code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" def __A ( a_ : int )-> int: '''simple docstring''' if n == 1 or not isinstance(a_ , a_ ): return 0 elif n == 2: return 1 else: SCREAMING_SNAKE_CASE : Optional[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __A ( a_ : int )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : List[Any] = 2 while digits < n: index += 1 SCREAMING_SNAKE_CASE : Optional[Any] = len(str(fibonacci(a_ ) ) ) return index def __A ( a_ : int = 10_00 )-> int: '''simple docstring''' return fibonacci_digits_index(a_ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
707
"""simple docstring""" import os import sys lowerCamelCase__ : List[Any] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCamelCase__ : str = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __A ( *a_ : Any , **a_ : Union[str, Any] )-> Dict: '''simple docstring''' return AutoConfig.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __A ( *a_ : str , **a_ : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' return AutoTokenizer.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoModel.__doc__ ) def __A ( *a_ : List[str] , **a_ : int )-> Dict: '''simple docstring''' return AutoModel.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __A ( *a_ : Any , **a_ : Tuple )-> Dict: '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __A ( *a_ : Dict , **a_ : Optional[Any] )-> Optional[int]: '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __A ( *a_ : Optional[int] , **a_ : str )-> Optional[int]: '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __A ( *a_ : List[str] , **a_ : int )-> List[Any]: '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*a_ , **a_ )
18
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : List[Any] = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """canine""" def __init__( self :List[str] , lowerCamelCase_ :Dict=7_68 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :Optional[int]=30_72 , lowerCamelCase_ :Tuple="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :Optional[Any]=0.1 , lowerCamelCase_ :List[Any]=1_63_84 , lowerCamelCase_ :List[Any]=16 , lowerCamelCase_ :Any=0.0_2 , lowerCamelCase_ :List[str]=1E-12 , lowerCamelCase_ :int=0 , lowerCamelCase_ :Optional[int]=0xE000 , lowerCamelCase_ :List[Any]=0xE001 , lowerCamelCase_ :Union[str, Any]=4 , lowerCamelCase_ :str=4 , lowerCamelCase_ :str=8 , lowerCamelCase_ :Tuple=1_63_84 , lowerCamelCase_ :Dict=1_28 , **lowerCamelCase_ :Optional[int] , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Dict = type_vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps # Character config: SCREAMING_SNAKE_CASE : Any = downsampling_rate SCREAMING_SNAKE_CASE : List[Any] = upsampling_kernel_size SCREAMING_SNAKE_CASE : List[Any] = num_hash_functions SCREAMING_SNAKE_CASE : Dict = num_hash_buckets SCREAMING_SNAKE_CASE : str = local_transformer_stride
708
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Any = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """encodec""" def __init__( self :List[str] , lowerCamelCase_ :Tuple=[1.5, 3.0, 6.0, 1_2.0, 2_4.0] , lowerCamelCase_ :str=2_40_00 , lowerCamelCase_ :Any=1 , lowerCamelCase_ :List[Any]=False , lowerCamelCase_ :Optional[int]=None , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :str=1_28 , lowerCamelCase_ :Any=32 , lowerCamelCase_ :int=1 , lowerCamelCase_ :Dict=[8, 5, 4, 2] , lowerCamelCase_ :List[Any]="weight_norm" , lowerCamelCase_ :Optional[int]=7 , lowerCamelCase_ :Tuple=7 , lowerCamelCase_ :Optional[Any]=3 , lowerCamelCase_ :int=2 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Optional[int]="reflect" , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :Union[str, Any]=2 , lowerCamelCase_ :Dict=1.0 , lowerCamelCase_ :Any=10_24 , lowerCamelCase_ :str=None , lowerCamelCase_ :Union[str, Any]=True , **lowerCamelCase_ :Optional[int] , ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = target_bandwidths SCREAMING_SNAKE_CASE : List[str] = sampling_rate SCREAMING_SNAKE_CASE : Tuple = audio_channels SCREAMING_SNAKE_CASE : Tuple = normalize SCREAMING_SNAKE_CASE : str = chunk_length_s SCREAMING_SNAKE_CASE : List[str] = overlap SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = num_filters SCREAMING_SNAKE_CASE : Tuple = num_residual_layers SCREAMING_SNAKE_CASE : List[Any] = upsampling_ratios SCREAMING_SNAKE_CASE : Optional[int] = norm_type SCREAMING_SNAKE_CASE : Any = kernel_size SCREAMING_SNAKE_CASE : Union[str, Any] = last_kernel_size SCREAMING_SNAKE_CASE : Tuple = residual_kernel_size SCREAMING_SNAKE_CASE : Any = dilation_growth_rate SCREAMING_SNAKE_CASE : Optional[int] = use_causal_conv SCREAMING_SNAKE_CASE : str = pad_mode SCREAMING_SNAKE_CASE : List[Any] = compress SCREAMING_SNAKE_CASE : Optional[Any] = num_lstm_layers SCREAMING_SNAKE_CASE : Dict = trim_right_ratio SCREAMING_SNAKE_CASE : List[Any] = codebook_size SCREAMING_SNAKE_CASE : Union[str, Any] = codebook_dim if codebook_dim is not None else hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" ) super().__init__(**lowerCamelCase_ ) @property def __lowerCAmelCase ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __lowerCAmelCase ( self :List[str] ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __lowerCAmelCase ( self :Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __lowerCAmelCase ( self :Dict ) -> int: '''simple docstring''' return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
18
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : str = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """levit""" def __init__( self :Optional[Any] , lowerCamelCase_ :int=2_24 , lowerCamelCase_ :Union[str, Any]=3 , lowerCamelCase_ :Tuple=3 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :Optional[int]=1 , lowerCamelCase_ :Dict=16 , lowerCamelCase_ :Dict=[1_28, 2_56, 3_84] , lowerCamelCase_ :Any=[4, 8, 12] , lowerCamelCase_ :List[Any]=[4, 4, 4] , lowerCamelCase_ :Union[str, Any]=[16, 16, 16] , lowerCamelCase_ :Union[str, Any]=0 , lowerCamelCase_ :Tuple=[2, 2, 2] , lowerCamelCase_ :Tuple=[2, 2, 2] , lowerCamelCase_ :List[str]=0.0_2 , **lowerCamelCase_ :int , ) -> Any: '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = image_size SCREAMING_SNAKE_CASE : List[str] = num_channels SCREAMING_SNAKE_CASE : Any = kernel_size SCREAMING_SNAKE_CASE : Tuple = stride SCREAMING_SNAKE_CASE : Dict = padding SCREAMING_SNAKE_CASE : int = hidden_sizes SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = depths SCREAMING_SNAKE_CASE : List[Any] = key_dim SCREAMING_SNAKE_CASE : Optional[int] = drop_path_rate SCREAMING_SNAKE_CASE : Tuple = patch_size SCREAMING_SNAKE_CASE : List[str] = attention_ratio SCREAMING_SNAKE_CASE : Optional[Any] = mlp_ratio SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : List[str] = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = version.parse("""1.11""" ) @property def __lowerCAmelCase ( self :List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCAmelCase ( self :str ) -> float: '''simple docstring''' return 1E-4
709
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase__: '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :Tuple , lowerCamelCase_ :Union[str, Any]=2 , lowerCamelCase_ :Any=3 , lowerCamelCase_ :Union[str, Any]=4 , lowerCamelCase_ :List[str]=2 , lowerCamelCase_ :str=7 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Dict=True , lowerCamelCase_ :int=True , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Optional[Any]=99 , lowerCamelCase_ :Any=36 , lowerCamelCase_ :Any=3 , lowerCamelCase_ :str=4 , lowerCamelCase_ :Tuple=37 , lowerCamelCase_ :Optional[int]="gelu" , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :Tuple=5_12 , lowerCamelCase_ :Optional[Any]=16 , lowerCamelCase_ :List[str]=2 , lowerCamelCase_ :Optional[int]=0.0_2 , lowerCamelCase_ :int=6 , lowerCamelCase_ :str=6 , lowerCamelCase_ :Optional[Any]=3 , lowerCamelCase_ :Union[str, Any]=4 , lowerCamelCase_ :List[Any]=None , lowerCamelCase_ :Tuple=10_00 , ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : List[str] = num_channels SCREAMING_SNAKE_CASE : str = image_size SCREAMING_SNAKE_CASE : Optional[int] = patch_size SCREAMING_SNAKE_CASE : Tuple = text_seq_length SCREAMING_SNAKE_CASE : Optional[int] = is_training SCREAMING_SNAKE_CASE : Dict = use_input_mask SCREAMING_SNAKE_CASE : Any = use_token_type_ids SCREAMING_SNAKE_CASE : List[Any] = use_labels SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Dict = coordinate_size SCREAMING_SNAKE_CASE : List[Any] = shape_size SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = num_choices SCREAMING_SNAKE_CASE : List[str] = scope SCREAMING_SNAKE_CASE : Optional[int] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) SCREAMING_SNAKE_CASE : str = text_seq_length SCREAMING_SNAKE_CASE : int = (image_size // patch_size) ** 2 + 1 SCREAMING_SNAKE_CASE : Optional[Any] = self.text_seq_length + self.image_seq_length def __lowerCAmelCase ( self :List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE : str = bbox[i, j, 3] SCREAMING_SNAKE_CASE : List[str] = bbox[i, j, 1] SCREAMING_SNAKE_CASE : Any = t if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE : Any = bbox[i, j, 2] SCREAMING_SNAKE_CASE : Any = bbox[i, j, 0] SCREAMING_SNAKE_CASE : Optional[Any] = t SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.text_seq_length] ) SCREAMING_SNAKE_CASE : Any = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :str , lowerCamelCase_ :int , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = LayoutLMvaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # text + image SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ , pixel_values=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = model( lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only SCREAMING_SNAKE_CASE : List[str] = model(pixel_values=lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str] , lowerCamelCase_ :Any , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE : Dict = LayoutLMvaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : int = model( lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :str , lowerCamelCase_ :Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.num_labels SCREAMING_SNAKE_CASE : int = LayoutLMvaForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model( lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :Dict , lowerCamelCase_ :Dict , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :str , lowerCamelCase_ :Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = LayoutLMvaForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model( lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self :Optional[int] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Dict = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase = ( {"""document-question-answering""": LayoutLMvaForQuestionAnswering, """feature-extraction""": LayoutLMvaModel} if is_torch_available() else {} ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] ) -> Union[str, Any]: '''simple docstring''' return True def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = LayoutLMvaModelTester(self ) SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[str] , lowerCamelCase_ :str=False ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(lowerCamelCase_ ) if model_class in get_values(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Tuple = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(lowerCamelCase_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) elif model_class in get_values(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) elif model_class in [ *get_values(lowerCamelCase_ ), ]: SCREAMING_SNAKE_CASE : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) elif model_class in [ *get_values(lowerCamelCase_ ), ]: SCREAMING_SNAKE_CASE : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=lowerCamelCase_ , ) return inputs_dict def __lowerCAmelCase ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self :str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE : str = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[int] = LayoutLMvaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def __A ( )-> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class lowercase__( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self :str ) -> int: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase_ ) if is_vision_available() else None @slow def __lowerCAmelCase ( self :Optional[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = self.default_image_processor SCREAMING_SNAKE_CASE : List[Any] = prepare_img() SCREAMING_SNAKE_CASE : Tuple = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' ).pixel_values.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[1, 2]] ) SCREAMING_SNAKE_CASE : Dict = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass SCREAMING_SNAKE_CASE : Tuple = model( input_ids=input_ids.to(lowerCamelCase_ ) , bbox=bbox.to(lowerCamelCase_ ) , pixel_values=pixel_values.to(lowerCamelCase_ ) , ) # verify the logits SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase_ , atol=1E-4 ) )
18
0
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: lowerCamelCase__ : Optional[int] = None try: import msvcrt except ImportError: lowerCamelCase__ : Any = None try: import fcntl except ImportError: lowerCamelCase__ : List[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowerCamelCase__ : Optional[Any] = OSError # Data # ------------------------------------------------ lowerCamelCase__ : Union[str, Any] = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] lowerCamelCase__ : Union[str, Any] = "3.0.12" lowerCamelCase__ : str = None def __A ( )-> Dict: '''simple docstring''' global _logger SCREAMING_SNAKE_CASE : Any = _logger or logging.getLogger(__name__ ) return _logger class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :int , lowerCamelCase_ :List[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = lock_file return None def __str__( self :List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = f"The file lock '{self.lock_file}' could not be acquired." return temp class lowercase__: '''simple docstring''' def __init__( self :str , lowerCamelCase_ :Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = lock return None def __enter__( self :Tuple ) -> Union[str, Any]: '''simple docstring''' return self.lock def __exit__( self :Optional[Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] ) -> Any: '''simple docstring''' self.lock.release() return None class lowercase__: '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Tuple=-1 , lowerCamelCase_ :str=None ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long SCREAMING_SNAKE_CASE : Optional[int] = self.hash_filename_if_too_long(lowerCamelCase_ , lowerCamelCase_ ) # The path to the lock file. SCREAMING_SNAKE_CASE : List[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. SCREAMING_SNAKE_CASE : List[Any] = None # The default timeout value. SCREAMING_SNAKE_CASE : Dict = timeout # We use this lock primarily for the lock counter. SCREAMING_SNAKE_CASE : Optional[int] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. SCREAMING_SNAKE_CASE : Optional[Any] = 0 return None @property def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' return self._lock_file @property def __lowerCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' return self._timeout @timeout.setter def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = float(lowerCamelCase_ ) return None def __lowerCAmelCase ( self :Optional[int] ) -> Tuple: '''simple docstring''' raise NotImplementedError() def __lowerCAmelCase ( self :List[str] ) -> str: '''simple docstring''' raise NotImplementedError() @property def __lowerCAmelCase ( self :Dict ) -> Any: '''simple docstring''' return self._lock_file_fd is not None def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Any=None , lowerCamelCase_ :Optional[int]=0.0_5 ) -> Union[str, Any]: '''simple docstring''' if timeout is None: SCREAMING_SNAKE_CASE : Optional[Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 SCREAMING_SNAKE_CASE : Tuple = id(self ) SCREAMING_SNAKE_CASE : Dict = self._lock_file SCREAMING_SNAKE_CASE : Union[str, Any] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(f"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( f"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(lowerCamelCase_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: SCREAMING_SNAKE_CASE : Tuple = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Dict=False ) -> Tuple: '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: SCREAMING_SNAKE_CASE : int = id(self ) SCREAMING_SNAKE_CASE : List[str] = self._lock_file logger().debug(f"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() SCREAMING_SNAKE_CASE : Optional[Any] = 0 logger().debug(f"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self :Any ) -> Optional[int]: '''simple docstring''' self.acquire() return self def __exit__( self :Tuple , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Union[str, Any] ) -> List[str]: '''simple docstring''' self.release() return None def __del__( self :List[Any] ) -> int: '''simple docstring''' self.release(force=lowerCamelCase_ ) return None def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :str , lowerCamelCase_ :int ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = os.path.basename(lowerCamelCase_ ) if len(lowerCamelCase_ ) > max_length and max_length > 0: SCREAMING_SNAKE_CASE : Optional[Any] = os.path.dirname(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = str(hash(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Any = filename[: max_length - len(lowerCamelCase_ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(lowerCamelCase_ , lowerCamelCase_ ) else: return path class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[int]=-1 , lowerCamelCase_ :List[Any]=None ) -> Union[str, Any]: '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(lowerCamelCase_ , timeout=lowerCamelCase_ , max_filename_length=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def __lowerCAmelCase ( self :Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: SCREAMING_SNAKE_CASE : int = os.open(self._lock_file , lowerCamelCase_ ) except OSError: pass else: try: msvcrt.locking(lowerCamelCase_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : Any = fd return None def __lowerCAmelCase ( self :List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self._lock_file_fd SCREAMING_SNAKE_CASE : int = None msvcrt.locking(lowerCamelCase_ , msvcrt.LK_UNLCK , 1 ) os.close(lowerCamelCase_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :List[str] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any]=-1 , lowerCamelCase_ :Any=None ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : str = os.statvfs(os.path.dirname(lowerCamelCase_ ) ).f_namemax super().__init__(lowerCamelCase_ , timeout=lowerCamelCase_ , max_filename_length=lowerCamelCase_ ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = os.O_RDWR | os.O_CREAT | os.O_TRUNC SCREAMING_SNAKE_CASE : Any = os.open(self._lock_file , lowerCamelCase_ ) try: fcntl.flock(lowerCamelCase_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : str = fd return None def __lowerCAmelCase ( self :List[str] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self._lock_file_fd SCREAMING_SNAKE_CASE : Union[str, Any] = None fcntl.flock(lowerCamelCase_ , fcntl.LOCK_UN ) os.close(lowerCamelCase_ ) return None class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: SCREAMING_SNAKE_CASE : List[str] = os.open(self._lock_file , lowerCamelCase_ ) except OSError: pass else: SCREAMING_SNAKE_CASE : Optional[int] = fd return None def __lowerCAmelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' os.close(self._lock_file_fd ) SCREAMING_SNAKE_CASE : Optional[Any] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowerCamelCase__ : Union[str, Any] = None if msvcrt: lowerCamelCase__ : Union[str, Any] = WindowsFileLock elif fcntl: lowerCamelCase__ : Dict = UnixFileLock else: lowerCamelCase__ : List[str] = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
710
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") lowerCamelCase__ : Any = logging.getLogger(__name__) @dataclass class lowercase__: '''simple docstring''' UpperCamelCase = field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase = field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) UpperCamelCase = field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """A csv or a json file containing the training data."""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """A csv or a json file containing the validation data."""} ) UpperCamelCase = field(default=_UpperCAmelCase , metadata={"""help""": """A csv or a json file containing the test data."""} ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." SCREAMING_SNAKE_CASE : Optional[int] = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class lowercase__: '''simple docstring''' UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCamelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def __A ( )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. SCREAMING_SNAKE_CASE : Any = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: SCREAMING_SNAKE_CASE : List[Any] = data_args.train_file.split('''.''' )[-1] SCREAMING_SNAKE_CASE : Optional[int] = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." SCREAMING_SNAKE_CASE : str = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(F"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files SCREAMING_SNAKE_CASE : int = load_dataset('''csv''' , data_files=a_ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files SCREAMING_SNAKE_CASE : Tuple = load_dataset('''json''' , data_files=a_ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels SCREAMING_SNAKE_CASE : str = raw_datasets['''train'''].features['''label'''].names SCREAMING_SNAKE_CASE : Union[str, Any] = len(a_ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=a_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer SCREAMING_SNAKE_CASE : Dict = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=a_ , ) SCREAMING_SNAKE_CASE : List[Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=a_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE : Tuple = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch SCREAMING_SNAKE_CASE : Optional[Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. SCREAMING_SNAKE_CASE : Tuple = {'''Refused''': 0, '''Entailed''': 1} SCREAMING_SNAKE_CASE : List[Any] = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) SCREAMING_SNAKE_CASE : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(a_ : str ): # Tokenize the texts def _convert_table_text_to_pandas(a_ : List[Any] ): SCREAMING_SNAKE_CASE : List[Any] = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] SCREAMING_SNAKE_CASE : Dict = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd SCREAMING_SNAKE_CASE : List[Any] = examples['''statement'''] SCREAMING_SNAKE_CASE : Optional[int] = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) ) SCREAMING_SNAKE_CASE : Any = tokenizer(a_ , a_ , padding=a_ , max_length=a_ , truncation=a_ ) SCREAMING_SNAKE_CASE : List[Any] = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): SCREAMING_SNAKE_CASE : Optional[Any] = raw_datasets.map( a_ , batched=a_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) SCREAMING_SNAKE_CASE : List[str] = raw_datasets['''train'''] if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE : Any = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) SCREAMING_SNAKE_CASE : List[str] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) SCREAMING_SNAKE_CASE : Tuple = raw_datasets['''test'''] if data_args.max_predict_samples is not None: SCREAMING_SNAKE_CASE : Optional[int] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(a_ ) ) , 3 ): logger.info(F"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(a_ : EvalPrediction ): SCREAMING_SNAKE_CASE : str = p.predictions[0] if isinstance(p.predictions , a_ ) else p.predictions SCREAMING_SNAKE_CASE : Tuple = np.argmax(a_ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE : Tuple = default_data_collator elif training_args.fpaa: SCREAMING_SNAKE_CASE : Union[str, Any] = DataCollatorWithPadding(a_ , pad_to_multiple_of=8 ) else: SCREAMING_SNAKE_CASE : List[Any] = None # Initialize our Trainer SCREAMING_SNAKE_CASE : Optional[Any] = Trainer( model=a_ , args=a_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=a_ , tokenizer=a_ , data_collator=a_ , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE : List[str] = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE : str = last_checkpoint SCREAMING_SNAKE_CASE : str = trainer.train(resume_from_checkpoint=a_ ) SCREAMING_SNAKE_CASE : Optional[int] = train_result.metrics SCREAMING_SNAKE_CASE : int = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) SCREAMING_SNAKE_CASE : Optional[int] = min(a_ , len(a_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , a_ ) trainer.save_metrics('''train''' , a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) SCREAMING_SNAKE_CASE : Tuple = trainer.evaluate(eval_dataset=a_ ) SCREAMING_SNAKE_CASE : str = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = min(a_ , len(a_ ) ) trainer.log_metrics('''eval''' , a_ ) trainer.save_metrics('''eval''' , a_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. SCREAMING_SNAKE_CASE : Optional[Any] = predict_dataset.remove_columns('''label''' ) SCREAMING_SNAKE_CASE : Optional[Any] = trainer.predict(a_ , metric_key_prefix='''predict''' ).predictions SCREAMING_SNAKE_CASE : Union[str, Any] = np.argmax(a_ , axis=1 ) SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(a_ , '''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(a_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = label_list[item] writer.write(F"{index}\t{item}\n" ) SCREAMING_SNAKE_CASE : Optional[int] = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __A ( a_ : List[str] )-> int: '''simple docstring''' main() if __name__ == "__main__": main()
18
0
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __A ( a_ : Optional[int] )-> List[str]: '''simple docstring''' def wrapper(*a_ : List[str] , **a_ : Dict ): SCREAMING_SNAKE_CASE : int = timeit.default_timer() SCREAMING_SNAKE_CASE : Any = func(*a_ , **a_ ) SCREAMING_SNAKE_CASE : str = timeit.default_timer() - starttime return delta SCREAMING_SNAKE_CASE : int = func.__name__ return wrapper def __A ( a_ : dict , a_ : str=1_00 , a_ : Optional[int]=None )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = seq_shapes or {} for i in range(a_ ): SCREAMING_SNAKE_CASE : List[Any] = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(a_ , _ArrayXD ): SCREAMING_SNAKE_CASE : Optional[Any] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(a_ , datasets.Value ): if v.dtype == "string": SCREAMING_SNAKE_CASE : str = '''The small grey turtle was surprisingly fast when challenged.''' else: SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(a_ , datasets.Sequence ): while isinstance(a_ , datasets.Sequence ): SCREAMING_SNAKE_CASE : Optional[int] = v.feature SCREAMING_SNAKE_CASE : List[Any] = seq_shapes[k] SCREAMING_SNAKE_CASE : Any = np.random.rand(*a_ ).astype(v.dtype ) SCREAMING_SNAKE_CASE : Tuple = data dummy_data.append((i, example) ) return dummy_data def __A ( a_ : List[Any] , a_ : Dict , a_ : List[str]=1_00 , a_ : Union[str, Any]=None )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = generate_examples(a_ , num_examples=a_ , seq_shapes=a_ ) with ArrowWriter(features=a_ , path=a_ ) as writer: for key, record in dummy_data: SCREAMING_SNAKE_CASE : int = features.encode_example(a_ ) writer.write(a_ ) SCREAMING_SNAKE_CASE : Any = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) SCREAMING_SNAKE_CASE : Union[str, Any] = datasets.Dataset.from_file(filename=a_ , info=datasets.DatasetInfo(features=a_ ) ) return dataset
711
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__: '''simple docstring''' def __init__( self :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Any=13 , lowerCamelCase_ :Any=32 , lowerCamelCase_ :Union[str, Any]=2 , lowerCamelCase_ :Any=3 , lowerCamelCase_ :Union[str, Any]=16 , lowerCamelCase_ :int=[1, 2, 1] , lowerCamelCase_ :str=[2, 2, 4] , lowerCamelCase_ :str=2 , lowerCamelCase_ :Tuple=2.0 , lowerCamelCase_ :Union[str, Any]=True , lowerCamelCase_ :str=0.0 , lowerCamelCase_ :Optional[int]=0.0 , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Union[str, Any]="gelu" , lowerCamelCase_ :str=False , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :List[Any]=1E-5 , lowerCamelCase_ :int=True , lowerCamelCase_ :str=None , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Union[str, Any]=10 , lowerCamelCase_ :List[Any]=8 , ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Any = embed_dim SCREAMING_SNAKE_CASE : int = depths SCREAMING_SNAKE_CASE : List[str] = num_heads SCREAMING_SNAKE_CASE : Union[str, Any] = window_size SCREAMING_SNAKE_CASE : Optional[Any] = mlp_ratio SCREAMING_SNAKE_CASE : List[Any] = qkv_bias SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = drop_path_rate SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = use_absolute_embeddings SCREAMING_SNAKE_CASE : Any = patch_norm SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : List[Any] = scope SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = encoder_stride def __lowerCAmelCase ( self :Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : int = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self :int ) -> int: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = SwinvaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :str , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = SwinvaForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : List[Any] = SwinvaForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Any , lowerCamelCase_ :int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = SwinvaForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self :List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) UpperCamelCase = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __lowerCAmelCase ( self :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = SwinvaModelTester(self ) SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=lowerCamelCase_ , embed_dim=37 ) def __lowerCAmelCase ( self :Dict ) -> List[str]: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self :List[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def __lowerCAmelCase ( self :str ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def __lowerCAmelCase ( self :List[Any] ) -> Any: '''simple docstring''' pass def __lowerCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , nn.Linear ) ) def __lowerCAmelCase ( self :int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Tuple = True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Any = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.attentions SCREAMING_SNAKE_CASE : Tuple = len(self.model_tester.depths ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Optional[int] = config.window_size**2 SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Dict = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) SCREAMING_SNAKE_CASE : Dict = len(lowerCamelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : int = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): SCREAMING_SNAKE_CASE : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states SCREAMING_SNAKE_CASE : Optional[Any] = 2 self.assertEqual(out_len + added_hidden_states , len(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :Any , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states SCREAMING_SNAKE_CASE : str = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) # Swinv2 has a different seq_length SCREAMING_SNAKE_CASE : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) SCREAMING_SNAKE_CASE : Any = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = reshaped_hidden_states[0].shape SCREAMING_SNAKE_CASE : Optional[int] = ( reshaped_hidden_states[0].view(lowerCamelCase_ , lowerCamelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __lowerCAmelCase ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : List[str] = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = 3 SCREAMING_SNAKE_CASE : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE : Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , (padded_height, padded_width) ) def __lowerCAmelCase ( self :str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :Tuple ) -> List[str]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Tuple = SwinvaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Tuple = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class lowercase__( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self :Dict ) -> List[Any]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE : List[str] = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**lowerCamelCase_ ) # verify the logits SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) )
18
0
"""simple docstring""" def __A ( a_ : int = 1 , a_ : int = 10_00 )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = 1 SCREAMING_SNAKE_CASE : List[str] = 0 for divide_by_number in range(a_ , digit + 1 ): SCREAMING_SNAKE_CASE : list[int] = [] SCREAMING_SNAKE_CASE : str = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(a_ ): SCREAMING_SNAKE_CASE : int = len(a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = divide_by_number else: has_been_divided.append(a_ ) SCREAMING_SNAKE_CASE : List[str] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
712
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : str = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """blenderbot-small""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :Any , lowerCamelCase_ :Dict=5_02_65 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :Tuple=8 , lowerCamelCase_ :int=20_48 , lowerCamelCase_ :str=16 , lowerCamelCase_ :Optional[int]=8 , lowerCamelCase_ :str=20_48 , lowerCamelCase_ :Optional[Any]=16 , lowerCamelCase_ :Union[str, Any]=0.0 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int="gelu" , lowerCamelCase_ :Tuple=5_12 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :int=0.0 , lowerCamelCase_ :Tuple=0.0 , lowerCamelCase_ :Optional[int]=0.0_2 , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :Dict=False , lowerCamelCase_ :Optional[int]=0 , lowerCamelCase_ :List[Any]=1 , lowerCamelCase_ :Any=2 , lowerCamelCase_ :Optional[Any]=2 , **lowerCamelCase_ :Dict , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[Any] = d_model SCREAMING_SNAKE_CASE : Dict = encoder_ffn_dim SCREAMING_SNAKE_CASE : Tuple = encoder_layers SCREAMING_SNAKE_CASE : Dict = encoder_attention_heads SCREAMING_SNAKE_CASE : Any = decoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : str = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : Optional[Any] = attention_dropout SCREAMING_SNAKE_CASE : Any = activation_dropout SCREAMING_SNAKE_CASE : List[str] = activation_function SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : List[Any] = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_layers SCREAMING_SNAKE_CASE : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , forced_eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch'''} SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = self.num_layers for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = {0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE : List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: SCREAMING_SNAKE_CASE : Any = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Any = super().outputs else: SCREAMING_SNAKE_CASE : Tuple = super(lowerCamelCase_ , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_layers for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE : str = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __lowerCAmelCase ( self :int , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Generate decoder inputs SCREAMING_SNAKE_CASE : Optional[int] = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE : str = dict(**lowerCamelCase_ , **lowerCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = common_inputs['''input_ids'''].shape SCREAMING_SNAKE_CASE : str = common_inputs['''decoder_input_ids'''].shape[1] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.num_attention_heads SCREAMING_SNAKE_CASE : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE : Optional[Any] = decoder_seq_length + 3 SCREAMING_SNAKE_CASE : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE : List[Any] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowerCamelCase_ , lowerCamelCase_ )] , dim=1 ) SCREAMING_SNAKE_CASE : Optional[int] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.num_layers SCREAMING_SNAKE_CASE : int = min(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = max(lowerCamelCase_ , lowerCamelCase_ ) - min_num_layers SCREAMING_SNAKE_CASE : Tuple = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowerCamelCase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE : int = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowerCamelCase_ , lowerCamelCase_ ): common_inputs["past_key_values"].append((torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) ) return common_inputs def __lowerCAmelCase ( self :Any , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE : List[str] = seqlen + 2 SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self.num_layers SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = self.num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE : Tuple = common_inputs['''attention_mask'''].dtype SCREAMING_SNAKE_CASE : Any = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowerCamelCase_ , lowerCamelCase_ , dtype=lowerCamelCase_ )] , dim=1 ) SCREAMING_SNAKE_CASE : Optional[int] = [ (torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) for _ in range(lowerCamelCase_ ) ] return common_inputs def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : int = tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE : Tuple = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE : Any = dict(tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ ) ) return common_inputs def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) elif self.task == "causal-lm": SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_inputs_for_causal_lm( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) return common_inputs def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Dict ) -> List[Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Optional[Any] = super()._flatten_past_key_values_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : Tuple = super(lowerCamelCase_ , self )._flatten_past_key_values_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
18
0
"""simple docstring""" def __A ( a_ : Any )-> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [0] * len(a_ ) SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : List[Any] = [] SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(a_ ) ): if indegree[i] == 0: queue.append(a_ ) while queue: SCREAMING_SNAKE_CASE : Any = queue.pop(0 ) cnt += 1 topo.append(a_ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(a_ ) if cnt != len(a_ ): print('''Cycle exists''' ) else: print(a_ ) # Adjacency List of Graph lowerCamelCase__ : List[str] = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
713
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase__ : Dict = logging.get_logger(__name__) lowerCamelCase__ : Dict = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """layoutlmv3""" def __init__( self :str , lowerCamelCase_ :Optional[Any]=5_02_65 , lowerCamelCase_ :Dict=7_68 , lowerCamelCase_ :Union[str, Any]=12 , lowerCamelCase_ :Optional[Any]=12 , lowerCamelCase_ :Union[str, Any]=30_72 , lowerCamelCase_ :Any="gelu" , lowerCamelCase_ :Union[str, Any]=0.1 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Any=5_12 , lowerCamelCase_ :int=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=1E-5 , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :int=0 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :List[str]=10_24 , lowerCamelCase_ :Tuple=1_28 , lowerCamelCase_ :Any=1_28 , lowerCamelCase_ :Optional[Any]=True , lowerCamelCase_ :str=32 , lowerCamelCase_ :int=1_28 , lowerCamelCase_ :int=64 , lowerCamelCase_ :List[Any]=2_56 , lowerCamelCase_ :Any=True , lowerCamelCase_ :str=True , lowerCamelCase_ :Union[str, Any]=True , lowerCamelCase_ :List[str]=2_24 , lowerCamelCase_ :Dict=3 , lowerCamelCase_ :Union[str, Any]=16 , lowerCamelCase_ :Any=None , **lowerCamelCase_ :Optional[Any] , ) -> int: '''simple docstring''' super().__init__( vocab_size=lowerCamelCase_ , hidden_size=lowerCamelCase_ , num_hidden_layers=lowerCamelCase_ , num_attention_heads=lowerCamelCase_ , intermediate_size=lowerCamelCase_ , hidden_act=lowerCamelCase_ , hidden_dropout_prob=lowerCamelCase_ , attention_probs_dropout_prob=lowerCamelCase_ , max_position_embeddings=lowerCamelCase_ , type_vocab_size=lowerCamelCase_ , initializer_range=lowerCamelCase_ , layer_norm_eps=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Optional[Any] = max_ad_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = coordinate_size SCREAMING_SNAKE_CASE : Tuple = shape_size SCREAMING_SNAKE_CASE : Optional[int] = has_relative_attention_bias SCREAMING_SNAKE_CASE : List[Any] = rel_pos_bins SCREAMING_SNAKE_CASE : int = max_rel_pos SCREAMING_SNAKE_CASE : Any = has_spatial_attention_bias SCREAMING_SNAKE_CASE : List[Any] = rel_ad_pos_bins SCREAMING_SNAKE_CASE : Dict = max_rel_ad_pos SCREAMING_SNAKE_CASE : Optional[int] = text_embed SCREAMING_SNAKE_CASE : Any = visual_embed SCREAMING_SNAKE_CASE : Any = input_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : str = classifier_dropout class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = version.parse("""1.12""" ) @property def __lowerCAmelCase ( self :List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def __lowerCAmelCase ( self :Optional[int] ) -> float: '''simple docstring''' return 1E-5 @property def __lowerCAmelCase ( self :Tuple ) -> int: '''simple docstring''' return 12 def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :"ProcessorMixin" , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional["TensorType"] = None , lowerCamelCase_ :int = 3 , lowerCamelCase_ :int = 40 , lowerCamelCase_ :int = 40 , ) -> Mapping[str, Any]: '''simple docstring''' setattr(processor.image_processor , '''apply_ocr''' , lowerCamelCase_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : Dict = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : Union[str, Any] = processor.tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE : Union[str, Any] = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes SCREAMING_SNAKE_CASE : int = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) SCREAMING_SNAKE_CASE : List[Any] = self._generate_dummy_images(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = dict( processor( lowerCamelCase_ , text=lowerCamelCase_ , boxes=lowerCamelCase_ , return_tensors=lowerCamelCase_ , ) ) return inputs
18
0
