittest.skip("""test requires TensorFlow""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
if not config.JAX_AVAILABLE:
_UpperCAmelCase = unittest.skip("""test requires JAX""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
if not config.PIL_AVAILABLE:
_UpperCAmelCase = unittest.skip("""test requires Pillow""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
try:
import transformers # noqa F401
except ImportError:
return unittest.skip("""test requires transformers""" )(_A )
else:
return test_case
def _UpperCamelCase ( _A ) -> List[Any]:
"""simple docstring"""
try:
import tiktoken # noqa F401
except ImportError:
return unittest.skip("""test requires tiktoken""" )(_A )
else:
return test_case
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
try:
import spacy # noqa F401
except ImportError:
return unittest.skip("""test requires spacy""" )(_A )
else:
return test_case
def _UpperCamelCase ( _A ) -> int:
"""simple docstring"""
def _require_spacy_model(_A ):
try:
import spacy # noqa F401
spacy.load(_A )
except ImportError:
return unittest.skip("""test requires spacy""" )(_A )
except OSError:
return unittest.skip("""test requires spacy model '{}'""".format(_A ) )(_A )
else:
return test_case
return _require_spacy_model
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
try:
import pyspark # noqa F401
except ImportError:
return unittest.skip("""test requires pyspark""" )(_A )
else:
return test_case
def _UpperCamelCase ( _A ) -> List[Any]:
"""simple docstring"""
try:
import joblibspark # noqa F401
except ImportError:
return unittest.skip("""test requires joblibspark""" )(_A )
else:
return test_case
def _UpperCamelCase ( _A ) -> Any:
"""simple docstring"""
if not _run_slow_tests or _run_slow_tests == 0:
_UpperCAmelCase = unittest.skip("""test is slow""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Any:
"""simple docstring"""
if not _run_local_tests or _run_local_tests == 0:
_UpperCAmelCase = unittest.skip("""test is local""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
if not _run_packaged_tests or _run_packaged_tests == 0:
_UpperCAmelCase = unittest.skip("""test is packaged""" )(_A )
return test_case
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
if not _run_remote_tests or _run_remote_tests == 0:
_UpperCAmelCase = unittest.skip("""test requires remote""" )(_A )
return test_case
def _UpperCamelCase ( *_A ) -> Dict:
"""simple docstring"""
def decorate(cls ):
for name, fn in cls.__dict__.items():
if callable(_A ) and name.startswith("""test""" ):
for decorator in decorators:
_UpperCAmelCase = decorator(_A )
setattr(cls , _A , _A )
return cls
return decorate
class a_ ( _UpperCAmelCase ):
pass
class a_ ( _UpperCAmelCase ):
a : Any = 0
a : Optional[Any] = 1
a : int = 2
@contextmanager
def _UpperCamelCase ( _A=OfflineSimulationMode.CONNECTION_FAILS , _A=1e-16 ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = requests.Session().request
def timeout_request(_A , _A , _A , **_A ):
# Change the url to an invalid url so that the connection hangs
_UpperCAmelCase = """https://10.255.255.1"""
if kwargs.get("""timeout""" ) is None:
raise RequestWouldHangIndefinitelyError(
F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" )
_UpperCAmelCase = timeout
try:
return online_request(_A , _A , **_A )
except Exception as e:
# The following changes in the error are just here to make the offline timeout error prettier
_UpperCAmelCase = url
_UpperCAmelCase = e.args[0]
_UpperCAmelCase = (max_retry_error.args[0].replace("""10.255.255.1""" , F"""OfflineMock[{url}]""" ),)
_UpperCAmelCase = (max_retry_error,)
raise
def raise_connection_error(_A , _A , **_A ):
raise requests.ConnectionError("""Offline mode is enabled.""" , request=_A )
if mode is OfflineSimulationMode.CONNECTION_FAILS:
with patch("""requests.Session.send""" , _A ):
yield
elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT:
# inspired from https://stackoverflow.com/a/904609
with patch("""requests.Session.request""" , _A ):
yield
elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1:
with patch("""datasets.config.HF_DATASETS_OFFLINE""" , _A ):
yield
else:
raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" )
@contextmanager
def _UpperCamelCase ( *_A , **_A ) -> str:
"""simple docstring"""
_UpperCAmelCase = str(Path().resolve() )
with tempfile.TemporaryDirectory(*_A , **_A ) as tmp_dir:
try:
os.chdir(_A )
yield
finally:
os.chdir(_A )
@contextmanager
def _UpperCamelCase ( ) -> Any:
"""simple docstring"""
import gc
gc.collect()
_UpperCAmelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase."
@contextmanager
def _UpperCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
import gc
gc.collect()
_UpperCAmelCase = pa.total_allocated_bytes()
yield
assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase."
def _UpperCamelCase ( _A , _A ) -> str:
"""simple docstring"""
return deepcopy(_A ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(_A ).integers(0 , 1_0_0 , 1_0 ).tolist()
def _UpperCamelCase ( _A ) -> Tuple:
"""simple docstring"""
import decorator
from requests.exceptions import HTTPError
def _wrapper(_A , *_A , **_A ):
try:
return func(*_A , **_A )
except HTTPError as err:
if str(_A ).startswith("""500""" ) or str(_A ).startswith("""502""" ):
pytest.xfail(str(_A ) )
raise err
return decorator.decorator(_wrapper , _A )
class a_ :
def __init__( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] ) ->int:
'''simple docstring'''
_UpperCAmelCase = returncode
_UpperCAmelCase = stdout
_UpperCAmelCase = stderr
async def _UpperCamelCase ( _A , _A ) -> Union[str, Any]:
"""simple docstring"""
while True:
_UpperCAmelCase = await stream.readline()
if line:
callback(_A )
else:
break
async def _UpperCamelCase ( _A , _A=None , _A=None , _A=None , _A=False , _A=False ) -> _RunOutput:
"""simple docstring"""
if echo:
print("""\nRunning: """ , """ """.join(_A ) )
_UpperCAmelCase = await asyncio.create_subprocess_exec(
cmd[0] , *cmd[1:] , stdin=_A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_A , )
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
_UpperCAmelCase = []
_UpperCAmelCase = []
def tee(_A , _A , _A , _A="" ):
_UpperCAmelCase = line.decode("""utf-8""" ).rstrip()
sink.append(_A )
if not quiet:
print(_A , _A , file=_A )
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
_read_stream(p.stdout , lambda _A : tee(_A , _A , sys.stdout , label="""stdout:""" ) ),
_read_stream(p.stderr , lambda _A : tee(_A , _A , sys.stderr , label="""stderr:""" ) ),
] , timeout=_A , )
return _RunOutput(await p.wait() , _A , _A )
def _UpperCamelCase ( _A , _A=None , _A=None , _A=1_8_0 , _A=False , _A=True ) -> _RunOutput:
"""simple docstring"""
_UpperCAmelCase = asyncio.get_event_loop()
_UpperCAmelCase = loop.run_until_complete(
_stream_subprocess(_A , env=_A , stdin=_A , timeout=_A , quiet=_A , echo=_A ) )
_UpperCAmelCase = """ """.join(_A )
if result.returncode > 0:
_UpperCAmelCase = """\n""".join(result.stderr )
raise RuntimeError(
F"""'{cmd_str}' failed with returncode {result.returncode}\n\n"""
F"""The combined stderr from workers follows:\n{stderr}""" )
# check that the subprocess actually did run and produced some output, should the test rely on
# the remote side to do the testing
if not result.stdout and not result.stderr:
raise RuntimeError(F"""'{cmd_str}' produced no output.""" )
return result
def _UpperCamelCase ( ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" )
_UpperCAmelCase = re.sub(R"""^gw""" , """""" , _A , 0 , re.M )
return int(_A )
def _UpperCamelCase ( ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = 2_9_5_0_0
_UpperCAmelCase = pytest_xdist_worker_id()
return port + uniq_delta | 19 | 1 |
"""simple docstring"""
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def _UpperCamelCase ( _A , _A=None ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = None
if token is not None:
_UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
_UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
_UpperCAmelCase = requests.get(_A , headers=_A ).json()
_UpperCAmelCase = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
_UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(_A ):
_UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" , headers=_A ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCamelCase ( _A , _A=None ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = None
if token is not None:
_UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
_UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"""
_UpperCAmelCase = requests.get(_A , headers=_A ).json()
_UpperCAmelCase = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
_UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(_A ):
_UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" , headers=_A ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCamelCase ( _A , _A , _A , _A ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = None
if token is not None:
_UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
_UpperCAmelCase = requests.get(_A , headers=_A , allow_redirects=_A )
_UpperCAmelCase = result.headers["""Location"""]
_UpperCAmelCase = requests.get(_A , allow_redirects=_A )
_UpperCAmelCase = os.path.join(_A , F"""{artifact_name}.zip""" )
with open(_A , """wb""" ) as fp:
fp.write(response.content )
def _UpperCamelCase ( _A , _A=None ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = []
_UpperCAmelCase = []
_UpperCAmelCase = None
with zipfile.ZipFile(_A ) as z:
for filename in z.namelist():
if not os.path.isdir(_A ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(_A ) as f:
for line in f:
_UpperCAmelCase = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_UpperCAmelCase = line[: line.index(""": """ )]
_UpperCAmelCase = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
_UpperCAmelCase = line[len("""FAILED """ ) :]