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def __A ( a_ : str )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : str = SwinConfig() SCREAMING_SNAKE_CASE : Optional[Any] = swin_name.split('''_''' ) SCREAMING_SNAKE_CASE : Optional[Any] = name_split[1] SCREAMING_SNAKE_CASE : str = int(name_split[4] ) SCREAMING_SNAKE_CASE : Optional[int] = int(name_split[3][-1] ) if model_size == "tiny": SCREAMING_SNAKE_CASE : List[Any] = 96 SCREAMING_SNAKE_CASE : Dict = (2, 2, 6, 2) SCREAMING_SNAKE_CASE : List[Any] = (3, 6, 12, 24) elif model_size == "small": SCREAMING_SNAKE_CASE : Tuple = 96 SCREAMING_SNAKE_CASE : Union[str, Any] = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : Union[str, Any] = (3, 6, 12, 24) elif model_size == "base": SCREAMING_SNAKE_CASE : List[Any] = 1_28 SCREAMING_SNAKE_CASE : Optional[int] = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : Any = (4, 8, 16, 32) else: SCREAMING_SNAKE_CASE : List[str] = 1_92 SCREAMING_SNAKE_CASE : Dict = (2, 2, 18, 2) SCREAMING_SNAKE_CASE : int = (6, 12, 24, 48) if "in22k" in swin_name: SCREAMING_SNAKE_CASE : Optional[int] = 2_18_41 else: SCREAMING_SNAKE_CASE : Optional[int] = 10_00 SCREAMING_SNAKE_CASE : List[str] = '''huggingface/label-files''' SCREAMING_SNAKE_CASE : Union[str, Any] = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE : Any = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = {int(a_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Union[str, Any] = idalabel SCREAMING_SNAKE_CASE : Optional[Any] = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Optional[Any] = img_size SCREAMING_SNAKE_CASE : Union[str, Any] = num_classes SCREAMING_SNAKE_CASE : Tuple = embed_dim SCREAMING_SNAKE_CASE : Optional[Any] = depths SCREAMING_SNAKE_CASE : int = num_heads SCREAMING_SNAKE_CASE : Optional[int] = window_size return config def __A ( a_ : str )-> Optional[Any]: '''simple docstring''' if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE : int = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: SCREAMING_SNAKE_CASE : str = '''encoder.''' + name if "attn.proj" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: SCREAMING_SNAKE_CASE : str = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: SCREAMING_SNAKE_CASE : int = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "norm.weight": SCREAMING_SNAKE_CASE : Optional[Any] = '''layernorm.weight''' if name == "norm.bias": SCREAMING_SNAKE_CASE : Optional[int] = '''layernorm.bias''' if "head" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('''head''' , '''classifier''' ) else: SCREAMING_SNAKE_CASE : Tuple = '''swin.''' + name return name def __A ( a_ : Any , a_ : Any )-> str: '''simple docstring''' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : List[Any] = orig_state_dict.pop(a_ ) if "mask" in key: continue elif "qkv" in key: SCREAMING_SNAKE_CASE : List[str] = key.split('''.''' ) SCREAMING_SNAKE_CASE : Optional[Any] = int(key_split[1] ) SCREAMING_SNAKE_CASE : Any = int(key_split[3] ) SCREAMING_SNAKE_CASE : int = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE : Any = val[:dim, :] SCREAMING_SNAKE_CASE : Optional[int] = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE : Any = val[-dim:, :] else: SCREAMING_SNAKE_CASE : List[Any] = val[ :dim ] SCREAMING_SNAKE_CASE : List[Any] = val[ dim : dim * 2 ] SCREAMING_SNAKE_CASE : str = val[ -dim: ] else: SCREAMING_SNAKE_CASE : List[Any] = val return orig_state_dict def __A ( a_ : Optional[int] , a_ : str )-> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = timm.create_model(a_ , pretrained=a_ ) timm_model.eval() SCREAMING_SNAKE_CASE : Any = get_swin_config(a_ ) SCREAMING_SNAKE_CASE : Any = SwinForImageClassification(a_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = convert_state_dict(timm_model.state_dict() , a_ ) model.load_state_dict(a_ ) SCREAMING_SNAKE_CASE : List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE : Tuple = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) ) SCREAMING_SNAKE_CASE : Optional[Any] = Image.open(requests.get(a_ , stream=a_ ).raw ) SCREAMING_SNAKE_CASE : int = image_processor(images=a_ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : str = timm_model(inputs['''pixel_values'''] ) SCREAMING_SNAKE_CASE : List[str] = model(**a_ ).logits assert torch.allclose(a_ , a_ , atol=1E-3 ) print(F"Saving model {swin_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(a_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swin_name", default="swin_tiny_patch4_window7_224", type=str, help="Name of the Swin timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCamelCase__ : List[Any] = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
714
"""simple docstring""" import math def __A ( a_ : list , a_ : int )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = len(a_ ) SCREAMING_SNAKE_CASE : Optional[Any] = int(math.floor(math.sqrt(a_ ) ) ) SCREAMING_SNAKE_CASE : List[str] = 0 while arr[min(a_ , a_ ) - 1] < x: SCREAMING_SNAKE_CASE : Optional[Any] = step step += int(math.floor(math.sqrt(a_ ) ) ) if prev >= n: return -1 while arr[prev] < x: SCREAMING_SNAKE_CASE : Any = prev + 1 if prev == min(a_ , a_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase__ : List[str] = [int(item) for item in user_input.split(",")] lowerCamelCase__ : Dict = int(input("Enter the number to be searched:\n")) lowerCamelCase__ : Tuple = jump_search(arr, x) if res == -1: print("Number not found!") else: print(f'''Number {x} is at index {res}''')
18
0
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging lowerCamelCase__ : Dict = logging.get_logger(__name__) lowerCamelCase__ : Any = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """t5""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self :Optional[Any] , lowerCamelCase_ :Dict=3_21_28 , lowerCamelCase_ :Optional[Any]=5_12 , lowerCamelCase_ :str=64 , lowerCamelCase_ :int=20_48 , lowerCamelCase_ :Tuple=6 , lowerCamelCase_ :int=None , lowerCamelCase_ :int=8 , lowerCamelCase_ :Optional[Any]=32 , lowerCamelCase_ :List[Any]=1_28 , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Tuple=1E-6 , lowerCamelCase_ :Dict=1.0 , lowerCamelCase_ :Tuple="relu" , lowerCamelCase_ :int=True , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Any=1 , **lowerCamelCase_ :Tuple , ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Dict = d_model SCREAMING_SNAKE_CASE : List[str] = d_kv SCREAMING_SNAKE_CASE : Tuple = d_ff SCREAMING_SNAKE_CASE : str = num_layers SCREAMING_SNAKE_CASE : List[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry SCREAMING_SNAKE_CASE : Union[str, Any] = num_heads SCREAMING_SNAKE_CASE : Any = relative_attention_num_buckets SCREAMING_SNAKE_CASE : Optional[Any] = relative_attention_max_distance SCREAMING_SNAKE_CASE : str = dropout_rate SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_epsilon SCREAMING_SNAKE_CASE : Tuple = initializer_factor SCREAMING_SNAKE_CASE : Optional[Any] = feed_forward_proj SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Any = self.feed_forward_proj.split('''-''' ) SCREAMING_SNAKE_CASE : List[str] = act_info[-1] SCREAMING_SNAKE_CASE : Optional[Any] = act_info[0] == '''gated''' if len(lowerCamelCase_ ) > 1 and act_info[0] != "gated" or len(lowerCamelCase_ ) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": SCREAMING_SNAKE_CASE : Dict = '''gelu_new''' super().__init__( pad_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , **lowerCamelCase_ , ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: SCREAMING_SNAKE_CASE : List[Any] = '''past_encoder_sequence + sequence''' SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch'''} SCREAMING_SNAKE_CASE : Dict = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: SCREAMING_SNAKE_CASE : Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ , direction='''inputs''' ) return common_inputs @property def __lowerCAmelCase ( self :Optional[int] ) -> int: '''simple docstring''' return 13
715
"""simple docstring""" from sklearn.metrics import fa_score import datasets lowerCamelCase__ : List[Any] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" lowerCamelCase__ : str = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" lowerCamelCase__ : int = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int=None , lowerCamelCase_ :str=1 , lowerCamelCase_ :Union[str, Any]="binary" , lowerCamelCase_ :Dict=None ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : int = fa_score( lowerCamelCase_ , lowerCamelCase_ , labels=lowerCamelCase_ , pos_label=lowerCamelCase_ , average=lowerCamelCase_ , sample_weight=lowerCamelCase_ ) return {"f1": float(lowerCamelCase_ ) if score.size == 1 else score}
18
0
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :Optional[int] , **lowerCamelCase_ :str ) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase_ ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self :str , lowerCamelCase_ :Union[np.ndarray, bytes, str] , **lowerCamelCase_ :List[str] ) -> Dict: '''simple docstring''' return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def __lowerCAmelCase ( self :Dict , **lowerCamelCase_ :Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = {} if "candidate_labels" in kwargs: SCREAMING_SNAKE_CASE : Any = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: SCREAMING_SNAKE_CASE : Any = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def __lowerCAmelCase ( self :str , lowerCamelCase_ :Dict , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :Any="This is a sound of {}." ) -> Union[str, Any]: '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png SCREAMING_SNAKE_CASE : Optional[Any] = requests.get(lowerCamelCase_ ).content else: with open(lowerCamelCase_ , '''rb''' ) as f: SCREAMING_SNAKE_CASE : Any = f.read() if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = ffmpeg_read(lowerCamelCase_ , self.feature_extractor.sampling_rate ) if not isinstance(lowerCamelCase_ , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) SCREAMING_SNAKE_CASE : Any = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = candidate_labels SCREAMING_SNAKE_CASE : Any = [hypothesis_template.format(lowerCamelCase_ ) for x in candidate_labels] SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(lowerCamelCase_ , return_tensors=self.framework , padding=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = [text_inputs] return inputs def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Dict ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = model_inputs.pop('''candidate_labels''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = text_inputs[0] else: # Batching case. SCREAMING_SNAKE_CASE : List[str] = text_inputs[0][0] SCREAMING_SNAKE_CASE : Union[str, Any] = self.model(**lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def __lowerCAmelCase ( self :str , lowerCamelCase_ :Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = model_outputs.pop('''candidate_labels''' ) SCREAMING_SNAKE_CASE : Optional[int] = model_outputs['''logits'''][0] if self.framework == "pt": SCREAMING_SNAKE_CASE : Dict = logits.softmax(dim=0 ) SCREAMING_SNAKE_CASE : Dict = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) SCREAMING_SNAKE_CASE : Dict = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase_ , lowerCamelCase_ ) , key=lambda lowerCamelCase_ : -x[0] ) ] return result
716
"""simple docstring""" from __future__ import annotations from fractions import Fraction def __A ( a_ : int , a_ : int )-> bool: '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def __A ( a_ : int )-> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : List[str] = 11 SCREAMING_SNAKE_CASE : Union[str, Any] = int('''1''' + '''0''' * digit_len ) for num in range(a_ , a_ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(a_ , a_ ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 SCREAMING_SNAKE_CASE : Optional[Any] = 10 return solutions def __A ( a_ : int = 2 )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 1.0 for fraction in fraction_list(a_ ): SCREAMING_SNAKE_CASE : List[str] = Fraction(a_ ) result *= frac.denominator / frac.numerator return int(a_ ) if __name__ == "__main__": print(solution())
18
0
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : List[str] = logging.get_logger(__name__) def __A ( a_ : Dict )-> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: SCREAMING_SNAKE_CASE : Dict = 1_28 elif "12-12" in model_name: SCREAMING_SNAKE_CASE : Tuple = 12 SCREAMING_SNAKE_CASE : int = 12 elif "14-14" in model_name: SCREAMING_SNAKE_CASE : List[str] = 14 SCREAMING_SNAKE_CASE : Any = 14 elif "16-16" in model_name: SCREAMING_SNAKE_CASE : Union[str, Any] = 16 SCREAMING_SNAKE_CASE : str = 16 else: raise ValueError('''Model not supported''' ) SCREAMING_SNAKE_CASE : Optional[Any] = '''huggingface/label-files''' if "speech-commands" in model_name: SCREAMING_SNAKE_CASE : Tuple = 35 SCREAMING_SNAKE_CASE : str = '''speech-commands-v2-id2label.json''' else: SCREAMING_SNAKE_CASE : int = 5_27 SCREAMING_SNAKE_CASE : List[str] = '''audioset-id2label.json''' SCREAMING_SNAKE_CASE : int = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = {int(a_ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : int = idalabel SCREAMING_SNAKE_CASE : Any = {v: k for k, v in idalabel.items()} return config def __A ( a_ : List[str] )-> Any: '''simple docstring''' if "module.v" in name: SCREAMING_SNAKE_CASE : Any = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: SCREAMING_SNAKE_CASE : Any = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE : str = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: SCREAMING_SNAKE_CASE : int = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: SCREAMING_SNAKE_CASE : int = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: SCREAMING_SNAKE_CASE : str = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: SCREAMING_SNAKE_CASE : Dict = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE : Dict = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: SCREAMING_SNAKE_CASE : List[Any] = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def __A ( a_ : Tuple , a_ : List[Any] )-> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Optional[Any] = orig_state_dict.pop(a_ ) if "qkv" in key: SCREAMING_SNAKE_CASE : int = key.split('''.''' ) SCREAMING_SNAKE_CASE : int = int(key_split[3] ) SCREAMING_SNAKE_CASE : Dict = config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE : Any = val[:dim, :] SCREAMING_SNAKE_CASE : int = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE : str = val[-dim:, :] else: SCREAMING_SNAKE_CASE : List[Any] = val[:dim] SCREAMING_SNAKE_CASE : Any = val[dim : dim * 2] SCREAMING_SNAKE_CASE : str = val[-dim:] else: SCREAMING_SNAKE_CASE : Any = val return orig_state_dict def __A ( a_ : str )-> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(a_ , a_ ) @torch.no_grad() def __A ( a_ : Optional[int] , a_ : str , a_ : Union[str, Any]=False )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = get_audio_spectrogram_transformer_config(a_ ) SCREAMING_SNAKE_CASE : Dict = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict SCREAMING_SNAKE_CASE : str = model_name_to_url[model_name] SCREAMING_SNAKE_CASE : Optional[int] = torch.hub.load_state_dict_from_url(a_ , map_location='''cpu''' ) # remove some keys remove_keys(a_ ) # rename some keys SCREAMING_SNAKE_CASE : Union[str, Any] = convert_state_dict(a_ , a_ ) # load 🤗 model SCREAMING_SNAKE_CASE : Union[str, Any] = ASTForAudioClassification(a_ ) model.eval() model.load_state_dict(a_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 SCREAMING_SNAKE_CASE : str = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978 SCREAMING_SNAKE_CASE : Dict = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526 SCREAMING_SNAKE_CASE : int = 10_24 if '''speech-commands''' not in model_name else 1_28 SCREAMING_SNAKE_CASE : List[Any] = ASTFeatureExtractor(mean=a_ , std=a_ , max_length=a_ ) if "speech-commands" in model_name: SCREAMING_SNAKE_CASE : List[Any] = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) SCREAMING_SNAKE_CASE : List[Any] = dataset[0]['''audio''']['''array'''] else: SCREAMING_SNAKE_CASE : str = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) SCREAMING_SNAKE_CASE : Union[str, Any] = torchaudio.load(a_ ) SCREAMING_SNAKE_CASE : List[str] = waveform.squeeze().numpy() SCREAMING_SNAKE_CASE : Tuple = feature_extractor(a_ , sampling_rate=1_60_00 , return_tensors='''pt''' ) # forward pass SCREAMING_SNAKE_CASE : List[Any] = model(**a_ ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": SCREAMING_SNAKE_CASE : Tuple = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": SCREAMING_SNAKE_CASE : Any = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": SCREAMING_SNAKE_CASE : int = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": SCREAMING_SNAKE_CASE : Any = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , a_ , atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(a_ ).mkdir(exist_ok=a_ ) print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(a_ ) print(F"Saving feature extractor to {pytorch_dump_folder_path}" ) feature_extractor.save_pretrained(a_ ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(F"MIT/{model_name}" ) feature_extractor.push_to_hub(F"MIT/{model_name}" ) if __name__ == "__main__": lowerCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCamelCase__ : Tuple = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
717
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ : int = logging.get_logger(__name__) class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """maskformer-swin""" UpperCamelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :Optional[int] , lowerCamelCase_ :List[Any]=2_24 , lowerCamelCase_ :Tuple=4 , lowerCamelCase_ :Optional[Any]=3 , lowerCamelCase_ :List[str]=96 , lowerCamelCase_ :int=[2, 2, 6, 2] , lowerCamelCase_ :Union[str, Any]=[3, 6, 12, 24] , lowerCamelCase_ :Optional[int]=7 , lowerCamelCase_ :Tuple=4.0 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Dict=0.0 , lowerCamelCase_ :Any=0.0 , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :List[str]=0.0_2 , lowerCamelCase_ :Any=1E-5 , lowerCamelCase_ :Union[str, Any]=None , lowerCamelCase_ :List[str]=None , **lowerCamelCase_ :Union[str, Any] , ) -> Dict: '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : Optional[Any] = patch_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = embed_dim SCREAMING_SNAKE_CASE : List[Any] = depths SCREAMING_SNAKE_CASE : List[str] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = num_heads SCREAMING_SNAKE_CASE : Any = window_size SCREAMING_SNAKE_CASE : List[str] = mlp_ratio SCREAMING_SNAKE_CASE : str = qkv_bias SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : int = drop_path_rate SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Any = use_absolute_embeddings SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE : int = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) SCREAMING_SNAKE_CASE : Dict = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names )
18
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCamelCase__ : Any = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """albert""" def __init__( self :List[str] , lowerCamelCase_ :Any=3_00_00 , lowerCamelCase_ :List[str]=1_28 , lowerCamelCase_ :Optional[Any]=40_96 , lowerCamelCase_ :int=12 , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :str=64 , lowerCamelCase_ :List[Any]=1_63_84 , lowerCamelCase_ :List[str]=1 , lowerCamelCase_ :Optional[Any]="gelu_new" , lowerCamelCase_ :Any=0 , lowerCamelCase_ :Union[str, Any]=0 , lowerCamelCase_ :Optional[int]=5_12 , lowerCamelCase_ :str=2 , lowerCamelCase_ :str=0.0_2 , lowerCamelCase_ :Dict=1E-12 , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :int="absolute" , lowerCamelCase_ :str=0 , lowerCamelCase_ :Optional[Any]=2 , lowerCamelCase_ :str=3 , **lowerCamelCase_ :int , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE : str = embedding_size SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Dict = num_hidden_groups SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = inner_group_num SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Dict = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = type_vocab_size SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Tuple = classifier_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = position_embedding_type class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : List[str] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
718
"""simple docstring""" import math class lowercase__: '''simple docstring''' def __init__( self :Union[str, Any] , lowerCamelCase_ :List[str]=0 ) -> List[Any]: # a graph with Node 0,1,...,N-1 '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = n SCREAMING_SNAKE_CASE : List[Any] = [ [math.inf for j in range(0 , lowerCamelCase_ )] for i in range(0 , lowerCamelCase_ ) ] # adjacency matrix for weight SCREAMING_SNAKE_CASE : Any = [ [math.inf for j in range(0 , lowerCamelCase_ )] for i in range(0 , lowerCamelCase_ ) ] # dp[i][j] stores minimum distance from i to j def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = w def __lowerCAmelCase ( self :str ) -> Union[str, Any]: '''simple docstring''' for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): SCREAMING_SNAKE_CASE : List[str] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] ) -> Optional[Any]: '''simple docstring''' return self.dp[u][v] if __name__ == "__main__": lowerCamelCase__ : Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
18
0
"""simple docstring""" import datasets from .evaluate import evaluate lowerCamelCase__ : List[Any] = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" lowerCamelCase__ : int = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" lowerCamelCase__ : Tuple = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self :str ) -> Dict: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )}, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''] , ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : str = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : List[Any] = evaluate(dataset=lowerCamelCase_ , predictions=lowerCamelCase_ ) return score
719
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Tuple = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Union[str, Any] = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCamelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
0
"""simple docstring""" import argparse import os import re lowerCamelCase__ : List[str] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict lowerCamelCase__ : str = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings lowerCamelCase__ : Union[str, Any] = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def __A ( a_ : str , a_ : bool = False )-> Tuple: '''simple docstring''' with open(a_ , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : Tuple = f.read() SCREAMING_SNAKE_CASE : Union[str, Any] = content.split('''\n''' ) SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[Any] = 0 while line_idx < len(a_ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: SCREAMING_SNAKE_CASE : Optional[Any] = len(re.search(r'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 SCREAMING_SNAKE_CASE : Tuple = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": SCREAMING_SNAKE_CASE : Tuple = line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers SCREAMING_SNAKE_CASE : Union[str, Any] = sorted(a_ , key=lambda a_ : _re_identifier.search(a_ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(a_ , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(a_ ) ) elif "\n".join(a_ ) != content: return True def __A ( a_ : bool = False )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [os.path.join(a_ , a_ ) for f in os.listdir(a_ ) if f.endswith('''.py''' )] SCREAMING_SNAKE_CASE : List[Any] = [sort_auto_mapping(a_ , overwrite=a_ ) for fname in fnames] if not overwrite and any(a_ ): SCREAMING_SNAKE_CASE : Tuple = [f for f, d in zip(a_ , a_ ) if d] raise ValueError( F"The following files have auto mappings that need sorting: {', '.join(a_ )}. Run `make style` to fix" ''' this.''' ) if __name__ == "__main__": lowerCamelCase__ : List[Any] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") lowerCamelCase__ : Any = parser.parse_args() sort_all_auto_mappings(not args.check_only)
720
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :List[str] , lowerCamelCase_ :Union[List[ControlNetModel], Tuple[ControlNetModel]] ) -> Union[str, Any]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList(lowerCamelCase_ ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :torch.FloatTensor , lowerCamelCase_ :Union[torch.Tensor, float, int] , lowerCamelCase_ :torch.Tensor , lowerCamelCase_ :List[torch.tensor] , lowerCamelCase_ :List[float] , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[Dict[str, Any]] = None , lowerCamelCase_ :bool = False , lowerCamelCase_ :bool = True , ) -> Union[ControlNetOutput, Tuple]: '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(lowerCamelCase_ , lowerCamelCase_ , self.nets ) ): SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = controlnet( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) # merge samples if i == 0: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = down_samples, mid_sample else: SCREAMING_SNAKE_CASE : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowerCamelCase_ , lowerCamelCase_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Union[str, os.PathLike] , lowerCamelCase_ :bool = True , lowerCamelCase_ :Callable = None , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[str] = None , ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : Any = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowerCamelCase_ , is_main_process=lowerCamelCase_ , save_function=lowerCamelCase_ , safe_serialization=lowerCamelCase_ , variant=lowerCamelCase_ , ) idx += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = model_path_to_save + f"_{idx}" @classmethod def __lowerCAmelCase ( cls :Dict , lowerCamelCase_ :Optional[Union[str, os.PathLike]] , **lowerCamelCase_ :Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Optional[int] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... SCREAMING_SNAKE_CASE : Dict = pretrained_model_path while os.path.isdir(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Tuple = ControlNetModel.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) controlnets.append(lowerCamelCase_ ) idx += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + f"_{idx}" logger.info(f"{len(lowerCamelCase_ )} controlnets loaded from {pretrained_model_path}." ) if len(lowerCamelCase_ ) == 0: raise ValueError( f"No ControlNets found under {os.path.dirname(lowerCamelCase_ )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(lowerCamelCase_ )
18
0
"""simple docstring""" import random def __A ( a_ : int )-> bool: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = num - 1 SCREAMING_SNAKE_CASE : str = 0 while s % 2 == 0: SCREAMING_SNAKE_CASE : Union[str, Any] = s // 2 t += 1 for _ in range(5 ): SCREAMING_SNAKE_CASE : Any = random.randrange(2 , num - 1 ) SCREAMING_SNAKE_CASE : Optional[int] = pow(a_ , a_ , a_ ) if v != 1: SCREAMING_SNAKE_CASE : Union[str, Any] = 0 while v != (num - 1): if i == t - 1: return False else: SCREAMING_SNAKE_CASE : int = i + 1 SCREAMING_SNAKE_CASE : int = (v**2) % num return True def __A ( a_ : int )-> bool: '''simple docstring''' if num < 2: return False SCREAMING_SNAKE_CASE : List[str] = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(a_ ) def __A ( a_ : int = 10_24 )-> int: '''simple docstring''' while True: SCREAMING_SNAKE_CASE : Tuple = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(a_ ): return num if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
721
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def __A ( a_ : float , a_ : float , a_ : bool = False )-> list[float]: '''simple docstring''' if radian_mode: return [magnitude * cos(a_ ), magnitude * sin(a_ )] return [magnitude * cos(radians(a_ ) ), magnitude * sin(radians(a_ ) )] def __A ( a_ : NDArray[floataa] , a_ : NDArray[floataa] , a_ : float = 10**-1 )-> bool: '''simple docstring''' SCREAMING_SNAKE_CASE : NDArray[floataa] = cross(a_ , a_ ) SCREAMING_SNAKE_CASE : float = sum(a_ ) return abs(a_ ) < eps if __name__ == "__main__": # Test to check if it works lowerCamelCase__ : Optional[Any] = array( [ polar_force(7_1_8.4, 180 - 30), polar_force(8_7_9.5_4, 45), polar_force(100, -90), ] ) lowerCamelCase__ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowerCamelCase__ : Union[str, Any] = array( [ polar_force(30 * 9.8_1, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) lowerCamelCase__ : Any = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowerCamelCase__ : Union[str, Any] = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) lowerCamelCase__ : Optional[int] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
18
0
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def __A ( a_ : float , a_ : float , a_ : bool = False )-> list[float]: '''simple docstring''' if radian_mode: return [magnitude * cos(a_ ), magnitude * sin(a_ )] return [magnitude * cos(radians(a_ ) ), magnitude * sin(radians(a_ ) )] def __A ( a_ : NDArray[floataa] , a_ : NDArray[floataa] , a_ : float = 10**-1 )-> bool: '''simple docstring''' SCREAMING_SNAKE_CASE : NDArray[floataa] = cross(a_ , a_ ) SCREAMING_SNAKE_CASE : float = sum(a_ ) return abs(a_ ) < eps if __name__ == "__main__": # Test to check if it works lowerCamelCase__ : Optional[Any] = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) lowerCamelCase__ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowerCamelCase__ : Union[str, Any] = array( [ polar_force(30 * 9.8_1, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) lowerCamelCase__ : Any = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowerCamelCase__ : Union[str, Any] = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) lowerCamelCase__ : Optional[int] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
700
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase__ : Optional[Any] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase__ : Optional[int] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase__ : Optional[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def __A ( a_ : str , a_ : str )-> tuple[str, float]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = len([g for position, g in enumerate(a_ ) if g == main_target[position]] ) return (item, float(a_ )) def __A ( a_ : str , a_ : str )-> tuple[str, str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = random.randint(0 , len(a_ ) - 1 ) SCREAMING_SNAKE_CASE : str = parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE : Dict = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __A ( a_ : str , a_ : list[str] )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = list(a_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE : Any = random.choice(a_ ) return "".join(a_ ) def __A ( a_ : tuple[str, float] , a_ : list[tuple[str, float]] , a_ : list[str] , )-> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE : List[str] = int(parent_a[1] * 1_00 ) + 1 SCREAMING_SNAKE_CASE : Optional[Any] = 10 if child_n >= 10 else child_n for _ in range(a_ ): SCREAMING_SNAKE_CASE : List[str] = population_score[random.randint(0 , a_ )][0] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = crossover(parent_a[0] , a_ ) # Append new string to the population list. pop.append(mutate(a_ , a_ ) ) pop.append(mutate(a_ , a_ ) ) return pop def __A ( a_ : str , a_ : list[str] , a_ : bool = True )-> tuple[int, int, str]: '''simple docstring''' if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE : List[Any] = F"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(a_ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE : List[str] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE : str = F"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(a_ ) # Generate random starting population. SCREAMING_SNAKE_CASE : Tuple = [] for _ in range(a_ ): population.append(''''''.join([random.choice(a_ ) for i in range(len(a_ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(a_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE : int = [evaluate(a_ , a_ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE : List[Any] = sorted(a_ , key=lambda a_ : x[1] , reverse=a_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"\nGeneration: {generation}" F"\nTotal Population:{total_population}" F"\nBest score: {population_score[0][1]}" F"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE : Optional[Any] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(a_ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE : Optional[int] = [ (item, score / len(a_ )) for item, score in population_score ] # This is selection for i in range(a_ ): population.extend(select(population_score[int(a_ )] , a_ , a_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(a_ ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase__ : Dict = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowerCamelCase__ : int = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
18
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : str = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """luke""" def __init__( self :Optional[int] , lowerCamelCase_ :Union[str, Any]=5_02_67 , lowerCamelCase_ :int=50_00_00 , lowerCamelCase_ :Tuple=7_68 , lowerCamelCase_ :List[str]=2_56 , lowerCamelCase_ :Dict=12 , lowerCamelCase_ :Optional[int]=12 , lowerCamelCase_ :Optional[Any]=30_72 , lowerCamelCase_ :List[Any]="gelu" , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Union[str, Any]=0.1 , lowerCamelCase_ :List[str]=5_12 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :Tuple=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :str=1 , lowerCamelCase_ :Any=0 , lowerCamelCase_ :str=2 , **lowerCamelCase_ :List[Any] , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : List[str] = entity_vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = entity_emb_size SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Dict = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[int] = use_entity_aware_attention SCREAMING_SNAKE_CASE : List[str] = classifier_dropout
701
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowerCamelCase__ : Optional[Any] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __A ( a_ : Optional[int] )-> Dict: '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __A ( a_ : List[Any] , a_ : Optional[int] , a_ : Optional[int] )-> Dict: '''simple docstring''' return max(metric_fn(a_ , a_ ) for gt in ground_truths ) def __A ( a_ : List[Any] , a_ : Union[str, Any] , a_ : str )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [line.strip() for line in open(a_ , '''r''' ).readlines()] SCREAMING_SNAKE_CASE : Optional[Any] = [] if args.gold_data_mode == "qa": SCREAMING_SNAKE_CASE : List[Any] = pd.read_csv(a_ , sep='''\t''' , header=a_ ) for answer_list in data[1]: SCREAMING_SNAKE_CASE : str = ast.literal_eval(a_ ) answers.append(a_ ) else: SCREAMING_SNAKE_CASE : Any = [line.strip() for line in open(a_ , '''r''' ).readlines()] SCREAMING_SNAKE_CASE : Dict = [[reference] for reference in references] SCREAMING_SNAKE_CASE : Dict = 0 for prediction, ground_truths in zip(a_ , a_ ): total += 1 em += metric_max_over_ground_truths(a_ , a_ , a_ ) fa += metric_max_over_ground_truths(a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : Any = 100.0 * em / total SCREAMING_SNAKE_CASE : Optional[int] = 100.0 * fa / total logger.info(F"F1: {fa:.2f}" ) logger.info(F"EM: {em:.2f}" ) def __A ( a_ : Any , a_ : Any , a_ : List[Any] )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : str = args.k SCREAMING_SNAKE_CASE : Tuple = [line.strip() for line in open(a_ , '''r''' ).readlines()] SCREAMING_SNAKE_CASE : Union[str, Any] = [line.strip() for line in open(a_ , '''r''' ).readlines()] SCREAMING_SNAKE_CASE : Dict = 0 for hypo, reference in zip(a_ , a_ ): SCREAMING_SNAKE_CASE : Optional[int] = set(hypo.split('''\t''' )[:k] ) SCREAMING_SNAKE_CASE : List[str] = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k SCREAMING_SNAKE_CASE : Dict = 100.0 * em / total logger.info(F"Precision@{k}: {em: .2f}" ) def __A ( a_ : Any , a_ : List[str] , a_ : str )-> int: '''simple docstring''' def strip_title(a_ : Optional[Any] ): if title.startswith('''"''' ): SCREAMING_SNAKE_CASE : Tuple = title[1:] if title.endswith('''"''' ): SCREAMING_SNAKE_CASE : Any = title[:-1] return title SCREAMING_SNAKE_CASE : Tuple = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( a_ , return_tensors='''pt''' , padding=a_ , truncation=a_ , )['''input_ids'''].to(args.device ) SCREAMING_SNAKE_CASE : Any = rag_model.rag.question_encoder(a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = question_enc_outputs[0] SCREAMING_SNAKE_CASE : Dict = rag_model.retriever( a_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : Any = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) SCREAMING_SNAKE_CASE : Dict = [] for docs in all_docs: SCREAMING_SNAKE_CASE : List[Any] = [strip_title(a_ ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(a_ ) ) return provenance_strings def __A ( a_ : List[Any] , a_ : int , a_ : str )-> Tuple: '''simple docstring''' with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( a_ , return_tensors='''pt''' , padding=a_ , truncation=a_ ) SCREAMING_SNAKE_CASE : Dict = inputs_dict.input_ids.to(args.device ) SCREAMING_SNAKE_CASE : Any = inputs_dict.attention_mask.to(args.device ) SCREAMING_SNAKE_CASE : Tuple = rag_model.generate( # rag_model overwrites generate a_ , attention_mask=a_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=a_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) SCREAMING_SNAKE_CASE : Dict = rag_model.retriever.generator_tokenizer.batch_decode(a_ , skip_special_tokens=a_ ) if args.print_predictions: for q, a in zip(a_ , a_ ): logger.info('''Q: {} - A: {}'''.format(a_ , a_ ) ) return answers def __A ( )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=a_ , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=a_ , choices=['''exact''', '''compressed''', '''legacy'''] , type=a_ , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=a_ , type=a_ , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=a_ , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=a_ , type=a_ , required=a_ , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=a_ , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=a_ , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=a_ , type=a_ , required=a_ , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=a_ , type=a_ , required=a_ , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=a_ , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=a_ , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=a_ , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=a_ , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=a_ , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=a_ , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE : Dict = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def __A ( a_ : Optional[Any] )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = {} if args.model_type is None: SCREAMING_SNAKE_CASE : List[str] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE : List[str] = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration SCREAMING_SNAKE_CASE : Optional[Any] = args.n_docs if args.index_name is not None: SCREAMING_SNAKE_CASE : Tuple = args.index_name if args.index_path is not None: SCREAMING_SNAKE_CASE : List[Any] = args.index_path else: SCREAMING_SNAKE_CASE : str = BartForConditionalGeneration SCREAMING_SNAKE_CASE : Optional[int] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , a_ ) SCREAMING_SNAKE_CASE : int = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k SCREAMING_SNAKE_CASE : str = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(a_ , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(a_ ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE : Dict = RagRetriever.from_pretrained(a_ , **a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model_class.from_pretrained(a_ , retriever=a_ , **a_ ) model.retriever.init_retrieval() else: SCREAMING_SNAKE_CASE : str = model_class.from_pretrained(a_ , **a_ ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: SCREAMING_SNAKE_CASE : Dict = [] for line in tqdm(a_ ): questions.append(line.strip() ) if len(a_ ) == args.eval_batch_size: SCREAMING_SNAKE_CASE : str = evaluate_batch_fn(a_ , a_ , a_ ) preds_file.write('''\n'''.join(a_ ) + '''\n''' ) preds_file.flush() SCREAMING_SNAKE_CASE : Union[str, Any] = [] if len(a_ ) > 0: SCREAMING_SNAKE_CASE : str = evaluate_batch_fn(a_ , a_ , a_ ) preds_file.write('''\n'''.join(a_ ) ) preds_file.flush() score_fn(a_ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowerCamelCase__ : List[str] = get_args() main(args)
18
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : List[str] = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[Any] = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Union[str, Any] = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys lowerCamelCase__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
702
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = {"vocab_file": "vocab.json"} lowerCamelCase__ : Dict = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowerCamelCase__ : Optional[Any] = {"mgp-str": 27} class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[int]="[GO]" , lowerCamelCase_ :int="[GO]" , lowerCamelCase_ :str="[s]" , lowerCamelCase_ :Dict="[GO]" , **lowerCamelCase_ :List[str] ) -> Tuple: '''simple docstring''' super().__init__( unk_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , **lowerCamelCase_ , ) with open(lowerCamelCase_ , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE : int = json.load(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in self.vocab.items()} @property def __lowerCAmelCase ( self :int ) -> Dict: '''simple docstring''' return len(self.vocab ) def __lowerCAmelCase ( self :List[str] ) -> Dict: '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Optional[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [] for s in text: char_tokens.extend(lowerCamelCase_ ) return char_tokens def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Tuple ) -> Optional[int]: '''simple docstring''' return self.vocab.get(lowerCamelCase_ , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Dict ) -> Optional[int]: '''simple docstring''' return self.decoder.get(lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCamelCase_ ) ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + '''\n''' ) return (vocab_file,)
18
0
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict lowerCamelCase__ : Union[str, Any] = namedtuple( "_TestCommandArgs", [ "dataset", "name", "cache_dir", "data_dir", "all_configs", "save_infos", "ignore_verifications", "force_redownload", "clear_cache", ], defaults=[None, None, None, False, False, False, False, False], ) def __A ( a_ : Optional[Any] , a_ : int )-> Tuple: '''simple docstring''' return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __A ( a_ : List[Any] )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = _TestCommandArgs(dataset=a_ , all_configs=a_ , save_infos=a_ ) SCREAMING_SNAKE_CASE : int = TestCommand(*a_ ) test_command.run() SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(a_ , '''README.md''' ) assert os.path.exists(a_ ) SCREAMING_SNAKE_CASE : Dict = DatasetInfosDict.from_directory(a_ ) SCREAMING_SNAKE_CASE : Any = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) , splits=[ { '''name''': '''train''', '''num_bytes''': 2_35_15_63, '''num_examples''': 1_00_00, }, { '''name''': '''validation''', '''num_bytes''': 23_84_18, '''num_examples''': 10_00, }, ] , download_size=3_94_06_80 , dataset_size=2_58_99_81 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: SCREAMING_SNAKE_CASE : Any = getattr(dataset_infos['''default'''] , a_ ), getattr(expected_dataset_infos['''default'''] , a_ ) if key == "num_bytes": assert is_apercent_close(a_ , a_ ) elif key == "splits": assert list(a_ ) == list(a_ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
703
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : str = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """luke""" def __init__( self :Optional[int] , lowerCamelCase_ :Union[str, Any]=5_02_67 , lowerCamelCase_ :int=50_00_00 , lowerCamelCase_ :Tuple=7_68 , lowerCamelCase_ :List[str]=2_56 , lowerCamelCase_ :Dict=12 , lowerCamelCase_ :Optional[int]=12 , lowerCamelCase_ :Optional[Any]=30_72 , lowerCamelCase_ :List[Any]="gelu" , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Union[str, Any]=0.1 , lowerCamelCase_ :List[str]=5_12 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :Tuple=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :str=1 , lowerCamelCase_ :Any=0 , lowerCamelCase_ :str=2 , **lowerCamelCase_ :List[Any] , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : List[str] = entity_vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = entity_emb_size SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Dict = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[int] = use_entity_aware_attention SCREAMING_SNAKE_CASE : List[str] = classifier_dropout
18
0
"""simple docstring""" import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class lowercase__( TensorFormatter[Mapping, """torch.Tensor""", Mapping] ): '''simple docstring''' def __init__( self :str , lowerCamelCase_ :List[Any]=None , **lowerCamelCase_ :Any ) -> Any: '''simple docstring''' super().__init__(features=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = torch_tensor_kwargs import torch # noqa import torch at initialization def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :Dict ) -> Any: '''simple docstring''' import torch if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and column: if all( isinstance(lowerCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(lowerCamelCase_ ) return column def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Dict ) -> List[Any]: '''simple docstring''' import torch if isinstance(lowerCamelCase_ , (str, bytes, type(lowerCamelCase_ )) ): return value elif isinstance(lowerCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE : Optional[int] = {} if isinstance(lowerCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): SCREAMING_SNAKE_CASE : Optional[Any] = {'''dtype''': torch.intaa} elif isinstance(lowerCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE : Any = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowerCamelCase_ , PIL.Image.Image ): SCREAMING_SNAKE_CASE : Any = np.asarray(lowerCamelCase_ ) return torch.tensor(lowerCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :int ) -> Union[str, Any]: '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(lowerCamelCase_ , '''__array__''' ) and not isinstance(lowerCamelCase_ , torch.Tensor ): SCREAMING_SNAKE_CASE : int = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowerCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowerCamelCase_ ) for substruct in data_struct] ) elif isinstance(lowerCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(lowerCamelCase_ ) for substruct in data_struct] ) return self._tensorize(lowerCamelCase_ ) def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :dict ) -> Dict: '''simple docstring''' return map_nested(self._recursive_tensorize , lowerCamelCase_ , map_list=lowerCamelCase_ ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :pa.Table ) -> Mapping: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.numpy_arrow_extractor().extract_row(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.python_features_decoder.decode_row(lowerCamelCase_ ) return self.recursive_tensorize(lowerCamelCase_ ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :pa.Table ) -> "torch.Tensor": '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.numpy_arrow_extractor().extract_column(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.python_features_decoder.decode_column(lowerCamelCase_ , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE : List[str] = self.recursive_tensorize(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self._consolidate(lowerCamelCase_ ) return column def __lowerCAmelCase ( self :str , lowerCamelCase_ :pa.Table ) -> Mapping: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.numpy_arrow_extractor().extract_batch(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = self.python_features_decoder.decode_batch(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.recursive_tensorize(lowerCamelCase_ ) for column_name in batch: SCREAMING_SNAKE_CASE : Optional[Any] = self._consolidate(batch[column_name] ) return batch
704
"""simple docstring""" def __A ( a_ : list , a_ : int , a_ : int = 0 , a_ : int = 0 )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : str = right or len(a_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(a_ , a_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__: '''simple docstring''' def __init__( self :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Any=13 , lowerCamelCase_ :Any=32 , lowerCamelCase_ :Union[str, Any]=2 , lowerCamelCase_ :Any=3 , lowerCamelCase_ :Union[str, Any]=16 , lowerCamelCase_ :int=[1, 2, 1] , lowerCamelCase_ :str=[2, 2, 4] , lowerCamelCase_ :str=2 , lowerCamelCase_ :Tuple=2.0 , lowerCamelCase_ :Union[str, Any]=True , lowerCamelCase_ :str=0.0 , lowerCamelCase_ :Optional[int]=0.0 , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Union[str, Any]="gelu" , lowerCamelCase_ :str=False , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :List[Any]=1E-5 , lowerCamelCase_ :int=True , lowerCamelCase_ :str=None , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Union[str, Any]=10 , lowerCamelCase_ :List[Any]=8 , ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Any = embed_dim SCREAMING_SNAKE_CASE : int = depths SCREAMING_SNAKE_CASE : List[str] = num_heads SCREAMING_SNAKE_CASE : Union[str, Any] = window_size SCREAMING_SNAKE_CASE : Optional[Any] = mlp_ratio SCREAMING_SNAKE_CASE : List[Any] = qkv_bias SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = drop_path_rate SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = use_absolute_embeddings SCREAMING_SNAKE_CASE : Any = patch_norm SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : List[Any] = scope SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = encoder_stride def __lowerCAmelCase ( self :Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : int = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self :int ) -> int: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = SwinvaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :str , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = SwinvaForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : List[Any] = SwinvaForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Any , lowerCamelCase_ :int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = SwinvaForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self :List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) UpperCamelCase = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __lowerCAmelCase ( self :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = SwinvaModelTester(self ) SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=lowerCamelCase_ , embed_dim=37 ) def __lowerCAmelCase ( self :Dict ) -> List[str]: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self :List[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def __lowerCAmelCase ( self :str ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def __lowerCAmelCase ( self :List[Any] ) -> Any: '''simple docstring''' pass def __lowerCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , nn.Linear ) ) def __lowerCAmelCase ( self :int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Tuple = True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Any = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.attentions SCREAMING_SNAKE_CASE : Tuple = len(self.model_tester.depths ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Optional[int] = config.window_size**2 SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Dict = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) SCREAMING_SNAKE_CASE : Dict = len(lowerCamelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : int = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): SCREAMING_SNAKE_CASE : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states SCREAMING_SNAKE_CASE : Optional[Any] = 2 self.assertEqual(out_len + added_hidden_states , len(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :Any , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states SCREAMING_SNAKE_CASE : str = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) # Swinv2 has a different seq_length SCREAMING_SNAKE_CASE : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) SCREAMING_SNAKE_CASE : Any = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = reshaped_hidden_states[0].shape SCREAMING_SNAKE_CASE : Optional[int] = ( reshaped_hidden_states[0].view(lowerCamelCase_ , lowerCamelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __lowerCAmelCase ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : List[str] = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = 3 SCREAMING_SNAKE_CASE : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE : Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , (padded_height, padded_width) ) def __lowerCAmelCase ( self :str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :Tuple ) -> List[str]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Tuple = SwinvaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Tuple = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class lowercase__( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self :Dict ) -> List[Any]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE : List[str] = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**lowerCamelCase_ ) # verify the logits SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) )
705
"""simple docstring""" def __A ( a_ : int )-> list[int]: '''simple docstring''' if num <= 0: raise ValueError('''Input must be a positive integer''' ) SCREAMING_SNAKE_CASE : Optional[int] = [True] * (num + 1) SCREAMING_SNAKE_CASE : Optional[Any] = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , a_ ): SCREAMING_SNAKE_CASE : Any = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ : str = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
18
0
"""simple docstring""" import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : Tuple = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] lowerCamelCase__ : Dict = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def __A ( a_ : str , a_ : Tuple )-> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks SCREAMING_SNAKE_CASE : Any = int(re.match(r'''.*layer_(\d*).*''' , a_ )[1] ) layer_number -= 3 return F"h.{layer_number}." + key def __A ( a_ : Optional[Any] )-> int: '''simple docstring''' if dtype == torch.bool: return 1 / 8 SCREAMING_SNAKE_CASE : Union[str, Any] = re.search(r'''[^\d](\d+)$''' , str(a_ ) ) if bit_search is None: raise ValueError(F"`dtype` is not a valid dtype: {dtype}." ) SCREAMING_SNAKE_CASE : str = int(bit_search.groups()[0] ) return bit_size // 8 def __A ( a_ : str , a_ : Dict , a_ : Dict , a_ : List[str] , a_ : int )-> Dict: '''simple docstring''' if bloom_config_file == "": SCREAMING_SNAKE_CASE : List[str] = BloomConfig() else: SCREAMING_SNAKE_CASE : Union[str, Any] = BloomConfig.from_json_file(a_ ) if shard_model: SCREAMING_SNAKE_CASE : Union[str, Any] = os.listdir(a_ ) SCREAMING_SNAKE_CASE : List[Any] = sorted(filter(lambda a_ : s.startswith('''layer''' ) and "model_00" in s , a_ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = {'''weight_map''': {}, '''metadata''': {}} SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : List[Any] = BloomConfig() for j, file in enumerate(a_ ): print('''Processing file: {}'''.format(a_ ) ) SCREAMING_SNAKE_CASE : List[str] = None for i in range(a_ ): # load all TP files SCREAMING_SNAKE_CASE : Optional[Any] = file.replace('''model_00''' , F"model_0{i}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load(os.path.join(a_ , a_ ) , map_location='''cpu''' ) # Rename keys in the transformers names SCREAMING_SNAKE_CASE : Dict = list(temp.keys() ) for key in keys: SCREAMING_SNAKE_CASE : Any = temp.pop(a_ ) if tensors is None: SCREAMING_SNAKE_CASE : List[str] = temp else: for key in tensors.keys(): if any(key.endswith(a_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel SCREAMING_SNAKE_CASE : int = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks SCREAMING_SNAKE_CASE : Any = torch.cat([tensors[key], temp[key]] , dim=a_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(a_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): SCREAMING_SNAKE_CASE : Any = tensors[key] / pretraining_tp torch.save( a_ , os.path.join( a_ , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(a_ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): SCREAMING_SNAKE_CASE : Union[str, Any] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: SCREAMING_SNAKE_CASE : Any = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(a_ ) ).zfill(5 ) ) SCREAMING_SNAKE_CASE : int = BloomConfig() SCREAMING_SNAKE_CASE : Optional[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME SCREAMING_SNAKE_CASE : int = total_size with open(a_ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(a_ , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE : Optional[int] = json.dumps(a_ , indent=2 , sort_keys=a_ ) + '''\n''' f.write(a_ ) else: SCREAMING_SNAKE_CASE : List[Any] = BloomModel(a_ ) SCREAMING_SNAKE_CASE : Optional[Any] = os.listdir(a_ ) SCREAMING_SNAKE_CASE : List[Any] = sorted(filter(lambda a_ : s.startswith('''layer''' ) and "model_00" in s , a_ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = None for i, file in enumerate(a_ ): SCREAMING_SNAKE_CASE : List[str] = None for i in range(a_ ): # load all TP files SCREAMING_SNAKE_CASE : str = file.replace('''model_00''' , F"model_0{i}" ) SCREAMING_SNAKE_CASE : List[Any] = torch.load(os.path.join(a_ , a_ ) , map_location='''cpu''' ) # Rename keys in the transformers names SCREAMING_SNAKE_CASE : Dict = list(temp.keys() ) for key in keys: SCREAMING_SNAKE_CASE : int = temp.pop(a_ ) if tensors is None: SCREAMING_SNAKE_CASE : int = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(a_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel SCREAMING_SNAKE_CASE : Optional[int] = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks SCREAMING_SNAKE_CASE : List[Any] = torch.cat([tensors[key], temp[key]] , dim=a_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(a_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): SCREAMING_SNAKE_CASE : Any = tensors[key] / pretraining_tp SCREAMING_SNAKE_CASE : Dict = model.load_state_dict(a_ , strict=a_ ) assert not other_keys.unexpected_keys, F"The keys {other_keys.unexpected_keys} are unexpected" if missing_keys is None: SCREAMING_SNAKE_CASE : List[str] = set(other_keys.missing_keys ) else: SCREAMING_SNAKE_CASE : List[Any] = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F"The keys {missing_keys} are missing" # Save pytorch-model os.makedirs(a_ , exist_ok=a_ ) SCREAMING_SNAKE_CASE : int = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME SCREAMING_SNAKE_CASE : List[str] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}" ) if config.torch_dtype is not None: SCREAMING_SNAKE_CASE : Dict = model.to(config.torch_dtype ) torch.save(model.state_dict() , a_ ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(a_ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCamelCase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) lowerCamelCase__ : str = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[Any] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Dict = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
0
"""simple docstring""" from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """openai/whisper-base""" UpperCamelCase = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCamelCase = """transcriber""" UpperCamelCase = WhisperProcessor UpperCamelCase = WhisperForConditionalGeneration UpperCamelCase = ["""audio"""] UpperCamelCase = ["""text"""] def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :List[Any] ) -> Dict: '''simple docstring''' return self.pre_processor(lowerCamelCase_ , return_tensors='''pt''' ).input_features def __lowerCAmelCase ( self :int , lowerCamelCase_ :int ) -> Tuple: '''simple docstring''' return self.model.generate(inputs=lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :List[Any] ) -> Any: '''simple docstring''' return self.pre_processor.batch_decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ )[0]
707
"""simple docstring""" import os import sys lowerCamelCase__ : List[Any] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCamelCase__ : str = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __A ( *a_ : Any , **a_ : Union[str, Any] )-> Dict: '''simple docstring''' return AutoConfig.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __A ( *a_ : str , **a_ : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' return AutoTokenizer.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoModel.__doc__ ) def __A ( *a_ : List[str] , **a_ : int )-> Dict: '''simple docstring''' return AutoModel.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __A ( *a_ : Any , **a_ : Tuple )-> Dict: '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __A ( *a_ : Dict , **a_ : Optional[Any] )-> Optional[int]: '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __A ( *a_ : Optional[int] , **a_ : str )-> Optional[int]: '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __A ( *a_ : List[str] , **a_ : int )-> List[Any]: '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*a_ , **a_ )
18
0
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = AutoencoderKL UpperCamelCase = """sample""" UpperCamelCase = 1E-2 @property def __lowerCAmelCase ( self :List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = 4 SCREAMING_SNAKE_CASE : str = 3 SCREAMING_SNAKE_CASE : Union[str, Any] = (32, 32) SCREAMING_SNAKE_CASE : Any = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCamelCase_ ) return {"sample": image} @property def __lowerCAmelCase ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' return (3, 32, 32) @property def __lowerCAmelCase ( self :List[Any] ) -> List[str]: '''simple docstring''' return (3, 32, 32) def __lowerCAmelCase ( self :int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def __lowerCAmelCase ( self :Dict ) -> str: '''simple docstring''' pass def __lowerCAmelCase ( self :str ) -> str: '''simple docstring''' pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def __lowerCAmelCase ( self :int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_init_args_and_inputs_for_common() SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_class(**lowerCamelCase_ ) model.to(lowerCamelCase_ ) assert not model.is_gradient_checkpointing and model.training SCREAMING_SNAKE_CASE : List[str] = model(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() SCREAMING_SNAKE_CASE : str = torch.randn_like(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing SCREAMING_SNAKE_CASE : List[Any] = self.model_class(**lowerCamelCase_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCamelCase_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training SCREAMING_SNAKE_CASE : List[Any] = model_a(**lowerCamelCase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() SCREAMING_SNAKE_CASE : List[Any] = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) SCREAMING_SNAKE_CASE : Dict = dict(model.named_parameters() ) SCREAMING_SNAKE_CASE : int = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def __lowerCAmelCase ( self :Tuple ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __lowerCAmelCase ( self :int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) SCREAMING_SNAKE_CASE : str = model.to(lowerCamelCase_ ) model.eval() if torch_device == "mps": SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) SCREAMING_SNAKE_CASE : str = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) SCREAMING_SNAKE_CASE : int = image.to(lowerCamelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ , sample_posterior=lowerCamelCase_ , generator=lowerCamelCase_ ).sample SCREAMING_SNAKE_CASE : Optional[Any] = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": SCREAMING_SNAKE_CASE : int = torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(lowerCamelCase_ , lowerCamelCase_ , rtol=1E-2 ) ) @slow class lowercase__( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Dict ) -> Union[str, Any]: '''simple docstring''' return f"gaussian_noise_s={seed}_shape={'_'.join([str(lowerCamelCase_ ) for s in shape] )}.npy" def __lowerCAmelCase ( self :Union[str, Any] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self :str , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :Optional[Any]=(4, 3, 5_12, 5_12) , lowerCamelCase_ :Union[str, Any]=False ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = torch.floataa if fpaa else torch.floataa SCREAMING_SNAKE_CASE : List[str] = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCamelCase_ , lowerCamelCase_ ) ) ).to(lowerCamelCase_ ).to(lowerCamelCase_ ) return image def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :str="CompVis/stable-diffusion-v1-4" , lowerCamelCase_ :int=False ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = '''fp16''' if fpaa else None SCREAMING_SNAKE_CASE : Union[str, Any] = torch.floataa if fpaa else torch.floataa SCREAMING_SNAKE_CASE : Union[str, Any] = AutoencoderKL.from_pretrained( lowerCamelCase_ , subfolder='''vae''' , torch_dtype=lowerCamelCase_ , revision=lowerCamelCase_ , ) model.to(lowerCamelCase_ ).eval() return model def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Tuple=0 ) -> Optional[Any]: '''simple docstring''' if torch_device == "mps": return torch.manual_seed(lowerCamelCase_ ) return torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(lowerCamelCase_ , generator=lowerCamelCase_ , sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE : List[str] = sample[-1, -2:, -2:, :2].flatten().float().cpu() SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(lowerCamelCase_ , lowerCamelCase_ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :List[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = self.get_sd_image(lowerCamelCase_ , fpaa=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ , generator=lowerCamelCase_ , sample_posterior=lowerCamelCase_ ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE : Tuple = sample[-1, -2:, :2, -2:].flatten().float().cpu() SCREAMING_SNAKE_CASE : List[str] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ , lowerCamelCase_ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : Any = self.get_sd_image(lowerCamelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ ).sample assert sample.shape == image.shape SCREAMING_SNAKE_CASE : Any = sample[-1, -2:, -2:, :2].flatten().float().cpu() SCREAMING_SNAKE_CASE : Dict = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(lowerCamelCase_ , lowerCamelCase_ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : Dict = self.get_sd_image(lowerCamelCase_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Any = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] SCREAMING_SNAKE_CASE : Union[str, Any] = sample[-1, -2:, :2, -2:].flatten().cpu() SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ , lowerCamelCase_ , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def __lowerCAmelCase ( self :str , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[int] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.get_sd_image(lowerCamelCase_ , shape=(3, 4, 64, 64) , fpaa=lowerCamelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] SCREAMING_SNAKE_CASE : str = sample[-1, -2:, :2, -2:].flatten().float().cpu() SCREAMING_SNAKE_CASE : Any = torch.tensor(lowerCamelCase_ ) assert torch_all_close(lowerCamelCase_ , lowerCamelCase_ , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Optional[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.get_sd_vae_model(fpaa=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = self.get_sd_image(lowerCamelCase_ , shape=(3, 4, 64, 64) , fpaa=lowerCamelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(lowerCamelCase_ , lowerCamelCase_ , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : Dict = self.get_sd_image(lowerCamelCase_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[str] = model.decode(lowerCamelCase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model.decode(lowerCamelCase_ ).sample assert list(sample.shape ) == [3, 3, 5_12, 5_12] assert torch_all_close(lowerCamelCase_ , lowerCamelCase_ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.get_sd_vae_model() SCREAMING_SNAKE_CASE : List[Any] = self.get_sd_image(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.get_generator(lowerCamelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model.encode(lowerCamelCase_ ).latent_dist SCREAMING_SNAKE_CASE : Dict = dist.sample(generator=lowerCamelCase_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] SCREAMING_SNAKE_CASE : Optional[Any] = sample[0, -1, -3:, -3:].flatten().cpu() SCREAMING_SNAKE_CASE : Any = torch.tensor(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = 3E-3 if torch_device != '''mps''' else 1E-2 assert torch_all_close(lowerCamelCase_ , lowerCamelCase_ , atol=lowerCamelCase_ )
708
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Any = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """encodec""" def __init__( self :List[str] , lowerCamelCase_ :Tuple=[1.5, 3.0, 6.0, 1_2.0, 2_4.0] , lowerCamelCase_ :str=2_40_00 , lowerCamelCase_ :Any=1 , lowerCamelCase_ :List[Any]=False , lowerCamelCase_ :Optional[int]=None , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :str=1_28 , lowerCamelCase_ :Any=32 , lowerCamelCase_ :int=1 , lowerCamelCase_ :Dict=[8, 5, 4, 2] , lowerCamelCase_ :List[Any]="weight_norm" , lowerCamelCase_ :Optional[int]=7 , lowerCamelCase_ :Tuple=7 , lowerCamelCase_ :Optional[Any]=3 , lowerCamelCase_ :int=2 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Optional[int]="reflect" , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :Union[str, Any]=2 , lowerCamelCase_ :Dict=1.0 , lowerCamelCase_ :Any=10_24 , lowerCamelCase_ :str=None , lowerCamelCase_ :Union[str, Any]=True , **lowerCamelCase_ :Optional[int] , ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = target_bandwidths SCREAMING_SNAKE_CASE : List[str] = sampling_rate SCREAMING_SNAKE_CASE : Tuple = audio_channels SCREAMING_SNAKE_CASE : Tuple = normalize SCREAMING_SNAKE_CASE : str = chunk_length_s SCREAMING_SNAKE_CASE : List[str] = overlap SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = num_filters SCREAMING_SNAKE_CASE : Tuple = num_residual_layers SCREAMING_SNAKE_CASE : List[Any] = upsampling_ratios SCREAMING_SNAKE_CASE : Optional[int] = norm_type SCREAMING_SNAKE_CASE : Any = kernel_size SCREAMING_SNAKE_CASE : Union[str, Any] = last_kernel_size SCREAMING_SNAKE_CASE : Tuple = residual_kernel_size SCREAMING_SNAKE_CASE : Any = dilation_growth_rate SCREAMING_SNAKE_CASE : Optional[int] = use_causal_conv SCREAMING_SNAKE_CASE : str = pad_mode SCREAMING_SNAKE_CASE : List[Any] = compress SCREAMING_SNAKE_CASE : Optional[Any] = num_lstm_layers SCREAMING_SNAKE_CASE : Dict = trim_right_ratio SCREAMING_SNAKE_CASE : List[Any] = codebook_size SCREAMING_SNAKE_CASE : Union[str, Any] = codebook_dim if codebook_dim is not None else hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" ) super().__init__(**lowerCamelCase_ ) @property def __lowerCAmelCase ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __lowerCAmelCase ( self :List[str] ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __lowerCAmelCase ( self :Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __lowerCAmelCase ( self :Dict ) -> int: '''simple docstring''' return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
18
0
"""simple docstring""" from __future__ import annotations from math import gcd def __A ( a_ : int , a_ : int = 2 , a_ : int = 1 , a_ : int = 3 , )-> int | None: '''simple docstring''' if num < 2: raise ValueError('''The input value cannot be less than 2''' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(a_ : int , a_ : int , a_ : int ) -> int: return (pow(a_ , 2 ) + step) % modulus for _ in range(a_ ): # These track the position within the cycle detection logic. SCREAMING_SNAKE_CASE : str = seed SCREAMING_SNAKE_CASE : List[Any] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. SCREAMING_SNAKE_CASE : Any = rand_fn(a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : Dict = rand_fn(a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : Optional[int] = rand_fn(a_ , a_ , a_ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. SCREAMING_SNAKE_CASE : str = gcd(hare - tortoise , a_ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. SCREAMING_SNAKE_CASE : List[Any] = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowerCamelCase__ : int = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) lowerCamelCase__ : Any = parser.parse_args() lowerCamelCase__ : str = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(f'''{args.num} is probably prime''') else: lowerCamelCase__ : Any = args.num // divisor print(f'''{args.num} = {divisor} * {quotient}''')
709
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase__: '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :Tuple , lowerCamelCase_ :Union[str, Any]=2 , lowerCamelCase_ :Any=3 , lowerCamelCase_ :Union[str, Any]=4 , lowerCamelCase_ :List[str]=2 , lowerCamelCase_ :str=7 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Dict=True , lowerCamelCase_ :int=True , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Optional[Any]=99 , lowerCamelCase_ :Any=36 , lowerCamelCase_ :Any=3 , lowerCamelCase_ :str=4 , lowerCamelCase_ :Tuple=37 , lowerCamelCase_ :Optional[int]="gelu" , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :Tuple=5_12 , lowerCamelCase_ :Optional[Any]=16 , lowerCamelCase_ :List[str]=2 , lowerCamelCase_ :Optional[int]=0.0_2 , lowerCamelCase_ :int=6 , lowerCamelCase_ :str=6 , lowerCamelCase_ :Optional[Any]=3 , lowerCamelCase_ :Union[str, Any]=4 , lowerCamelCase_ :List[Any]=None , lowerCamelCase_ :Tuple=10_00 , ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : List[str] = num_channels SCREAMING_SNAKE_CASE : str = image_size SCREAMING_SNAKE_CASE : Optional[int] = patch_size SCREAMING_SNAKE_CASE : Tuple = text_seq_length SCREAMING_SNAKE_CASE : Optional[int] = is_training SCREAMING_SNAKE_CASE : Dict = use_input_mask SCREAMING_SNAKE_CASE : Any = use_token_type_ids SCREAMING_SNAKE_CASE : List[Any] = use_labels SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Dict = coordinate_size SCREAMING_SNAKE_CASE : List[Any] = shape_size SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = num_choices SCREAMING_SNAKE_CASE : List[str] = scope SCREAMING_SNAKE_CASE : Optional[int] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) SCREAMING_SNAKE_CASE : str = text_seq_length SCREAMING_SNAKE_CASE : int = (image_size // patch_size) ** 2 + 1 SCREAMING_SNAKE_CASE : Optional[Any] = self.text_seq_length + self.image_seq_length def __lowerCAmelCase ( self :List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE : str = bbox[i, j, 3] SCREAMING_SNAKE_CASE : List[str] = bbox[i, j, 1] SCREAMING_SNAKE_CASE : Any = t if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE : Any = bbox[i, j, 2] SCREAMING_SNAKE_CASE : Any = bbox[i, j, 0] SCREAMING_SNAKE_CASE : Optional[Any] = t SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.text_seq_length] ) SCREAMING_SNAKE_CASE : Any = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :str , lowerCamelCase_ :int , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = LayoutLMvaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # text + image SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ , pixel_values=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = model( lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only SCREAMING_SNAKE_CASE : List[str] = model(pixel_values=lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str] , lowerCamelCase_ :Any , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE : Dict = LayoutLMvaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : int = model( lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :str , lowerCamelCase_ :Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.num_labels SCREAMING_SNAKE_CASE : int = LayoutLMvaForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model( lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :Dict , lowerCamelCase_ :Dict , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :str , lowerCamelCase_ :Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = LayoutLMvaForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model( lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self :Optional[int] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Dict = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase = ( {"""document-question-answering""": LayoutLMvaForQuestionAnswering, """feature-extraction""": LayoutLMvaModel} if is_torch_available() else {} ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] ) -> Union[str, Any]: '''simple docstring''' return True def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = LayoutLMvaModelTester(self ) SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[str] , lowerCamelCase_ :str=False ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(lowerCamelCase_ ) if model_class in get_values(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Tuple = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(lowerCamelCase_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) elif model_class in get_values(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) elif model_class in [ *get_values(lowerCamelCase_ ), ]: SCREAMING_SNAKE_CASE : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) elif model_class in [ *get_values(lowerCamelCase_ ), ]: SCREAMING_SNAKE_CASE : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=lowerCamelCase_ , ) return inputs_dict def __lowerCAmelCase ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self :str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE : str = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[int] = LayoutLMvaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def __A ( )-> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class lowercase__( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self :str ) -> int: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase_ ) if is_vision_available() else None @slow def __lowerCAmelCase ( self :Optional[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = self.default_image_processor SCREAMING_SNAKE_CASE : List[Any] = prepare_img() SCREAMING_SNAKE_CASE : Tuple = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' ).pixel_values.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[1, 2]] ) SCREAMING_SNAKE_CASE : Dict = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass SCREAMING_SNAKE_CASE : Tuple = model( input_ids=input_ids.to(lowerCamelCase_ ) , bbox=bbox.to(lowerCamelCase_ ) , pixel_values=pixel_values.to(lowerCamelCase_ ) , ) # verify the logits SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase_ , atol=1E-4 ) )
18
0
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def __A ( )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } SCREAMING_SNAKE_CASE : Optional[int] = Dataset.from_dict(a_ ) return dataset class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __lowerCAmelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = get_dataset() SCREAMING_SNAKE_CASE : int = make_duplicate_clusters(lowerCamelCase_ , 0.8_5 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def __lowerCAmelCase ( self :List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = get_dataset() SCREAMING_SNAKE_CASE : Optional[Any] = deduplicate_dataset(lowerCamelCase_ ) self.assertEqual(len(lowerCamelCase_ ) , 2 ) print(lowerCamelCase_ ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , lowerCamelCase_ )
710
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") lowerCamelCase__ : Any = logging.getLogger(__name__) @dataclass class lowercase__: '''simple docstring''' UpperCamelCase = field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase = field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) UpperCamelCase = field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """A csv or a json file containing the training data."""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """A csv or a json file containing the validation data."""} ) UpperCamelCase = field(default=_UpperCAmelCase , metadata={"""help""": """A csv or a json file containing the test data."""} ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." SCREAMING_SNAKE_CASE : Optional[int] = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class lowercase__: '''simple docstring''' UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCamelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def __A ( )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. SCREAMING_SNAKE_CASE : Any = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: SCREAMING_SNAKE_CASE : List[Any] = data_args.train_file.split('''.''' )[-1] SCREAMING_SNAKE_CASE : Optional[int] = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." SCREAMING_SNAKE_CASE : str = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(F"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files SCREAMING_SNAKE_CASE : int = load_dataset('''csv''' , data_files=a_ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files SCREAMING_SNAKE_CASE : Tuple = load_dataset('''json''' , data_files=a_ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels SCREAMING_SNAKE_CASE : str = raw_datasets['''train'''].features['''label'''].names SCREAMING_SNAKE_CASE : Union[str, Any] = len(a_ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=a_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer SCREAMING_SNAKE_CASE : Dict = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=a_ , ) SCREAMING_SNAKE_CASE : List[Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=a_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE : Tuple = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch SCREAMING_SNAKE_CASE : Optional[Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. SCREAMING_SNAKE_CASE : Tuple = {'''Refused''': 0, '''Entailed''': 1} SCREAMING_SNAKE_CASE : List[Any] = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) SCREAMING_SNAKE_CASE : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(a_ : str ): # Tokenize the texts def _convert_table_text_to_pandas(a_ : List[Any] ): SCREAMING_SNAKE_CASE : List[Any] = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] SCREAMING_SNAKE_CASE : Dict = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd SCREAMING_SNAKE_CASE : List[Any] = examples['''statement'''] SCREAMING_SNAKE_CASE : Optional[int] = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) ) SCREAMING_SNAKE_CASE : Any = tokenizer(a_ , a_ , padding=a_ , max_length=a_ , truncation=a_ ) SCREAMING_SNAKE_CASE : List[Any] = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): SCREAMING_SNAKE_CASE : Optional[Any] = raw_datasets.map( a_ , batched=a_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) SCREAMING_SNAKE_CASE : List[str] = raw_datasets['''train'''] if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE : Any = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) SCREAMING_SNAKE_CASE : List[str] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) SCREAMING_SNAKE_CASE : Tuple = raw_datasets['''test'''] if data_args.max_predict_samples is not None: SCREAMING_SNAKE_CASE : Optional[int] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(a_ ) ) , 3 ): logger.info(F"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(a_ : EvalPrediction ): SCREAMING_SNAKE_CASE : str = p.predictions[0] if isinstance(p.predictions , a_ ) else p.predictions SCREAMING_SNAKE_CASE : Tuple = np.argmax(a_ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE : Tuple = default_data_collator elif training_args.fpaa: SCREAMING_SNAKE_CASE : Union[str, Any] = DataCollatorWithPadding(a_ , pad_to_multiple_of=8 ) else: SCREAMING_SNAKE_CASE : List[Any] = None # Initialize our Trainer SCREAMING_SNAKE_CASE : Optional[Any] = Trainer( model=a_ , args=a_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=a_ , tokenizer=a_ , data_collator=a_ , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE : List[str] = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE : str = last_checkpoint SCREAMING_SNAKE_CASE : str = trainer.train(resume_from_checkpoint=a_ ) SCREAMING_SNAKE_CASE : Optional[int] = train_result.metrics SCREAMING_SNAKE_CASE : int = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) SCREAMING_SNAKE_CASE : Optional[int] = min(a_ , len(a_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , a_ ) trainer.save_metrics('''train''' , a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) SCREAMING_SNAKE_CASE : Tuple = trainer.evaluate(eval_dataset=a_ ) SCREAMING_SNAKE_CASE : str = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = min(a_ , len(a_ ) ) trainer.log_metrics('''eval''' , a_ ) trainer.save_metrics('''eval''' , a_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. SCREAMING_SNAKE_CASE : Optional[Any] = predict_dataset.remove_columns('''label''' ) SCREAMING_SNAKE_CASE : Optional[Any] = trainer.predict(a_ , metric_key_prefix='''predict''' ).predictions SCREAMING_SNAKE_CASE : Union[str, Any] = np.argmax(a_ , axis=1 ) SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(a_ , '''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(a_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = label_list[item] writer.write(F"{index}\t{item}\n" ) SCREAMING_SNAKE_CASE : Optional[int] = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __A ( a_ : List[str] )-> int: '''simple docstring''' main() if __name__ == "__main__": main()
18
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Tuple = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Union[str, Any] = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCamelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
711
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__: '''simple docstring''' def __init__( self :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Any=13 , lowerCamelCase_ :Any=32 , lowerCamelCase_ :Union[str, Any]=2 , lowerCamelCase_ :Any=3 , lowerCamelCase_ :Union[str, Any]=16 , lowerCamelCase_ :int=[1, 2, 1] , lowerCamelCase_ :str=[2, 2, 4] , lowerCamelCase_ :str=2 , lowerCamelCase_ :Tuple=2.0 , lowerCamelCase_ :Union[str, Any]=True , lowerCamelCase_ :str=0.0 , lowerCamelCase_ :Optional[int]=0.0 , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Union[str, Any]="gelu" , lowerCamelCase_ :str=False , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :List[Any]=1E-5 , lowerCamelCase_ :int=True , lowerCamelCase_ :str=None , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Union[str, Any]=10 , lowerCamelCase_ :List[Any]=8 , ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Any = embed_dim SCREAMING_SNAKE_CASE : int = depths SCREAMING_SNAKE_CASE : List[str] = num_heads SCREAMING_SNAKE_CASE : Union[str, Any] = window_size SCREAMING_SNAKE_CASE : Optional[Any] = mlp_ratio SCREAMING_SNAKE_CASE : List[Any] = qkv_bias SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = drop_path_rate SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = use_absolute_embeddings SCREAMING_SNAKE_CASE : Any = patch_norm SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : List[Any] = scope SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = encoder_stride def __lowerCAmelCase ( self :Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : int = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self :int ) -> int: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = SwinvaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :str , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = SwinvaForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : List[Any] = SwinvaForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Any , lowerCamelCase_ :int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = SwinvaForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self :List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) UpperCamelCase = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __lowerCAmelCase ( self :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = SwinvaModelTester(self ) SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=lowerCamelCase_ , embed_dim=37 ) def __lowerCAmelCase ( self :Dict ) -> List[str]: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self :List[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def __lowerCAmelCase ( self :str ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def __lowerCAmelCase ( self :List[Any] ) -> Any: '''simple docstring''' pass def __lowerCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , nn.Linear ) ) def __lowerCAmelCase ( self :int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Tuple = True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Any = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.attentions SCREAMING_SNAKE_CASE : Tuple = len(self.model_tester.depths ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Optional[int] = config.window_size**2 SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Dict = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) SCREAMING_SNAKE_CASE : Dict = len(lowerCamelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : int = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): SCREAMING_SNAKE_CASE : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states SCREAMING_SNAKE_CASE : Optional[Any] = 2 self.assertEqual(out_len + added_hidden_states , len(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :Any , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states SCREAMING_SNAKE_CASE : str = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) # Swinv2 has a different seq_length SCREAMING_SNAKE_CASE : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) SCREAMING_SNAKE_CASE : Any = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = reshaped_hidden_states[0].shape SCREAMING_SNAKE_CASE : Optional[int] = ( reshaped_hidden_states[0].view(lowerCamelCase_ , lowerCamelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __lowerCAmelCase ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : List[str] = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = 3 SCREAMING_SNAKE_CASE : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE : Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , (padded_height, padded_width) ) def __lowerCAmelCase ( self :str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :Tuple ) -> List[str]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Tuple = SwinvaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Tuple = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class lowercase__( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self :Dict ) -> List[Any]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE : List[str] = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**lowerCamelCase_ ) # verify the logits SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) )