failed_tests.append(_A )
elif filename == "job_name.txt":
_UpperCAmelCase = line
if len(_A ) != len(_A ):
raise ValueError(
F"""`errors` and `failed_tests` should have the same number of elements. Got {len(_A )} for `errors` """
F"""and {len(_A )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"""
""" problem.""" )
_UpperCAmelCase = None
if job_name and job_links:
_UpperCAmelCase = job_links.get(_A , _A )
# A list with elements of the form (line of error, error, failed test)
_UpperCAmelCase = [x + [y] + [job_link] for x, y in zip(_A , _A )]
return result
def _UpperCamelCase ( _A , _A=None ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = []
_UpperCAmelCase = [os.path.join(_A , _A ) for p in os.listdir(_A ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(_A , job_links=_A ) )
return errors
def _UpperCamelCase ( _A , _A=None ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = Counter()
counter.update([x[1] for x in logs] )
_UpperCAmelCase = counter.most_common()
_UpperCAmelCase = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_UpperCAmelCase = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
_UpperCAmelCase = dict(sorted(r.items() , key=lambda _A : item[1]["count"] , reverse=_A ) )
return r
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
_UpperCAmelCase = test.split("""/""" )[2]
else:
_UpperCAmelCase = None
return test
def _UpperCamelCase ( _A , _A=None ) -> Any:
"""simple docstring"""
_UpperCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs]
_UpperCAmelCase = [x for x in logs if x[2] is not None]
_UpperCAmelCase = {x[2] for x in logs}
_UpperCAmelCase = {}
for test in tests:
_UpperCAmelCase = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_UpperCAmelCase = counter.most_common()
_UpperCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_UpperCAmelCase = sum(error_counts.values() )
if n_errors > 0:
_UpperCAmelCase = {"""count""": n_errors, """errors""": error_counts}
_UpperCAmelCase = dict(sorted(r.items() , key=lambda _A : item[1]["count"] , reverse=_A ) )
return r
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = """| no. | error | status |"""
_UpperCAmelCase = """|-:|:-|:-|"""
_UpperCAmelCase = [header, sep]
for error in reduced_by_error:
_UpperCAmelCase = reduced_by_error[error]["""count"""]
_UpperCAmelCase = F"""| {count} | {error[:1_0_0]} | |"""
lines.append(_A )
return "\n".join(_A )
def _UpperCamelCase ( _A ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = """| model | no. of errors | major error | count |"""
_UpperCAmelCase = """|-:|-:|-:|-:|"""
_UpperCAmelCase = [header, sep]
for model in reduced_by_model:
_UpperCAmelCase = reduced_by_model[model]["""count"""]
_UpperCAmelCase ,_UpperCAmelCase = list(reduced_by_model[model]["""errors"""].items() )[0]
_UpperCAmelCase = F"""| {model} | {count} | {error[:6_0]} | {_count} |"""
lines.append(_A )
return "\n".join(_A )
if __name__ == "__main__":
a : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''')
parser.add_argument(
'''--output_dir''',
type=str,
required=True,
help='''Where to store the downloaded artifacts and other result files.''',
)
parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''')
a : Dict = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
a : Tuple = get_job_links(args.workflow_run_id, token=args.token)
a : Tuple = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
a : List[Any] = k.find(''' / ''')
a : Tuple = k[index + len(''' / ''') :]
a : int = v
with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
a : Tuple = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
a : Optional[int] = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
a : Union[str, Any] = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
a : Optional[int] = counter.most_common(3_0)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
a : int = reduce_by_error(errors)
a : str = reduce_by_model(errors)
a : int = make_github_table(reduced_by_error)
a : Optional[int] = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa) | 19 |
"""simple docstring"""
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class a_ ( _UpperCAmelCase ):
a : List[Any] = ''
a : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs
def __init__( self : Tuple , __UpperCamelCase : Optional[DatasetInfo] = None , __UpperCamelCase : Optional[str] = None , **__UpperCamelCase : Any , ) ->Any:
'''simple docstring'''
super().__init__(self , **__UpperCamelCase )
_UpperCAmelCase = repo_info
_UpperCAmelCase = token
_UpperCAmelCase = None
def _snake_case ( self : List[str] ) ->List[str]:
'''simple docstring'''
if self.dir_cache is None:
_UpperCAmelCase = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
_UpperCAmelCase = {
"""name""": hf_file.rfilename,
"""size""": None,
"""type""": """file""",
}
self.dir_cache.update(
{
str(__UpperCamelCase ): {"""name""": str(__UpperCamelCase ), """size""": None, """type""": """directory"""}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def _snake_case ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : str = "rb" , **__UpperCamelCase : Any , ) ->List[str]:
'''simple docstring'''
if not isinstance(self.repo_info , __UpperCamelCase ):
raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" )
_UpperCAmelCase = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha )
return fsspec.open(
__UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open()
def _snake_case ( self : int , __UpperCamelCase : int , **__UpperCamelCase : Dict ) ->Tuple:
'''simple docstring'''
self._get_dirs()
_UpperCAmelCase = self._strip_protocol(__UpperCamelCase )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(__UpperCamelCase )
def _snake_case ( self : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple=False , **__UpperCamelCase : List[str] ) ->Optional[Any]:
'''simple docstring'''
self._get_dirs()
_UpperCAmelCase = PurePosixPath(path.strip("""/""" ) )
_UpperCAmelCase = {}
for p, f in self.dir_cache.items():
_UpperCAmelCase = PurePosixPath(p.strip("""/""" ) )
_UpperCAmelCase = p.parent
if root == path:
_UpperCAmelCase = f
_UpperCAmelCase = list(paths.values() )
if detail:
return out
else:
return sorted(f["""name"""] for f in out ) | 19 | 1 |
"""simple docstring"""
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
a : Tuple = abspath(join(dirname(dirname(__file__)), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(_A )
def _UpperCamelCase ( _A ) -> int:
"""simple docstring"""
from diffusers.utils.testing_utils import pytest_terminal_summary_main
_UpperCAmelCase = terminalreporter.config.getoption("""--make-reports""" )
if make_reports:
pytest_terminal_summary_main(_A , id=_A ) | 19 |
"""simple docstring"""
import itertools
import os
from collections import Counter, defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
import numpy as np
import datasets
from .execute import check_correctness
a : Optional[Any] = '''\
@misc{chen2021evaluating,
title={Evaluating Large Language Models Trained on Code},
author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \
and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \
and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \
and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \
and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \
and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \
and Mohammad Bavarian and Clemens Winter and Philippe Tillet \
and Felipe Petroski Such and Dave Cummings and Matthias Plappert \
and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \
and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \
and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \
and William Saunders and Christopher Hesse and Andrew N. Carr \
and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \
and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \
and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \
and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},
year={2021},
eprint={2107.03374},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
'''
a : List[str] = '''\
This metric implements the evaluation harness for the HumanEval problem solving dataset
described in the paper "Evaluating Large Language Models Trained on Code"
(https://arxiv.org/abs/2107.03374).
'''
a : Any = '''
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of candidates to evaluate. Each candidates should be a list
of strings with several code candidates to solve the problem.
references: a list with a test for each prediction. Each test should evaluate the
correctness of a code candidate.
k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])
num_workers: number of workers used to evaluate the canidate programs (Default: 4).
timeout:
Returns:
pass_at_k: dict with pass rates for each k
results: dict with granular results of each unittest
Examples:
>>> code_eval = datasets.load_metric("code_eval")
>>> test_cases = ["assert add(2,3)==5"]
>>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]
>>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])
>>> print(pass_at_k)
{\'pass@1\': 0.5, \'pass@2\': 1.0}
'''
a : int = '''
################################################################################
!!!WARNING!!!
################################################################################
The "code_eval" metric executes untrusted model-generated code in Python.
Although it is highly unlikely that model-generated code will do something
overtly malicious in response to this test suite, model-generated code may act
destructively due to a lack of model capability or alignment.
Users are strongly encouraged to sandbox this evaluation suite so that it
does not perform destructive actions on their host or network. For more
information on how OpenAI sandboxes its code, see the paper "Evaluating Large
Language Models Trained on Code" (https://arxiv.org/abs/2107.03374).