18
0
"""simple docstring""" import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType lowerCamelCase__ : List[str] = logging.get_logger(__name__) class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """vision-encoder-decoder""" UpperCamelCase = True def __init__( self :List[Any] , **lowerCamelCase_ :Tuple ) -> Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase_ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"A configuraton of type {self.model_type} cannot be instantiated because " f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" ) SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('''encoder''' ) SCREAMING_SNAKE_CASE : Optional[int] = encoder_config.pop('''model_type''' ) SCREAMING_SNAKE_CASE : Any = kwargs.pop('''decoder''' ) SCREAMING_SNAKE_CASE : List[Any] = decoder_config.pop('''model_type''' ) SCREAMING_SNAKE_CASE : Dict = AutoConfig.for_model(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = AutoConfig.for_model(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = True @classmethod def __lowerCAmelCase ( cls :int , lowerCamelCase_ :PretrainedConfig , lowerCamelCase_ :PretrainedConfig , **lowerCamelCase_ :List[str] ) -> PretrainedConfig: '''simple docstring''' logger.info('''Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Dict = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : int = self.encoder.to_dict() SCREAMING_SNAKE_CASE : Tuple = self.decoder.to_dict() SCREAMING_SNAKE_CASE : List[Any] = self.__class__.model_type return output class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = version.parse("""1.11""" ) @property def __lowerCAmelCase ( self :Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __lowerCAmelCase ( self :Optional[Any] ) -> float: '''simple docstring''' return 1E-4 @property def __lowerCAmelCase ( self :str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict({'''last_hidden_state''': {0: '''batch''', 1: '''encoder_sequence'''}} ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :Dict ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = OrderedDict() SCREAMING_SNAKE_CASE : Any = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''encoder_sequence'''} return common_inputs def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :"PreTrainedTokenizerBase" , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional["TensorType"] = None , ) -> Mapping[str, Any]: '''simple docstring''' import torch SCREAMING_SNAKE_CASE : Dict = OrderedDict() SCREAMING_SNAKE_CASE : Any = super().generate_dummy_inputs( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = dummy_input['''input_ids'''].shape SCREAMING_SNAKE_CASE : str = (batch, encoder_sequence, self._config.encoder_hidden_size) SCREAMING_SNAKE_CASE : Optional[Any] = dummy_input.pop('''input_ids''' ) SCREAMING_SNAKE_CASE : str = dummy_input.pop('''attention_mask''' ) SCREAMING_SNAKE_CASE : List[str] = torch.zeros(lowerCamelCase_ ) return common_inputs class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :Tuple ) -> None: '''simple docstring''' pass def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :PretrainedConfig ) -> OnnxConfig: '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(lowerCamelCase_ ) def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :PretrainedConfig , lowerCamelCase_ :PretrainedConfig , lowerCamelCase_ :str = "default" ) -> OnnxConfig: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(lowerCamelCase_ , lowerCamelCase_ )
712
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : str = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """blenderbot-small""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :Any , lowerCamelCase_ :Dict=5_02_65 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :Tuple=8 , lowerCamelCase_ :int=20_48 , lowerCamelCase_ :str=16 , lowerCamelCase_ :Optional[int]=8 , lowerCamelCase_ :str=20_48 , lowerCamelCase_ :Optional[Any]=16 , lowerCamelCase_ :Union[str, Any]=0.0 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int="gelu" , lowerCamelCase_ :Tuple=5_12 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :int=0.0 , lowerCamelCase_ :Tuple=0.0 , lowerCamelCase_ :Optional[int]=0.0_2 , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :Dict=False , lowerCamelCase_ :Optional[int]=0 , lowerCamelCase_ :List[Any]=1 , lowerCamelCase_ :Any=2 , lowerCamelCase_ :Optional[Any]=2 , **lowerCamelCase_ :Dict , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[Any] = d_model SCREAMING_SNAKE_CASE : Dict = encoder_ffn_dim SCREAMING_SNAKE_CASE : Tuple = encoder_layers SCREAMING_SNAKE_CASE : Dict = encoder_attention_heads SCREAMING_SNAKE_CASE : Any = decoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : str = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : Optional[Any] = attention_dropout SCREAMING_SNAKE_CASE : Any = activation_dropout SCREAMING_SNAKE_CASE : List[str] = activation_function SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : List[Any] = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_layers SCREAMING_SNAKE_CASE : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , forced_eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch'''} SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = self.num_layers for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = {0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE : List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: SCREAMING_SNAKE_CASE : Any = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Any = super().outputs else: SCREAMING_SNAKE_CASE : Tuple = super(lowerCamelCase_ , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_layers for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE : str = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __lowerCAmelCase ( self :int , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Generate decoder inputs SCREAMING_SNAKE_CASE : Optional[int] = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE : str = dict(**lowerCamelCase_ , **lowerCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = common_inputs['''input_ids'''].shape SCREAMING_SNAKE_CASE : str = common_inputs['''decoder_input_ids'''].shape[1] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.num_attention_heads SCREAMING_SNAKE_CASE : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE : Optional[Any] = decoder_seq_length + 3 SCREAMING_SNAKE_CASE : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE : List[Any] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowerCamelCase_ , lowerCamelCase_ )] , dim=1 ) SCREAMING_SNAKE_CASE : Optional[int] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.num_layers SCREAMING_SNAKE_CASE : int = min(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = max(lowerCamelCase_ , lowerCamelCase_ ) - min_num_layers SCREAMING_SNAKE_CASE : Tuple = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowerCamelCase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE : int = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowerCamelCase_ , lowerCamelCase_ ): common_inputs["past_key_values"].append((torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) ) return common_inputs def __lowerCAmelCase ( self :Any , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE : List[str] = seqlen + 2 SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self.num_layers SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = self.num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE : Tuple = common_inputs['''attention_mask'''].dtype SCREAMING_SNAKE_CASE : Any = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowerCamelCase_ , lowerCamelCase_ , dtype=lowerCamelCase_ )] , dim=1 ) SCREAMING_SNAKE_CASE : Optional[int] = [ (torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) for _ in range(lowerCamelCase_ ) ] return common_inputs def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : int = tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE : Tuple = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE : Any = dict(tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ ) ) return common_inputs def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) elif self.task == "causal-lm": SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_inputs_for_causal_lm( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) return common_inputs def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Dict ) -> List[Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Optional[Any] = super()._flatten_past_key_values_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : Tuple = super(lowerCamelCase_ , self )._flatten_past_key_values_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
18
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[Any] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Dict = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
713
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase__ : Dict = logging.get_logger(__name__) lowerCamelCase__ : Dict = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """layoutlmv3""" def __init__( self :str , lowerCamelCase_ :Optional[Any]=5_02_65 , lowerCamelCase_ :Dict=7_68 , lowerCamelCase_ :Union[str, Any]=12 , lowerCamelCase_ :Optional[Any]=12 , lowerCamelCase_ :Union[str, Any]=30_72 , lowerCamelCase_ :Any="gelu" , lowerCamelCase_ :Union[str, Any]=0.1 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Any=5_12 , lowerCamelCase_ :int=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=1E-5 , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :int=0 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :List[str]=10_24 , lowerCamelCase_ :Tuple=1_28 , lowerCamelCase_ :Any=1_28 , lowerCamelCase_ :Optional[Any]=True , lowerCamelCase_ :str=32 , lowerCamelCase_ :int=1_28 , lowerCamelCase_ :int=64 , lowerCamelCase_ :List[Any]=2_56 , lowerCamelCase_ :Any=True , lowerCamelCase_ :str=True , lowerCamelCase_ :Union[str, Any]=True , lowerCamelCase_ :List[str]=2_24 , lowerCamelCase_ :Dict=3 , lowerCamelCase_ :Union[str, Any]=16 , lowerCamelCase_ :Any=None , **lowerCamelCase_ :Optional[Any] , ) -> int: '''simple docstring''' super().__init__( vocab_size=lowerCamelCase_ , hidden_size=lowerCamelCase_ , num_hidden_layers=lowerCamelCase_ , num_attention_heads=lowerCamelCase_ , intermediate_size=lowerCamelCase_ , hidden_act=lowerCamelCase_ , hidden_dropout_prob=lowerCamelCase_ , attention_probs_dropout_prob=lowerCamelCase_ , max_position_embeddings=lowerCamelCase_ , type_vocab_size=lowerCamelCase_ , initializer_range=lowerCamelCase_ , layer_norm_eps=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Optional[Any] = max_ad_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = coordinate_size SCREAMING_SNAKE_CASE : Tuple = shape_size SCREAMING_SNAKE_CASE : Optional[int] = has_relative_attention_bias SCREAMING_SNAKE_CASE : List[Any] = rel_pos_bins SCREAMING_SNAKE_CASE : int = max_rel_pos SCREAMING_SNAKE_CASE : Any = has_spatial_attention_bias SCREAMING_SNAKE_CASE : List[Any] = rel_ad_pos_bins SCREAMING_SNAKE_CASE : Dict = max_rel_ad_pos SCREAMING_SNAKE_CASE : Optional[int] = text_embed SCREAMING_SNAKE_CASE : Any = visual_embed SCREAMING_SNAKE_CASE : Any = input_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : str = classifier_dropout class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = version.parse("""1.12""" ) @property def __lowerCAmelCase ( self :List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def __lowerCAmelCase ( self :Optional[int] ) -> float: '''simple docstring''' return 1E-5 @property def __lowerCAmelCase ( self :Tuple ) -> int: '''simple docstring''' return 12 def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :"ProcessorMixin" , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional["TensorType"] = None , lowerCamelCase_ :int = 3 , lowerCamelCase_ :int = 40 , lowerCamelCase_ :int = 40 , ) -> Mapping[str, Any]: '''simple docstring''' setattr(processor.image_processor , '''apply_ocr''' , lowerCamelCase_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : Dict = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : Union[str, Any] = processor.tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE : Union[str, Any] = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes SCREAMING_SNAKE_CASE : int = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) SCREAMING_SNAKE_CASE : List[Any] = self._generate_dummy_images(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = dict( processor( lowerCamelCase_ , text=lowerCamelCase_ , boxes=lowerCamelCase_ , return_tensors=lowerCamelCase_ , ) ) return inputs
18
0
"""simple docstring""" import random from typing import Any def __A ( a_ : list )-> list[Any]: '''simple docstring''' for _ in range(len(a_ ) ): SCREAMING_SNAKE_CASE : Tuple = random.randint(0 , len(a_ ) - 1 ) SCREAMING_SNAKE_CASE : str = random.randint(0 , len(a_ ) - 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = data[b], data[a] return data if __name__ == "__main__": lowerCamelCase__ : Tuple = [0, 1, 2, 3, 4, 5, 6, 7] lowerCamelCase__ : List[Any] = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
714
"""simple docstring""" import math def __A ( a_ : list , a_ : int )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = len(a_ ) SCREAMING_SNAKE_CASE : Optional[Any] = int(math.floor(math.sqrt(a_ ) ) ) SCREAMING_SNAKE_CASE : List[str] = 0 while arr[min(a_ , a_ ) - 1] < x: SCREAMING_SNAKE_CASE : Optional[Any] = step step += int(math.floor(math.sqrt(a_ ) ) ) if prev >= n: return -1 while arr[prev] < x: SCREAMING_SNAKE_CASE : Any = prev + 1 if prev == min(a_ , a_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase__ : List[str] = [int(item) for item in user_input.split(",")] lowerCamelCase__ : Dict = int(input("Enter the number to be searched:\n")) lowerCamelCase__ : Tuple = jump_search(arr, x) if res == -1: print("Number not found!") else: print(f'''Number {x} is at index {res}''')
18
0
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") lowerCamelCase__ : Any = logging.getLogger(__name__) @dataclass class lowercase__: '''simple docstring''' UpperCamelCase = field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase = field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) UpperCamelCase = field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """A csv or a json file containing the training data."""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """A csv or a json file containing the validation data."""} ) UpperCamelCase = field(default=_UpperCAmelCase , metadata={"""help""": """A csv or a json file containing the test data."""} ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." SCREAMING_SNAKE_CASE : Optional[int] = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class lowercase__: '''simple docstring''' UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCamelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def __A ( )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE : Dict = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. SCREAMING_SNAKE_CASE : Any = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: SCREAMING_SNAKE_CASE : List[Any] = data_args.train_file.split('''.''' )[-1] SCREAMING_SNAKE_CASE : Optional[int] = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." SCREAMING_SNAKE_CASE : str = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(F"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files SCREAMING_SNAKE_CASE : int = load_dataset('''csv''' , data_files=a_ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files SCREAMING_SNAKE_CASE : Tuple = load_dataset('''json''' , data_files=a_ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels SCREAMING_SNAKE_CASE : str = raw_datasets['''train'''].features['''label'''].names SCREAMING_SNAKE_CASE : Union[str, Any] = len(a_ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=a_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer SCREAMING_SNAKE_CASE : Dict = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=a_ , ) SCREAMING_SNAKE_CASE : List[Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=a_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE : Tuple = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch SCREAMING_SNAKE_CASE : Optional[Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. SCREAMING_SNAKE_CASE : Tuple = {'''Refused''': 0, '''Entailed''': 1} SCREAMING_SNAKE_CASE : List[Any] = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) SCREAMING_SNAKE_CASE : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(a_ : str ): # Tokenize the texts def _convert_table_text_to_pandas(a_ : List[Any] ): SCREAMING_SNAKE_CASE : List[Any] = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] SCREAMING_SNAKE_CASE : Dict = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd SCREAMING_SNAKE_CASE : List[Any] = examples['''statement'''] SCREAMING_SNAKE_CASE : Optional[int] = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) ) SCREAMING_SNAKE_CASE : Any = tokenizer(a_ , a_ , padding=a_ , max_length=a_ , truncation=a_ ) SCREAMING_SNAKE_CASE : List[Any] = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): SCREAMING_SNAKE_CASE : Optional[Any] = raw_datasets.map( a_ , batched=a_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) SCREAMING_SNAKE_CASE : List[str] = raw_datasets['''train'''] if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE : Any = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) SCREAMING_SNAKE_CASE : List[str] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) SCREAMING_SNAKE_CASE : Tuple = raw_datasets['''test'''] if data_args.max_predict_samples is not None: SCREAMING_SNAKE_CASE : Optional[int] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(a_ ) ) , 3 ): logger.info(F"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(a_ : EvalPrediction ): SCREAMING_SNAKE_CASE : str = p.predictions[0] if isinstance(p.predictions , a_ ) else p.predictions SCREAMING_SNAKE_CASE : Tuple = np.argmax(a_ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE : Tuple = default_data_collator elif training_args.fpaa: SCREAMING_SNAKE_CASE : Union[str, Any] = DataCollatorWithPadding(a_ , pad_to_multiple_of=8 ) else: SCREAMING_SNAKE_CASE : List[Any] = None # Initialize our Trainer SCREAMING_SNAKE_CASE : Optional[Any] = Trainer( model=a_ , args=a_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=a_ , tokenizer=a_ , data_collator=a_ , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE : List[str] = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE : str = last_checkpoint SCREAMING_SNAKE_CASE : str = trainer.train(resume_from_checkpoint=a_ ) SCREAMING_SNAKE_CASE : Optional[int] = train_result.metrics SCREAMING_SNAKE_CASE : int = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) SCREAMING_SNAKE_CASE : Optional[int] = min(a_ , len(a_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , a_ ) trainer.save_metrics('''train''' , a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) SCREAMING_SNAKE_CASE : Tuple = trainer.evaluate(eval_dataset=a_ ) SCREAMING_SNAKE_CASE : str = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = min(a_ , len(a_ ) ) trainer.log_metrics('''eval''' , a_ ) trainer.save_metrics('''eval''' , a_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. SCREAMING_SNAKE_CASE : Optional[Any] = predict_dataset.remove_columns('''label''' ) SCREAMING_SNAKE_CASE : Optional[Any] = trainer.predict(a_ , metric_key_prefix='''predict''' ).predictions SCREAMING_SNAKE_CASE : Union[str, Any] = np.argmax(a_ , axis=1 ) SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(a_ , '''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(a_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = label_list[item] writer.write(F"{index}\t{item}\n" ) SCREAMING_SNAKE_CASE : Optional[int] = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __A ( a_ : List[str] )-> int: '''simple docstring''' main() if __name__ == "__main__": main()
715
"""simple docstring""" from sklearn.metrics import fa_score import datasets lowerCamelCase__ : List[Any] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" lowerCamelCase__ : str = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" lowerCamelCase__ : int = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int=None , lowerCamelCase_ :str=1 , lowerCamelCase_ :Union[str, Any]="binary" , lowerCamelCase_ :Dict=None ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : int = fa_score( lowerCamelCase_ , lowerCamelCase_ , labels=lowerCamelCase_ , pos_label=lowerCamelCase_ , average=lowerCamelCase_ , sample_weight=lowerCamelCase_ ) return {"f1": float(lowerCamelCase_ ) if score.size == 1 else score}
18
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ : int = logging.get_logger(__name__) class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """maskformer-swin""" UpperCamelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :Optional[int] , lowerCamelCase_ :List[Any]=2_24 , lowerCamelCase_ :Tuple=4 , lowerCamelCase_ :Optional[Any]=3 , lowerCamelCase_ :List[str]=96 , lowerCamelCase_ :int=[2, 2, 6, 2] , lowerCamelCase_ :Union[str, Any]=[3, 6, 12, 24] , lowerCamelCase_ :Optional[int]=7 , lowerCamelCase_ :Tuple=4.0 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Dict=0.0 , lowerCamelCase_ :Any=0.0 , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :List[str]=0.0_2 , lowerCamelCase_ :Any=1E-5 , lowerCamelCase_ :Union[str, Any]=None , lowerCamelCase_ :List[str]=None , **lowerCamelCase_ :Union[str, Any] , ) -> Dict: '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : Optional[Any] = patch_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = embed_dim SCREAMING_SNAKE_CASE : List[Any] = depths SCREAMING_SNAKE_CASE : List[str] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = num_heads SCREAMING_SNAKE_CASE : Any = window_size SCREAMING_SNAKE_CASE : List[str] = mlp_ratio SCREAMING_SNAKE_CASE : str = qkv_bias SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : int = drop_path_rate SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Any = use_absolute_embeddings SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE : int = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) SCREAMING_SNAKE_CASE : Dict = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] SCREAMING_SNAKE_CASE : int = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names )
716
"""simple docstring""" from __future__ import annotations from fractions import Fraction def __A ( a_ : int , a_ : int )-> bool: '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def __A ( a_ : int )-> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : List[str] = 11 SCREAMING_SNAKE_CASE : Union[str, Any] = int('''1''' + '''0''' * digit_len ) for num in range(a_ , a_ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(a_ , a_ ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 SCREAMING_SNAKE_CASE : Optional[Any] = 10 return solutions def __A ( a_ : int = 2 )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 1.0 for fraction in fraction_list(a_ ): SCREAMING_SNAKE_CASE : List[str] = Fraction(a_ ) result *= frac.denominator / frac.numerator return int(a_ ) if __name__ == "__main__": print(solution())
18
0
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCamelCase__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase__ : Optional[int] = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n" def __A ( a_ : Any , a_ : Optional[Any] , a_ : List[str]=8 )-> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE : Any = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :List[str] , lowerCamelCase_ :UNetaDConditionModel , lowerCamelCase_ :DDPMScheduler , lowerCamelCase_ :VQModel , ) -> str: '''simple docstring''' super().__init__() self.register_modules( unet=lowerCamelCase_ , scheduler=lowerCamelCase_ , movq=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :str , lowerCamelCase_ :int , lowerCamelCase_ :Tuple , lowerCamelCase_ :int ) -> List[Any]: '''simple docstring''' if latents is None: SCREAMING_SNAKE_CASE : List[Any] = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ , device=lowerCamelCase_ , dtype=lowerCamelCase_ ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) SCREAMING_SNAKE_CASE : int = latents.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = latents * scheduler.init_noise_sigma return latents def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Any=0 ) -> List[Any]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) SCREAMING_SNAKE_CASE : List[str] = torch.device(f"cuda:{gpu_id}" ) SCREAMING_SNAKE_CASE : int = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase_ , lowerCamelCase_ ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :Union[str, Any]=0 ) -> Optional[int]: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) SCREAMING_SNAKE_CASE : Optional[int] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=lowerCamelCase_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE : str = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE : List[Any] = cpu_offload_with_hook(lowerCamelCase_ , lowerCamelCase_ , prev_module_hook=lowerCamelCase_ ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE : int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCAmelCase ( self :int ) -> Optional[int]: '''simple docstring''' if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase_ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase_ ) def __call__( self :str , lowerCamelCase_ :Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase_ :Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCamelCase_ :torch.FloatTensor , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 5_12 , lowerCamelCase_ :int = 1_00 , lowerCamelCase_ :float = 4.0 , lowerCamelCase_ :int = 1 , lowerCamelCase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ :Optional[torch.FloatTensor] = None , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self._execution_device SCREAMING_SNAKE_CASE : List[Any] = guidance_scale > 1.0 if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = torch.cat(lowerCamelCase_ , dim=0 ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat(lowerCamelCase_ , dim=0 ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : List[Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: SCREAMING_SNAKE_CASE : Tuple = image_embeds.repeat_interleave(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : Optional[Any] = negative_image_embeds.repeat_interleave(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : Tuple = hint.repeat_interleave(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : Any = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCamelCase_ ) self.scheduler.set_timesteps(lowerCamelCase_ , device=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.scheduler.timesteps SCREAMING_SNAKE_CASE : List[str] = self.movq.config.latent_channels SCREAMING_SNAKE_CASE : Any = downscale_height_and_width(lowerCamelCase_ , lowerCamelCase_ , self.movq_scale_factor ) # create initial latent SCREAMING_SNAKE_CASE : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowerCamelCase_ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE : Any = {'''image_embeds''': image_embeds, '''hint''': hint} SCREAMING_SNAKE_CASE : Dict = self.unet( sample=lowerCamelCase_ , timestep=lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ , added_cond_kwargs=lowerCamelCase_ , return_dict=lowerCamelCase_ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE : Any = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE : str = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE : List[Any] = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE : int = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE : str = self.scheduler.step( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , generator=lowerCamelCase_ , )[0] # post-processing SCREAMING_SNAKE_CASE : int = self.movq.decode(lowerCamelCase_ , force_not_quantize=lowerCamelCase_ )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE : Optional[Any] = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE : Optional[Any] = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : str = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : Optional[int] = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase_ )
717
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ : int = logging.get_logger(__name__) class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """maskformer-swin""" UpperCamelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :Optional[int] , lowerCamelCase_ :List[Any]=2_24 , lowerCamelCase_ :Tuple=4 , lowerCamelCase_ :Optional[Any]=3 , lowerCamelCase_ :List[str]=96 , lowerCamelCase_ :int=[2, 2, 6, 2] , lowerCamelCase_ :Union[str, Any]=[3, 6, 12, 24] , lowerCamelCase_ :Optional[int]=7 , lowerCamelCase_ :Tuple=4.0 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Dict=0.0 , lowerCamelCase_ :Any=0.0 , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :List[str]=0.0_2 , lowerCamelCase_ :Any=1E-5 , lowerCamelCase_ :Union[str, Any]=None , lowerCamelCase_ :List[str]=None , **lowerCamelCase_ :Union[str, Any] , ) -> Dict: '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : Optional[Any] = patch_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = embed_dim SCREAMING_SNAKE_CASE : List[Any] = depths SCREAMING_SNAKE_CASE : List[str] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = num_heads SCREAMING_SNAKE_CASE : Any = window_size SCREAMING_SNAKE_CASE : List[str] = mlp_ratio SCREAMING_SNAKE_CASE : str = qkv_bias SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : int = drop_path_rate SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Any = use_absolute_embeddings SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE : int = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) SCREAMING_SNAKE_CASE : Dict = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names )
18
0
"""simple docstring""" import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCamelCase__ : str = get_tests_dir("fixtures") lowerCamelCase__ : Optional[Any] = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowerCamelCase__ : Optional[Any] = get_tests_dir("fixtures/dummy-config.json") class lowercase__( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self :str ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = 0 def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''' ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE : int = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally SCREAMING_SNAKE_CASE : int = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ).to_dict() config_dict.pop('''feature_extractor_type''' ) SCREAMING_SNAKE_CASE : str = WavaVecaFeatureExtractor(**lowerCamelCase_ ) # save in new folder model_config.save_pretrained(lowerCamelCase_ ) config.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE : Optional[int] = json.loads(config.to_json_string() ) self.assertTrue('''_processor_class''' not in dict_as_saved ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def __lowerCAmelCase ( self :Dict ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase_ , '''bert-base is not a local folder and is not a valid model identifier''' ): SCREAMING_SNAKE_CASE : Optional[int] = AutoFeatureExtractor.from_pretrained('''bert-base''' ) def __lowerCAmelCase ( self :Any ) -> Any: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase_ , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , revision='''aaaaaa''' ) def __lowerCAmelCase ( self :Any ) -> Dict: '''simple docstring''' with self.assertRaisesRegex( lowerCamelCase_ , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): SCREAMING_SNAKE_CASE : Any = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''' ) def __lowerCAmelCase ( self :List[str] ) -> List[str]: '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : List[Any] = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ , trust_remote_code=lowerCamelCase_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' try: AutoConfig.register('''custom''' , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCamelCase_ ): AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # Now that the config is registered, it can be used as any other config with the auto-API SCREAMING_SNAKE_CASE : List[Any] = CustomFeatureExtractor.from_pretrained(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = AutoFeatureExtractor.from_pretrained(lowerCamelCase_ ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __lowerCAmelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = True try: AutoConfig.register('''custom''' , lowerCamelCase_ ) AutoFeatureExtractor.register(lowerCamelCase_ , lowerCamelCase_ ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE : int = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE : int = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE : Union[str, Any] = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=lowerCamelCase_ ) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' ) self.assertTrue(not hasattr(lowerCamelCase_ , '''is_local''' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
718
"""simple docstring""" import math class lowercase__: '''simple docstring''' def __init__( self :Union[str, Any] , lowerCamelCase_ :List[str]=0 ) -> List[Any]: # a graph with Node 0,1,...,N-1 '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = n SCREAMING_SNAKE_CASE : List[Any] = [ [math.inf for j in range(0 , lowerCamelCase_ )] for i in range(0 , lowerCamelCase_ ) ] # adjacency matrix for weight SCREAMING_SNAKE_CASE : Any = [ [math.inf for j in range(0 , lowerCamelCase_ )] for i in range(0 , lowerCamelCase_ ) ] # dp[i][j] stores minimum distance from i to j def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = w def __lowerCAmelCase ( self :str ) -> Union[str, Any]: '''simple docstring''' for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): SCREAMING_SNAKE_CASE : List[str] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] ) -> Optional[Any]: '''simple docstring''' return self.dp[u][v] if __name__ == "__main__": lowerCamelCase__ : Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
18
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCamelCase__ : Dict = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Dict = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Dict = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys lowerCamelCase__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Tuple = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Union[str, Any] = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCamelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = (DPMSolverSinglestepScheduler,) UpperCamelCase = (("""num_inference_steps""", 25),) def __lowerCAmelCase ( self :List[str] , **lowerCamelCase_ :int ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''prediction_type''': '''epsilon''', '''thresholding''': False, '''sample_max_value''': 1.0, '''algorithm_type''': '''dpmsolver++''', '''solver_type''': '''midpoint''', '''lambda_min_clipped''': -float('''inf''' ), '''variance_type''': None, } config.update(**lowerCamelCase_ ) return config def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :List[Any]=0 , **lowerCamelCase_ :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('''num_inference_steps''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_sample SCREAMING_SNAKE_CASE : Optional[Any] = 0.1 * sample SCREAMING_SNAKE_CASE : Tuple = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : int = self.get_scheduler_config(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class.from_pretrained(lowerCamelCase_ ) new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals SCREAMING_SNAKE_CASE : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE : Dict = sample, sample for t in range(lowerCamelCase_ , time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE : List[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Union[str, Any] = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self :Optional[Any] ) -> List[Any]: '''simple docstring''' pass def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :Optional[Any]=0 , **lowerCamelCase_ :Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('''num_inference_steps''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample SCREAMING_SNAKE_CASE : List[str] = 0.1 * sample SCREAMING_SNAKE_CASE : Union[str, Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE : str = self.get_scheduler_config() SCREAMING_SNAKE_CASE : Tuple = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE : Tuple = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = scheduler_class.from_pretrained(lowerCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE : Any = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : str = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :List[str] ) -> str: '''simple docstring''' if scheduler is None: SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Dict = self.get_scheduler_config(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = 10 SCREAMING_SNAKE_CASE : int = self.dummy_model() SCREAMING_SNAKE_CASE : int = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample return sample def __lowerCAmelCase ( self :int ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE : Optional[int] = 50 SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_model() SCREAMING_SNAKE_CASE : Dict = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase_ ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_5_7_4 ) < 1E-3 def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def __lowerCAmelCase ( self :Dict ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE : Optional[int] = self.full_loop(scheduler=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 SCREAMING_SNAKE_CASE : str = DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE : Optional[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE : Optional[int] = UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE : List[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.full_loop(scheduler=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' self.check_over_configs(thresholding=lowerCamelCase_ ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase_ , prediction_type=lowerCamelCase_ , sample_max_value=lowerCamelCase_ , algorithm_type='''dpmsolver++''' , solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , ) def __lowerCAmelCase ( self :Any ) -> Tuple: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> List[str]: '''simple docstring''' for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , algorithm_type=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.full_loop( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , algorithm_type=lowerCamelCase_ , ) assert not torch.isnan(lowerCamelCase_ ).any(), "Samples have nan numbers" def __lowerCAmelCase ( self :Any ) -> Tuple: '''simple docstring''' self.check_over_configs(lower_order_final=lowerCamelCase_ ) self.check_over_configs(lower_order_final=lowerCamelCase_ ) def __lowerCAmelCase ( self :List[str] ) -> Any: '''simple docstring''' self.check_over_configs(lambda_min_clipped=-float('''inf''' ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def __lowerCAmelCase ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' self.check_over_configs(variance_type=lowerCamelCase_ ) self.check_over_configs(variance_type='''learned_range''' ) def __lowerCAmelCase ( self :Optional[Any] ) -> Tuple: '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowerCamelCase_ , time_step=0 ) def __lowerCAmelCase ( self :str ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.full_loop() SCREAMING_SNAKE_CASE : int = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_7_9_1 ) < 1E-3 def __lowerCAmelCase ( self :List[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.full_loop(use_karras_sigmas=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_2_4_8 ) < 1E-3 def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.full_loop(prediction_type='''v_prediction''' ) SCREAMING_SNAKE_CASE : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.1_4_5_3 ) < 1E-3 def __lowerCAmelCase ( self :Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.full_loop(prediction_type='''v_prediction''' , use_karras_sigmas=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.0_6_4_9 ) < 1E-3 def __lowerCAmelCase ( self :Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.scheduler_classes[0] SCREAMING_SNAKE_CASE : Optional[Any] = self.get_scheduler_config(thresholding=lowerCamelCase_ , dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = 10 SCREAMING_SNAKE_CASE : Any = self.dummy_model() SCREAMING_SNAKE_CASE : Tuple = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample assert sample.dtype == torch.floataa
720
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :List[str] , lowerCamelCase_ :Union[List[ControlNetModel], Tuple[ControlNetModel]] ) -> Union[str, Any]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList(lowerCamelCase_ ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :torch.FloatTensor , lowerCamelCase_ :Union[torch.Tensor, float, int] , lowerCamelCase_ :torch.Tensor , lowerCamelCase_ :List[torch.tensor] , lowerCamelCase_ :List[float] , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[Dict[str, Any]] = None , lowerCamelCase_ :bool = False , lowerCamelCase_ :bool = True , ) -> Union[ControlNetOutput, Tuple]: '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(lowerCamelCase_ , lowerCamelCase_ , self.nets ) ): SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = controlnet( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) # merge samples if i == 0: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = down_samples, mid_sample else: SCREAMING_SNAKE_CASE : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowerCamelCase_ , lowerCamelCase_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Union[str, os.PathLike] , lowerCamelCase_ :bool = True , lowerCamelCase_ :Callable = None , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[str] = None , ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : Any = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowerCamelCase_ , is_main_process=lowerCamelCase_ , save_function=lowerCamelCase_ , safe_serialization=lowerCamelCase_ , variant=lowerCamelCase_ , ) idx += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = model_path_to_save + f"_{idx}" @classmethod def __lowerCAmelCase ( cls :Dict , lowerCamelCase_ :Optional[Union[str, os.PathLike]] , **lowerCamelCase_ :Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Optional[int] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... SCREAMING_SNAKE_CASE : Dict = pretrained_model_path while os.path.isdir(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Tuple = ControlNetModel.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) controlnets.append(lowerCamelCase_ ) idx += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + f"_{idx}" logger.info(f"{len(lowerCamelCase_ )} controlnets loaded from {pretrained_model_path}." ) if len(lowerCamelCase_ ) == 0: raise ValueError( f"No ControlNets found under {os.path.dirname(lowerCamelCase_ )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(lowerCamelCase_ )
18
0
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters lowerCamelCase__ : List[str] = False lowerCamelCase__ : str = False def __A ( a_ : Namespace )-> Tuple: '''simple docstring''' return TrainCommand(a_ ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' @staticmethod def __lowerCAmelCase ( lowerCamelCase_ :ArgumentParser ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''' ) train_parser.add_argument( '''--train_data''' , type=lowerCamelCase_ , required=lowerCamelCase_ , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=lowerCamelCase_ , default=0 , help='''Column of the dataset csv file with example labels.''' ) train_parser.add_argument( '''--column_text''' , type=lowerCamelCase_ , default=1 , help='''Column of the dataset csv file with example texts.''' ) train_parser.add_argument( '''--column_id''' , type=lowerCamelCase_ , default=2 , help='''Column of the dataset csv file with example ids.''' ) train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''' ) train_parser.add_argument('''--validation_data''' , type=lowerCamelCase_ , default='''''' , help='''path to validation dataset.''' ) train_parser.add_argument( '''--validation_split''' , type=lowerCamelCase_ , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=lowerCamelCase_ , default='''./''' , help='''path to saved the trained model.''' ) train_parser.add_argument( '''--task''' , type=lowerCamelCase_ , default='''text_classification''' , help='''Task to train the model on.''' ) train_parser.add_argument( '''--model''' , type=lowerCamelCase_ , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''' ) train_parser.add_argument('''--train_batch_size''' , type=lowerCamelCase_ , default=32 , help='''Batch size for training.''' ) train_parser.add_argument('''--valid_batch_size''' , type=lowerCamelCase_ , default=64 , help='''Batch size for validation.''' ) train_parser.add_argument('''--learning_rate''' , type=lowerCamelCase_ , default=3E-5 , help='''Learning rate.''' ) train_parser.add_argument('''--adam_epsilon''' , type=lowerCamelCase_ , default=1E-08 , help='''Epsilon for Adam optimizer.''' ) train_parser.set_defaults(func=lowerCamelCase_ ) def __init__( self :Union[str, Any] , lowerCamelCase_ :Namespace ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = logging.get_logger('''transformers-cli/training''' ) SCREAMING_SNAKE_CASE : Optional[int] = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = args.output SCREAMING_SNAKE_CASE : List[str] = args.column_label SCREAMING_SNAKE_CASE : Dict = args.column_text SCREAMING_SNAKE_CASE : Dict = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}" ) if args.task == "text_classification": SCREAMING_SNAKE_CASE : Dict = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}" ) SCREAMING_SNAKE_CASE : Any = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) SCREAMING_SNAKE_CASE : Dict = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}" ) SCREAMING_SNAKE_CASE : List[Any] = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) SCREAMING_SNAKE_CASE : Any = args.validation_split SCREAMING_SNAKE_CASE : Union[str, Any] = args.train_batch_size SCREAMING_SNAKE_CASE : List[Any] = args.valid_batch_size SCREAMING_SNAKE_CASE : List[str] = args.learning_rate SCREAMING_SNAKE_CASE : Union[str, Any] = args.adam_epsilon def __lowerCAmelCase ( self :str ) -> List[Any]: '''simple docstring''' if self.framework == "tf": return self.run_tf() return self.run_torch() def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' raise NotImplementedError def __lowerCAmelCase ( self :List[str] ) -> Tuple: '''simple docstring''' self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
721
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def __A ( a_ : float , a_ : float , a_ : bool = False )-> list[float]: '''simple docstring''' if radian_mode: return [magnitude * cos(a_ ), magnitude * sin(a_ )] return [magnitude * cos(radians(a_ ) ), magnitude * sin(radians(a_ ) )] def __A ( a_ : NDArray[floataa] , a_ : NDArray[floataa] , a_ : float = 10**-1 )-> bool: '''simple docstring''' SCREAMING_SNAKE_CASE : NDArray[floataa] = cross(a_ , a_ ) SCREAMING_SNAKE_CASE : float = sum(a_ ) return abs(a_ ) < eps if __name__ == "__main__": # Test to check if it works lowerCamelCase__ : Optional[Any] = array( [ polar_force(7_1_8.4, 180 - 30), polar_force(8_7_9.5_4, 45), polar_force(100, -90), ] ) lowerCamelCase__ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowerCamelCase__ : Union[str, Any] = array( [ polar_force(30 * 9.8_1, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) lowerCamelCase__ : Any = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowerCamelCase__ : Union[str, Any] = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) lowerCamelCase__ : Optional[int] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
18
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : List[str] = { "configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"], "feature_extraction_whisper": ["WhisperFeatureExtractor"], "processing_whisper": ["WhisperProcessor"], "tokenization_whisper": ["WhisperTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Dict = ["WhisperTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : List[str] = [ "WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "WhisperForConditionalGeneration", "WhisperModel", "WhisperPreTrainedModel", "WhisperForAudioClassification", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[int] = [ "TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWhisperForConditionalGeneration", "TFWhisperModel", "TFWhisperPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : int = [ "FlaxWhisperForConditionalGeneration", "FlaxWhisperModel", "FlaxWhisperPreTrainedModel", "FlaxWhisperForAudioClassification", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys lowerCamelCase__ : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
700
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowerCamelCase__ : Optional[Any] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowerCamelCase__ : Optional[int] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowerCamelCase__ : Optional[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def __A ( a_ : str , a_ : str )-> tuple[str, float]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = len([g for position, g in enumerate(a_ ) if g == main_target[position]] ) return (item, float(a_ )) def __A ( a_ : str , a_ : str )-> tuple[str, str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = random.randint(0 , len(a_ ) - 1 ) SCREAMING_SNAKE_CASE : str = parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE : Dict = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __A ( a_ : str , a_ : list[str] )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = list(a_ ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE : Any = random.choice(a_ ) return "".join(a_ ) def __A ( a_ : tuple[str, float] , a_ : list[tuple[str, float]] , a_ : list[str] , )-> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE : List[str] = int(parent_a[1] * 1_00 ) + 1 SCREAMING_SNAKE_CASE : Optional[Any] = 10 if child_n >= 10 else child_n for _ in range(a_ ): SCREAMING_SNAKE_CASE : List[str] = population_score[random.randint(0 , a_ )][0] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = crossover(parent_a[0] , a_ ) # Append new string to the population list. pop.append(mutate(a_ , a_ ) ) pop.append(mutate(a_ , a_ ) ) return pop def __A ( a_ : str , a_ : list[str] , a_ : bool = True )-> tuple[int, int, str]: '''simple docstring''' if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE : List[Any] = F"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(a_ ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE : List[str] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE : str = F"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(a_ ) # Generate random starting population. SCREAMING_SNAKE_CASE : Tuple = [] for _ in range(a_ ): population.append(''''''.join([random.choice(a_ ) for i in range(len(a_ ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(a_ ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE : int = [evaluate(a_ , a_ ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE : List[Any] = sorted(a_ , key=lambda a_ : x[1] , reverse=a_ ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F"\nGeneration: {generation}" F"\nTotal Population:{total_population}" F"\nBest score: {population_score[0][1]}" F"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE : Optional[Any] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(a_ ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE : Optional[int] = [ (item, score / len(a_ )) for item, score in population_score ] # This is selection for i in range(a_ ): population.extend(select(population_score[int(a_ )] , a_ , a_ ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(a_ ) > N_POPULATION: break if __name__ == "__main__": lowerCamelCase__ : Dict = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowerCamelCase__ : int = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
18
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCamelCase__ : str = logging.get_logger(__name__) lowerCamelCase__ : List[str] = {"vocab_file": "spiece.model"} lowerCamelCase__ : Tuple = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Union[str, Any]=False , lowerCamelCase_ :Optional[int]=True , lowerCamelCase_ :Any=False , lowerCamelCase_ :Optional[int]="<s>" , lowerCamelCase_ :int="</s>" , lowerCamelCase_ :Dict="<unk>" , lowerCamelCase_ :Tuple="<sep>" , lowerCamelCase_ :Union[str, Any]="<pad>" , lowerCamelCase_ :str="<cls>" , lowerCamelCase_ :Union[str, Any]="<mask>" , lowerCamelCase_ :List[Any]=["<eop>", "<eod>"] , lowerCamelCase_ :Optional[Dict[str, Any]] = None , **lowerCamelCase_ :int , ) -> None: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token SCREAMING_SNAKE_CASE : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=lowerCamelCase_ , remove_space=lowerCamelCase_ , keep_accents=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , additional_special_tokens=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = 3 SCREAMING_SNAKE_CASE : List[str] = do_lower_case SCREAMING_SNAKE_CASE : int = remove_space SCREAMING_SNAKE_CASE : Tuple = keep_accents SCREAMING_SNAKE_CASE : Tuple = vocab_file SCREAMING_SNAKE_CASE : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase_ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) SCREAMING_SNAKE_CASE : List[str] = jieba SCREAMING_SNAKE_CASE : Any = str.maketrans(''' \n''' , '''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __lowerCAmelCase ( self :Dict ) -> Union[str, Any]: '''simple docstring''' return len(self.sp_model ) def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.__dict__.copy() SCREAMING_SNAKE_CASE : Optional[Any] = None return state def __setstate__( self :Any , lowerCamelCase_ :Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Dict ) -> Optional[int]: '''simple docstring''' if self.remove_space: SCREAMING_SNAKE_CASE : Optional[int] = ''' '''.join(inputs.strip().split() ) else: SCREAMING_SNAKE_CASE : List[str] = inputs SCREAMING_SNAKE_CASE : List[str] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: SCREAMING_SNAKE_CASE : Union[str, Any] = unicodedata.normalize('''NFKD''' , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = ''''''.join([c for c in outputs if not unicodedata.combining(lowerCamelCase_ )] ) if self.do_lower_case: SCREAMING_SNAKE_CASE : List[str] = outputs.lower() return outputs def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.preprocess_text(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = [] for piece in pieces: if len(lowerCamelCase_ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): SCREAMING_SNAKE_CASE : int = self.sp_model.EncodeAsPieces(piece[:-1].replace(lowerCamelCase_ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: SCREAMING_SNAKE_CASE : List[str] = cur_pieces[1:] else: SCREAMING_SNAKE_CASE : int = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(lowerCamelCase_ ) else: new_pieces.append(lowerCamelCase_ ) return new_pieces def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Optional[Any] ) -> List[Any]: '''simple docstring''' return self.sp_model.PieceToId(lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :str ) -> Optional[Any]: '''simple docstring''' return self.sp_model.IdToPiece(lowerCamelCase_ ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = ''''''.join(lowerCamelCase_ ).replace(lowerCamelCase_ , ''' ''' ).strip() return out_string def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None , lowerCamelCase_ :bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is not None: return ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] return ([0] * len(lowerCamelCase_ )) + [1, 1] def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = [self.sep_token_id] SCREAMING_SNAKE_CASE : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :str , lowerCamelCase_ :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE : Dict = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_ , '''wb''' ) as fi: SCREAMING_SNAKE_CASE : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,) def __lowerCAmelCase ( self :Optional[int] , *lowerCamelCase_ :str , **lowerCamelCase_ :Dict ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = super()._decode(*lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = text.replace(''' ''' , '''''' ).replace('''\u2582''' , ''' ''' ).replace('''\u2583''' , '''\n''' ) return text
701
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowerCamelCase__ : Optional[Any] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __A ( a_ : Optional[int] )-> Dict: '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __A ( a_ : List[Any] , a_ : Optional[int] , a_ : Optional[int] )-> Dict: '''simple docstring''' return max(metric_fn(a_ , a_ ) for gt in ground_truths ) def __A ( a_ : List[Any] , a_ : Union[str, Any] , a_ : str )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = [line.strip() for line in open(a_ , '''r''' ).readlines()] SCREAMING_SNAKE_CASE : Optional[Any] = [] if args.gold_data_mode == "qa": SCREAMING_SNAKE_CASE : List[Any] = pd.read_csv(a_ , sep='''\t''' , header=a_ ) for answer_list in data[1]: SCREAMING_SNAKE_CASE : str = ast.literal_eval(a_ ) answers.append(a_ ) else: SCREAMING_SNAKE_CASE : Any = [line.strip() for line in open(a_ , '''r''' ).readlines()] SCREAMING_SNAKE_CASE : Dict = [[reference] for reference in references] SCREAMING_SNAKE_CASE : Dict = 0 for prediction, ground_truths in zip(a_ , a_ ): total += 1 em += metric_max_over_ground_truths(a_ , a_ , a_ ) fa += metric_max_over_ground_truths(a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : Any = 100.0 * em / total SCREAMING_SNAKE_CASE : Optional[int] = 100.0 * fa / total logger.info(F"F1: {fa:.2f}" ) logger.info(F"EM: {em:.2f}" ) def __A ( a_ : Any , a_ : Any , a_ : List[Any] )-> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : str = args.k SCREAMING_SNAKE_CASE : Tuple = [line.strip() for line in open(a_ , '''r''' ).readlines()] SCREAMING_SNAKE_CASE : Union[str, Any] = [line.strip() for line in open(a_ , '''r''' ).readlines()] SCREAMING_SNAKE_CASE : Dict = 0 for hypo, reference in zip(a_ , a_ ): SCREAMING_SNAKE_CASE : Optional[int] = set(hypo.split('''\t''' )[:k] ) SCREAMING_SNAKE_CASE : List[str] = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k SCREAMING_SNAKE_CASE : Dict = 100.0 * em / total logger.info(F"Precision@{k}: {em: .2f}" ) def __A ( a_ : Any , a_ : List[str] , a_ : str )-> int: '''simple docstring''' def strip_title(a_ : Optional[Any] ): if title.startswith('''"''' ): SCREAMING_SNAKE_CASE : Tuple = title[1:] if title.endswith('''"''' ): SCREAMING_SNAKE_CASE : Any = title[:-1] return title SCREAMING_SNAKE_CASE : Tuple = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( a_ , return_tensors='''pt''' , padding=a_ , truncation=a_ , )['''input_ids'''].to(args.device ) SCREAMING_SNAKE_CASE : Any = rag_model.rag.question_encoder(a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = question_enc_outputs[0] SCREAMING_SNAKE_CASE : Dict = rag_model.retriever( a_ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : Any = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) SCREAMING_SNAKE_CASE : Dict = [] for docs in all_docs: SCREAMING_SNAKE_CASE : List[Any] = [strip_title(a_ ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(a_ ) ) return provenance_strings def __A ( a_ : List[Any] , a_ : int , a_ : str )-> Tuple: '''simple docstring''' with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( a_ , return_tensors='''pt''' , padding=a_ , truncation=a_ ) SCREAMING_SNAKE_CASE : Dict = inputs_dict.input_ids.to(args.device ) SCREAMING_SNAKE_CASE : Any = inputs_dict.attention_mask.to(args.device ) SCREAMING_SNAKE_CASE : Tuple = rag_model.generate( # rag_model overwrites generate a_ , attention_mask=a_ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=a_ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) SCREAMING_SNAKE_CASE : Dict = rag_model.retriever.generator_tokenizer.batch_decode(a_ , skip_special_tokens=a_ ) if args.print_predictions: for q, a in zip(a_ , a_ ): logger.info('''Q: {} - A: {}'''.format(a_ , a_ ) ) return answers def __A ( )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=a_ , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=a_ , choices=['''exact''', '''compressed''', '''legacy'''] , type=a_ , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=a_ , type=a_ , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=a_ , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=a_ , type=a_ , required=a_ , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=a_ , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=a_ , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=a_ , type=a_ , required=a_ , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=a_ , type=a_ , required=a_ , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=a_ , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=a_ , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=a_ , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=a_ , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=a_ , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=a_ , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE : Dict = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def __A ( a_ : Optional[Any] )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = {} if args.model_type is None: SCREAMING_SNAKE_CASE : List[str] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE : List[str] = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration SCREAMING_SNAKE_CASE : Optional[Any] = args.n_docs if args.index_name is not None: SCREAMING_SNAKE_CASE : Tuple = args.index_name if args.index_path is not None: SCREAMING_SNAKE_CASE : List[Any] = args.index_path else: SCREAMING_SNAKE_CASE : str = BartForConditionalGeneration SCREAMING_SNAKE_CASE : Optional[int] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , a_ ) SCREAMING_SNAKE_CASE : int = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k SCREAMING_SNAKE_CASE : str = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(a_ , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(a_ ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE : Dict = RagRetriever.from_pretrained(a_ , **a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model_class.from_pretrained(a_ , retriever=a_ , **a_ ) model.retriever.init_retrieval() else: SCREAMING_SNAKE_CASE : str = model_class.from_pretrained(a_ , **a_ ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: SCREAMING_SNAKE_CASE : Dict = [] for line in tqdm(a_ ): questions.append(line.strip() ) if len(a_ ) == args.eval_batch_size: SCREAMING_SNAKE_CASE : str = evaluate_batch_fn(a_ , a_ , a_ ) preds_file.write('''\n'''.join(a_ ) + '''\n''' ) preds_file.flush() SCREAMING_SNAKE_CASE : Union[str, Any] = [] if len(a_ ) > 0: SCREAMING_SNAKE_CASE : str = evaluate_batch_fn(a_ , a_ , a_ ) preds_file.write('''\n'''.join(a_ ) ) preds_file.flush() score_fn(a_ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowerCamelCase__ : List[str] = get_args() main(args)
18
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def __A ( a_ : List[str] )-> Tuple: '''simple docstring''' if "img_encoder.pos_embed" in name: SCREAMING_SNAKE_CASE : str = name.replace('''img_encoder.pos_embed''' , '''vision_model.embeddings.position_embeddings''' ) if "img_encoder.patch_embed.proj" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('''img_encoder.patch_embed.proj''' , '''vision_model.embeddings.patch_embeddings.projection''' ) if "img_encoder.patch_embed.norm" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('''img_encoder.patch_embed.norm''' , '''vision_model.embeddings.layernorm''' ) if "img_encoder.layers" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('''img_encoder.layers''' , '''vision_model.encoder.stages''' ) if "blocks" in name and "res" not in name: SCREAMING_SNAKE_CASE : Dict = name.replace('''blocks''' , '''layers''' ) if "attn" in name and "pre_assign" not in name: SCREAMING_SNAKE_CASE : Any = name.replace('''attn''' , '''self_attn''' ) if "proj" in name and "self_attn" in name and "text" not in name: SCREAMING_SNAKE_CASE : Any = name.replace('''proj''' , '''out_proj''' ) if "pre_assign_attn.attn.proj" in name: SCREAMING_SNAKE_CASE : int = name.replace('''pre_assign_attn.attn.proj''' , '''pre_assign_attn.attn.out_proj''' ) if "norm1" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''norm1''' , '''layer_norm1''' ) if "norm2" in name and "pre_assign" not in name: SCREAMING_SNAKE_CASE : Dict = name.replace('''norm2''' , '''layer_norm2''' ) if "img_encoder.norm" in name: SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''img_encoder.norm''' , '''vision_model.layernorm''' ) # text encoder if "text_encoder.token_embedding" in name: SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''text_encoder.token_embedding''' , '''text_model.embeddings.token_embedding''' ) if "text_encoder.positional_embedding" in name: SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''text_encoder.positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "text_encoder.transformer.resblocks." in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''text_encoder.transformer.resblocks.''' , '''text_model.encoder.layers.''' ) if "ln_1" in name: SCREAMING_SNAKE_CASE : List[Any] = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: SCREAMING_SNAKE_CASE : str = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace('''c_proj''' , '''fc2''' ) if "text_encoder" in name: SCREAMING_SNAKE_CASE : int = name.replace('''text_encoder''' , '''text_model''' ) if "ln_final" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''ln_final''' , '''final_layer_norm''' ) # projection layers if "img_projector.linear_hidden." in name: SCREAMING_SNAKE_CASE : List[str] = name.replace('''img_projector.linear_hidden.''' , '''visual_projection.''' ) if "img_projector.linear_out." in name: SCREAMING_SNAKE_CASE : List[Any] = name.replace('''img_projector.linear_out.''' , '''visual_projection.3.''' ) if "text_projector.linear_hidden" in name: SCREAMING_SNAKE_CASE : Any = name.replace('''text_projector.linear_hidden''' , '''text_projection''' ) if "text_projector.linear_out" in name: SCREAMING_SNAKE_CASE : Dict = name.replace('''text_projector.linear_out''' , '''text_projection.3''' ) return name def __A ( a_ : Any , a_ : List[str] )-> Any: '''simple docstring''' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Union[str, Any] = orig_state_dict.pop(a_ ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors SCREAMING_SNAKE_CASE : List[str] = key.split('''.''' ) SCREAMING_SNAKE_CASE : Dict = int(key_split[2] ), int(key_split[4] ) SCREAMING_SNAKE_CASE : Any = config.vision_config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE : str = val[:dim, :] SCREAMING_SNAKE_CASE : List[str] = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE : Union[str, Any] = val[-dim:, :] else: SCREAMING_SNAKE_CASE : str = val[:dim] SCREAMING_SNAKE_CASE : Dict = val[dim : dim * 2] SCREAMING_SNAKE_CASE : Union[str, Any] = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors SCREAMING_SNAKE_CASE : Any = key.split('''.''' ) SCREAMING_SNAKE_CASE : Any = int(key_split[3] ) SCREAMING_SNAKE_CASE : List[str] = config.text_config.hidden_size if "weight" in key: SCREAMING_SNAKE_CASE : Tuple = val[:dim, :] SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE : List[str] = val[-dim:, :] else: SCREAMING_SNAKE_CASE : Tuple = val[:dim] SCREAMING_SNAKE_CASE : Any = val[dim : dim * 2] SCREAMING_SNAKE_CASE : List[Any] = val[-dim:] else: SCREAMING_SNAKE_CASE : List[Any] = rename_key(a_ ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): SCREAMING_SNAKE_CASE : Union[str, Any] = val.squeeze_() else: SCREAMING_SNAKE_CASE : Dict = val return orig_state_dict def __A ( )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' SCREAMING_SNAKE_CASE : Any = Image.open(requests.get(a_ , stream=a_ ).raw ) return im @torch.no_grad() def __A ( a_ : List[Any] , a_ : Any , a_ : Any="groupvit-gcc-yfcc" , a_ : Optional[int]=False )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = GroupViTConfig() SCREAMING_SNAKE_CASE : Optional[int] = GroupViTModel(a_ ).eval() SCREAMING_SNAKE_CASE : str = torch.load(a_ , map_location='''cpu''' )['''model'''] SCREAMING_SNAKE_CASE : str = convert_state_dict(a_ , a_ ) SCREAMING_SNAKE_CASE : List[Any] = model.load_state_dict(a_ , strict=a_ ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(a_ ) == 0) # verify result SCREAMING_SNAKE_CASE : Tuple = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) SCREAMING_SNAKE_CASE : List[str] = prepare_img() SCREAMING_SNAKE_CASE : List[str] = processor(text=['''a photo of a cat''', '''a photo of a dog'''] , images=a_ , padding=a_ , return_tensors='''pt''' ) with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**a_ ) if model_name == "groupvit-gcc-yfcc": SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[13.3523, 6.3629]] ) elif model_name == "groupvit-gcc-redcaps": SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[16.1873, 8.6230]] ) else: raise ValueError(F"Model name {model_name} not supported." ) assert torch.allclose(outputs.logits_per_image , a_ , atol=1E-3 ) processor.save_pretrained(a_ ) model.save_pretrained(a_ ) print('''Successfully saved processor and model to''' , a_ ) if push_to_hub: print('''Pushing to the hub...''' ) processor.push_to_hub(a_ , organization='''nielsr''' ) model.push_to_hub(a_ , organization='''nielsr''' ) if __name__ == "__main__": lowerCamelCase__ : str = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) lowerCamelCase__ : Union[str, Any] = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
702
"""simple docstring""" import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ : List[str] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = {"vocab_file": "vocab.json"} lowerCamelCase__ : Dict = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } lowerCamelCase__ : Optional[Any] = {"mgp-str": 27} class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = VOCAB_FILES_NAMES UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[int]="[GO]" , lowerCamelCase_ :int="[GO]" , lowerCamelCase_ :str="[s]" , lowerCamelCase_ :Dict="[GO]" , **lowerCamelCase_ :List[str] ) -> Tuple: '''simple docstring''' super().__init__( unk_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , **lowerCamelCase_ , ) with open(lowerCamelCase_ , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE : int = json.load(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in self.vocab.items()} @property def __lowerCAmelCase ( self :int ) -> Dict: '''simple docstring''' return len(self.vocab ) def __lowerCAmelCase ( self :List[str] ) -> Dict: '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Optional[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [] for s in text: char_tokens.extend(lowerCamelCase_ ) return char_tokens def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Tuple ) -> Optional[int]: '''simple docstring''' return self.vocab.get(lowerCamelCase_ , self.vocab.get(self.unk_token ) ) def __lowerCAmelCase ( self :List[str] , lowerCamelCase_ :Dict ) -> Optional[int]: '''simple docstring''' return self.decoder.get(lowerCamelCase_ ) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :str , lowerCamelCase_ :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(lowerCamelCase_ ) ) return SCREAMING_SNAKE_CASE : List[Any] = os.path.join( lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCamelCase_ , ensure_ascii=lowerCamelCase_ ) + '''\n''' ) return (vocab_file,)
18
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowerCamelCase__ : Tuple = logging.get_logger(__name__) class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :List[Any] , *lowerCamelCase_ :Tuple , **lowerCamelCase_ :List[str] ) -> None: '''simple docstring''' warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
703
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : str = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """luke""" def __init__( self :Optional[int] , lowerCamelCase_ :Union[str, Any]=5_02_67 , lowerCamelCase_ :int=50_00_00 , lowerCamelCase_ :Tuple=7_68 , lowerCamelCase_ :List[str]=2_56 , lowerCamelCase_ :Dict=12 , lowerCamelCase_ :Optional[int]=12 , lowerCamelCase_ :Optional[Any]=30_72 , lowerCamelCase_ :List[Any]="gelu" , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Union[str, Any]=0.1 , lowerCamelCase_ :List[str]=5_12 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :Tuple=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :str=1 , lowerCamelCase_ :Any=0 , lowerCamelCase_ :str=2 , **lowerCamelCase_ :List[Any] , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : List[str] = entity_vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = entity_emb_size SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Dict = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[int] = use_entity_aware_attention SCREAMING_SNAKE_CASE : List[str] = classifier_dropout
18
0
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class lowercase__: '''simple docstring''' def __init__( self :Dict , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[Any]=0.2 , lowerCamelCase_ :int=0.2 ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = bp_numa SCREAMING_SNAKE_CASE : Optional[int] = bp_numa SCREAMING_SNAKE_CASE : Dict = bp_numa SCREAMING_SNAKE_CASE : List[str] = conva_get[:2] SCREAMING_SNAKE_CASE : int = conva_get[2] SCREAMING_SNAKE_CASE : List[Any] = size_pa SCREAMING_SNAKE_CASE : Optional[Any] = rate_w SCREAMING_SNAKE_CASE : Tuple = rate_t SCREAMING_SNAKE_CASE : List[str] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] SCREAMING_SNAKE_CASE : Optional[int] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) SCREAMING_SNAKE_CASE : List[str] = -2 * np.random.rand(self.conva[1] ) + 1 SCREAMING_SNAKE_CASE : Dict = -2 * np.random.rand(self.num_bpa ) + 1 SCREAMING_SNAKE_CASE : Optional[int] = -2 * np.random.rand(self.num_bpa ) + 1 def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(lowerCamelCase_ , '''wb''' ) as f: pickle.dump(lowerCamelCase_ , lowerCamelCase_ ) print(f"Model saved: {save_path}" ) @classmethod def __lowerCAmelCase ( cls :List[Any] , lowerCamelCase_ :Union[str, Any] ) -> Tuple: '''simple docstring''' with open(lowerCamelCase_ , '''rb''' ) as f: SCREAMING_SNAKE_CASE : Any = pickle.load(lowerCamelCase_ ) # noqa: S301 SCREAMING_SNAKE_CASE : Optional[int] = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) SCREAMING_SNAKE_CASE : Tuple = model_dic.get('''size_pooling1''' ) SCREAMING_SNAKE_CASE : Tuple = model_dic.get('''num_bp1''' ) SCREAMING_SNAKE_CASE : List[str] = model_dic.get('''num_bp2''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = model_dic.get('''num_bp3''' ) SCREAMING_SNAKE_CASE : List[Any] = model_dic.get('''rate_weight''' ) SCREAMING_SNAKE_CASE : Optional[Any] = model_dic.get('''rate_thre''' ) # create model instance SCREAMING_SNAKE_CASE : Tuple = CNN(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # modify model parameter SCREAMING_SNAKE_CASE : Optional[Any] = model_dic.get('''w_conv1''' ) SCREAMING_SNAKE_CASE : str = model_dic.get('''wkj''' ) SCREAMING_SNAKE_CASE : Optional[int] = model_dic.get('''vji''' ) SCREAMING_SNAKE_CASE : Tuple = model_dic.get('''thre_conv1''' ) SCREAMING_SNAKE_CASE : str = model_dic.get('''thre_bp2''' ) SCREAMING_SNAKE_CASE : int = model_dic.get('''thre_bp3''' ) return conv_ins def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Union[str, Any] ) -> Optional[Any]: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Tuple ) -> List[Any]: '''simple docstring''' return round(lowerCamelCase_ , 3 ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[Any] , lowerCamelCase_ :str , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : str = convs[0] SCREAMING_SNAKE_CASE : List[str] = convs[1] SCREAMING_SNAKE_CASE : Any = np.shape(lowerCamelCase_ )[0] # get the data slice of original image data, data_focus SCREAMING_SNAKE_CASE : Union[str, Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , lowerCamelCase_ ): for j_focus in range(0 , size_data - size_conv + 1 , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Any = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowerCamelCase_ ) # calculate the feature map of every single kernel, and saved as list of matrix SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : Tuple = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Dict = [] for i_focus in range(len(lowerCamelCase_ ) ): SCREAMING_SNAKE_CASE : List[str] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : str = np.asmatrix(lowerCamelCase_ ).reshape( lowerCamelCase_ , lowerCamelCase_ ) data_featuremap.append(lowerCamelCase_ ) # expanding the data slice to One dimenssion SCREAMING_SNAKE_CASE : Tuple = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Dict = np.asarray(lowerCamelCase_ ) return focus_list, data_featuremap def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :int , lowerCamelCase_ :str="average_pool" ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = len(featuremaps[0] ) SCREAMING_SNAKE_CASE : List[str] = int(size_map / size_pooling ) SCREAMING_SNAKE_CASE : List[str] = [] for i_map in range(len(lowerCamelCase_ ) ): SCREAMING_SNAKE_CASE : Any = featuremaps[i_map] SCREAMING_SNAKE_CASE : int = [] for i_focus in range(0 , lowerCamelCase_ , lowerCamelCase_ ): for j_focus in range(0 , lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowerCamelCase_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : int = np.asmatrix(lowerCamelCase_ ).reshape(lowerCamelCase_ , lowerCamelCase_ ) featuremap_pooled.append(lowerCamelCase_ ) return featuremap_pooled def __lowerCAmelCase ( self :int , lowerCamelCase_ :List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = [] for i in range(len(lowerCamelCase_ ) ): SCREAMING_SNAKE_CASE : Tuple = np.shape(data[i] ) SCREAMING_SNAKE_CASE : Union[str, Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) SCREAMING_SNAKE_CASE : List[str] = data_listed.getA().tolist()[0] data_expanded.extend(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = np.asarray(lowerCamelCase_ ) return data_expanded def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Dict ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = np.asarray(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = np.shape(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :str , lowerCamelCase_ :Any , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : Tuple = 0 for i_map in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : List[str] = np.ones((size_map, size_map) ) for i in range(0 , lowerCamelCase_ , lowerCamelCase_ ): for j in range(0 , lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : str = pd_pool[ i_pool ] SCREAMING_SNAKE_CASE : str = i_pool + 1 SCREAMING_SNAKE_CASE : Any = np.multiply( lowerCamelCase_ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(lowerCamelCase_ ) return pd_all def __lowerCAmelCase ( self :Optional[int] , lowerCamelCase_ :Dict , lowerCamelCase_ :str , lowerCamelCase_ :Tuple , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] , lowerCamelCase_ :str=bool ) -> str: '''simple docstring''' print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(lowerCamelCase_ )) ) print((''' - - Shape: Teach_Data ''', np.shape(lowerCamelCase_ )) ) SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : List[str] = [] SCREAMING_SNAKE_CASE : Optional[Any] = 1_00_00 while rp < n_repeat and mse >= error_accuracy: SCREAMING_SNAKE_CASE : List[str] = 0 print(f"-------------Learning Time {rp}--------------" ) for p in range(len(lowerCamelCase_ ) ): # print('------------Learning Image: %d--------------'%p) SCREAMING_SNAKE_CASE : Dict = np.asmatrix(datas_train[p] ) SCREAMING_SNAKE_CASE : List[Any] = np.asarray(datas_teach[p] ) SCREAMING_SNAKE_CASE : Optional[int] = self.convolute( lowerCamelCase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE : str = self.pooling(lowerCamelCase_ , self.size_poolinga ) SCREAMING_SNAKE_CASE : str = np.shape(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self._expand(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = data_bp_input SCREAMING_SNAKE_CASE : Any = np.dot(lowerCamelCase_ , self.vji.T ) - self.thre_bpa SCREAMING_SNAKE_CASE : Union[str, Any] = self.sig(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = np.dot(lowerCamelCase_ , self.wkj.T ) - self.thre_bpa SCREAMING_SNAKE_CASE : Any = self.sig(lowerCamelCase_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- SCREAMING_SNAKE_CASE : int = np.multiply( (data_teach - bp_outa) , np.multiply(lowerCamelCase_ , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE : Optional[int] = np.multiply( np.dot(lowerCamelCase_ , self.wkj ) , np.multiply(lowerCamelCase_ , (1 - bp_outa) ) ) SCREAMING_SNAKE_CASE : Any = np.dot(lowerCamelCase_ , self.vji ) SCREAMING_SNAKE_CASE : Any = pd_i_all / (self.size_poolinga * self.size_poolinga) SCREAMING_SNAKE_CASE : Any = pd_conva_pooled.T.getA().tolist() SCREAMING_SNAKE_CASE : int = self._calculate_gradient_from_pool( lowerCamelCase_ , lowerCamelCase_ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): SCREAMING_SNAKE_CASE : Union[str, Any] = self._expand_mat(pd_conva_all[k_conv] ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.rate_weight * np.dot(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) SCREAMING_SNAKE_CASE : Optional[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer SCREAMING_SNAKE_CASE : int = self.wkj + pd_k_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE : int = self.vji + pd_j_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE : Optional[int] = self.thre_bpa - pd_k_all * self.rate_thre SCREAMING_SNAKE_CASE : Any = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image SCREAMING_SNAKE_CASE : int = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) SCREAMING_SNAKE_CASE : int = rp + 1 SCREAMING_SNAKE_CASE : str = error_count / patterns all_mse.append(lowerCamelCase_ ) def draw_error(): SCREAMING_SNAKE_CASE : List[str] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowerCamelCase_ , '''+-''' ) plt.plot(lowerCamelCase_ , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(lowerCamelCase_ , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, f" - - Mse: {mse:.6f}") ) if draw_e: draw_error() return mse def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :List[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(lowerCamelCase_ )) ) for p in range(len(lowerCamelCase_ ) ): SCREAMING_SNAKE_CASE : List[str] = np.asmatrix(datas_test[p] ) SCREAMING_SNAKE_CASE : List[str] = self.convolute( lowerCamelCase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE : Any = self.pooling(lowerCamelCase_ , self.size_poolinga ) SCREAMING_SNAKE_CASE : Optional[int] = self._expand(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = data_bp_input SCREAMING_SNAKE_CASE : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa SCREAMING_SNAKE_CASE : Dict = self.sig(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = bp_outa * self.wkj.T - self.thre_bpa SCREAMING_SNAKE_CASE : Optional[Any] = self.sig(lowerCamelCase_ ) produce_out.extend(bp_outa.getA().tolist() ) SCREAMING_SNAKE_CASE : int = [list(map(self.do_round , lowerCamelCase_ ) ) for each in produce_out] return np.asarray(lowerCamelCase_ ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = np.asmatrix(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = self.convolute( lowerCamelCase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE : List[str] = self.pooling(lowerCamelCase_ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
704
"""simple docstring""" def __A ( a_ : list , a_ : int , a_ : int = 0 , a_ : int = 0 )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : str = right or len(a_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(a_ , a_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
18
0
"""simple docstring""" from collections import namedtuple lowerCamelCase__ : List[str] = namedtuple("from_to", "from_ to") lowerCamelCase__ : Any = { "cubicmeter": from_to(1, 1), "litre": from_to(0.0_0_1, 1000), "kilolitre": from_to(1, 1), "gallon": from_to(0.0_0_4_5_4, 264.172), "cubicyard": from_to(0.7_6_4_5_5, 1.3_0_7_9_5), "cubicfoot": from_to(0.0_2_8, 35.3147), "cup": from_to(0.0_0_0_2_3_6_5_8_8, 4226.75), } def __A ( a_ : float , a_ : str , a_ : str )-> float: '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( F"Invalid 'from_type' value: {from_type!r} Supported values are:\n" + ''', '''.join(a_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"Invalid 'to_type' value: {to_type!r}. Supported values are:\n" + ''', '''.join(a_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
705
"""simple docstring""" def __A ( a_ : int )-> list[int]: '''simple docstring''' if num <= 0: raise ValueError('''Input must be a positive integer''' ) SCREAMING_SNAKE_CASE : Optional[int] = [True] * (num + 1) SCREAMING_SNAKE_CASE : Optional[Any] = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , a_ ): SCREAMING_SNAKE_CASE : Any = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ : str = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
18
0
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def __A ( a_ : float , a_ : float )-> tuple: '''simple docstring''' if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
706
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ : Optional[Any] = { "configuration_funnel": ["FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP", "FunnelConfig"], "convert_funnel_original_tf_checkpoint_to_pytorch": [], "tokenization_funnel": ["FunnelTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Optional[Any] = ["FunnelTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Dict = [ "FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "FunnelBaseModel", "FunnelForMaskedLM", "FunnelForMultipleChoice", "FunnelForPreTraining", "FunnelForQuestionAnswering", "FunnelForSequenceClassification", "FunnelForTokenClassification", "FunnelModel", "FunnelPreTrainedModel", "load_tf_weights_in_funnel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Tuple = [ "TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST", "TFFunnelBaseModel", "TFFunnelForMaskedLM", "TFFunnelForMultipleChoice", "TFFunnelForPreTraining", "TFFunnelForQuestionAnswering", "TFFunnelForSequenceClassification", "TFFunnelForTokenClassification", "TFFunnelModel", "TFFunnelPreTrainedModel", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
0
"""simple docstring""" from collections import defaultdict def __A ( a_ : str , a_ : str )-> bool: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = first_str.lower().strip() SCREAMING_SNAKE_CASE : int = second_str.lower().strip() # Remove whitespace SCREAMING_SNAKE_CASE : Optional[int] = first_str.replace(''' ''' , '''''' ) SCREAMING_SNAKE_CASE : str = second_str.replace(''' ''' , '''''' ) # Strings of different lengths are not anagrams if len(a_ ) != len(a_ ): return False # Default values for count should be 0 SCREAMING_SNAKE_CASE : defaultdict[str, int] = defaultdict(a_ ) # For each character in input strings, # increment count in the corresponding for i in range(len(a_ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() lowerCamelCase__ : Tuple = input("Enter the first string ").strip() lowerCamelCase__ : List[str] = input("Enter the second string ").strip() lowerCamelCase__ : Optional[int] = check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {"" if status else "not "}anagrams.''')