Once you have read this disclaimer and taken appropriate precautions,
set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this
with:
>>> import os
>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"
################################################################################\
'''
a : List[Any] = '''The MIT License
Copyright (c) OpenAI (https://openai.com)
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a_ ( datasets.Metric ):
def _snake_case ( self : Tuple ) ->Tuple:
'''simple docstring'''
return datasets.MetricInfo(
# This is the description that will appear on the metrics page.
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Sequence(datasets.Value("""string""" ) ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , )
def _snake_case ( self : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any]=[1, 10, 1_00] , __UpperCamelCase : Dict=4 , __UpperCamelCase : Tuple=3.0 ) ->Union[str, Any]:
'''simple docstring'''
if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1":
raise ValueError(_WARNING )
if os.name == "nt":
raise NotImplementedError("""This metric is currently not supported on Windows.""" )
with ThreadPoolExecutor(max_workers=__UpperCamelCase ) as executor:
_UpperCAmelCase = []
_UpperCAmelCase = Counter()
_UpperCAmelCase = 0
_UpperCAmelCase = defaultdict(__UpperCamelCase )
for task_id, (candidates, test_case) in enumerate(zip(__UpperCamelCase , __UpperCamelCase ) ):
for candidate in candidates:
_UpperCAmelCase = candidate + """\n""" + test_case
_UpperCAmelCase = (test_program, timeout, task_id, completion_id[task_id])
_UpperCAmelCase = executor.submit(__UpperCamelCase , *__UpperCamelCase )
futures.append(__UpperCamelCase )
completion_id[task_id] += 1
n_samples += 1
for future in as_completed(__UpperCamelCase ):
_UpperCAmelCase = future.result()
results[result["task_id"]].append((result["""completion_id"""], result) )
_UpperCAmelCase ,_UpperCAmelCase = [], []
for result in results.values():
result.sort()
_UpperCAmelCase = [r[1]["""passed"""] for r in result]
total.append(len(__UpperCamelCase ) )
correct.append(sum(__UpperCamelCase ) )
_UpperCAmelCase = np.array(__UpperCamelCase )
_UpperCAmelCase = np.array(__UpperCamelCase )
_UpperCAmelCase = k
_UpperCAmelCase = {f"""pass@{k}""": estimate_pass_at_k(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).mean() for k in ks if (total >= k).all()}
return pass_at_k, results
def _UpperCamelCase ( _A , _A , _A ) -> Dict:
"""simple docstring"""
def estimator(_A , _A , _A ) -> float:
if n - c < k:
return 1.0
return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) )
if isinstance(_A , _A ):
_UpperCAmelCase = itertools.repeat(_A , len(_A ) )
else:
assert len(_A ) == len(_A )
_UpperCAmelCase = iter(_A )
return np.array([estimator(int(_A ) , int(_A ) , _A ) for n, c in zip(_A , _A )] ) | 19 | 1 |
"""simple docstring"""
from pathlib import Path
import cva
import numpy as np
from matplotlib import pyplot as plt
def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> np.ndarray:
"""simple docstring"""
_UpperCAmelCase = cva.getAffineTransform(_A , _A )
return cva.warpAffine(_A , _A , (rows, cols) )
if __name__ == "__main__":
# read original image
a : List[Any] = cva.imread(
str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''')
)
# turn image in gray scale value
a : Optional[Any] = cva.cvtColor(image, cva.COLOR_BGR2GRAY)
# get image shape
a , a : Dict = gray_img.shape
# set different points to rotate image
a : str = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa)
a : Union[str, Any] = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa)
a : Union[str, Any] = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa)
a : List[str] = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa)
# add all rotated images in a list
a : Any = [
gray_img,
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols),
]
# plot different image rotations
a : Optional[int] = plt.figure(1)
a : Dict = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3''']
for i, image in enumerate(images):
plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''')
plt.title(titles[i])
plt.axis('''off''')
plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95)
plt.show() | 19 |
"""simple docstring"""
from collections.abc import Callable
import numpy as np
def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> np.array:
"""simple docstring"""
_UpperCAmelCase = int(np.ceil((x_end - xa) / step_size ) )
_UpperCAmelCase = np.zeros((n + 1,) )
_UpperCAmelCase = ya
_UpperCAmelCase = xa
for k in range(_A ):
_UpperCAmelCase = y[k] + step_size * ode_func(_A , y[k] )
_UpperCAmelCase = y[k] + (
(step_size / 2) * (ode_func(_A , y[k] ) + ode_func(x + step_size , _A ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod() | 19 | 1 |
"""simple docstring"""
a : List[Any] = [0, 2, 4, 6, 8]
a : List[Any] = [1, 3, 5, 7, 9]
def _UpperCamelCase ( _A , _A , _A , _A ) -> int:
"""simple docstring"""
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1 , -1 , -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 1_0
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
_UpperCAmelCase = 0
for digit in range(1_0 ):
_UpperCAmelCase = digit
result += reversible_numbers(
0 , (remainder + 2 * digit) // 1_0 , _A , _A )
return result
_UpperCAmelCase = 0
for digita in range(1_0 ):
_UpperCAmelCase = digita
if (remainder + digita) % 2 == 0:
_UpperCAmelCase = ODD_DIGITS
else:
_UpperCAmelCase = EVEN_DIGITS
for digita in other_parity_digits:
_UpperCAmelCase = digita
result += reversible_numbers(
remaining_length - 2 , (remainder + digita + digita) // 1_0 , _A , _A , )
return result
def _UpperCamelCase ( _A = 9 ) -> int:
"""simple docstring"""
_UpperCAmelCase = 0
for length in range(1 , max_power + 1 ):
result += reversible_numbers(_A , 0 , [0] * length , _A )
return result
if __name__ == "__main__":
print(F"{solution() = }") | 19 |
"""simple docstring"""
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''',
datefmt='''%Y-%m-%d %H:%M:%S''',
level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(),
stream=sys.stdout,
)
a : List[str] = logging.getLogger(__name__)
a : int = {'''facebook/bart-base''': BartForConditionalGeneration}
a : Dict = {'''facebook/bart-base''': BartTokenizer}
def _UpperCamelCase ( ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" )
parser.add_argument(
"""--validation_file""" , type=_A , default=_A , help="""A csv or a json file containing the validation data.""" )
parser.add_argument(
"""--max_length""" , type=_A , default=5 , help="""The maximum total input sequence length after tokenization.""" , )
parser.add_argument(
"""--num_beams""" , type=_A , default=_A , help=(
"""Number of beams to use for evaluation. This argument will be """
"""passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."""
) , )
parser.add_argument(
"""--model_name_or_path""" , type=_A , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_A , )
parser.add_argument(
"""--config_name""" , type=_A , default=_A , help="""Pretrained config name or path if not the same as model_name""" , )
parser.add_argument(
"""--device""" , type=_A , default="""cpu""" , help="""Device where the model will be run""" , )
parser.add_argument("""--output_file_path""" , type=_A , default=_A , help="""Where to store the final ONNX file.""" )
_UpperCAmelCase = parser.parse_args()
return args
def _UpperCamelCase ( _A , _A="cpu" ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = model_dict[model_name].from_pretrained(_A ).to(_A )
_UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_A )
if model_name in ["facebook/bart-base"]:
_UpperCAmelCase = 0
_UpperCAmelCase = None
_UpperCAmelCase = 0
return huggingface_model, tokenizer
def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> Optional[int]:
"""simple docstring"""
model.eval()
_UpperCAmelCase = None
_UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_A ) )
with torch.no_grad():
_UpperCAmelCase = """My friends are cool but they eat too many carbs."""
_UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="""pt""" ).to(model.device )
_UpperCAmelCase = model.generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=_A , max_length=_A , early_stopping=_A , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
_A , (
inputs["""input_ids"""],
inputs["""attention_mask"""],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , _A , opset_version=1_4 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={
"""input_ids""": {0: """batch""", 1: """seq"""},
"""output_ids""": {0: """batch""", 1: """seq_out"""},
} , example_outputs=_A , )
logger.info("""Model exported to {}""".format(_A ) )
_UpperCAmelCase = remove_dup_initializers(os.path.abspath(_A ) )
logger.info("""Deduplicated and optimized model written to {}""".format(_A ) )
_UpperCAmelCase = onnxruntime.InferenceSession(_A )
_UpperCAmelCase = ort_sess.run(
_A , {
"""input_ids""": inputs["""input_ids"""].cpu().numpy(),
"""attention_mask""": inputs["""attention_mask"""].cpu().numpy(),
"""num_beams""": np.array(_A ),
"""max_length""": np.array(_A ),
"""decoder_start_token_id""": np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 )
logger.info("""Model outputs from torch and ONNX Runtime are similar.""" )
logger.info("""Success.""" )
def _UpperCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = parse_args()
_UpperCAmelCase = 5
_UpperCAmelCase = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
_UpperCAmelCase = torch.device(args.device )
_UpperCAmelCase ,_UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _A )
if model.config.decoder_start_token_id is None:
raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" )
model.to(_A )
if args.max_length:
_UpperCAmelCase = args.max_length
if args.num_beams:
_UpperCAmelCase = args.num_beams
if args.output_file_path:
_UpperCAmelCase = args.output_file_path
else:
_UpperCAmelCase = """BART.onnx"""
logger.info("""Exporting model to ONNX""" )
export_and_validate_model(_A , _A , _A , _A , _A )
if __name__ == "__main__":
main() | 19 | 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class a_ ( _UpperCAmelCase ):
a : str = 'facebook/bart-large-mnli'
a : Tuple = (
'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which '
'should be the text to classify, and `labels`, which should be the list of labels to use for classification. '
'It returns the most likely label in the list of provided `labels` for the input text.'
)
a : int = 'text_classifier'
a : str = AutoTokenizer
a : Optional[Any] = AutoModelForSequenceClassification
a : Optional[Any] = ['text', ['text']]
a : int = ['text']
def _snake_case ( self : Optional[int] ) ->Union[str, Any]:
'''simple docstring'''
super().setup()
_UpperCAmelCase = self.model.config
_UpperCAmelCase = -1
for idx, label in config.idalabel.items():
if label.lower().startswith("""entail""" ):
_UpperCAmelCase = int(__UpperCamelCase )
if self.entailment_id == -1:
raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" )
def _snake_case ( self : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = labels
return self.pre_processor(
[text] * len(__UpperCamelCase ) , [f"""This example is {label}""" for label in labels] , return_tensors="""pt""" , padding="""max_length""" , )
def _snake_case ( self : int , __UpperCamelCase : List[Any] ) ->int:
'''simple docstring'''
_UpperCAmelCase = outputs.logits
_UpperCAmelCase = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id] | 19 |
"""simple docstring"""
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def _UpperCamelCase ( _A , _A=None ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = None
if token is not None:
_UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
_UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
_UpperCAmelCase = requests.get(_A , headers=_A ).json()
_UpperCAmelCase = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
_UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(_A ):
_UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" , headers=_A ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCamelCase ( _A , _A=None ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = None
if token is not None:
_UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
_UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"""
_UpperCAmelCase = requests.get(_A , headers=_A ).json()
_UpperCAmelCase = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
_UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 )
for i in range(_A ):
_UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" , headers=_A ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _UpperCamelCase ( _A , _A , _A , _A ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = None
if token is not None:
_UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""}
_UpperCAmelCase = requests.get(_A , headers=_A , allow_redirects=_A )
_UpperCAmelCase = result.headers["""Location"""]
_UpperCAmelCase = requests.get(_A , allow_redirects=_A )
_UpperCAmelCase = os.path.join(_A , F"""{artifact_name}.zip""" )
with open(_A , """wb""" ) as fp:
fp.write(response.content )
def _UpperCamelCase ( _A , _A=None ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = []
_UpperCAmelCase = []
_UpperCAmelCase = None
with zipfile.ZipFile(_A ) as z:
for filename in z.namelist():
if not os.path.isdir(_A ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(_A ) as f:
for line in f:
_UpperCAmelCase = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
_UpperCAmelCase = line[: line.index(""": """ )]
_UpperCAmelCase = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
_UpperCAmelCase = line[len("""FAILED """ ) :]
failed_tests.append(_A )
elif filename == "job_name.txt":
_UpperCAmelCase = line
if len(_A ) != len(_A ):
raise ValueError(
F"""`errors` and `failed_tests` should have the same number of elements. Got {len(_A )} for `errors` """
F"""and {len(_A )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"""
""" problem.""" )
_UpperCAmelCase = None
if job_name and job_links:
_UpperCAmelCase = job_links.get(_A , _A )
# A list with elements of the form (line of error, error, failed test)
_UpperCAmelCase = [x + [y] + [job_link] for x, y in zip(_A , _A )]
return result
def _UpperCamelCase ( _A , _A=None ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = []
_UpperCAmelCase = [os.path.join(_A , _A ) for p in os.listdir(_A ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(_A , job_links=_A ) )
return errors
def _UpperCamelCase ( _A , _A=None ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = Counter()
counter.update([x[1] for x in logs] )
_UpperCAmelCase = counter.most_common()
_UpperCAmelCase = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
_UpperCAmelCase = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
_UpperCAmelCase = dict(sorted(r.items() , key=lambda _A : item[1]["count"] , reverse=_A ) )
return r
def _UpperCamelCase ( _A ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
_UpperCAmelCase = test.split("""/""" )[2]
else:
_UpperCAmelCase = None
return test
def _UpperCamelCase ( _A , _A=None ) -> Any:
"""simple docstring"""
_UpperCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs]
_UpperCAmelCase = [x for x in logs if x[2] is not None]
_UpperCAmelCase = {x[2] for x in logs}
_UpperCAmelCase = {}
for test in tests:
_UpperCAmelCase = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
_UpperCAmelCase = counter.most_common()
_UpperCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
_UpperCAmelCase = sum(error_counts.values() )
if n_errors > 0:
_UpperCAmelCase = {"""count""": n_errors, """errors""": error_counts}
_UpperCAmelCase = dict(sorted(r.items() , key=lambda _A : item[1]["count"] , reverse=_A ) )
return r
def _UpperCamelCase ( _A ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = """| no. | error | status |"""
_UpperCAmelCase = """|-:|:-|:-|"""
_UpperCAmelCase = [header, sep]
for error in reduced_by_error:
_UpperCAmelCase = reduced_by_error[error]["""count"""]
_UpperCAmelCase = F"""| {count} | {error[:1_0_0]} | |"""
lines.append(_A )
return "\n".join(_A )
def _UpperCamelCase ( _A ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = """| model | no. of errors | major error | count |"""
_UpperCAmelCase = """|-:|-:|-:|-:|"""
_UpperCAmelCase = [header, sep]
for model in reduced_by_model:
_UpperCAmelCase = reduced_by_model[model]["""count"""]
_UpperCAmelCase ,_UpperCAmelCase = list(reduced_by_model[model]["""errors"""].items() )[0]
_UpperCAmelCase = F"""| {model} | {count} | {error[:6_0]} | {_count} |"""
lines.append(_A )
return "\n".join(_A )
if __name__ == "__main__":
a : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''')
parser.add_argument(
'''--output_dir''',
type=str,
required=True,
help='''Where to store the downloaded artifacts and other result files.''',
)
parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''')
a : Dict = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
a : Tuple = get_job_links(args.workflow_run_id, token=args.token)
a : Tuple = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
a : List[Any] = k.find(''' / ''')
a : Tuple = k[index + len(''' / ''') :]
a : int = v
with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
a : Tuple = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
a : Optional[int] = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