707
"""simple docstring""" import os import sys lowerCamelCase__ : List[Any] = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCamelCase__ : str = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def __A ( *a_ : Any , **a_ : Union[str, Any] )-> Dict: '''simple docstring''' return AutoConfig.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __A ( *a_ : str , **a_ : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' return AutoTokenizer.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoModel.__doc__ ) def __A ( *a_ : List[str] , **a_ : int )-> Dict: '''simple docstring''' return AutoModel.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __A ( *a_ : Any , **a_ : Tuple )-> Dict: '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __A ( *a_ : Dict , **a_ : Optional[Any] )-> Optional[int]: '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __A ( *a_ : Optional[int] , **a_ : str )-> Optional[int]: '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*a_ , **a_ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __A ( *a_ : List[str] , **a_ : int )-> List[Any]: '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*a_ , **a_ )
18
0
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def __A ( a_ : List[Any] )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = [ '''decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(a_ , a_ ) def __A ( a_ : Optional[Any] )-> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = emb.weight.shape SCREAMING_SNAKE_CASE : int = nn.Linear(a_ , a_ , bias=a_ ) SCREAMING_SNAKE_CASE : Any = emb.weight.data return lin_layer def __A ( a_ : List[Any] )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = torch.load(a_ , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : Any = Namespace(**checkpoint['''cfg''']['''model'''] ) SCREAMING_SNAKE_CASE : List[Any] = checkpoint['''model'''] remove_ignore_keys_(a_ ) SCREAMING_SNAKE_CASE : Tuple = state_dict['''decoder.embed_tokens.weight'''].shape[0] SCREAMING_SNAKE_CASE : Union[str, Any] = {key.replace('''decoder''' , '''model''' ): val for key, val in state_dict.items()} SCREAMING_SNAKE_CASE : Tuple = XGLMConfig( vocab_size=a_ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''gelu''' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) SCREAMING_SNAKE_CASE : Optional[int] = XGLMForCausalLM(a_ ) SCREAMING_SNAKE_CASE : str = model.load_state_dict(a_ , strict=a_ ) print(a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowerCamelCase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") lowerCamelCase__ : Optional[int] = parser.parse_args() lowerCamelCase__ : int = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
708
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Any = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """encodec""" def __init__( self :List[str] , lowerCamelCase_ :Tuple=[1.5, 3.0, 6.0, 1_2.0, 2_4.0] , lowerCamelCase_ :str=2_40_00 , lowerCamelCase_ :Any=1 , lowerCamelCase_ :List[Any]=False , lowerCamelCase_ :Optional[int]=None , lowerCamelCase_ :Optional[Any]=None , lowerCamelCase_ :str=1_28 , lowerCamelCase_ :Any=32 , lowerCamelCase_ :int=1 , lowerCamelCase_ :Dict=[8, 5, 4, 2] , lowerCamelCase_ :List[Any]="weight_norm" , lowerCamelCase_ :Optional[int]=7 , lowerCamelCase_ :Tuple=7 , lowerCamelCase_ :Optional[Any]=3 , lowerCamelCase_ :int=2 , lowerCamelCase_ :Dict=True , lowerCamelCase_ :Optional[int]="reflect" , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :Union[str, Any]=2 , lowerCamelCase_ :Dict=1.0 , lowerCamelCase_ :Any=10_24 , lowerCamelCase_ :str=None , lowerCamelCase_ :Union[str, Any]=True , **lowerCamelCase_ :Optional[int] , ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = target_bandwidths SCREAMING_SNAKE_CASE : List[str] = sampling_rate SCREAMING_SNAKE_CASE : Tuple = audio_channels SCREAMING_SNAKE_CASE : Tuple = normalize SCREAMING_SNAKE_CASE : str = chunk_length_s SCREAMING_SNAKE_CASE : List[str] = overlap SCREAMING_SNAKE_CASE : int = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = num_filters SCREAMING_SNAKE_CASE : Tuple = num_residual_layers SCREAMING_SNAKE_CASE : List[Any] = upsampling_ratios SCREAMING_SNAKE_CASE : Optional[int] = norm_type SCREAMING_SNAKE_CASE : Any = kernel_size SCREAMING_SNAKE_CASE : Union[str, Any] = last_kernel_size SCREAMING_SNAKE_CASE : Tuple = residual_kernel_size SCREAMING_SNAKE_CASE : Any = dilation_growth_rate SCREAMING_SNAKE_CASE : Optional[int] = use_causal_conv SCREAMING_SNAKE_CASE : str = pad_mode SCREAMING_SNAKE_CASE : List[Any] = compress SCREAMING_SNAKE_CASE : Optional[Any] = num_lstm_layers SCREAMING_SNAKE_CASE : Dict = trim_right_ratio SCREAMING_SNAKE_CASE : List[Any] = codebook_size SCREAMING_SNAKE_CASE : Union[str, Any] = codebook_dim if codebook_dim is not None else hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" ) super().__init__(**lowerCamelCase_ ) @property def __lowerCAmelCase ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __lowerCAmelCase ( self :List[str] ) -> Optional[int]: '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __lowerCAmelCase ( self :Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __lowerCAmelCase ( self :Dict ) -> int: '''simple docstring''' return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
18
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ) -> Dict: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) @torch.no_grad() def __call__( self :Dict , lowerCamelCase_ :int = 1 , lowerCamelCase_ :int = 1_00 , lowerCamelCase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ :Optional[float] = None , lowerCamelCase_ :bool = True , ) -> Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if audio_length_in_s is None: SCREAMING_SNAKE_CASE : Dict = self.unet.config.sample_size / self.unet.config.sample_rate SCREAMING_SNAKE_CASE : Tuple = audio_length_in_s * self.unet.config.sample_rate SCREAMING_SNAKE_CASE : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( f"{audio_length_in_s} is too small. Make sure it's bigger or equal to" f" {3 * down_scale_factor / self.unet.config.sample_rate}." ) SCREAMING_SNAKE_CASE : Optional[int] = int(lowerCamelCase_ ) if sample_size % down_scale_factor != 0: SCREAMING_SNAKE_CASE : Optional[Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( f"{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled" f" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising" ''' process.''' ) SCREAMING_SNAKE_CASE : List[str] = int(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = next(iter(self.unet.parameters() ) ).dtype SCREAMING_SNAKE_CASE : List[Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and len(lowerCamelCase_ ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(lowerCamelCase_ )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) SCREAMING_SNAKE_CASE : Tuple = randn_tensor(lowerCamelCase_ , generator=lowerCamelCase_ , device=self.device , dtype=lowerCamelCase_ ) # set step values self.scheduler.set_timesteps(lowerCamelCase_ , device=audio.device ) SCREAMING_SNAKE_CASE : List[Any] = self.scheduler.timesteps.to(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output SCREAMING_SNAKE_CASE : Dict = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample # 2. compute previous image: x_t -> t_t-1 SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample SCREAMING_SNAKE_CASE : str = audio.clamp(-1 , 1 ).float().cpu().numpy() SCREAMING_SNAKE_CASE : Any = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase_ )
709
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowercase__: '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :Tuple , lowerCamelCase_ :Union[str, Any]=2 , lowerCamelCase_ :Any=3 , lowerCamelCase_ :Union[str, Any]=4 , lowerCamelCase_ :List[str]=2 , lowerCamelCase_ :str=7 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Dict=True , lowerCamelCase_ :int=True , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Optional[Any]=99 , lowerCamelCase_ :Any=36 , lowerCamelCase_ :Any=3 , lowerCamelCase_ :str=4 , lowerCamelCase_ :Tuple=37 , lowerCamelCase_ :Optional[int]="gelu" , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :Tuple=5_12 , lowerCamelCase_ :Optional[Any]=16 , lowerCamelCase_ :List[str]=2 , lowerCamelCase_ :Optional[int]=0.0_2 , lowerCamelCase_ :int=6 , lowerCamelCase_ :str=6 , lowerCamelCase_ :Optional[Any]=3 , lowerCamelCase_ :Union[str, Any]=4 , lowerCamelCase_ :List[Any]=None , lowerCamelCase_ :Tuple=10_00 , ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : List[str] = num_channels SCREAMING_SNAKE_CASE : str = image_size SCREAMING_SNAKE_CASE : Optional[int] = patch_size SCREAMING_SNAKE_CASE : Tuple = text_seq_length SCREAMING_SNAKE_CASE : Optional[int] = is_training SCREAMING_SNAKE_CASE : Dict = use_input_mask SCREAMING_SNAKE_CASE : Any = use_token_type_ids SCREAMING_SNAKE_CASE : List[Any] = use_labels SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE : Dict = coordinate_size SCREAMING_SNAKE_CASE : List[Any] = shape_size SCREAMING_SNAKE_CASE : Dict = num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = num_choices SCREAMING_SNAKE_CASE : List[str] = scope SCREAMING_SNAKE_CASE : Optional[int] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) SCREAMING_SNAKE_CASE : str = text_seq_length SCREAMING_SNAKE_CASE : int = (image_size // patch_size) ** 2 + 1 SCREAMING_SNAKE_CASE : Optional[Any] = self.text_seq_length + self.image_seq_length def __lowerCAmelCase ( self :List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE : str = bbox[i, j, 3] SCREAMING_SNAKE_CASE : List[str] = bbox[i, j, 1] SCREAMING_SNAKE_CASE : Any = t if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE : Any = bbox[i, j, 2] SCREAMING_SNAKE_CASE : Any = bbox[i, j, 0] SCREAMING_SNAKE_CASE : Optional[Any] = t SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.text_seq_length] ) SCREAMING_SNAKE_CASE : Any = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE : Tuple = None SCREAMING_SNAKE_CASE : Optional[int] = None if self.use_labels: SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :int , lowerCamelCase_ :str , lowerCamelCase_ :int , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = LayoutLMvaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() # text + image SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ , pixel_values=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = model( lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , token_type_ids=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only SCREAMING_SNAKE_CASE : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only SCREAMING_SNAKE_CASE : List[str] = model(pixel_values=lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :List[str] , lowerCamelCase_ :Any , lowerCamelCase_ :int , lowerCamelCase_ :List[Any] , lowerCamelCase_ :List[str] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE : Dict = LayoutLMvaForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : int = model( lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Any , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :str , lowerCamelCase_ :Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.num_labels SCREAMING_SNAKE_CASE : int = LayoutLMvaForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model( lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , labels=lowerCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Dict , lowerCamelCase_ :Dict , lowerCamelCase_ :Dict , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :str , lowerCamelCase_ :Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = LayoutLMvaForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model( lowerCamelCase_ , bbox=lowerCamelCase_ , pixel_values=lowerCamelCase_ , attention_mask=lowerCamelCase_ , token_type_ids=lowerCamelCase_ , start_positions=lowerCamelCase_ , end_positions=lowerCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self :Optional[int] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ( SCREAMING_SNAKE_CASE ), ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Dict = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) UpperCamelCase = ( {"""document-question-answering""": LayoutLMvaForQuestionAnswering, """feature-extraction""": LayoutLMvaModel} if is_torch_available() else {} ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :str , lowerCamelCase_ :str , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :List[str] ) -> Union[str, Any]: '''simple docstring''' return True def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = LayoutLMvaModelTester(self ) SCREAMING_SNAKE_CASE : List[Any] = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[str] , lowerCamelCase_ :str=False ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(lowerCamelCase_ ) if model_class in get_values(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Tuple = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(lowerCamelCase_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) elif model_class in get_values(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) elif model_class in [ *get_values(lowerCamelCase_ ), ]: SCREAMING_SNAKE_CASE : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCamelCase_ ) elif model_class in [ *get_values(lowerCamelCase_ ), ]: SCREAMING_SNAKE_CASE : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=lowerCamelCase_ , ) return inputs_dict def __lowerCAmelCase ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self :str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE : str = type self.model_tester.create_and_check_model(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[int] = LayoutLMvaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def __A ( )-> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class lowercase__( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self :str ) -> int: '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=lowerCamelCase_ ) if is_vision_available() else None @slow def __lowerCAmelCase ( self :Optional[Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = self.default_image_processor SCREAMING_SNAKE_CASE : List[Any] = prepare_img() SCREAMING_SNAKE_CASE : Tuple = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' ).pixel_values.to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[1, 2]] ) SCREAMING_SNAKE_CASE : Dict = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass SCREAMING_SNAKE_CASE : Tuple = model( input_ids=input_ids.to(lowerCamelCase_ ) , bbox=bbox.to(lowerCamelCase_ ) , pixel_values=pixel_values.to(lowerCamelCase_ ) , ) # verify the logits SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase_ , atol=1E-4 ) )
18
0
"""simple docstring""" import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowercase__( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = -1 SCREAMING_SNAKE_CASE : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model.generate(lowerCamelCase_ , max_new_tokens=10 , do_sample=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE : Tuple = TextStreamer(lowerCamelCase_ ) model.generate(lowerCamelCase_ , max_new_tokens=10 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE : Tuple = cs.out[:-1] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __lowerCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = -1 SCREAMING_SNAKE_CASE : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model.generate(lowerCamelCase_ , max_new_tokens=10 , do_sample=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.decode(greedy_ids[0] ) SCREAMING_SNAKE_CASE : Union[str, Any] = TextIteratorStreamer(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} SCREAMING_SNAKE_CASE : Optional[int] = Thread(target=model.generate , kwargs=lowerCamelCase_ ) thread.start() SCREAMING_SNAKE_CASE : Union[str, Any] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __lowerCAmelCase ( self :List[str] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) SCREAMING_SNAKE_CASE : Tuple = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = -1 SCREAMING_SNAKE_CASE : List[str] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = model.generate(lowerCamelCase_ , max_new_tokens=10 , do_sample=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = greedy_ids[:, input_ids.shape[1] :] SCREAMING_SNAKE_CASE : List[str] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: SCREAMING_SNAKE_CASE : int = TextStreamer(lowerCamelCase_ , skip_prompt=lowerCamelCase_ ) model.generate(lowerCamelCase_ , max_new_tokens=10 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer SCREAMING_SNAKE_CASE : List[str] = cs.out[:-1] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = AutoTokenizer.from_pretrained('''distilgpt2''' ) SCREAMING_SNAKE_CASE : Tuple = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = -1 SCREAMING_SNAKE_CASE : str = torch.ones((1, 5) , device=lowerCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: SCREAMING_SNAKE_CASE : Tuple = TextStreamer(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) model.generate(lowerCamelCase_ , max_new_tokens=1 , do_sample=lowerCamelCase_ , streamer=lowerCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token SCREAMING_SNAKE_CASE : str = cs.out[:-1] # Remove the final "\n" SCREAMING_SNAKE_CASE : int = tokenizer(lowerCamelCase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __lowerCAmelCase ( self :Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) SCREAMING_SNAKE_CASE : Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = -1 SCREAMING_SNAKE_CASE : int = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = TextIteratorStreamer(lowerCamelCase_ , timeout=0.0_0_1 ) SCREAMING_SNAKE_CASE : Tuple = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} SCREAMING_SNAKE_CASE : Optional[Any] = Thread(target=model.generate , kwargs=lowerCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : List[Any] = '''''' for new_text in streamer: streamer_text += new_text
710
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") lowerCamelCase__ : Any = logging.getLogger(__name__) @dataclass class lowercase__: '''simple docstring''' UpperCamelCase = field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase = field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) UpperCamelCase = field( default=10_24 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """A csv or a json file containing the training data."""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """A csv or a json file containing the validation data."""} ) UpperCamelCase = field(default=_UpperCAmelCase , metadata={"""help""": """A csv or a json file containing the test data."""} ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Dict: '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." SCREAMING_SNAKE_CASE : Optional[int] = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class lowercase__: '''simple docstring''' UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCamelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase = field( default=_UpperCAmelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def __A ( )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. SCREAMING_SNAKE_CASE : Optional[int] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: SCREAMING_SNAKE_CASE : Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. SCREAMING_SNAKE_CASE : Any = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: SCREAMING_SNAKE_CASE : List[Any] = data_args.train_file.split('''.''' )[-1] SCREAMING_SNAKE_CASE : Optional[int] = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." SCREAMING_SNAKE_CASE : str = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(F"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files SCREAMING_SNAKE_CASE : int = load_dataset('''csv''' , data_files=a_ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files SCREAMING_SNAKE_CASE : Tuple = load_dataset('''json''' , data_files=a_ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels SCREAMING_SNAKE_CASE : str = raw_datasets['''train'''].features['''label'''].names SCREAMING_SNAKE_CASE : Union[str, Any] = len(a_ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=a_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer SCREAMING_SNAKE_CASE : Dict = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=a_ , ) SCREAMING_SNAKE_CASE : List[Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=a_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE : Tuple = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch SCREAMING_SNAKE_CASE : Optional[Any] = False # Some models have set the order of the labels to use, so let's make sure we do use it. SCREAMING_SNAKE_CASE : Tuple = {'''Refused''': 0, '''Entailed''': 1} SCREAMING_SNAKE_CASE : List[Any] = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) SCREAMING_SNAKE_CASE : Optional[int] = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(a_ : str ): # Tokenize the texts def _convert_table_text_to_pandas(a_ : List[Any] ): SCREAMING_SNAKE_CASE : List[Any] = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] SCREAMING_SNAKE_CASE : Dict = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd SCREAMING_SNAKE_CASE : List[Any] = examples['''statement'''] SCREAMING_SNAKE_CASE : Optional[int] = list(map(_convert_table_text_to_pandas , examples['''table_text'''] ) ) SCREAMING_SNAKE_CASE : Any = tokenizer(a_ , a_ , padding=a_ , max_length=a_ , truncation=a_ ) SCREAMING_SNAKE_CASE : List[Any] = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): SCREAMING_SNAKE_CASE : Optional[Any] = raw_datasets.map( a_ , batched=a_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on dataset''' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) SCREAMING_SNAKE_CASE : List[str] = raw_datasets['''train'''] if data_args.max_train_samples is not None: SCREAMING_SNAKE_CASE : Any = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) SCREAMING_SNAKE_CASE : List[str] = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) SCREAMING_SNAKE_CASE : Tuple = raw_datasets['''test'''] if data_args.max_predict_samples is not None: SCREAMING_SNAKE_CASE : Optional[int] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(a_ ) ) , 3 ): logger.info(F"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(a_ : EvalPrediction ): SCREAMING_SNAKE_CASE : str = p.predictions[0] if isinstance(p.predictions , a_ ) else p.predictions SCREAMING_SNAKE_CASE : Tuple = np.argmax(a_ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: SCREAMING_SNAKE_CASE : Tuple = default_data_collator elif training_args.fpaa: SCREAMING_SNAKE_CASE : Union[str, Any] = DataCollatorWithPadding(a_ , pad_to_multiple_of=8 ) else: SCREAMING_SNAKE_CASE : List[Any] = None # Initialize our Trainer SCREAMING_SNAKE_CASE : Optional[Any] = Trainer( model=a_ , args=a_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=a_ , tokenizer=a_ , data_collator=a_ , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE : List[str] = None if training_args.resume_from_checkpoint is not None: SCREAMING_SNAKE_CASE : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: SCREAMING_SNAKE_CASE : str = last_checkpoint SCREAMING_SNAKE_CASE : str = trainer.train(resume_from_checkpoint=a_ ) SCREAMING_SNAKE_CASE : Optional[int] = train_result.metrics SCREAMING_SNAKE_CASE : int = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) SCREAMING_SNAKE_CASE : Optional[int] = min(a_ , len(a_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , a_ ) trainer.save_metrics('''train''' , a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) SCREAMING_SNAKE_CASE : Tuple = trainer.evaluate(eval_dataset=a_ ) SCREAMING_SNAKE_CASE : str = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = min(a_ , len(a_ ) ) trainer.log_metrics('''eval''' , a_ ) trainer.save_metrics('''eval''' , a_ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. SCREAMING_SNAKE_CASE : Optional[Any] = predict_dataset.remove_columns('''label''' ) SCREAMING_SNAKE_CASE : Optional[Any] = trainer.predict(a_ , metric_key_prefix='''predict''' ).predictions SCREAMING_SNAKE_CASE : Union[str, Any] = np.argmax(a_ , axis=1 ) SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(training_args.output_dir , '''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(a_ , '''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(a_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = label_list[item] writer.write(F"{index}\t{item}\n" ) SCREAMING_SNAKE_CASE : Optional[int] = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**a_ ) else: trainer.create_model_card(**a_ ) def __A ( a_ : List[str] )-> int: '''simple docstring''' main() if __name__ == "__main__": main()
18
0
"""simple docstring""" import functools def __A ( a_ : str , a_ : str )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = len(a_ ) SCREAMING_SNAKE_CASE : Tuple = len(a_ ) @functools.cache def min_distance(a_ : int , a_ : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa SCREAMING_SNAKE_CASE : Tuple = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , a_ ) , 1 + min_distance(a_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__: '''simple docstring''' def __init__( self :str , lowerCamelCase_ :List[Any] , lowerCamelCase_ :Any=13 , lowerCamelCase_ :Any=32 , lowerCamelCase_ :Union[str, Any]=2 , lowerCamelCase_ :Any=3 , lowerCamelCase_ :Union[str, Any]=16 , lowerCamelCase_ :int=[1, 2, 1] , lowerCamelCase_ :str=[2, 2, 4] , lowerCamelCase_ :str=2 , lowerCamelCase_ :Tuple=2.0 , lowerCamelCase_ :Union[str, Any]=True , lowerCamelCase_ :str=0.0 , lowerCamelCase_ :Optional[int]=0.0 , lowerCamelCase_ :Dict=0.1 , lowerCamelCase_ :Union[str, Any]="gelu" , lowerCamelCase_ :str=False , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :List[Any]=1E-5 , lowerCamelCase_ :int=True , lowerCamelCase_ :str=None , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Union[str, Any]=10 , lowerCamelCase_ :List[Any]=8 , ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : Any = embed_dim SCREAMING_SNAKE_CASE : int = depths SCREAMING_SNAKE_CASE : List[str] = num_heads SCREAMING_SNAKE_CASE : Union[str, Any] = window_size SCREAMING_SNAKE_CASE : Optional[Any] = mlp_ratio SCREAMING_SNAKE_CASE : List[Any] = qkv_bias SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = drop_path_rate SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = use_absolute_embeddings SCREAMING_SNAKE_CASE : Any = patch_norm SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : List[Any] = scope SCREAMING_SNAKE_CASE : Optional[Any] = use_labels SCREAMING_SNAKE_CASE : Optional[Any] = type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = encoder_stride def __lowerCAmelCase ( self :Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : int = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self :int ) -> int: '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = SwinvaModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : int = model(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE : Dict = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __lowerCAmelCase ( self :str , lowerCamelCase_ :str , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = SwinvaForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images SCREAMING_SNAKE_CASE : Tuple = 1 SCREAMING_SNAKE_CASE : List[Any] = SwinvaForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __lowerCAmelCase ( self :Tuple , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Any , lowerCamelCase_ :int ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.type_sequence_label_size SCREAMING_SNAKE_CASE : Optional[Any] = SwinvaForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self :List[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : int = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase__( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) UpperCamelCase = ( {"""feature-extraction""": SwinvaModel, """image-classification""": SwinvaForImageClassification} if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def __lowerCAmelCase ( self :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = SwinvaModelTester(self ) SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=lowerCamelCase_ , embed_dim=37 ) def __lowerCAmelCase ( self :Dict ) -> List[str]: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self :List[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) @unittest.skip(reason='''Got `CUDA error: misaligned address` with PyTorch 2.0.0.''' ) def __lowerCAmelCase ( self :str ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason='''Swinv2 does not use inputs_embeds''' ) def __lowerCAmelCase ( self :List[Any] ) -> Any: '''simple docstring''' pass def __lowerCAmelCase ( self :int ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , nn.Linear ) ) def __lowerCAmelCase ( self :int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Optional[int] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Tuple = True for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Any = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.attentions SCREAMING_SNAKE_CASE : Tuple = len(self.model_tester.depths ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : Optional[int] = config.window_size**2 SCREAMING_SNAKE_CASE : str = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Dict = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) SCREAMING_SNAKE_CASE : Dict = len(lowerCamelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : int = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) if hasattr(self.model_tester , '''num_hidden_states_types''' ): SCREAMING_SNAKE_CASE : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states SCREAMING_SNAKE_CASE : Optional[Any] = 2 self.assertEqual(out_len + added_hidden_states , len(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Tuple = outputs.attentions self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :Any , lowerCamelCase_ :Tuple , lowerCamelCase_ :Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : Dict = outputs.hidden_states SCREAMING_SNAKE_CASE : str = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) # Swinv2 has a different seq_length SCREAMING_SNAKE_CASE : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE : Dict = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) SCREAMING_SNAKE_CASE : Any = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = reshaped_hidden_states[0].shape SCREAMING_SNAKE_CASE : Optional[int] = ( reshaped_hidden_states[0].view(lowerCamelCase_ , lowerCamelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __lowerCAmelCase ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : List[str] = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = 3 SCREAMING_SNAKE_CASE : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE : Optional[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE : Optional[int] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Optional[Any] = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , (padded_height, padded_width) ) def __lowerCAmelCase ( self :str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def __lowerCAmelCase ( self :Tuple ) -> List[str]: '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Tuple = SwinvaModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def __lowerCAmelCase ( self :int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Tuple = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class lowercase__( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self :Dict ) -> List[Any]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self :Dict ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = SwinvaForImageClassification.from_pretrained('''microsoft/swinv2-tiny-patch4-window8-256''' ).to( lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) SCREAMING_SNAKE_CASE : List[str] = image_processor(images=lowerCamelCase_ , return_tensors='''pt''' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Tuple = model(**lowerCamelCase_ ) # verify the logits SCREAMING_SNAKE_CASE : List[str] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = torch.tensor([-0.3_9_4_7, -0.4_3_0_6, 0.0_0_2_6] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) )
18
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Any = logging.get_logger(__name__) class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """encoder-decoder""" UpperCamelCase = True def __init__( self :Optional[int] , **lowerCamelCase_ :Optional[int] ) -> List[str]: '''simple docstring''' super().__init__(**lowerCamelCase_ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" SCREAMING_SNAKE_CASE : int = kwargs.pop('''encoder''' ) SCREAMING_SNAKE_CASE : Dict = encoder_config.pop('''model_type''' ) SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop('''decoder''' ) SCREAMING_SNAKE_CASE : List[str] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig SCREAMING_SNAKE_CASE : str = AutoConfig.for_model(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = AutoConfig.for_model(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = True @classmethod def __lowerCAmelCase ( cls :int , lowerCamelCase_ :PretrainedConfig , lowerCamelCase_ :PretrainedConfig , **lowerCamelCase_ :Optional[Any] ) -> PretrainedConfig: '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : List[str] = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowerCamelCase_ ) def __lowerCAmelCase ( self :Any ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : int = self.encoder.to_dict() SCREAMING_SNAKE_CASE : Union[str, Any] = self.decoder.to_dict() SCREAMING_SNAKE_CASE : Dict = self.__class__.model_type return output
712
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : str = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """blenderbot-small""" UpperCamelCase = ["""past_key_values"""] UpperCamelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :Any , lowerCamelCase_ :Dict=5_02_65 , lowerCamelCase_ :str=5_12 , lowerCamelCase_ :Tuple=8 , lowerCamelCase_ :int=20_48 , lowerCamelCase_ :str=16 , lowerCamelCase_ :Optional[int]=8 , lowerCamelCase_ :str=20_48 , lowerCamelCase_ :Optional[Any]=16 , lowerCamelCase_ :Union[str, Any]=0.0 , lowerCamelCase_ :List[str]=0.0 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :int="gelu" , lowerCamelCase_ :Tuple=5_12 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :int=0.0 , lowerCamelCase_ :Tuple=0.0 , lowerCamelCase_ :Optional[int]=0.0_2 , lowerCamelCase_ :Union[str, Any]=1 , lowerCamelCase_ :Dict=False , lowerCamelCase_ :Optional[int]=0 , lowerCamelCase_ :List[Any]=1 , lowerCamelCase_ :Any=2 , lowerCamelCase_ :Optional[Any]=2 , **lowerCamelCase_ :Dict , ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[Any] = d_model SCREAMING_SNAKE_CASE : Dict = encoder_ffn_dim SCREAMING_SNAKE_CASE : Tuple = encoder_layers SCREAMING_SNAKE_CASE : Dict = encoder_attention_heads SCREAMING_SNAKE_CASE : Any = decoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : str = decoder_attention_heads SCREAMING_SNAKE_CASE : List[Any] = dropout SCREAMING_SNAKE_CASE : Optional[Any] = attention_dropout SCREAMING_SNAKE_CASE : Any = activation_dropout SCREAMING_SNAKE_CASE : List[str] = activation_function SCREAMING_SNAKE_CASE : Optional[int] = init_std SCREAMING_SNAKE_CASE : List[Any] = encoder_layerdrop SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_layerdrop SCREAMING_SNAKE_CASE : List[Any] = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_layers SCREAMING_SNAKE_CASE : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , is_encoder_decoder=lowerCamelCase_ , decoder_start_token_id=lowerCamelCase_ , forced_eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch'''} SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''decoder_sequence'''} SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase_ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE : Tuple = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = self.num_layers for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : int = {0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE : List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} else: SCREAMING_SNAKE_CASE : Any = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Any = super().outputs else: SCREAMING_SNAKE_CASE : Tuple = super(lowerCamelCase_ , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_layers for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE : str = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __lowerCAmelCase ( self :int , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Generate decoder inputs SCREAMING_SNAKE_CASE : Optional[int] = seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE : str = dict(**lowerCamelCase_ , **lowerCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = common_inputs['''input_ids'''].shape SCREAMING_SNAKE_CASE : str = common_inputs['''decoder_input_ids'''].shape[1] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.num_attention_heads SCREAMING_SNAKE_CASE : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE : Optional[Any] = decoder_seq_length + 3 SCREAMING_SNAKE_CASE : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE : List[Any] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowerCamelCase_ , lowerCamelCase_ )] , dim=1 ) SCREAMING_SNAKE_CASE : Optional[int] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[int] = self.num_layers SCREAMING_SNAKE_CASE : int = min(lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = max(lowerCamelCase_ , lowerCamelCase_ ) - min_num_layers SCREAMING_SNAKE_CASE : Tuple = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowerCamelCase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE : int = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowerCamelCase_ , lowerCamelCase_ ): common_inputs["past_key_values"].append((torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) ) return common_inputs def __lowerCAmelCase ( self :Any , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE : List[str] = seqlen + 2 SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = self.num_layers SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = self.num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE : Tuple = common_inputs['''attention_mask'''].dtype SCREAMING_SNAKE_CASE : Any = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowerCamelCase_ , lowerCamelCase_ , dtype=lowerCamelCase_ )] , dim=1 ) SCREAMING_SNAKE_CASE : Optional[int] = [ (torch.zeros(lowerCamelCase_ ), torch.zeros(lowerCamelCase_ )) for _ in range(lowerCamelCase_ ) ] return common_inputs def __lowerCAmelCase ( self :Union[str, Any] , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : int = tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE : Tuple = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE : Any = dict(tokenizer(lowerCamelCase_ , return_tensors=lowerCamelCase_ ) ) return common_inputs def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :PreTrainedTokenizer , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Dict = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) elif self.task == "causal-lm": SCREAMING_SNAKE_CASE : Union[str, Any] = self._generate_dummy_inputs_for_causal_lm( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase_ , batch_size=lowerCamelCase_ , seq_length=lowerCamelCase_ , is_pair=lowerCamelCase_ , framework=lowerCamelCase_ ) return common_inputs def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] , lowerCamelCase_ :Dict ) -> List[Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE : Optional[Any] = super()._flatten_past_key_values_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE : Tuple = super(lowerCamelCase_ , self )._flatten_past_key_values_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
18
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Optional[int] = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """swinv2""" UpperCamelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :Any , lowerCamelCase_ :str=2_24 , lowerCamelCase_ :List[str]=4 , lowerCamelCase_ :Optional[int]=3 , lowerCamelCase_ :List[str]=96 , lowerCamelCase_ :Optional[int]=[2, 2, 6, 2] , lowerCamelCase_ :Any=[3, 6, 12, 24] , lowerCamelCase_ :List[str]=7 , lowerCamelCase_ :List[str]=4.0 , lowerCamelCase_ :str=True , lowerCamelCase_ :Any=0.0 , lowerCamelCase_ :List[Any]=0.0 , lowerCamelCase_ :Tuple=0.1 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :str=False , lowerCamelCase_ :Tuple=0.0_2 , lowerCamelCase_ :List[str]=1E-5 , lowerCamelCase_ :Dict=32 , **lowerCamelCase_ :Optional[Any] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : int = embed_dim SCREAMING_SNAKE_CASE : int = depths SCREAMING_SNAKE_CASE : List[Any] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = num_heads SCREAMING_SNAKE_CASE : Dict = window_size SCREAMING_SNAKE_CASE : int = mlp_ratio SCREAMING_SNAKE_CASE : Dict = qkv_bias SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = drop_path_rate SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = use_absolute_embeddings SCREAMING_SNAKE_CASE : int = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Tuple = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE : Union[str, Any] = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) SCREAMING_SNAKE_CASE : str = (0, 0, 0, 0)
713
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCamelCase__ : Dict = logging.get_logger(__name__) lowerCamelCase__ : Dict = { "microsoft/layoutlmv3-base": "https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json", } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """layoutlmv3""" def __init__( self :str , lowerCamelCase_ :Optional[Any]=5_02_65 , lowerCamelCase_ :Dict=7_68 , lowerCamelCase_ :Union[str, Any]=12 , lowerCamelCase_ :Optional[Any]=12 , lowerCamelCase_ :Union[str, Any]=30_72 , lowerCamelCase_ :Any="gelu" , lowerCamelCase_ :Union[str, Any]=0.1 , lowerCamelCase_ :str=0.1 , lowerCamelCase_ :Any=5_12 , lowerCamelCase_ :int=2 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :Optional[int]=1E-5 , lowerCamelCase_ :Dict=1 , lowerCamelCase_ :int=0 , lowerCamelCase_ :Tuple=2 , lowerCamelCase_ :List[str]=10_24 , lowerCamelCase_ :Tuple=1_28 , lowerCamelCase_ :Any=1_28 , lowerCamelCase_ :Optional[Any]=True , lowerCamelCase_ :str=32 , lowerCamelCase_ :int=1_28 , lowerCamelCase_ :int=64 , lowerCamelCase_ :List[Any]=2_56 , lowerCamelCase_ :Any=True , lowerCamelCase_ :str=True , lowerCamelCase_ :Union[str, Any]=True , lowerCamelCase_ :List[str]=2_24 , lowerCamelCase_ :Dict=3 , lowerCamelCase_ :Union[str, Any]=16 , lowerCamelCase_ :Any=None , **lowerCamelCase_ :Optional[Any] , ) -> int: '''simple docstring''' super().__init__( vocab_size=lowerCamelCase_ , hidden_size=lowerCamelCase_ , num_hidden_layers=lowerCamelCase_ , num_attention_heads=lowerCamelCase_ , intermediate_size=lowerCamelCase_ , hidden_act=lowerCamelCase_ , hidden_dropout_prob=lowerCamelCase_ , attention_probs_dropout_prob=lowerCamelCase_ , max_position_embeddings=lowerCamelCase_ , type_vocab_size=lowerCamelCase_ , initializer_range=lowerCamelCase_ , layer_norm_eps=lowerCamelCase_ , pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Optional[Any] = max_ad_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = coordinate_size SCREAMING_SNAKE_CASE : Tuple = shape_size SCREAMING_SNAKE_CASE : Optional[int] = has_relative_attention_bias SCREAMING_SNAKE_CASE : List[Any] = rel_pos_bins SCREAMING_SNAKE_CASE : int = max_rel_pos SCREAMING_SNAKE_CASE : Any = has_spatial_attention_bias SCREAMING_SNAKE_CASE : List[Any] = rel_ad_pos_bins SCREAMING_SNAKE_CASE : Dict = max_rel_ad_pos SCREAMING_SNAKE_CASE : Optional[int] = text_embed SCREAMING_SNAKE_CASE : Any = visual_embed SCREAMING_SNAKE_CASE : Any = input_size SCREAMING_SNAKE_CASE : Tuple = num_channels SCREAMING_SNAKE_CASE : List[str] = patch_size SCREAMING_SNAKE_CASE : str = classifier_dropout class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = version.parse("""1.12""" ) @property def __lowerCAmelCase ( self :List[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) else: return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''bbox''', {0: '''batch''', 1: '''sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels'''}), ] ) @property def __lowerCAmelCase ( self :Optional[int] ) -> float: '''simple docstring''' return 1E-5 @property def __lowerCAmelCase ( self :Tuple ) -> int: '''simple docstring''' return 12 def __lowerCAmelCase ( self :List[Any] , lowerCamelCase_ :"ProcessorMixin" , lowerCamelCase_ :int = -1 , lowerCamelCase_ :int = -1 , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional["TensorType"] = None , lowerCamelCase_ :int = 3 , lowerCamelCase_ :int = 40 , lowerCamelCase_ :int = 40 , ) -> Mapping[str, Any]: '''simple docstring''' setattr(processor.image_processor , '''apply_ocr''' , lowerCamelCase_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : Dict = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE : Union[str, Any] = processor.tokenizer.num_special_tokens_to_add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = compute_effective_axis_dimension( lowerCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase_ ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE : Union[str, Any] = [[''' '''.join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes SCREAMING_SNAKE_CASE : int = [[[48, 84, 73, 1_28]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) SCREAMING_SNAKE_CASE : List[Any] = self._generate_dummy_images(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = dict( processor( lowerCamelCase_ , text=lowerCamelCase_ , boxes=lowerCamelCase_ , return_tensors=lowerCamelCase_ , ) ) return inputs
18
0
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig lowerCamelCase__ : Optional[int] = logging.getLogger(__name__) class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """masked_bert""" def __init__( self :Dict , lowerCamelCase_ :int=3_05_22 , lowerCamelCase_ :Any=7_68 , lowerCamelCase_ :Optional[int]=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :List[str]=30_72 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :Any=0.1 , lowerCamelCase_ :Union[str, Any]=0.1 , lowerCamelCase_ :Tuple=5_12 , lowerCamelCase_ :int=2 , lowerCamelCase_ :Optional[int]=0.0_2 , lowerCamelCase_ :List[Any]=1E-12 , lowerCamelCase_ :str=0 , lowerCamelCase_ :Dict="topK" , lowerCamelCase_ :List[Any]="constant" , lowerCamelCase_ :Optional[Any]=0.0 , **lowerCamelCase_ :Any , ) -> int: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : Dict = hidden_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = pruning_method SCREAMING_SNAKE_CASE : List[str] = mask_init SCREAMING_SNAKE_CASE : int = mask_scale