a : Union[str, Any] = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
a : Optional[int] = counter.most_common(3_0)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
a : int = reduce_by_error(errors)
a : str = reduce_by_model(errors)
a : int = make_github_table(reduced_by_error)
a : Optional[int] = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp:
fp.write(sa) | 19 | 1 |
"""simple docstring"""
def _UpperCamelCase ( _A , _A ) -> Optional[int]:
"""simple docstring"""
_enforce_args(_A , _A )
if n == 0:
return 0
_UpperCAmelCase = float("""-inf""" )
for i in range(1 , n + 1 ):
_UpperCAmelCase = max(
_A , prices[i - 1] + naive_cut_rod_recursive(n - i , _A ) )
return max_revue
def _UpperCamelCase ( _A , _A ) -> int:
"""simple docstring"""
_enforce_args(_A , _A )
_UpperCAmelCase = [float("""-inf""" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(_A , _A , _A )
def _UpperCamelCase ( _A , _A , _A ) -> Any:
"""simple docstring"""
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
_UpperCAmelCase = float("""-inf""" )
for i in range(1 , n + 1 ):
_UpperCAmelCase = max(
_A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , _A , _A ) , )
_UpperCAmelCase = max_revenue
return max_rev[n]
def _UpperCamelCase ( _A , _A ) -> Dict:
"""simple docstring"""
_enforce_args(_A , _A )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
_UpperCAmelCase = [float("""-inf""" ) for _ in range(n + 1 )]
_UpperCAmelCase = 0
for i in range(1 , n + 1 ):
_UpperCAmelCase = max_rev[i]
for j in range(1 , i + 1 ):
_UpperCAmelCase = max(_A , prices[j - 1] + max_rev[i - j] )
_UpperCAmelCase = max_revenue_i
return max_rev[n]
def _UpperCamelCase ( _A , _A ) -> List[Any]:
"""simple docstring"""
if n < 0:
_UpperCAmelCase = F"""n must be greater than or equal to 0. Got n = {n}"""
raise ValueError(_A )
if n > len(_A ):
_UpperCAmelCase = (
"""Each integral piece of rod must have a corresponding price. """
F"""Got n = {n} but length of prices = {len(_A )}"""
)
raise ValueError(_A )
def _UpperCamelCase ( ) -> Union[str, Any]:
"""simple docstring"""
_UpperCAmelCase = [6, 1_0, 1_2, 1_5, 2_0, 2_3]
_UpperCAmelCase = len(_A )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
_UpperCAmelCase = 3_6
_UpperCAmelCase = top_down_cut_rod(_A , _A )
_UpperCAmelCase = bottom_up_cut_rod(_A , _A )
_UpperCAmelCase = naive_cut_rod_recursive(_A , _A )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main() | 19 |
"""simple docstring"""
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class a_ ( _UpperCAmelCase ):
a : Any = ['image_processor', 'tokenizer']
a : Optional[int] = 'AutoImageProcessor'
a : Any = 'AutoTokenizer'
def __init__( self : List[str] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=None , **__UpperCamelCase : List[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCamelCase , )
_UpperCAmelCase = kwargs.pop("""feature_extractor""" )
_UpperCAmelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCamelCase , __UpperCamelCase )
_UpperCAmelCase = self.image_processor
_UpperCAmelCase = False
def __call__( self : Union[str, Any] , *__UpperCamelCase : str , **__UpperCamelCase : Optional[Any] ) ->List[str]:
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*__UpperCamelCase , **__UpperCamelCase )
_UpperCAmelCase = kwargs.pop("""images""" , __UpperCamelCase )
_UpperCAmelCase = kwargs.pop("""text""" , __UpperCamelCase )
if len(__UpperCamelCase ) > 0:
_UpperCAmelCase = args[0]
_UpperCAmelCase = args[1:]
if images is None and text is None:
raise ValueError("""You need to specify either an `images` or `text` input to process.""" )
if images is not None:
_UpperCAmelCase = self.image_processor(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase )
if text is not None:
_UpperCAmelCase = self.tokenizer(__UpperCamelCase , **__UpperCamelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
_UpperCAmelCase = encodings["""input_ids"""]
return inputs
def _snake_case ( self : Union[str, Any] , *__UpperCamelCase : int , **__UpperCamelCase : Tuple ) ->Tuple:
'''simple docstring'''
return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase )
def _snake_case ( self : Tuple , *__UpperCamelCase : int , **__UpperCamelCase : Union[str, Any] ) ->int:
'''simple docstring'''
return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase )
@contextmanager
def _snake_case ( self : Tuple ) ->Union[str, Any]:
'''simple docstring'''
warnings.warn(
"""`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """
"""labels by using the argument `text` of the regular `__call__` method (either in the same call as """
"""your images inputs, or in a separate call.""" )
_UpperCAmelCase = True
_UpperCAmelCase = self.tokenizer
yield
_UpperCAmelCase = self.image_processor
_UpperCAmelCase = False
def _snake_case ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : Union[str, Any]=None ) ->List[str]:
'''simple docstring'''
if added_vocab is None:
_UpperCAmelCase = self.tokenizer.get_added_vocab()
_UpperCAmelCase = {}
while tokens:
_UpperCAmelCase = re.search(r"""<s_(.*?)>""" , __UpperCamelCase , re.IGNORECASE )
if start_token is None:
break
_UpperCAmelCase = start_token.group(1 )
_UpperCAmelCase = re.search(rf"""</s_{key}>""" , __UpperCamelCase , re.IGNORECASE )
_UpperCAmelCase = start_token.group()
if end_token is None:
_UpperCAmelCase = tokens.replace(__UpperCamelCase , """""" )
else:
_UpperCAmelCase = end_token.group()
_UpperCAmelCase = re.escape(__UpperCamelCase )
_UpperCAmelCase = re.escape(__UpperCamelCase )
_UpperCAmelCase = re.search(f"""{start_token_escaped}(.*?){end_token_escaped}""" , __UpperCamelCase , re.IGNORECASE )
if content is not None:
_UpperCAmelCase = content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
_UpperCAmelCase = self.tokenajson(__UpperCamelCase , is_inner_value=__UpperCamelCase , added_vocab=__UpperCamelCase )
if value:
if len(__UpperCamelCase ) == 1:
_UpperCAmelCase = value[0]
_UpperCAmelCase = value
else: # leaf nodes
_UpperCAmelCase = []
for leaf in content.split(r"""<sep/>""" ):
_UpperCAmelCase = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
_UpperCAmelCase = leaf[1:-2] # for categorical special tokens
output[key].append(__UpperCamelCase )
if len(output[key] ) == 1:
_UpperCAmelCase = output[key][0]
_UpperCAmelCase = tokens[tokens.find(__UpperCamelCase ) + len(__UpperCamelCase ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:] , is_inner_value=__UpperCamelCase , added_vocab=__UpperCamelCase )
if len(__UpperCamelCase ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def _snake_case ( self : Tuple ) ->Optional[int]:
'''simple docstring'''
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __UpperCamelCase , )
return self.image_processor_class
@property
def _snake_case ( self : List[str] ) ->Dict:
'''simple docstring'''
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __UpperCamelCase , )
return self.image_processor | 19 | 1 |
"""simple docstring"""
import fire
from utils import calculate_rouge, save_json
def _UpperCamelCase ( _A , _A , _A=None , **_A ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = [x.strip() for x in open(_A ).readlines()]
_UpperCAmelCase = [x.strip() for x in open(_A ).readlines()][: len(_A )]
_UpperCAmelCase = calculate_rouge(_A , _A , **_A )
if save_path is not None:
save_json(_A , _A , indent=_A )
return metrics # these print nicely
if __name__ == "__main__":
fire.Fire(calculate_rouge_path) | 19 |
"""simple docstring"""
import colorsys
from PIL import Image # type: ignore
def _UpperCamelCase ( _A , _A , _A ) -> float:
"""simple docstring"""
_UpperCAmelCase = x
_UpperCAmelCase = y
for step in range(_A ): # noqa: B007
_UpperCAmelCase = a * a - b * b + x
_UpperCAmelCase = 2 * a * b + y
_UpperCAmelCase = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def _UpperCamelCase ( _A ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return (2_5_5, 2_5_5, 2_5_5)
def _UpperCamelCase ( _A ) -> tuple:
"""simple docstring"""
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(_A , 1 , 1 ) )
def _UpperCamelCase ( _A = 8_0_0 , _A = 6_0_0 , _A = -0.6 , _A = 0 , _A = 3.2 , _A = 5_0 , _A = True , ) -> Image.Image:
"""simple docstring"""
_UpperCAmelCase = Image.new("""RGB""" , (image_width, image_height) )
_UpperCAmelCase = img.load()
# loop through the image-coordinates
for image_x in range(_A ):
for image_y in range(_A ):
# determine the figure-coordinates based on the image-coordinates
_UpperCAmelCase = figure_width / image_width * image_height
_UpperCAmelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width
_UpperCAmelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height
_UpperCAmelCase = get_distance(_A , _A , _A )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
_UpperCAmelCase = get_color_coded_rgb(_A )
else:
_UpperCAmelCase = get_black_and_white_rgb(_A )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
a : List[str] = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show() | 19 | 1 |
"""simple docstring"""
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class a_ :