714
"""simple docstring""" import math def __A ( a_ : list , a_ : int )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = len(a_ ) SCREAMING_SNAKE_CASE : Optional[Any] = int(math.floor(math.sqrt(a_ ) ) ) SCREAMING_SNAKE_CASE : List[str] = 0 while arr[min(a_ , a_ ) - 1] < x: SCREAMING_SNAKE_CASE : Optional[Any] = step step += int(math.floor(math.sqrt(a_ ) ) ) if prev >= n: return -1 while arr[prev] < x: SCREAMING_SNAKE_CASE : Any = prev + 1 if prev == min(a_ , a_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase__ : List[str] = [int(item) for item in user_input.split(",")] lowerCamelCase__ : Dict = int(input("Enter the number to be searched:\n")) lowerCamelCase__ : Tuple = jump_search(arr, x) if res == -1: print("Number not found!") else: print(f'''Number {x} is at index {res}''')
18
0
"""simple docstring""" import gc import threading import time import psutil import torch class lowercase__: '''simple docstring''' def __init__( self :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = psutil.Process() SCREAMING_SNAKE_CASE : Any = False def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : str = -1 while True: SCREAMING_SNAKE_CASE : List[str] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def __lowerCAmelCase ( self :List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Union[str, Any] = threading.Thread(target=self.peak_monitor ) SCREAMING_SNAKE_CASE : Union[str, Any] = True self.thread.start() def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = False self.thread.join() return self.cpu_memory_peak lowerCamelCase__ : List[Any] = PeakCPUMemory() def __A ( )-> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {'''time''': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE : str = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): SCREAMING_SNAKE_CASE : Optional[int] = torch.cuda.memory_allocated(a_ ) torch.cuda.reset_peak_memory_stats() return measures def __A ( a_ : List[Any] )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {'''time''': time.time() - start_measures['''time''']} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE : Optional[Any] = (psutil.Process().memory_info().rss - start_measures['''cpu''']) / 2**20 SCREAMING_SNAKE_CASE : Any = (cpu_peak_tracker.stop() - start_measures['''cpu''']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): SCREAMING_SNAKE_CASE : str = (torch.cuda.memory_allocated(a_ ) - start_measures[str(a_ )]) / 2**20 SCREAMING_SNAKE_CASE : List[str] = (torch.cuda.max_memory_allocated(a_ ) - start_measures[str(a_ )]) / 2**20 return measures def __A ( a_ : str , a_ : int )-> Optional[int]: '''simple docstring''' print(F"{description}:" ) print(F"- Time: {measures['time']:.2f}s" ) for i in range(torch.cuda.device_count() ): print(F"- GPU {i} allocated: {measures[str(a_ )]:.2f}MiB" ) SCREAMING_SNAKE_CASE : Optional[int] = measures[F"{i}-peak"] print(F"- GPU {i} peak: {peak:.2f}MiB" ) print(F"- CPU RAM allocated: {measures['cpu']:.2f}MiB" ) print(F"- CPU RAM peak: {measures['cpu-peak']:.2f}MiB" )
715
"""simple docstring""" from sklearn.metrics import fa_score import datasets lowerCamelCase__ : List[Any] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" lowerCamelCase__ : str = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" lowerCamelCase__ : int = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__( datasets.Metric ): '''simple docstring''' def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int=None , lowerCamelCase_ :str=1 , lowerCamelCase_ :Union[str, Any]="binary" , lowerCamelCase_ :Dict=None ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE : int = fa_score( lowerCamelCase_ , lowerCamelCase_ , labels=lowerCamelCase_ , pos_label=lowerCamelCase_ , average=lowerCamelCase_ , sample_weight=lowerCamelCase_ ) return {"f1": float(lowerCamelCase_ ) if score.size == 1 else score}
18
0
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase__ : int = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } lowerCamelCase__ : Union[str, Any] = logging.get_logger(__name__) class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """mask2former""" UpperCamelCase = ["""swin"""] UpperCamelCase = {"""hidden_size""": """hidden_dim"""} def __init__( self :Optional[Any] , lowerCamelCase_ :Optional[Dict] = None , lowerCamelCase_ :int = 2_56 , lowerCamelCase_ :int = 2_56 , lowerCamelCase_ :int = 2_56 , lowerCamelCase_ :int = 10_24 , lowerCamelCase_ :str = "relu" , lowerCamelCase_ :int = 6 , lowerCamelCase_ :int = 10 , lowerCamelCase_ :int = 8 , lowerCamelCase_ :float = 0.0 , lowerCamelCase_ :int = 20_48 , lowerCamelCase_ :bool = False , lowerCamelCase_ :bool = False , lowerCamelCase_ :int = 4 , lowerCamelCase_ :int = 2_55 , lowerCamelCase_ :int = 1_00 , lowerCamelCase_ :float = 0.1 , lowerCamelCase_ :float = 2.0 , lowerCamelCase_ :float = 5.0 , lowerCamelCase_ :float = 5.0 , lowerCamelCase_ :int = 1_25_44 , lowerCamelCase_ :float = 3.0 , lowerCamelCase_ :float = 0.7_5 , lowerCamelCase_ :float = 0.0_2 , lowerCamelCase_ :float = 1.0 , lowerCamelCase_ :bool = True , lowerCamelCase_ :List[int] = [4, 8, 16, 32] , lowerCamelCase_ :bool = None , **lowerCamelCase_ :int , ) -> List[str]: '''simple docstring''' if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''' ) SCREAMING_SNAKE_CASE : Any = CONFIG_MAPPING['''swin''']( image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowerCamelCase_ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Any = backbone_config.pop('''model_type''' ) SCREAMING_SNAKE_CASE : str = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE : List[str] = config_class.from_dict(lowerCamelCase_ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " f"Supported model types: {','.join(self.backbones_supported )}" ) SCREAMING_SNAKE_CASE : Any = backbone_config SCREAMING_SNAKE_CASE : str = feature_size SCREAMING_SNAKE_CASE : Any = mask_feature_size SCREAMING_SNAKE_CASE : List[Any] = hidden_dim SCREAMING_SNAKE_CASE : List[Any] = encoder_feedforward_dim SCREAMING_SNAKE_CASE : str = activation_function SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layers SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : List[str] = dropout SCREAMING_SNAKE_CASE : List[Any] = dim_feedforward SCREAMING_SNAKE_CASE : Any = pre_norm SCREAMING_SNAKE_CASE : List[str] = enforce_input_projection SCREAMING_SNAKE_CASE : Dict = common_stride SCREAMING_SNAKE_CASE : Dict = ignore_value SCREAMING_SNAKE_CASE : List[str] = num_queries SCREAMING_SNAKE_CASE : List[str] = no_object_weight SCREAMING_SNAKE_CASE : List[Any] = class_weight SCREAMING_SNAKE_CASE : Dict = mask_weight SCREAMING_SNAKE_CASE : Any = dice_weight SCREAMING_SNAKE_CASE : Dict = train_num_points SCREAMING_SNAKE_CASE : Optional[int] = oversample_ratio SCREAMING_SNAKE_CASE : Dict = importance_sample_ratio SCREAMING_SNAKE_CASE : Union[str, Any] = init_std SCREAMING_SNAKE_CASE : List[Any] = init_xavier_std SCREAMING_SNAKE_CASE : Optional[int] = use_auxiliary_loss SCREAMING_SNAKE_CASE : List[Any] = feature_strides SCREAMING_SNAKE_CASE : Dict = output_auxiliary_logits SCREAMING_SNAKE_CASE : str = decoder_layers super().__init__(**lowerCamelCase_ ) @classmethod def __lowerCAmelCase ( cls :int , lowerCamelCase_ :PretrainedConfig , **lowerCamelCase_ :int ) -> Union[str, Any]: '''simple docstring''' return cls( backbone_config=lowerCamelCase_ , **lowerCamelCase_ , ) def __lowerCAmelCase ( self :Optional[Any] ) -> Dict[str, any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : List[str] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE : str = self.__class__.model_type return output
716
"""simple docstring""" from __future__ import annotations from fractions import Fraction def __A ( a_ : int , a_ : int )-> bool: '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def __A ( a_ : int )-> list[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : List[str] = 11 SCREAMING_SNAKE_CASE : Union[str, Any] = int('''1''' + '''0''' * digit_len ) for num in range(a_ , a_ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(a_ , a_ ): solutions.append(F"{num}/{den}" ) den += 1 num += 1 SCREAMING_SNAKE_CASE : Optional[Any] = 10 return solutions def __A ( a_ : int = 2 )-> int: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 1.0 for fraction in fraction_list(a_ ): SCREAMING_SNAKE_CASE : List[str] = Fraction(a_ ) result *= frac.denominator / frac.numerator return int(a_ ) if __name__ == "__main__": print(solution())
18
0
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : List[str] = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """data2vec-audio""" def __init__( self :Optional[Any] , lowerCamelCase_ :Optional[int]=32 , lowerCamelCase_ :Tuple=7_68 , lowerCamelCase_ :Dict=12 , lowerCamelCase_ :Optional[Any]=12 , lowerCamelCase_ :Optional[Any]=30_72 , lowerCamelCase_ :Any="gelu" , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :Optional[Any]=0.1 , lowerCamelCase_ :Union[str, Any]=0.0 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :Tuple=0.1 , lowerCamelCase_ :Optional[Any]=0.0_2 , lowerCamelCase_ :int=1E-5 , lowerCamelCase_ :int="gelu" , lowerCamelCase_ :str=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowerCamelCase_ :List[str]=(5, 2, 2, 2, 2, 2, 2) , lowerCamelCase_ :str=(10, 3, 3, 3, 3, 2, 2) , lowerCamelCase_ :int=False , lowerCamelCase_ :Union[str, Any]=16 , lowerCamelCase_ :Optional[Any]=19 , lowerCamelCase_ :Dict=5 , lowerCamelCase_ :Any=0.0_5 , lowerCamelCase_ :str=10 , lowerCamelCase_ :Optional[Any]=2 , lowerCamelCase_ :Union[str, Any]=0.0 , lowerCamelCase_ :int=10 , lowerCamelCase_ :int=0 , lowerCamelCase_ :List[Any]="sum" , lowerCamelCase_ :int=False , lowerCamelCase_ :Tuple=False , lowerCamelCase_ :Tuple=2_56 , lowerCamelCase_ :Union[str, Any]=(5_12, 5_12, 5_12, 5_12, 15_00) , lowerCamelCase_ :Optional[Any]=(5, 3, 3, 1, 1) , lowerCamelCase_ :Tuple=(1, 2, 3, 1, 1) , lowerCamelCase_ :Union[str, Any]=5_12 , lowerCamelCase_ :Any=0 , lowerCamelCase_ :Any=1 , lowerCamelCase_ :List[Any]=2 , lowerCamelCase_ :Union[str, Any]=False , lowerCamelCase_ :Dict=3 , lowerCamelCase_ :List[str]=2 , lowerCamelCase_ :Optional[int]=3 , lowerCamelCase_ :Dict=None , **lowerCamelCase_ :Optional[int] , ) -> List[str]: '''simple docstring''' super().__init__(**lowerCamelCase_ , pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : List[Any] = feat_extract_activation SCREAMING_SNAKE_CASE : int = list(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = list(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = list(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = conv_bias SCREAMING_SNAKE_CASE : str = num_conv_pos_embeddings SCREAMING_SNAKE_CASE : List[str] = num_conv_pos_embedding_groups SCREAMING_SNAKE_CASE : Optional[int] = conv_pos_kernel_size SCREAMING_SNAKE_CASE : Optional[int] = len(self.conv_dim ) SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout SCREAMING_SNAKE_CASE : List[str] = attention_dropout SCREAMING_SNAKE_CASE : Union[str, Any] = activation_dropout SCREAMING_SNAKE_CASE : str = feat_proj_dropout SCREAMING_SNAKE_CASE : int = final_dropout SCREAMING_SNAKE_CASE : Dict = layerdrop SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : List[str] = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE : Optional[int] = mask_time_prob SCREAMING_SNAKE_CASE : str = mask_time_length SCREAMING_SNAKE_CASE : Tuple = mask_time_min_masks SCREAMING_SNAKE_CASE : str = mask_feature_prob SCREAMING_SNAKE_CASE : List[str] = mask_feature_length SCREAMING_SNAKE_CASE : Any = mask_feature_min_masks # ctc loss SCREAMING_SNAKE_CASE : Any = ctc_loss_reduction SCREAMING_SNAKE_CASE : Any = ctc_zero_infinity # adapter SCREAMING_SNAKE_CASE : Any = add_adapter SCREAMING_SNAKE_CASE : List[Any] = adapter_kernel_size SCREAMING_SNAKE_CASE : str = adapter_stride SCREAMING_SNAKE_CASE : List[str] = num_adapter_layers SCREAMING_SNAKE_CASE : Any = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE : Dict = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE : List[Any] = list(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = list(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = list(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = xvector_output_dim @property def __lowerCAmelCase ( self :List[str] ) -> int: '''simple docstring''' return math.prod(self.conv_stride )
717
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCamelCase__ : int = logging.get_logger(__name__) class lowercase__( _UpperCAmelCase , _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """maskformer-swin""" UpperCamelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self :Optional[int] , lowerCamelCase_ :List[Any]=2_24 , lowerCamelCase_ :Tuple=4 , lowerCamelCase_ :Optional[Any]=3 , lowerCamelCase_ :List[str]=96 , lowerCamelCase_ :int=[2, 2, 6, 2] , lowerCamelCase_ :Union[str, Any]=[3, 6, 12, 24] , lowerCamelCase_ :Optional[int]=7 , lowerCamelCase_ :Tuple=4.0 , lowerCamelCase_ :Tuple=True , lowerCamelCase_ :Dict=0.0 , lowerCamelCase_ :Any=0.0 , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :Optional[int]=False , lowerCamelCase_ :List[str]=0.0_2 , lowerCamelCase_ :Any=1E-5 , lowerCamelCase_ :Union[str, Any]=None , lowerCamelCase_ :List[str]=None , **lowerCamelCase_ :Union[str, Any] , ) -> Dict: '''simple docstring''' super().__init__(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = image_size SCREAMING_SNAKE_CASE : Optional[Any] = patch_size SCREAMING_SNAKE_CASE : str = num_channels SCREAMING_SNAKE_CASE : Union[str, Any] = embed_dim SCREAMING_SNAKE_CASE : List[Any] = depths SCREAMING_SNAKE_CASE : List[str] = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = num_heads SCREAMING_SNAKE_CASE : Any = window_size SCREAMING_SNAKE_CASE : List[str] = mlp_ratio SCREAMING_SNAKE_CASE : str = qkv_bias SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : int = drop_path_rate SCREAMING_SNAKE_CASE : Tuple = hidden_act SCREAMING_SNAKE_CASE : Any = use_absolute_embeddings SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : List[str] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model SCREAMING_SNAKE_CASE : int = int(embed_dim * 2 ** (len(lowerCamelCase_ ) - 1) ) SCREAMING_SNAKE_CASE : Dict = ['''stem'''] + [f"stage{idx}" for idx in range(1 , len(lowerCamelCase_ ) + 1 )] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = get_aligned_output_features_output_indices( out_features=lowerCamelCase_ , out_indices=lowerCamelCase_ , stage_names=self.stage_names )
18
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCamelCase__ : Tuple = logging.get_logger(__name__) class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :str , *lowerCamelCase_ :List[str] , **lowerCamelCase_ :List[Any] ) -> None: '''simple docstring''' warnings.warn( '''The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use YolosImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_ )
718
"""simple docstring""" import math class lowercase__: '''simple docstring''' def __init__( self :Union[str, Any] , lowerCamelCase_ :List[str]=0 ) -> List[Any]: # a graph with Node 0,1,...,N-1 '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = n SCREAMING_SNAKE_CASE : List[Any] = [ [math.inf for j in range(0 , lowerCamelCase_ )] for i in range(0 , lowerCamelCase_ ) ] # adjacency matrix for weight SCREAMING_SNAKE_CASE : Any = [ [math.inf for j in range(0 , lowerCamelCase_ )] for i in range(0 , lowerCamelCase_ ) ] # dp[i][j] stores minimum distance from i to j def __lowerCAmelCase ( self :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = w def __lowerCAmelCase ( self :str ) -> Union[str, Any]: '''simple docstring''' for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): SCREAMING_SNAKE_CASE : List[str] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __lowerCAmelCase ( self :int , lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Optional[int] ) -> Optional[Any]: '''simple docstring''' return self.dp[u][v] if __name__ == "__main__": lowerCamelCase__ : Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
18
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : int = logging.get_logger(__name__) lowerCamelCase__ : List[Any] = { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/config.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/config.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json" ), "distilbert-base-uncased-finetuned-sst-2-english": ( "https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json" ), } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """distilbert""" UpperCamelCase = { """hidden_size""": """dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", } def __init__( self :Any , lowerCamelCase_ :Tuple=3_05_22 , lowerCamelCase_ :Optional[Any]=5_12 , lowerCamelCase_ :Dict=False , lowerCamelCase_ :str=6 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :int=7_68 , lowerCamelCase_ :Optional[Any]=4 * 7_68 , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :Optional[int]=0.1 , lowerCamelCase_ :int="gelu" , lowerCamelCase_ :Union[str, Any]=0.0_2 , lowerCamelCase_ :List[str]=0.1 , lowerCamelCase_ :Dict=0.2 , lowerCamelCase_ :Union[str, Any]=0 , **lowerCamelCase_ :List[str] , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE : List[str] = sinusoidal_pos_embds SCREAMING_SNAKE_CASE : List[Any] = n_layers SCREAMING_SNAKE_CASE : Dict = n_heads SCREAMING_SNAKE_CASE : List[Any] = dim SCREAMING_SNAKE_CASE : str = hidden_dim SCREAMING_SNAKE_CASE : List[str] = dropout SCREAMING_SNAKE_CASE : Dict = attention_dropout SCREAMING_SNAKE_CASE : Tuple = activation SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = qa_dropout SCREAMING_SNAKE_CASE : str = seq_classif_dropout super().__init__(**lowerCamelCase_ , pad_token_id=lowerCamelCase_ ) class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
719
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase__ : Tuple = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : Union[str, Any] = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowerCamelCase__ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
18
0
"""simple docstring""" from collections.abc import Generator from math import sin def __A ( a_ : bytes )-> bytes: '''simple docstring''' if len(a_ ) != 32: raise ValueError('''Input must be of length 32''' ) SCREAMING_SNAKE_CASE : str = B'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __A ( a_ : int )-> bytes: '''simple docstring''' if i < 0: raise ValueError('''Input must be non-negative''' ) SCREAMING_SNAKE_CASE : Tuple = format(a_ , '''08x''' )[-8:] SCREAMING_SNAKE_CASE : int = B'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def __A ( a_ : bytes )-> bytes: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = B'''''' for char in message: bit_string += format(a_ , '''08b''' ).encode('''utf-8''' ) SCREAMING_SNAKE_CASE : int = format(len(a_ ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(a_ ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __A ( a_ : bytes )-> Generator[list[int], None, None]: '''simple docstring''' if len(a_ ) % 5_12 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(a_ ) , 5_12 ): SCREAMING_SNAKE_CASE : List[str] = bit_string[pos : pos + 5_12] SCREAMING_SNAKE_CASE : Optional[int] = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def __A ( a_ : int )-> int: '''simple docstring''' if i < 0: raise ValueError('''Input must be non-negative''' ) SCREAMING_SNAKE_CASE : Optional[int] = format(a_ , '''032b''' ) SCREAMING_SNAKE_CASE : Optional[int] = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(a_ , 2 ) def __A ( a_ : int , a_ : int )-> int: '''simple docstring''' return (a + b) % 2**32 def __A ( a_ : int , a_ : int )-> int: '''simple docstring''' if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __A ( a_ : bytes )-> bytes: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = preprocess(a_ ) SCREAMING_SNAKE_CASE : List[Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states SCREAMING_SNAKE_CASE : Dict = 0x67_45_23_01 SCREAMING_SNAKE_CASE : Tuple = 0xEF_CD_AB_89 SCREAMING_SNAKE_CASE : str = 0x98_BA_DC_FE SCREAMING_SNAKE_CASE : List[Any] = 0x10_32_54_76 SCREAMING_SNAKE_CASE : Any = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(a_ ): SCREAMING_SNAKE_CASE : Dict = aa SCREAMING_SNAKE_CASE : Optional[Any] = ba SCREAMING_SNAKE_CASE : Tuple = ca SCREAMING_SNAKE_CASE : Any = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f SCREAMING_SNAKE_CASE : str = d ^ (b & (c ^ d)) SCREAMING_SNAKE_CASE : Optional[Any] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f SCREAMING_SNAKE_CASE : List[Any] = c ^ (d & (b ^ c)) SCREAMING_SNAKE_CASE : Optional[int] = (5 * i + 1) % 16 elif i <= 47: SCREAMING_SNAKE_CASE : List[Any] = b ^ c ^ d SCREAMING_SNAKE_CASE : Union[str, Any] = (3 * i + 5) % 16 else: SCREAMING_SNAKE_CASE : Union[str, Any] = c ^ (b | not_aa(a_ )) SCREAMING_SNAKE_CASE : Optional[Any] = (7 * i) % 16 SCREAMING_SNAKE_CASE : Dict = (f + a + added_consts[i] + block_words[g]) % 2**32 SCREAMING_SNAKE_CASE : int = d SCREAMING_SNAKE_CASE : Union[str, Any] = c SCREAMING_SNAKE_CASE : Any = b SCREAMING_SNAKE_CASE : List[Any] = sum_aa(a_ , left_rotate_aa(a_ , shift_amounts[i] ) ) # Add hashed chunk to running total SCREAMING_SNAKE_CASE : str = sum_aa(a_ , a_ ) SCREAMING_SNAKE_CASE : str = sum_aa(a_ , a_ ) SCREAMING_SNAKE_CASE : Dict = sum_aa(a_ , a_ ) SCREAMING_SNAKE_CASE : Dict = sum_aa(a_ , a_ ) SCREAMING_SNAKE_CASE : int = reformat_hex(a_ ) + reformat_hex(a_ ) + reformat_hex(a_ ) + reformat_hex(a_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
720
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging lowerCamelCase__ : List[Any] = logging.get_logger(__name__) class lowercase__( _UpperCAmelCase ): '''simple docstring''' def __init__( self :List[str] , lowerCamelCase_ :Union[List[ControlNetModel], Tuple[ControlNetModel]] ) -> Union[str, Any]: '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList(lowerCamelCase_ ) def __lowerCAmelCase ( self :Any , lowerCamelCase_ :torch.FloatTensor , lowerCamelCase_ :Union[torch.Tensor, float, int] , lowerCamelCase_ :torch.Tensor , lowerCamelCase_ :List[torch.tensor] , lowerCamelCase_ :List[float] , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[torch.Tensor] = None , lowerCamelCase_ :Optional[Dict[str, Any]] = None , lowerCamelCase_ :bool = False , lowerCamelCase_ :bool = True , ) -> Union[ControlNetOutput, Tuple]: '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(lowerCamelCase_ , lowerCamelCase_ , self.nets ) ): SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = controlnet( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) # merge samples if i == 0: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : int = down_samples, mid_sample else: SCREAMING_SNAKE_CASE : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(lowerCamelCase_ , lowerCamelCase_ ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __lowerCAmelCase ( self :Any , lowerCamelCase_ :Union[str, os.PathLike] , lowerCamelCase_ :bool = True , lowerCamelCase_ :Callable = None , lowerCamelCase_ :bool = False , lowerCamelCase_ :Optional[str] = None , ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = 0 SCREAMING_SNAKE_CASE : Any = save_directory for controlnet in self.nets: controlnet.save_pretrained( lowerCamelCase_ , is_main_process=lowerCamelCase_ , save_function=lowerCamelCase_ , safe_serialization=lowerCamelCase_ , variant=lowerCamelCase_ , ) idx += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = model_path_to_save + f"_{idx}" @classmethod def __lowerCAmelCase ( cls :Dict , lowerCamelCase_ :Optional[Union[str, os.PathLike]] , **lowerCamelCase_ :Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : Optional[int] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... SCREAMING_SNAKE_CASE : Dict = pretrained_model_path while os.path.isdir(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Tuple = ControlNetModel.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) controlnets.append(lowerCamelCase_ ) idx += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + f"_{idx}" logger.info(f"{len(lowerCamelCase_ )} controlnets loaded from {pretrained_model_path}." ) if len(lowerCamelCase_ ) == 0: raise ValueError( f"No ControlNets found under {os.path.dirname(lowerCamelCase_ )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(lowerCamelCase_ )
18
0
"""simple docstring""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __A ( a_ : Any , a_ : Union[str, Any] , a_ : Optional[int] , a_ : Tuple )-> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Any = FunnelConfig.from_json_file(a_ ) print(F"Building PyTorch model from configuration: {config}" ) SCREAMING_SNAKE_CASE : str = FunnelBaseModel(a_ ) if base_model else FunnelModel(a_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(a_ , a_ , a_ ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , a_ ) if __name__ == "__main__": lowerCamelCase__ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) lowerCamelCase__ : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
721
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def __A ( a_ : float , a_ : float , a_ : bool = False )-> list[float]: '''simple docstring''' if radian_mode: return [magnitude * cos(a_ ), magnitude * sin(a_ )] return [magnitude * cos(radians(a_ ) ), magnitude * sin(radians(a_ ) )] def __A ( a_ : NDArray[floataa] , a_ : NDArray[floataa] , a_ : float = 10**-1 )-> bool: '''simple docstring''' SCREAMING_SNAKE_CASE : NDArray[floataa] = cross(a_ , a_ ) SCREAMING_SNAKE_CASE : float = sum(a_ ) return abs(a_ ) < eps if __name__ == "__main__": # Test to check if it works lowerCamelCase__ : Optional[Any] = array( [ polar_force(7_1_8.4, 180 - 30), polar_force(8_7_9.5_4, 45), polar_force(100, -90), ] ) lowerCamelCase__ : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg lowerCamelCase__ : Union[str, Any] = array( [ polar_force(30 * 9.8_1, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) lowerCamelCase__ : Any = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg lowerCamelCase__ : Union[str, Any] = array([[0, -2000], [0, -1200], [0, 15600], [0, -12400]]) lowerCamelCase__ : Optional[int] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
18
0
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def _UpperCamelCase ( _A ) -> List[str]: """simple docstring""" _UpperCAmelCase = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(_A , _A ) def _UpperCamelCase ( _A ) -> int: """simple docstring""" _UpperCAmelCase ,_UpperCAmelCase = emb.weight.shape _UpperCAmelCase = nn.Linear(_A , _A , bias=_A ) _UpperCAmelCase = emb.weight.data return lin_layer def _UpperCamelCase ( _A , _A=None ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = {} for old_key in state_dict.keys(): _UpperCAmelCase = old_key if "moe_layer.experts." in key: if expert_idx is not None: _UpperCAmelCase = key.replace("""moe_layer.experts.0""" , F"""ffn.experts.expert_{expert_idx}""" ) else: _UpperCAmelCase = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" ) if "gate" in key: _UpperCAmelCase = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" ) if "fc2" and "experts" not in key: _UpperCAmelCase = key.replace(""".fc2.""" , """.ffn.fc2.""" ) if "fc1" and "experts" not in key: _UpperCAmelCase = key.replace(""".fc1.""" , """.ffn.fc1.""" ) if ".encoder_attn." in key: _UpperCAmelCase = key.replace(""".encoder_attn.""" , """.cross_attention.""" ) if "encoder_attn_layer_norm" in key: _UpperCAmelCase = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" ) if "final_layer_norm" in key: _UpperCAmelCase = key.replace("""final_layer_norm""" , """ff_layer_norm""" ) _UpperCAmelCase = state_dict[old_key] return new_dict def _UpperCamelCase ( _A , _A , _A , _A , _A = WEIGHTS_NAME ) -> str: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = 0 os.makedirs(_A , exist_ok=_A ) for expert in range(_A ): _UpperCAmelCase = switch_checkpoint_path + F"""-rank-{expert}.pt""" if os.path.isfile(_A ): _UpperCAmelCase = torch.load(_A )["""model"""] remove_ignore_keys_(_A ) _UpperCAmelCase = rename_fairseq_keys(_A , _A ) _UpperCAmelCase = os.path.join( _A , weights_name.replace(""".bin""" , F"""-{len(_A )+1:05d}-of-???.bin""" ) ) torch.save(_A , _A ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_A )[0]].dtype ) # Add the last block _UpperCAmelCase = os.path.join(_A , weights_name.replace(""".bin""" , F"""-{len(_A )+1:05d}-of-???.bin""" ) ) _UpperCAmelCase = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""] remove_ignore_keys_(_A ) _UpperCAmelCase = rename_fairseq_keys(_A , _A ) _UpperCAmelCase = shared_weights["""decoder.embed_tokens.weight"""] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_A ) == 1: _UpperCAmelCase = os.path.join(_A , _A ) torch.save(_A , _A ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_A , _A ) # Otherwise, let's build the index _UpperCAmelCase = {} for idx, shard in enumerate(_A ): _UpperCAmelCase = weights_name.replace(""".bin""" , F"""-{idx+1:05d}-of-{len(_A ):05d}.bin""" ) _UpperCAmelCase = os.path.join(_A , weights_name.replace(""".bin""" , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(_A , os.path.join(_A , _A ) ) for key in shard: _UpperCAmelCase = shard_file # Add the metadata _UpperCAmelCase = {"""total_size""": total_size} _UpperCAmelCase = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(_A , _A ) , """w""" , encoding="""utf-8""" ) as f: _UpperCAmelCase = json.dumps(_A , indent=2 , sort_keys=_A ) + """\n""" f.write(_A ) return metadata, index if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) a : Optional[int] = parser.parse_args() a , a : Optional[Any] = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_2_8, args.dtype, ) a : Union[str, Any] = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8 ) config.save_pretrained(args.pytorch_dump_folder_path) a : Union[str, Any] = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
19
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) a : List[str] = logging.getLogger(__name__) a : int = {'''facebook/bart-base''': BartForConditionalGeneration} a : Dict = {'''facebook/bart-base''': BartTokenizer} def _UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=_A , default=_A , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=_A , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=_A , default=_A , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=_A , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_A , ) parser.add_argument( """--config_name""" , type=_A , default=_A , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=_A , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=_A , default=_A , help="""Where to store the final ONNX file.""" ) _UpperCAmelCase = parser.parse_args() return args def _UpperCamelCase ( _A , _A="cpu" ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = model_dict[model_name].from_pretrained(_A ).to(_A ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_A ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> Optional[int]: """simple docstring""" model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_A ) ) with torch.no_grad(): _UpperCAmelCase = """My friends are cool but they eat too many carbs.""" _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="""pt""" ).to(model.device ) _UpperCAmelCase = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=_A , max_length=_A , early_stopping=_A , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _A , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , _A , opset_version=1_4 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=_A , ) logger.info("""Model exported to {}""".format(_A ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_A ) ) logger.info("""Deduplicated and optimized model written to {}""".format(_A ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_A ) _UpperCAmelCase = ort_sess.run( _A , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(_A ), """max_length""": np.array(_A ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def _UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase ,_UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _A ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(_A ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = """BART.onnx""" logger.info("""Exporting model to ONNX""" ) export_and_validate_model(_A , _A , _A , _A , _A ) if __name__ == "__main__": main()
19
1
"""simple docstring""" def _UpperCamelCase ( _A ) -> int: """simple docstring""" _UpperCAmelCase = [1] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = 0, 0, 0 _UpperCAmelCase = ugly_nums[ia] * 2 _UpperCAmelCase = ugly_nums[ia] * 3 _UpperCAmelCase = ugly_nums[ia] * 5 for _ in range(1 , _A ): _UpperCAmelCase = min(_A , _A , _A ) ugly_nums.append(_A ) if next_num == next_a: ia += 1 _UpperCAmelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 _UpperCAmelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 _UpperCAmelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"{ugly_numbers(2_0_0) = }")
19
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCamelCase ( _A , _A=None ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = None if token is not None: _UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} _UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" _UpperCAmelCase = requests.get(_A , headers=_A ).json() _UpperCAmelCase = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(_A ): _UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" , headers=_A ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCamelCase ( _A , _A=None ) -> Dict: """simple docstring""" _UpperCAmelCase = None if token is not None: _UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} _UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" _UpperCAmelCase = requests.get(_A , headers=_A ).json() _UpperCAmelCase = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) _UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(_A ): _UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" , headers=_A ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCamelCase ( _A , _A , _A , _A ) -> List[str]: """simple docstring""" _UpperCAmelCase = None if token is not None: _UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} _UpperCAmelCase = requests.get(_A , headers=_A , allow_redirects=_A ) _UpperCAmelCase = result.headers["""Location"""] _UpperCAmelCase = requests.get(_A , allow_redirects=_A ) _UpperCAmelCase = os.path.join(_A , F"""{artifact_name}.zip""" ) with open(_A , """wb""" ) as fp: fp.write(response.content ) def _UpperCamelCase ( _A , _A=None ) -> Dict: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = None with zipfile.ZipFile(_A ) as z: for filename in z.namelist(): if not os.path.isdir(_A ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_A ) as f: for line in f: _UpperCAmelCase = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _UpperCAmelCase = line[: line.index(""": """ )] _UpperCAmelCase = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed _UpperCAmelCase = line[len("""FAILED """ ) :] failed_tests.append(_A ) elif filename == "job_name.txt": _UpperCAmelCase = line if len(_A ) != len(_A ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(_A )} for `errors` """ F"""and {len(_A )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) _UpperCAmelCase = None if job_name and job_links: _UpperCAmelCase = job_links.get(_A , _A ) # A list with elements of the form (line of error, error, failed test) _UpperCAmelCase = [x + [y] + [job_link] for x, y in zip(_A , _A )] return result def _UpperCamelCase ( _A , _A=None ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [os.path.join(_A , _A ) for p in os.listdir(_A ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(_A , job_links=_A ) ) return errors def _UpperCamelCase ( _A , _A=None ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = Counter() counter.update([x[1] for x in logs] ) _UpperCAmelCase = counter.most_common() _UpperCAmelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: _UpperCAmelCase = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} _UpperCAmelCase = dict(sorted(r.items() , key=lambda _A : item[1]["count"] , reverse=_A ) ) return r def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" _UpperCAmelCase = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): _UpperCAmelCase = test.split("""/""" )[2] else: _UpperCAmelCase = None return test def _UpperCamelCase ( _A , _A=None ) -> Any: """simple docstring""" _UpperCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] _UpperCAmelCase = [x for x in logs if x[2] is not None] _UpperCAmelCase = {x[2] for x in logs} _UpperCAmelCase = {} for test in tests: _UpperCAmelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _UpperCAmelCase = counter.most_common() _UpperCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _UpperCAmelCase = sum(error_counts.values() ) if n_errors > 0: _UpperCAmelCase = {"""count""": n_errors, """errors""": error_counts} _UpperCAmelCase = dict(sorted(r.items() , key=lambda _A : item[1]["count"] , reverse=_A ) ) return r def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = """| no. | error | status |""" _UpperCAmelCase = """|-:|:-|:-|""" _UpperCAmelCase = [header, sep] for error in reduced_by_error: _UpperCAmelCase = reduced_by_error[error]["""count"""] _UpperCAmelCase = F"""| {count} | {error[:1_0_0]} | |""" lines.append(_A ) return "\n".join(_A ) def _UpperCamelCase ( _A ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = """| model | no. of errors | major error | count |""" _UpperCAmelCase = """|-:|-:|-:|-:|""" _UpperCAmelCase = [header, sep] for model in reduced_by_model: _UpperCAmelCase = reduced_by_model[model]["""count"""] _UpperCAmelCase ,_UpperCAmelCase = list(reduced_by_model[model]["""errors"""].items() )[0] _UpperCAmelCase = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(_A ) return "\n".join(_A ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') a : Dict = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) a : Tuple = get_job_links(args.workflow_run_id, token=args.token) a : Tuple = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: a : List[Any] = k.find(''' / ''') a : Tuple = k[index + len(''' / ''') :] a : int = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) a : Tuple = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) a : Optional[int] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error a : Union[str, Any] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors a : Optional[int] = counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) a : int = reduce_by_error(errors) a : str = reduce_by_model(errors) a : int = make_github_table(reduced_by_error) a : Optional[int] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
19
1
"""simple docstring""" import math def _UpperCamelCase ( _A ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _UpperCamelCase ( _A = 1_0_0_0_1 ) -> int: """simple docstring""" try: _UpperCAmelCase = int(_A ) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""" ) from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""" ) _UpperCAmelCase = [] _UpperCAmelCase = 2 while len(_A ) < nth: if is_prime(_A ): primes.append(_A ) num += 1 else: num += 1 return primes[len(_A ) - 1] if __name__ == "__main__": print(F"{solution() = }")
19
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( _UpperCAmelCase ): a : Any = ['image_processor', 'tokenizer'] a : Optional[int] = 'AutoImageProcessor' a : Any = 'AutoTokenizer' def __init__( self : List[str] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=None , **__UpperCamelCase : List[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __UpperCamelCase , ) _UpperCAmelCase = kwargs.pop("""feature_extractor""" ) _UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.image_processor _UpperCAmelCase = False def __call__( self : Union[str, Any] , *__UpperCamelCase : str , **__UpperCamelCase : Optional[Any] ) ->List[str]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = kwargs.pop("""images""" , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop("""text""" , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: _UpperCAmelCase = self.image_processor(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) if text is not None: _UpperCAmelCase = self.tokenizer(__UpperCamelCase , **__UpperCamelCase ) if text is None: return inputs elif images is None: return encodings else: _UpperCAmelCase = encodings["""input_ids"""] return inputs def _snake_case ( self : Union[str, Any] , *__UpperCamelCase : int , **__UpperCamelCase : Tuple ) ->Tuple: '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def _snake_case ( self : Tuple , *__UpperCamelCase : int , **__UpperCamelCase : Union[str, Any] ) ->int: '''simple docstring''' return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @contextmanager def _snake_case ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) _UpperCAmelCase = True _UpperCAmelCase = self.tokenizer yield _UpperCAmelCase = self.image_processor _UpperCAmelCase = False def _snake_case ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : Union[str, Any]=None ) ->List[str]: '''simple docstring''' if added_vocab is None: _UpperCAmelCase = self.tokenizer.get_added_vocab() _UpperCAmelCase = {} while tokens: _UpperCAmelCase = re.search(r"""<s_(.*?)>""" , __UpperCamelCase , re.IGNORECASE ) if start_token is None: break _UpperCAmelCase = start_token.group(1 ) _UpperCAmelCase = re.search(rf"""</s_{key}>""" , __UpperCamelCase , re.IGNORECASE ) _UpperCAmelCase = start_token.group() if end_token is None: _UpperCAmelCase = tokens.replace(__UpperCamelCase , """""" ) else: _UpperCAmelCase = end_token.group() _UpperCAmelCase = re.escape(__UpperCamelCase ) _UpperCAmelCase = re.escape(__UpperCamelCase ) _UpperCAmelCase = re.search(f"""{start_token_escaped}(.*?){end_token_escaped}""" , __UpperCamelCase , re.IGNORECASE ) if content is not None: _UpperCAmelCase = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node _UpperCAmelCase = self.tokenajson(__UpperCamelCase , is_inner_value=__UpperCamelCase , added_vocab=__UpperCamelCase ) if value: if len(__UpperCamelCase ) == 1: _UpperCAmelCase = value[0] _UpperCAmelCase = value else: # leaf nodes _UpperCAmelCase = [] for leaf in content.split(r"""<sep/>""" ): _UpperCAmelCase = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": _UpperCAmelCase = leaf[1:-2] # for categorical special tokens output[key].append(__UpperCamelCase ) if len(output[key] ) == 1: _UpperCAmelCase = output[key][0] _UpperCAmelCase = tokens[tokens.find(__UpperCamelCase ) + len(__UpperCamelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=__UpperCamelCase , added_vocab=__UpperCamelCase ) if len(__UpperCamelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def _snake_case ( self : Tuple ) ->Optional[int]: '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __UpperCamelCase , ) return self.image_processor_class @property def _snake_case ( self : List[str] ) ->Dict: '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __UpperCamelCase , ) return self.image_processor
19
1
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase ( _A , _A , _A ) -> List[Any]: """simple docstring""" _UpperCAmelCase = LxmertConfig.from_json_file(_A ) print(F"""Building PyTorch model from configuration: {config}""" ) _UpperCAmelCase = LxmertForPreTraining(_A ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(_A , _A , _A ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
19
"""simple docstring""" import colorsys from PIL import Image # type: ignore def _UpperCamelCase ( _A , _A , _A ) -> float: """simple docstring""" _UpperCAmelCase = x _UpperCAmelCase = y for step in range(_A ): # noqa: B007 _UpperCAmelCase = a * a - b * b + x _UpperCAmelCase = 2 * a * b + y _UpperCAmelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _UpperCamelCase ( _A ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def _UpperCamelCase ( _A ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(_A , 1 , 1 ) ) def _UpperCamelCase ( _A = 8_0_0 , _A = 6_0_0 , _A = -0.6 , _A = 0 , _A = 3.2 , _A = 5_0 , _A = True , ) -> Image.Image: """simple docstring""" _UpperCAmelCase = Image.new("""RGB""" , (image_width, image_height) ) _UpperCAmelCase = img.load() # loop through the image-coordinates for image_x in range(_A ): for image_y in range(_A ): # determine the figure-coordinates based on the image-coordinates _UpperCAmelCase = figure_width / image_width * image_height _UpperCAmelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width _UpperCAmelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height _UpperCAmelCase = get_distance(_A , _A , _A ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: _UpperCAmelCase = get_color_coded_rgb(_A ) else: _UpperCAmelCase = get_black_and_white_rgb(_A ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure a : List[str] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
19
1
"""simple docstring""" from itertools import product def _UpperCamelCase ( _A , _A ) -> list[int]: """simple docstring""" _UpperCAmelCase = sides_number _UpperCAmelCase = max_face_number * dice_number _UpperCAmelCase = [0] * (max_total + 1) _UpperCAmelCase = 1 _UpperCAmelCase = range(_A , max_face_number + 1 ) for dice_numbers in product(_A , repeat=_A ): _UpperCAmelCase = sum(_A ) totals_frequencies[total] += 1 return totals_frequencies def _UpperCamelCase ( ) -> float: """simple docstring""" _UpperCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) _UpperCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) _UpperCAmelCase = 0 _UpperCAmelCase = 9 _UpperCAmelCase = 4 * 9 _UpperCAmelCase = 6 for peter_total in range(_A , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCAmelCase = (4**9) * (6**6) _UpperCAmelCase = peter_wins_count / total_games_number _UpperCAmelCase = round(_A , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F"{solution() = }")
19