def __init__( self : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple=13 , __UpperCamelCase : List[str]=64 , __UpperCamelCase : int=2 , __UpperCamelCase : Dict=3 , __UpperCamelCase : Any=True , __UpperCamelCase : Dict=True , __UpperCamelCase : Any=32 , __UpperCamelCase : Tuple=5 , __UpperCamelCase : List[Any]=4 , __UpperCamelCase : List[str]=37 , __UpperCamelCase : List[Any]="gelu" , __UpperCamelCase : int=0.1 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Optional[int]=10 , __UpperCamelCase : List[str]=0.0_2 , __UpperCamelCase : str=[1, 16, 4, 4] , __UpperCamelCase : str=None , ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = patch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = is_training
_UpperCAmelCase = use_labels
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = type_sequence_label_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = scope
_UpperCAmelCase = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
_UpperCAmelCase = (self.image_size // 32) ** 2
_UpperCAmelCase = num_patches + 1
def _snake_case ( self : List[Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def _snake_case ( self : List[str] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [4, 8, 16, 32],
"""num_groups""": 2,
}
return ViTHybridConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=__UpperCamelCase , )
def _snake_case ( self : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : Tuple ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = ViTHybridModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.type_sequence_label_size
_UpperCAmelCase = ViTHybridForImageClassification(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _snake_case ( self : int ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = self.prepare_config_and_inputs()
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = config_and_inputs
_UpperCAmelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class a_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
a : Union[str, Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
a : Dict = (
{'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification}
if is_torch_available()
else {}
)
a : str = False
a : Dict = False
a : Union[str, Any] = False
def _snake_case ( self : str ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = ViTHybridModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 )
def _snake_case ( self : Any ) ->Optional[int]:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""ViT does not use inputs_embeds""" )
def _snake_case ( self : List[Any] ) ->Optional[Any]:
'''simple docstring'''
pass
def _snake_case ( self : Union[str, Any] ) ->int:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) )
def _snake_case ( self : Union[str, Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase = [*signature.parameters.keys()]
_UpperCAmelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCamelCase )
def _snake_case ( self : int ) ->Any:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _snake_case ( self : Union[str, Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase )
def _snake_case ( self : Any ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = _config_zero_init(__UpperCamelCase )
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(config=__UpperCamelCase )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
_UpperCAmelCase = [f"""{name}.{key}""" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@slow
def _snake_case ( self : Tuple ) ->Optional[Any]:
'''simple docstring'''
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCAmelCase = ViTHybridModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def _UpperCamelCase ( ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class a_ ( unittest.TestCase ):
@cached_property
def _snake_case ( self : str ) ->List[Any]:
'''simple docstring'''
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def _snake_case ( self : List[Any] ) ->int:
'''simple docstring'''
_UpperCAmelCase = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
__UpperCamelCase )
_UpperCAmelCase = self.default_image_processor
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase )
# forward pass
with torch.no_grad():
_UpperCAmelCase = model(**__UpperCamelCase )
# verify the logits
_UpperCAmelCase = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , __UpperCamelCase )
_UpperCAmelCase = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
@slow
@require_accelerate
def _snake_case ( self : List[Any] ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" )
_UpperCAmelCase = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" )
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors="""pt""" )
_UpperCAmelCase = model(**__UpperCamelCase )
_UpperCAmelCase = outputs.logits
# model predicts one of the 1000 ImageNet classes
_UpperCAmelCase = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" ) | 19 |
"""simple docstring"""
from typing import Optional
from torch import nn
from .transformer_ad import TransformeraDModel, TransformeraDModelOutput
class a_ ( nn.Module ):
def __init__( self : List[str] , __UpperCamelCase : int = 16 , __UpperCamelCase : int = 88 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 1 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 32 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : str = "geglu" , __UpperCamelCase : Optional[int] = None , ) ->Dict:
'''simple docstring'''
super().__init__()
_UpperCAmelCase = nn.ModuleList(
[
TransformeraDModel(
num_attention_heads=__UpperCamelCase , attention_head_dim=__UpperCamelCase , in_channels=__UpperCamelCase , num_layers=__UpperCamelCase , dropout=__UpperCamelCase , norm_num_groups=__UpperCamelCase , cross_attention_dim=__UpperCamelCase , attention_bias=__UpperCamelCase , sample_size=__UpperCamelCase , num_vector_embeds=__UpperCamelCase , activation_fn=__UpperCamelCase , num_embeds_ada_norm=__UpperCamelCase , )
for _ in range(2 )
] )
# Variables that can be set by a pipeline:
# The ratio of transformer1 to transformer2's output states to be combined during inference
_UpperCAmelCase = 0.5
# The shape of `encoder_hidden_states` is expected to be
# `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)`
_UpperCAmelCase = [77, 2_57]
# Which transformer to use to encode which condition.
# E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])`
_UpperCAmelCase = [1, 0]
def _snake_case ( self : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : bool = True , ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = hidden_states
_UpperCAmelCase = []
_UpperCAmelCase = 0
# attention_mask is not used yet
for i in range(2 ):
# for each of the two transformers, pass the corresponding condition tokens
_UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]]
_UpperCAmelCase = self.transformer_index_for_condition[i]
_UpperCAmelCase = self.transformers[transformer_index](
__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , timestep=__UpperCamelCase , cross_attention_kwargs=__UpperCamelCase , return_dict=__UpperCamelCase , )[0]
encoded_states.append(encoded_state - input_states )
tokens_start += self.condition_lengths[i]
_UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio)
_UpperCAmelCase = output_states + input_states
if not return_dict:
return (output_states,)
return TransformeraDModelOutput(sample=__UpperCamelCase ) | 19 | 1 |
"""simple docstring"""
from typing import Callable, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : str = logging.get_logger(__name__)
a : Dict = {
'''microsoft/xprophetnet-large-wiki100-cased''': (
'''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json'''
),
}
class a_ ( _UpperCAmelCase ):
a : Optional[int] = 'xlm-prophetnet'
a : List[str] = ['past_key_values']
a : Any = {
'num_attention_heads': 'num_encoder_attention_heads',
}
def __init__( self : Optional[Any] , __UpperCamelCase : Optional[float] = 0.1 , __UpperCamelCase : Optional[Union[str, Callable]] = "gelu" , __UpperCamelCase : Optional[int] = 3_05_22 , __UpperCamelCase : Optional[int] = 10_24 , __UpperCamelCase : Optional[int] = 40_96 , __UpperCamelCase : Optional[int] = 12 , __UpperCamelCase : Optional[int] = 16 , __UpperCamelCase : Optional[int] = 40_96 , __UpperCamelCase : Optional[int] = 12 , __UpperCamelCase : Optional[int] = 16 , __UpperCamelCase : Optional[float] = 0.1 , __UpperCamelCase : Optional[float] = 0.1 , __UpperCamelCase : Optional[int] = 5_12 , __UpperCamelCase : Optional[float] = 0.0_2 , __UpperCamelCase : Optional[bool] = True , __UpperCamelCase : Optional[bool] = True , __UpperCamelCase : Optional[int] = 0 , __UpperCamelCase : Optional[int] = 2 , __UpperCamelCase : Optional[int] = 32 , __UpperCamelCase : Optional[int] = 1_28 , __UpperCamelCase : Optional[bool] = False , __UpperCamelCase : Optional[float] = 0.0 , __UpperCamelCase : Optional[bool] = True , __UpperCamelCase : Optional[int] = 0 , __UpperCamelCase : Optional[int] = 1 , __UpperCamelCase : Optional[int] = 2 , **__UpperCamelCase : Tuple , ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = encoder_ffn_dim
_UpperCAmelCase = num_encoder_layers
_UpperCAmelCase = num_encoder_attention_heads
_UpperCAmelCase = decoder_ffn_dim
_UpperCAmelCase = num_decoder_layers
_UpperCAmelCase = num_decoder_attention_heads
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = init_std # Normal(0, this parameter)
_UpperCAmelCase = activation_function
# parameters for xlmprophetnet
_UpperCAmelCase = ngram
_UpperCAmelCase = num_buckets
_UpperCAmelCase = relative_max_distance
_UpperCAmelCase = disable_ngram_loss
_UpperCAmelCase = eps
# 3 Types of Dropout
_UpperCAmelCase = attention_dropout
_UpperCAmelCase = activation_dropout
_UpperCAmelCase = dropout
_UpperCAmelCase = use_cache
super().__init__(
pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , add_cross_attention=__UpperCamelCase , decoder_start_token_id=__UpperCamelCase , **__UpperCamelCase , )
@property
def _snake_case ( self : List[str] ) ->int:
'''simple docstring'''
return self.num_encoder_layers + self.num_decoder_layers
@num_hidden_layers.setter
def _snake_case ( self : Union[str, Any] , __UpperCamelCase : str ) ->Optional[Any]:
'''simple docstring'''
raise NotImplementedError(
"""This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and"""
""" `num_decoder_layers`.""" ) | 19 |
"""simple docstring"""
import argparse
import torch
from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert
from transformers.utils import logging
logging.set_verbosity_info()
def _UpperCamelCase ( _A , _A , _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = LxmertConfig.from_json_file(_A )
print(F"""Building PyTorch model from configuration: {config}""" )
_UpperCAmelCase = LxmertForPreTraining(_A )
# Load weights from tf checkpoint
load_tf_weights_in_lxmert(_A , _A , _A )
# Save pytorch-model
print(F"""Save PyTorch model to {pytorch_dump_path}""" )
torch.save(model.state_dict() , _A )
if __name__ == "__main__":
a : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
a : Union[str, Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path) | 19 | 1 |
"""simple docstring"""
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
a : Optional[int] = ['''gpt2''']
a : List[str] = '''gpt2'''
if is_tf_available():
class a_ ( tf.Module ):
def __init__( self : str , __UpperCamelCase : List[str] ) ->Tuple:
'''simple docstring'''
super().__init__()
_UpperCAmelCase = tokenizer
_UpperCAmelCase = AutoConfig.from_pretrained(__UpperCamelCase )
_UpperCAmelCase = TFGPTaLMHeadModel.from_config(__UpperCamelCase )
@tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) )
def _snake_case ( self : int , __UpperCamelCase : List[str] ) ->int:
'''simple docstring'''
_UpperCAmelCase = self.tokenizer(__UpperCamelCase )
_UpperCAmelCase = tokenized["""input_ids"""].to_tensor()
_UpperCAmelCase = tf.cast(input_ids_dense > 0 , tf.intaa )
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
_UpperCAmelCase = self.model(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase )["""logits"""]
return outputs
@require_tf
@require_keras_nlp
class a_ ( unittest.TestCase ):
def _snake_case ( self : Tuple ) ->Optional[Any]:
'''simple docstring'''
super().setUp()
_UpperCAmelCase = [GPTaTokenizer.from_pretrained(__UpperCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)]
_UpperCAmelCase = [TFGPTaTokenizer.from_pretrained(__UpperCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
_UpperCAmelCase = [
"""This is a straightforward English test sentence.""",
"""This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""",
"""Now we're going to add some Chinese: 一 二 三 一二三""",
"""And some much more rare Chinese: 齉 堃 齉堃""",
"""Je vais aussi écrire en français pour tester les accents""",
"""Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""",
]
_UpperCAmelCase = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def _snake_case ( self : List[str] ) ->int:
'''simple docstring'''
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in self.test_sentences:
_UpperCAmelCase = tokenizer([test_inputs] , return_tensors="""tf""" )
_UpperCAmelCase = tf_tokenizer([test_inputs] )
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
_UpperCAmelCase = python_outputs[key].numpy()
_UpperCAmelCase = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )
self.assertTrue(tf.reduce_all(tf.cast(__UpperCamelCase , tf.intaa ) == tf_outputs_values ) )
@slow
def _snake_case ( self : int ) ->List[Any]:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
_UpperCAmelCase = tf.function(__UpperCamelCase )
for test_inputs in self.test_sentences:
_UpperCAmelCase = tf.constant(__UpperCamelCase )
_UpperCAmelCase = compiled_tokenizer(__UpperCamelCase )
_UpperCAmelCase = tf_tokenizer(__UpperCamelCase )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def _snake_case ( self : Union[str, Any] ) ->Optional[Any]:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
_UpperCAmelCase = ModelToSave(tokenizer=__UpperCamelCase )
_UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] )
_UpperCAmelCase = model.serving(__UpperCamelCase ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
_UpperCAmelCase = Path(__UpperCamelCase ) / """saved.model"""
tf.saved_model.save(__UpperCamelCase , __UpperCamelCase , signatures={"""serving_default""": model.serving} )
_UpperCAmelCase = tf.saved_model.load(__UpperCamelCase )
_UpperCAmelCase = loaded_model.signatures["""serving_default"""](__UpperCamelCase )["""output_0"""]
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output ) )
@slow
def _snake_case ( self : Union[str, Any] ) ->Optional[Any]:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
_UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] )
_UpperCAmelCase = tf_tokenizer(__UpperCamelCase ) # Build model with some sample inputs
_UpperCAmelCase = tf_tokenizer.get_config()
_UpperCAmelCase = TFGPTaTokenizer.from_config(__UpperCamelCase )
_UpperCAmelCase = model_from_config(__UpperCamelCase )
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )
@slow
def _snake_case ( self : str ) ->Any:
'''simple docstring'''
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
_UpperCAmelCase = 12_31_23
for max_length in [3, 5, 10_24]:
_UpperCAmelCase = tf.convert_to_tensor([self.test_sentences[0]] )
_UpperCAmelCase = tf_tokenizer(__UpperCamelCase , max_length=__UpperCamelCase )
_UpperCAmelCase = out["""input_ids"""].numpy().shape[1]
assert out_length == max_length | 19 |
"""simple docstring"""
import argparse
import os
import re
import packaging.version
a : str = '''examples/'''
a : List[str] = {
'''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''),
'''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''),
'''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''),
'''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''),
}
a : Tuple = {
'''init''': '''src/diffusers/__init__.py''',
'''setup''': '''setup.py''',
}
a : List[str] = '''README.md'''
def _UpperCamelCase ( _A , _A , _A ) -> Dict:
"""simple docstring"""
with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_UpperCAmelCase = f.read()
_UpperCAmelCase ,_UpperCAmelCase = REPLACE_PATTERNS[pattern]
_UpperCAmelCase = replace.replace("""VERSION""" , _A )
_UpperCAmelCase = re_pattern.sub(_A , _A )
with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.write(_A )
def _UpperCamelCase ( _A ) -> Union[str, Any]:
"""simple docstring"""
for folder, directories, fnames in os.walk(_A ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("""research_projects""" )
if "legacy" in directories:
directories.remove("""legacy""" )
for fname in fnames:
if fname.endswith(""".py""" ):
update_version_in_file(os.path.join(_A , _A ) , _A , pattern="""examples""" )
def _UpperCamelCase ( _A , _A=False ) -> int:
"""simple docstring"""
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_A , _A , _A )
if not patch:
update_version_in_examples(_A )
def _UpperCamelCase ( ) -> Any:
"""simple docstring"""
_UpperCAmelCase = """🤗 Transformers currently provides the following architectures"""
_UpperCAmelCase = """1. Want to contribute a new model?"""
with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_UpperCAmelCase = f.readlines()
# Find the start of the list.
_UpperCAmelCase = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
_UpperCAmelCase = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("""1.""" ):
_UpperCAmelCase = lines[index].replace(
"""https://huggingface.co/docs/diffusers/main/model_doc""" , """https://huggingface.co/docs/diffusers/model_doc""" , )
index += 1
with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(_A )
def _UpperCamelCase ( ) -> Optional[int]:
"""simple docstring"""
with open(REPLACE_FILES["""init"""] , """r""" ) as f:
_UpperCAmelCase = f.read()
_UpperCAmelCase = REPLACE_PATTERNS["""init"""][0].search(_A ).groups()[0]
return packaging.version.parse(_A )
def _UpperCamelCase ( _A=False ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = get_version()
if patch and default_version.is_devrelease:
raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" )
if default_version.is_devrelease:
_UpperCAmelCase = default_version.base_version
elif patch:
_UpperCAmelCase = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}"""
else:
_UpperCAmelCase = F"""{default_version.major}.{default_version.minor + 1}.0"""
# Now let's ask nicely if that's the right one.
_UpperCAmelCase = input(F"""Which version are you releasing? [{default_version}]""" )
if len(_A ) == 0:
_UpperCAmelCase = default_version
print(F"""Updating version to {version}.""" )
global_version_update(_A , patch=_A )
def _UpperCamelCase ( ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = get_version()
_UpperCAmelCase = F"""{current_version.major}.{current_version.minor + 1}.0.dev0"""
_UpperCAmelCase = current_version.base_version
# Check with the user we got that right.
_UpperCAmelCase = input(F"""Which version are we developing now? [{dev_version}]""" )
if len(_A ) == 0:
_UpperCAmelCase = dev_version
print(F"""Updating version to {version}.""" )
global_version_update(_A )
# print("Cleaning main README, don't forget to run `make fix-copies`.")
# clean_main_ref_in_model_list()
if __name__ == "__main__":
a : Dict = argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
a : Tuple = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work() | 19 | 1 |
"""simple docstring"""
from random import randint, random
def _UpperCamelCase ( _A , _A , _A , _A = False , _A = False , _A = 5 , ) -> list:
"""simple docstring"""
_UpperCAmelCase = [[-1] * number_of_cells] # Create a highway without any car
_UpperCAmelCase = 0
_UpperCAmelCase = max(_A , 0 )
while i < number_of_cells:
_UpperCAmelCase = (
randint(0 , _A ) if random_speed else initial_speed
) # Place the cars
i += (
randint(1 , max_speed * 2 ) if random_frequency else frequency
) # Arbitrary number, may need tuning
return highway
def _UpperCamelCase ( _A , _A ) -> int:
"""simple docstring"""
_UpperCAmelCase = 0
_UpperCAmelCase = highway_now[car_index + 1 :]
for cell in range(len(_A ) ): # May need a better name for this
if cells[cell] != -1: # If the cell is not empty then
return distance # we have the distance we wanted
distance += 1
# Here if the car is near the end of the highway
return distance + get_distance(_A , -1 )
def _UpperCamelCase ( _A , _A , _A ) -> list:
"""simple docstring"""
_UpperCAmelCase = len(_A )
# Beforce calculations, the highway is empty
_UpperCAmelCase = [-1] * number_of_cells
for car_index in range(_A ):
if highway_now[car_index] != -1:
# Add 1 to the current speed of the car and cap the speed
_UpperCAmelCase = min(highway_now[car_index] + 1 , _A )
# Number of empty cell before the next car
_UpperCAmelCase = get_distance(_A , _A ) - 1
# We can't have the car causing an accident
_UpperCAmelCase = min(next_highway[car_index] , _A )
if random() < probability:
# Randomly, a driver will slow down
_UpperCAmelCase = max(next_highway[car_index] - 1 , 0 )
return next_highway
def _UpperCamelCase ( _A , _A , _A , _A ) -> list:
"""simple docstring"""
_UpperCAmelCase = len(highway[0] )
for i in range(_A ):
_UpperCAmelCase = update(highway[i] , _A , _A )
_UpperCAmelCase = [-1] * number_of_cells
for car_index in range(_A ):
_UpperCAmelCase = next_speeds_calculated[car_index]
if speed != -1:
# Change the position based on the speed (with % to create the loop)
_UpperCAmelCase = (car_index + speed) % number_of_cells
# Commit the change of position
_UpperCAmelCase = speed
highway.append(_A )
return highway
if __name__ == "__main__":
import doctest
doctest.testmod() | 19 |
"""simple docstring"""
from __future__ import annotations
def _UpperCamelCase ( _A ) -> None:
"""simple docstring"""
create_state_space_tree(_A , [] , 0 , [0 for i in range(len(_A ) )] )
def _UpperCamelCase ( _A , _A , _A , _A , ) -> None:
"""simple docstring"""
if index == len(_A ):
print(_A )
return
for i in range(len(_A ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
_UpperCAmelCase = True
create_state_space_tree(_A , _A , index + 1 , _A )
current_sequence.pop()
_UpperCAmelCase = False
a : list[int | str] = [3, 1, 2, 4]
generate_all_permutations(sequence)
a : list[int | str] = ["A", "B", "C"]
generate_all_permutations(sequence_a) | 19 | 1 |
"""simple docstring"""
import inspect
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel, VQModel
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class a_ ( _UpperCAmelCase ):
def __init__( self : List[Any] , __UpperCamelCase : VQModel , __UpperCamelCase : UNetaDModel , __UpperCamelCase : DDIMScheduler ) ->Optional[Any]:
'''simple docstring'''
super().__init__()
self.register_modules(vqvae=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase )
@torch.no_grad()
def __call__( self : Tuple , __UpperCamelCase : int = 1 , __UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 50 , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , **__UpperCamelCase : List[Any] , ) ->Union[Tuple, ImagePipelineOutput]:
'''simple docstring'''
_UpperCAmelCase = randn_tensor(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__UpperCamelCase , )
_UpperCAmelCase = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
_UpperCAmelCase = latents * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(__UpperCamelCase )
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
_UpperCAmelCase = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() )
_UpperCAmelCase = {}
if accepts_eta:
_UpperCAmelCase = eta
for t in self.progress_bar(self.scheduler.timesteps ):
_UpperCAmelCase = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase )
# predict the noise residual
_UpperCAmelCase = self.unet(__UpperCamelCase , __UpperCamelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
_UpperCAmelCase = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample
# decode the image latents with the VAE
_UpperCAmelCase = self.vqvae.decode(__UpperCamelCase ).sample
_UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 )
_UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_UpperCAmelCase = self.numpy_to_pil(__UpperCamelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__UpperCamelCase ) | 19 |
"""simple docstring"""
import inspect
import unittest
from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class a_ :
def __init__( self : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : int=32 , __UpperCamelCase : Tuple=16 , __UpperCamelCase : Dict=3 , __UpperCamelCase : Dict=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=32 , __UpperCamelCase : Any=4 , __UpperCamelCase : Optional[int]=[0, 1, 2, 3] , __UpperCamelCase : str=4 , __UpperCamelCase : Optional[Any]=37 , __UpperCamelCase : str="gelu" , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Any=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : int=[1, 3_84, 24, 24] , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Any=None , ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = image_size
_UpperCAmelCase = patch_size
_UpperCAmelCase = num_channels
_UpperCAmelCase = is_training
_UpperCAmelCase = use_labels
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = backbone_out_indices
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_act
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = initializer_range
_UpperCAmelCase = num_labels
_UpperCAmelCase = backbone_featmap_shape
_UpperCAmelCase = scope
_UpperCAmelCase = is_hybrid
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
_UpperCAmelCase = (image_size // patch_size) ** 2
_UpperCAmelCase = num_patches + 1
def _snake_case ( self : str ) ->int:
'''simple docstring'''
_UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_UpperCAmelCase = None
if self.use_labels:
_UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
_UpperCAmelCase = self.get_config()
return config, pixel_values, labels
def _snake_case ( self : List[str] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [96, 1_92, 3_84, 7_68],
"""num_groups""": 2,
}
return DPTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , )
def _snake_case ( self : Any , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = DPTModel(config=__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : List[Any] ) ->int:
'''simple docstring'''
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = DPTForDepthEstimation(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase )
self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) )
def _snake_case ( self : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ) ->List[Any]:
'''simple docstring'''
_UpperCAmelCase = self.num_labels
_UpperCAmelCase = DPTForSemanticSegmentation(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
_UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def _snake_case ( self : Tuple ) ->Any:
'''simple docstring'''
_UpperCAmelCase = self.prepare_config_and_inputs()
_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = config_and_inputs
_UpperCAmelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class a_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
a : Dict = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
a : int = (
{
'depth-estimation': DPTForDepthEstimation,
'feature-extraction': DPTModel,
'image-segmentation': DPTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
a : str = False
a : List[str] = False
a : Dict = False
def _snake_case ( self : Any ) ->Any:
'''simple docstring'''
_UpperCAmelCase = DPTModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 )
def _snake_case ( self : Optional[int] ) ->Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="""DPT does not use inputs_embeds""" )
def _snake_case ( self : Tuple ) ->Tuple:
'''simple docstring'''
pass
def _snake_case ( self : int ) ->Any:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_UpperCAmelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) )
def _snake_case ( self : Optional[int] ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(__UpperCamelCase )
_UpperCAmelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_UpperCAmelCase = [*signature.parameters.keys()]
_UpperCAmelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCamelCase )
def _snake_case ( self : Optional[Any] ) ->Dict:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def _snake_case ( self : str ) ->int:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*__UpperCamelCase )
def _snake_case ( self : Any ) ->Tuple:
'''simple docstring'''
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase )
def _snake_case ( self : str ) ->Any:
'''simple docstring'''
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = True
if model_class in get_values(__UpperCamelCase ):
continue
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.train()
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
_UpperCAmelCase = model(**__UpperCamelCase ).loss
loss.backward()
def _snake_case ( self : List[str] ) ->Dict:
'''simple docstring'''
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = False
_UpperCAmelCase = True
if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
_UpperCAmelCase = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.gradient_checkpointing_enable()
model.train()
_UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase )
_UpperCAmelCase = model(**__UpperCamelCase ).loss
loss.backward()
def _snake_case ( self : Tuple ) ->List[str]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = _config_zero_init(__UpperCamelCase )
for model_class in self.all_model_classes:
_UpperCAmelCase = model_class(config=__UpperCamelCase )
# Skip the check for the backbone
_UpperCAmelCase = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
_UpperCAmelCase = [f"""{name}.{key}""" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def _snake_case ( self : Dict ) ->Tuple:
'''simple docstring'''
pass
@slow
def _snake_case ( self : Optional[int] ) ->List[Any]:
'''simple docstring'''
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
_UpperCAmelCase = DPTModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
def _snake_case ( self : List[Any] ) ->Optional[int]:
'''simple docstring'''
_UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCAmelCase = """add"""
with self.assertRaises(__UpperCamelCase ):
_UpperCAmelCase = DPTForDepthEstimation(__UpperCamelCase )
def _UpperCamelCase ( ) -> int:
"""simple docstring"""
_UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
@slow
class a_ ( unittest.TestCase ):
def _snake_case ( self : Any ) ->Optional[Any]:
'''simple docstring'''
_UpperCAmelCase = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" )
_UpperCAmelCase = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__UpperCamelCase )
_UpperCAmelCase = prepare_img()
_UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase )
# forward pass
with torch.no_grad():
_UpperCAmelCase = model(**__UpperCamelCase )
_UpperCAmelCase = outputs.predicted_depth
# verify the predicted depth
_UpperCAmelCase = torch.Size((1, 3_84, 3_84) )
self.assertEqual(predicted_depth.shape , __UpperCamelCase )
_UpperCAmelCase = torch.tensor(
[[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__UpperCamelCase )
self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , __UpperCamelCase , atol=1e-4 ) ) | 19 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.