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class a_ ( nn.Module ): def __init__( self : List[str] , __UpperCamelCase : int = 16 , __UpperCamelCase : int = 88 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 1 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 32 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : str = "geglu" , __UpperCamelCase : Optional[int] = None , ) ->Dict: '''simple docstring''' super().__init__() _UpperCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__UpperCamelCase , attention_head_dim=__UpperCamelCase , in_channels=__UpperCamelCase , num_layers=__UpperCamelCase , dropout=__UpperCamelCase , norm_num_groups=__UpperCamelCase , cross_attention_dim=__UpperCamelCase , attention_bias=__UpperCamelCase , sample_size=__UpperCamelCase , num_vector_embeds=__UpperCamelCase , activation_fn=__UpperCamelCase , num_embeds_ada_norm=__UpperCamelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _UpperCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _UpperCAmelCase = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _UpperCAmelCase = [1, 0] def _snake_case ( self : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : bool = True , ) ->Tuple: '''simple docstring''' _UpperCAmelCase = hidden_states _UpperCAmelCase = [] _UpperCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _UpperCAmelCase = self.transformer_index_for_condition[i] _UpperCAmelCase = self.transformers[transformer_index]( __UpperCamelCase , encoder_hidden_states=__UpperCamelCase , timestep=__UpperCamelCase , cross_attention_kwargs=__UpperCamelCase , return_dict=__UpperCamelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _UpperCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__UpperCamelCase )
19
1
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _UpperCamelCase ( _A , _A ) -> Optional[int]: """simple docstring""" assert isinstance(_A , _A ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _UpperCamelCase ( _A , _A , _A ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = JsonDatasetReader(_A , cache_dir=_A , keep_in_memory=_A ).read() _check_json_dataset(_A , _A ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _UpperCamelCase ( _A , _A , _A ) -> int: """simple docstring""" _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() _check_json_dataset(_A , _A ) @pytest.mark.parametrize( """features""" , [ None, {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""}, ] , ) def _UpperCamelCase ( _A , _A , _A ) -> Dict: """simple docstring""" _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() assert isinstance(_A , _A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _UpperCamelCase ( _A , _A ) -> Dict: """simple docstring""" _UpperCAmelCase = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} _UpperCAmelCase = features.copy() _UpperCAmelCase = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = JsonDatasetReader(_A , features=_A , cache_dir=_A ).read() assert isinstance(_A , _A ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _UpperCamelCase ( _A , _A , _A ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = JsonDatasetReader(_A , cache_dir=_A , split=_A ).read() _check_json_dataset(_A , _A ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def _UpperCamelCase ( _A , _A , _A ) -> Union[str, Any]: """simple docstring""" if issubclass(_A , _A ): _UpperCAmelCase = jsonl_path elif issubclass(_A , _A ): _UpperCAmelCase = [jsonl_path] _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = JsonDatasetReader(_A , cache_dir=_A ).read() _check_json_dataset(_A , _A ) def _UpperCamelCase ( _A , _A , _A=("train",) ) -> Optional[Any]: """simple docstring""" assert isinstance(_A , _A ) for split in splits: _UpperCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _UpperCamelCase ( _A , _A , _A ) -> int: """simple docstring""" _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCAmelCase = JsonDatasetReader({"""train""": jsonl_path} , cache_dir=_A , keep_in_memory=_A ).read() _check_json_datasetdict(_A , _A ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _UpperCamelCase ( _A , _A , _A ) -> List[Any]: """simple docstring""" _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = features.copy() if features else default_expected_features _UpperCAmelCase = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCAmelCase = JsonDatasetReader({"""train""": jsonl_path} , features=_A , cache_dir=_A ).read() _check_json_datasetdict(_A , _A ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def _UpperCamelCase ( _A , _A , _A ) -> Optional[int]: """simple docstring""" if split: _UpperCAmelCase = {split: jsonl_path} else: _UpperCAmelCase = """train""" _UpperCAmelCase = {"""train""": jsonl_path, """test""": jsonl_path} _UpperCAmelCase = tmp_path / """cache""" _UpperCAmelCase = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _UpperCAmelCase = JsonDatasetReader(_A , cache_dir=_A ).read() _check_json_datasetdict(_A , _A , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _UpperCamelCase ( _A ) -> int: """simple docstring""" return json.load(_A ) def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" return [json.loads(_A ) for line in buffer] class a_ : @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def _snake_case ( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : str ) ->str: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , lines=__UpperCamelCase ).write() buffer.seek(0 ) _UpperCAmelCase = load_json_function(__UpperCamelCase ) assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert isinstance(exported_content[0] , __UpperCamelCase ) assert len(__UpperCamelCase ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def _snake_case ( self : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) ->Optional[int]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , lines=__UpperCamelCase , orient=__UpperCamelCase ).write() buffer.seek(0 ) _UpperCAmelCase = load_json(__UpperCamelCase ) assert isinstance(__UpperCamelCase , __UpperCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__UpperCamelCase , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__UpperCamelCase ) == 10 @pytest.mark.parametrize("""lines, load_json_function""" , [(True, load_json_lines), (False, load_json)] ) def _snake_case ( self : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : str , __UpperCamelCase : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , lines=__UpperCamelCase , num_proc=2 ).write() buffer.seek(0 ) _UpperCAmelCase = load_json_function(__UpperCamelCase ) assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert isinstance(exported_content[0] , __UpperCamelCase ) assert len(__UpperCamelCase ) == 10 @pytest.mark.parametrize( """orient, container, keys, len_at""" , [ ("""records""", list, {"""tokens""", """labels""", """answers""", """id"""}, None), ("""split""", dict, {"""columns""", """data"""}, """data"""), ("""index""", dict, set("""0123456789""" ), None), ("""columns""", dict, {"""tokens""", """labels""", """answers""", """id"""}, """tokens"""), ("""values""", list, None, None), ("""table""", dict, {"""schema""", """data"""}, """data"""), ] , ) def _snake_case ( self : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : List[str] , __UpperCamelCase : Dict ) ->List[str]: '''simple docstring''' with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , lines=__UpperCamelCase , orient=__UpperCamelCase , num_proc=2 ).write() buffer.seek(0 ) _UpperCAmelCase = load_json(__UpperCamelCase ) assert isinstance(__UpperCamelCase , __UpperCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__UpperCamelCase , """keys""" ) and not hasattr(exported_content[0] , """keys""" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__UpperCamelCase ) == 10 def _snake_case ( self : Tuple , __UpperCamelCase : Any ) ->List[Any]: '''simple docstring''' with pytest.raises(__UpperCamelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , num_proc=0 ) @pytest.mark.parametrize("""compression, extension""" , [("""gzip""", """gz"""), ("""bz2""", """bz2"""), ("""xz""", """xz""")] ) def _snake_case ( self : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict ) ->Dict: '''simple docstring''' _UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / f"""test.json.{extension}""" _UpperCAmelCase = str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , compression=__UpperCamelCase ).write() with fsspec.open(__UpperCamelCase , """rb""" , compression="""infer""" ) as f: _UpperCAmelCase = f.read() with fsspec.open(__UpperCamelCase , """rb""" , compression="""infer""" ) as f: _UpperCAmelCase = f.read() assert exported_content == original_content
19
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase ( _A , _A , _A ) -> List[Any]: """simple docstring""" _UpperCAmelCase = LxmertConfig.from_json_file(_A ) print(F"""Building PyTorch model from configuration: {config}""" ) _UpperCAmelCase = LxmertForPreTraining(_A ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(_A , _A , _A ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
19
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a : Optional[Any] = logging.get_logger(__name__) a : List[Any] = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class a_ ( _UpperCAmelCase ): a : str = 'bridgetower_vision_model' def __init__( self : Optional[int] , __UpperCamelCase : Union[str, Any]=7_68 , __UpperCamelCase : Optional[Any]=12 , __UpperCamelCase : Dict=3 , __UpperCamelCase : Optional[int]=16 , __UpperCamelCase : str=2_88 , __UpperCamelCase : Optional[Any]=1 , __UpperCamelCase : Optional[int]=1e-05 , __UpperCamelCase : Dict=False , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Tuple=False , **__UpperCamelCase : Tuple , ) ->int: '''simple docstring''' super().__init__(**__UpperCamelCase ) _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_channels _UpperCAmelCase = patch_size _UpperCAmelCase = image_size _UpperCAmelCase = initializer_factor _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = stop_gradient _UpperCAmelCase = share_layernorm _UpperCAmelCase = remove_last_layer @classmethod def _snake_case ( cls : Tuple , __UpperCamelCase : Union[str, os.PathLike] , **__UpperCamelCase : int ) ->"PretrainedConfig": '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) if config_dict.get("""model_type""" ) == "bridgetower": _UpperCAmelCase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class a_ ( _UpperCAmelCase ): a : List[Any] = 'bridgetower_text_model' def __init__( self : str , __UpperCamelCase : Optional[Any]=5_02_65 , __UpperCamelCase : Optional[Any]=7_68 , __UpperCamelCase : Any=12 , __UpperCamelCase : Tuple=12 , __UpperCamelCase : int=1 , __UpperCamelCase : List[str]=30_72 , __UpperCamelCase : Union[str, Any]="gelu" , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : List[str]=5_14 , __UpperCamelCase : Dict=1 , __UpperCamelCase : Any=1e-05 , __UpperCamelCase : List[str]=1 , __UpperCamelCase : List[Any]=0 , __UpperCamelCase : Optional[Any]=2 , __UpperCamelCase : str="absolute" , __UpperCamelCase : List[str]=True , **__UpperCamelCase : Dict , ) ->Union[str, Any]: '''simple docstring''' super().__init__(**__UpperCamelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_factor _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = pad_token_id _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id @classmethod def _snake_case ( cls : Optional[int] , __UpperCamelCase : Union[str, os.PathLike] , **__UpperCamelCase : List[Any] ) ->"PretrainedConfig": '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) if config_dict.get("""model_type""" ) == "bridgetower": _UpperCAmelCase = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class a_ ( _UpperCAmelCase ): a : Dict = 'bridgetower' def __init__( self : Any , __UpperCamelCase : Tuple=True , __UpperCamelCase : Any="gelu" , __UpperCamelCase : str=7_68 , __UpperCamelCase : Dict=1 , __UpperCamelCase : List[Any]=1e-05 , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : str="add" , __UpperCamelCase : Union[str, Any]=12 , __UpperCamelCase : Tuple=6 , __UpperCamelCase : Any=False , __UpperCamelCase : str=False , __UpperCamelCase : Tuple=None , __UpperCamelCase : Any=None , **__UpperCamelCase : Optional[int] , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = kwargs.pop("""text_config_dict""" , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop("""vision_config_dict""" , __UpperCamelCase ) super().__init__(**__UpperCamelCase ) _UpperCAmelCase = share_cross_modal_transformer_layers _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_size _UpperCAmelCase = initializer_factor _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = share_link_tower_layers _UpperCAmelCase = link_tower_type _UpperCAmelCase = num_attention_heads _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = tie_word_embeddings _UpperCAmelCase = init_layernorm_from_vision_encoder if text_config is None: _UpperCAmelCase = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _UpperCAmelCase = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _UpperCAmelCase = BridgeTowerTextConfig(**__UpperCamelCase ) _UpperCAmelCase = BridgeTowerVisionConfig(**__UpperCamelCase ) @classmethod def _snake_case ( cls : List[str] , __UpperCamelCase : BridgeTowerTextConfig , __UpperCamelCase : BridgeTowerVisionConfig , **__UpperCamelCase : List[Any] ) ->Optional[Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCamelCase ) def _snake_case ( self : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.text_config.to_dict() _UpperCAmelCase = self.vision_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
19
"""simple docstring""" import argparse import os import re import packaging.version a : str = '''examples/''' a : List[str] = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } a : Tuple = { '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } a : List[str] = '''README.md''' def _UpperCamelCase ( _A , _A , _A ) -> Dict: """simple docstring""" with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _UpperCAmelCase = f.read() _UpperCAmelCase ,_UpperCAmelCase = REPLACE_PATTERNS[pattern] _UpperCAmelCase = replace.replace("""VERSION""" , _A ) _UpperCAmelCase = re_pattern.sub(_A , _A ) with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_A ) def _UpperCamelCase ( _A ) -> Union[str, Any]: """simple docstring""" for folder, directories, fnames in os.walk(_A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_A , _A ) , _A , pattern="""examples""" ) def _UpperCamelCase ( _A , _A=False ) -> int: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_A , _A , _A ) if not patch: update_version_in_examples(_A ) def _UpperCamelCase ( ) -> Any: """simple docstring""" _UpperCAmelCase = """🤗 Transformers currently provides the following architectures""" _UpperCAmelCase = """1. Want to contribute a new model?""" with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _UpperCAmelCase = f.readlines() # Find the start of the list. _UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): _UpperCAmelCase = lines[index].replace( """https://huggingface.co/docs/diffusers/main/model_doc""" , """https://huggingface.co/docs/diffusers/model_doc""" , ) index += 1 with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_A ) def _UpperCamelCase ( ) -> Optional[int]: """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: _UpperCAmelCase = f.read() _UpperCAmelCase = REPLACE_PATTERNS["""init"""][0].search(_A ).groups()[0] return packaging.version.parse(_A ) def _UpperCamelCase ( _A=False ) -> List[Any]: """simple docstring""" _UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: _UpperCAmelCase = default_version.base_version elif patch: _UpperCAmelCase = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _UpperCAmelCase = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _UpperCAmelCase = input(F"""Which version are you releasing? [{default_version}]""" ) if len(_A ) == 0: _UpperCAmelCase = default_version print(F"""Updating version to {version}.""" ) global_version_update(_A , patch=_A ) def _UpperCamelCase ( ) -> List[Any]: """simple docstring""" _UpperCAmelCase = get_version() _UpperCAmelCase = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _UpperCAmelCase = current_version.base_version # Check with the user we got that right. _UpperCAmelCase = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(_A ) == 0: _UpperCAmelCase = dev_version print(F"""Updating version to {version}.""" ) global_version_update(_A ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": a : Dict = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') a : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
19
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor a : Any = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def _UpperCamelCase ( _A ) -> str: """simple docstring""" if isinstance(_A , torch.Tensor ): return image elif isinstance(_A , PIL.Image.Image ): _UpperCAmelCase = [image] _UpperCAmelCase = [trans(img.convert("""RGB""" ) ) for img in image] _UpperCAmelCase = torch.stack(_A ) return image class a_ ( _UpperCAmelCase ): def __init__( self : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Any ) ->Optional[Any]: '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _UpperCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) def _snake_case ( self : Any , __UpperCamelCase : Union[str, Any] ) ->Any: '''simple docstring''' if strength < 0 or strength > 1: raise ValueError(f"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def _snake_case ( self : Dict , __UpperCamelCase : Any , __UpperCamelCase : Optional[int] , __UpperCamelCase : int ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = min(int(num_inference_steps * strength ) , __UpperCamelCase ) _UpperCAmelCase = max(num_inference_steps - init_timestep , 0 ) _UpperCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _snake_case ( self : int , __UpperCamelCase : Tuple , __UpperCamelCase : str , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : str=None ) ->Tuple: '''simple docstring''' if not isinstance(__UpperCamelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__UpperCamelCase )}""" ) _UpperCAmelCase = image.to(device=__UpperCamelCase , dtype=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(__UpperCamelCase )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase = init_latents.shape _UpperCAmelCase = randn_tensor(__UpperCamelCase , generator=__UpperCamelCase , device=__UpperCamelCase , dtype=__UpperCamelCase ) # get latents print("""add noise to latents at timestep""" , __UpperCamelCase ) _UpperCAmelCase = self.scheduler.add_noise(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = init_latents return latents @torch.no_grad() def __call__( self : int , __UpperCamelCase : Union[torch.FloatTensor, PIL.Image.Image] = None , __UpperCamelCase : float = 0.8 , __UpperCamelCase : int = 1 , __UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 50 , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , ) ->Union[ImagePipelineOutput, Tuple]: '''simple docstring''' self.check_inputs(__UpperCamelCase ) # 2. Preprocess image _UpperCAmelCase = preprocess(__UpperCamelCase ) # 3. set timesteps self.scheduler.set_timesteps(__UpperCamelCase , device=self.device ) _UpperCAmelCase ,_UpperCAmelCase = self.get_timesteps(__UpperCamelCase , __UpperCamelCase , self.device ) _UpperCAmelCase = timesteps[:1].repeat(__UpperCamelCase ) # 4. Prepare latent variables _UpperCAmelCase = self.prepare_latents(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , self.unet.dtype , self.device , __UpperCamelCase ) _UpperCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(__UpperCamelCase ): # 1. predict noise model_output _UpperCAmelCase = self.unet(__UpperCamelCase , __UpperCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , eta=__UpperCamelCase , use_clipped_model_output=__UpperCamelCase , generator=__UpperCamelCase , ).prev_sample _UpperCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=__UpperCamelCase )
19
"""simple docstring""" from __future__ import annotations def _UpperCamelCase ( _A ) -> None: """simple docstring""" create_state_space_tree(_A , [] , 0 , [0 for i in range(len(_A ) )] ) def _UpperCamelCase ( _A , _A , _A , _A , ) -> None: """simple docstring""" if index == len(_A ): print(_A ) return for i in range(len(_A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _UpperCAmelCase = True create_state_space_tree(_A , _A , index + 1 , _A ) current_sequence.pop() _UpperCAmelCase = False a : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) a : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
19
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. a : Union[str, Any] = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class a_ ( unittest.TestCase ): a : List[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a : str = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a : List[Any] = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a : List[str] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def _snake_case ( self : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ) ->Any: '''simple docstring''' _UpperCAmelCase = ZeroShotClassificationPipeline( model=__UpperCamelCase , tokenizer=__UpperCamelCase , candidate_labels=["""polics""", """health"""] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def _snake_case ( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] ) ->Tuple: '''simple docstring''' _UpperCAmelCase = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics""" ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) # No kwarg _UpperCAmelCase = classifier("""Who are you voting for in 2020?""" , ["""politics"""] ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) _UpperCAmelCase = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics"""] ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) _UpperCAmelCase = classifier("""Who are you voting for in 2020?""" , candidate_labels="""politics, public health""" ) self.assertEqual( __UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) _UpperCAmelCase = classifier("""Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health"""] ) self.assertEqual( __UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["""scores"""] ) ) , 1.0 ) _UpperCAmelCase = classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""This text is about {}""" ) self.assertEqual(__UpperCamelCase , {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 _UpperCAmelCase = classifier(["""I am happy"""] , ["""positive""", """negative"""] ) self.assertEqual( __UpperCamelCase , [ {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} for i in range(1 ) ] , ) _UpperCAmelCase = classifier(["""I am happy""", """I am sad"""] , ["""positive""", """negative"""] ) self.assertEqual( __UpperCamelCase , [ {"""sequence""": ANY(__UpperCamelCase ), """labels""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )], """scores""": [ANY(__UpperCamelCase ), ANY(__UpperCamelCase )]} for i in range(2 ) ] , ) with self.assertRaises(__UpperCamelCase ): classifier("""""" , candidate_labels="""politics""" ) with self.assertRaises(__UpperCamelCase ): classifier(__UpperCamelCase , candidate_labels="""politics""" ) with self.assertRaises(__UpperCamelCase ): classifier("""Who are you voting for in 2020?""" , candidate_labels="""""" ) with self.assertRaises(__UpperCamelCase ): classifier("""Who are you voting for in 2020?""" , candidate_labels=__UpperCamelCase ) with self.assertRaises(__UpperCamelCase ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template="""Not formatting template""" , ) with self.assertRaises(__UpperCamelCase ): classifier( """Who are you voting for in 2020?""" , candidate_labels="""politics""" , hypothesis_template=__UpperCamelCase , ) self.run_entailment_id(__UpperCamelCase ) def _snake_case ( self : Optional[int] , __UpperCamelCase : Pipeline ) ->List[str]: '''simple docstring''' _UpperCAmelCase = zero_shot_classifier.model.config _UpperCAmelCase = config.labelaid _UpperCAmelCase = zero_shot_classifier.entailment_id _UpperCAmelCase = {"""LABEL_0""": 0, """LABEL_1""": 1, """LABEL_2""": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) _UpperCAmelCase = {"""entailment""": 0, """neutral""": 1, """contradiction""": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {"""ENTAIL""": 0, """NON-ENTAIL""": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) _UpperCAmelCase = {"""ENTAIL""": 2, """NEUTRAL""": 1, """CONTR""": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) _UpperCAmelCase = original_labelaid self.assertEqual(__UpperCamelCase , zero_shot_classifier.entailment_id ) @require_torch def _snake_case ( self : Dict ) ->Tuple: '''simple docstring''' _UpperCAmelCase = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( """Who are you voting for in 2020?""" * 1_00 , candidate_labels=["""politics""", """public health""", """science"""] ) @require_torch def _snake_case ( self : Optional[Any] ) ->str: '''simple docstring''' _UpperCAmelCase = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""pt""" , ) _UpperCAmelCase = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def _snake_case ( self : Any ) ->int: '''simple docstring''' _UpperCAmelCase = pipeline( """zero-shot-classification""" , model="""sshleifer/tiny-distilbert-base-cased-distilled-squad""" , framework="""tf""" , ) _UpperCAmelCase = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""science""", """public health""", """politics"""], """scores""": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def _snake_case ( self : Optional[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""pt""" ) _UpperCAmelCase = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) _UpperCAmelCase = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=__UpperCamelCase , ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def _snake_case ( self : str ) ->Dict: '''simple docstring''' _UpperCAmelCase = pipeline("""zero-shot-classification""" , model="""roberta-large-mnli""" , framework="""tf""" ) _UpperCAmelCase = zero_shot_classifier( """Who are you voting for in 2020?""" , candidate_labels=["""politics""", """public health""", """science"""] ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": """Who are you voting for in 2020?""", """labels""": ["""politics""", """public health""", """science"""], """scores""": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) _UpperCAmelCase = zero_shot_classifier( """The dominant sequence transduction models are based on complex recurrent or convolutional neural networks""" """ in an encoder-decoder configuration. The best performing models also connect the encoder and decoder""" """ through an attention mechanism. We propose a new simple network architecture, the Transformer, based""" """ solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two""" """ machine translation tasks show these models to be superior in quality while being more parallelizable""" """ and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014""" """ English-to-German translation task, improving over the existing best results, including ensembles by""" """ over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new""" """ single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small""" """ fraction of the training costs of the best models from the literature. We show that the Transformer""" """ generalizes well to other tasks by applying it successfully to English constituency parsing both with""" """ large and limited training data.""" , candidate_labels=["""machine learning""", """statistics""", """translation""", """vision"""] , multi_label=__UpperCamelCase , ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { """sequence""": ( """The dominant sequence transduction models are based on complex recurrent or convolutional neural""" """ networks in an encoder-decoder configuration. The best performing models also connect the""" """ encoder and decoder through an attention mechanism. We propose a new simple network""" """ architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence""" """ and convolutions entirely. Experiments on two machine translation tasks show these models to be""" """ superior in quality while being more parallelizable and requiring significantly less time to""" """ train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,""" """ improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014""" """ English-to-French translation task, our model establishes a new single-model state-of-the-art""" """ BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training""" """ costs of the best models from the literature. We show that the Transformer generalizes well to""" """ other tasks by applying it successfully to English constituency parsing both with large and""" """ limited training data.""" ), """labels""": ["""translation""", """machine learning""", """vision""", """statistics"""], """scores""": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
19
"""simple docstring""" import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class a_ : def __init__( self : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : int=32 , __UpperCamelCase : Tuple=16 , __UpperCamelCase : Dict=3 , __UpperCamelCase : Dict=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=32 , __UpperCamelCase : Any=4 , __UpperCamelCase : Optional[int]=[0, 1, 2, 3] , __UpperCamelCase : str=4 , __UpperCamelCase : Optional[Any]=37 , __UpperCamelCase : str="gelu" , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Any=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : int=[1, 3_84, 24, 24] , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Any=None , ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = backbone_out_indices _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = backbone_featmap_shape _UpperCAmelCase = scope _UpperCAmelCase = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = num_patches + 1 def _snake_case ( self : str ) ->int: '''simple docstring''' _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def _snake_case ( self : List[str] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 1_92, 3_84, 7_68], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def _snake_case ( self : Any , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase = DPTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : List[Any] ) ->int: '''simple docstring''' _UpperCAmelCase = self.num_labels _UpperCAmelCase = DPTForDepthEstimation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def _snake_case ( self : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = self.num_labels _UpperCAmelCase = DPTForSemanticSegmentation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _snake_case ( self : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): a : Dict = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () a : int = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) a : str = False a : List[str] = False a : Dict = False def _snake_case ( self : Any ) ->Any: '''simple docstring''' _UpperCAmelCase = DPTModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def _snake_case ( self : Optional[int] ) ->Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def _snake_case ( self : Tuple ) ->Tuple: '''simple docstring''' pass def _snake_case ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def _snake_case ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def _snake_case ( self : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _snake_case ( self : str ) ->int: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__UpperCamelCase ) def _snake_case ( self : Any ) ->Tuple: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) def _snake_case ( self : str ) ->Any: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True if model_class in get_values(__UpperCamelCase ): continue _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() _UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) _UpperCAmelCase = model(**__UpperCamelCase ).loss loss.backward() def _snake_case ( self : List[str] ) ->Dict: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = False _UpperCAmelCase = True if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing: continue _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.gradient_checkpointing_enable() model.train() _UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) _UpperCAmelCase = model(**__UpperCamelCase ).loss loss.backward() def _snake_case ( self : Tuple ) ->List[str]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(config=__UpperCamelCase ) # Skip the check for the backbone _UpperCAmelCase = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _UpperCAmelCase = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _snake_case ( self : Dict ) ->Tuple: '''simple docstring''' pass @slow def _snake_case ( self : Optional[int] ) ->List[Any]: '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _UpperCAmelCase = DPTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def _snake_case ( self : List[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = """add""" with self.assertRaises(__UpperCamelCase ): _UpperCAmelCase = DPTForDepthEstimation(__UpperCamelCase ) def _UpperCamelCase ( ) -> int: """simple docstring""" _UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): def _snake_case ( self : Any ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) _UpperCAmelCase = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__UpperCamelCase ) _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**__UpperCamelCase ) _UpperCAmelCase = outputs.predicted_depth # verify the predicted depth _UpperCAmelCase = torch.Size((1, 3_84, 3_84) ) self.assertEqual(predicted_depth.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , __UpperCamelCase , atol=1e-4 ) )
19
1
"""simple docstring""" import argparse import datetime def _UpperCamelCase ( _A ) -> str: """simple docstring""" _UpperCAmelCase = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } _UpperCAmelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_A ) < 1_1: raise ValueError("""Must be 10 characters long""" ) # Get month _UpperCAmelCase = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 1_3: raise ValueError("""Month must be between 1 - 12""" ) _UpperCAmelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day _UpperCAmelCase = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 3_2: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator _UpperCAmelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year _UpperCAmelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation _UpperCAmelCase = datetime.date(int(_A ) , int(_A ) , int(_A ) ) # Start math if m <= 2: _UpperCAmelCase = y - 1 _UpperCAmelCase = m + 1_2 # maths var _UpperCAmelCase = int(str(_A )[:2] ) _UpperCAmelCase = int(str(_A )[2:] ) _UpperCAmelCase = int(2.6 * m - 5.39 ) _UpperCAmelCase = int(c / 4 ) _UpperCAmelCase = int(k / 4 ) _UpperCAmelCase = int(d + k ) _UpperCAmelCase = int(t + u + v + x ) _UpperCAmelCase = int(z - (2 * c) ) _UpperCAmelCase = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response _UpperCAmelCase = F"""Your date {date_input}, is a {days[str(_A )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() a : List[str] = argparse.ArgumentParser( description=( '''Find out what day of the week nearly any date is or was. Enter ''' '''date as a string in the mm-dd-yyyy or mm/dd/yyyy format''' ) ) parser.add_argument( '''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)''' ) a : Dict = parser.parse_args() zeller(args.date_input)
19
"""simple docstring""" import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a : List[str] = logging.get_logger(__name__) class a_ ( enum.Enum ): a : Optional[Any] = 0 a : Dict = 1 @add_end_docstrings(_UpperCAmelCase ) class a_ ( _UpperCAmelCase ): a : List[Any] = 'generated' def __init__( self : int , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : str ) ->Any: '''simple docstring''' super().__init__(*__UpperCamelCase , **__UpperCamelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def _snake_case ( self : Optional[int] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Any=None , __UpperCamelCase : int=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Dict=None , **__UpperCamelCase : Any , ) ->Tuple: '''simple docstring''' _UpperCAmelCase = {} if truncation is not None: _UpperCAmelCase = truncation _UpperCAmelCase = generate_kwargs _UpperCAmelCase = {} if return_tensors is not None and return_type is None: _UpperCAmelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: _UpperCAmelCase = return_type if clean_up_tokenization_spaces is not None: _UpperCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: _UpperCAmelCase = self.tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) if len(__UpperCamelCase ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) _UpperCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _snake_case ( self : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->Any: '''simple docstring''' return True def _snake_case ( self : Optional[Any] , *__UpperCamelCase : Any , __UpperCamelCase : Dict ) ->Dict: '''simple docstring''' _UpperCAmelCase = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , __UpperCamelCase ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) _UpperCAmelCase = ([prefix + arg for arg in args[0]],) _UpperCAmelCase = True elif isinstance(args[0] , __UpperCamelCase ): _UpperCAmelCase = (prefix + args[0],) _UpperCAmelCase = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) _UpperCAmelCase = self.tokenizer(*__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Dict , *__UpperCamelCase : str , **__UpperCamelCase : Dict ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = super().__call__(*__UpperCamelCase , **__UpperCamelCase ) if ( isinstance(args[0] , __UpperCamelCase ) and all(isinstance(__UpperCamelCase , __UpperCamelCase ) for el in args[0] ) and all(len(__UpperCamelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def _snake_case ( self : List[str] , __UpperCamelCase : Any , __UpperCamelCase : str=TruncationStrategy.DO_NOT_TRUNCATE , **__UpperCamelCase : Optional[int] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = self._parse_and_tokenize(__UpperCamelCase , truncation=__UpperCamelCase , **__UpperCamelCase ) return inputs def _snake_case ( self : str , __UpperCamelCase : Dict , **__UpperCamelCase : Dict ) ->Tuple: '''simple docstring''' if self.framework == "pt": _UpperCAmelCase ,_UpperCAmelCase = model_inputs["""input_ids"""].shape elif self.framework == "tf": _UpperCAmelCase ,_UpperCAmelCase = tf.shape(model_inputs["""input_ids"""] ).numpy() _UpperCAmelCase = generate_kwargs.get("""min_length""" , self.model.config.min_length ) _UpperCAmelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(__UpperCamelCase , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) _UpperCAmelCase = self.model.generate(**__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = output_ids.shape[0] if self.framework == "pt": _UpperCAmelCase = output_ids.reshape(__UpperCamelCase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": _UpperCAmelCase = tf.reshape(__UpperCamelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def _snake_case ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any]=ReturnType.TEXT , __UpperCamelCase : int=False ) ->Any: '''simple docstring''' _UpperCAmelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: _UpperCAmelCase = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: _UpperCAmelCase = { f"""{self.return_name}_text""": self.tokenizer.decode( __UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase , ) } records.append(__UpperCamelCase ) return records @add_end_docstrings(_UpperCAmelCase ) class a_ ( _UpperCAmelCase ): a : List[Any] = 'summary' def __call__( self : Optional[Any] , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Optional[int] ) ->Any: '''simple docstring''' return super().__call__(*__UpperCamelCase , **__UpperCamelCase ) def _snake_case ( self : str , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->bool: '''simple docstring''' if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(_UpperCAmelCase ) class a_ ( _UpperCAmelCase ): a : Optional[int] = 'translation' def _snake_case ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->Any: '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def _snake_case ( self : Tuple , *__UpperCamelCase : List[str] , __UpperCamelCase : Tuple=TruncationStrategy.DO_NOT_TRUNCATE , __UpperCamelCase : Tuple=None , __UpperCamelCase : Union[str, Any]=None ) ->Tuple: '''simple docstring''' if getattr(self.tokenizer , """_build_translation_inputs""" , __UpperCamelCase ): return self.tokenizer._build_translation_inputs( *__UpperCamelCase , return_tensors=self.framework , truncation=__UpperCamelCase , src_lang=__UpperCamelCase , tgt_lang=__UpperCamelCase ) else: return super()._parse_and_tokenize(*__UpperCamelCase , truncation=__UpperCamelCase ) def _snake_case ( self : List[str] , __UpperCamelCase : int=None , __UpperCamelCase : int=None , **__UpperCamelCase : Any ) ->int: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = super()._sanitize_parameters(**__UpperCamelCase ) if src_lang is not None: _UpperCAmelCase = src_lang if tgt_lang is not None: _UpperCAmelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. _UpperCAmelCase = kwargs.get("""task""" , self.task ) _UpperCAmelCase = task.split("""_""" ) if task and len(__UpperCamelCase ) == 4: # translation, XX, to YY _UpperCAmelCase = items[1] _UpperCAmelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : List[str] , *__UpperCamelCase : str , **__UpperCamelCase : Optional[Any] ) ->int: '''simple docstring''' return super().__call__(*__UpperCamelCase , **__UpperCamelCase )
19
1
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() a : int = logging.get_logger('''transformers.models.encodec''') a : Any = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } a : Dict = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } a : Any = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } a : List[Any] = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } a : List[Any] = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } a : Dict = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } a : int = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } a : str = [] a : List[Any] = [] def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> str: """simple docstring""" for attribute in key.split(""".""" ): _UpperCAmelCase = getattr(_A , _A ) if weight_type is not None: _UpperCAmelCase = getattr(_A , _A ).shape else: _UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _UpperCAmelCase = value elif weight_type == "weight_g": _UpperCAmelCase = value elif weight_type == "weight_v": _UpperCAmelCase = value elif weight_type == "bias": _UpperCAmelCase = value elif weight_type == "running_mean": _UpperCAmelCase = value elif weight_type == "running_var": _UpperCAmelCase = value elif weight_type == "num_batches_tracked": _UpperCAmelCase = value elif weight_type == "weight_ih_l0": _UpperCAmelCase = value elif weight_type == "weight_hh_l0": _UpperCAmelCase = value elif weight_type == "bias_ih_l0": _UpperCAmelCase = value elif weight_type == "bias_hh_l0": _UpperCAmelCase = value elif weight_type == "weight_ih_l1": _UpperCAmelCase = value elif weight_type == "weight_hh_l1": _UpperCAmelCase = value elif weight_type == "bias_ih_l1": _UpperCAmelCase = value elif weight_type == "bias_hh_l1": _UpperCAmelCase = value else: _UpperCAmelCase = value logger.info(F"""{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.""" ) def _UpperCamelCase ( _A , _A ) -> Optional[Any]: """simple docstring""" for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: _UpperCAmelCase ,_UpperCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def _UpperCamelCase ( _A , _A , _A ) -> List[str]: """simple docstring""" _UpperCAmelCase = [] if model_name == "encodec_24khz" or "encodec_32khz": _UpperCAmelCase = MAPPING_24K elif model_name == "encodec_48khz": _UpperCAmelCase = MAPPING_48K else: raise ValueError(F"""Unsupported model: {model_name}""" ) for name, value in orig_dict.items(): if should_ignore(_A , _A ): logger.info(F"""{name} was ignored""" ) continue _UpperCAmelCase = False for key, mapped_key in MAPPING.items(): if "*" in key: _UpperCAmelCase ,_UpperCAmelCase = key.split(""".*.""" ) if prefix in name and suffix in name: _UpperCAmelCase = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ): continue _UpperCAmelCase = True if "*" in mapped_key: _UpperCAmelCase = name.split(_A )[0].split(""".""" )[-2] _UpperCAmelCase = mapped_key.replace("""*""" , _A ) if "weight_g" in name: _UpperCAmelCase = """weight_g""" elif "weight_v" in name: _UpperCAmelCase = """weight_v""" elif "weight_ih_l0" in name: _UpperCAmelCase = """weight_ih_l0""" elif "weight_hh_l0" in name: _UpperCAmelCase = """weight_hh_l0""" elif "bias_ih_l0" in name: _UpperCAmelCase = """bias_ih_l0""" elif "bias_hh_l0" in name: _UpperCAmelCase = """bias_hh_l0""" elif "weight_ih_l1" in name: _UpperCAmelCase = """weight_ih_l1""" elif "weight_hh_l1" in name: _UpperCAmelCase = """weight_hh_l1""" elif "bias_ih_l1" in name: _UpperCAmelCase = """bias_ih_l1""" elif "bias_hh_l1" in name: _UpperCAmelCase = """bias_hh_l1""" elif "bias" in name: _UpperCAmelCase = """bias""" elif "weight" in name: _UpperCAmelCase = """weight""" elif "running_mean" in name: _UpperCAmelCase = """running_mean""" elif "running_var" in name: _UpperCAmelCase = """running_var""" elif "num_batches_tracked" in name: _UpperCAmelCase = """num_batches_tracked""" else: _UpperCAmelCase = None set_recursively(_A , _A , _A , _A , _A ) continue if not is_used: unused_weights.append(_A ) logger.warning(F"""Unused weights: {unused_weights}""" ) @torch.no_grad() def _UpperCamelCase ( _A , _A , _A , _A=None , _A=None , ) -> Tuple: """simple docstring""" if config_path is not None: _UpperCAmelCase = EncodecConfig.from_pretrained(_A ) else: _UpperCAmelCase = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": _UpperCAmelCase = [8, 5, 4, 4] _UpperCAmelCase = [2.2] _UpperCAmelCase = 6_4 _UpperCAmelCase = 3_2_0_0_0 _UpperCAmelCase = 2_0_4_8 _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False elif model_name == "encodec_48khz": _UpperCAmelCase = [8, 5, 4, 2] _UpperCAmelCase = [3.0, 6.0, 12.0, 24.0] _UpperCAmelCase = 4_8_0_0_0 _UpperCAmelCase = 2 _UpperCAmelCase = False _UpperCAmelCase = """time_group_norm""" _UpperCAmelCase = True _UpperCAmelCase = 1.0 _UpperCAmelCase = 0.01 else: raise ValueError(F"""Unknown model name: {model_name}""" ) _UpperCAmelCase = EncodecModel(_A ) _UpperCAmelCase = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_A ) _UpperCAmelCase = torch.load(_A ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights _UpperCAmelCase = original_checkpoint["""best_state"""] recursively_load_weights(_A , _A , _A ) model.save_pretrained(_A ) if repo_id: print("""Pushing to the hub...""" ) feature_extractor.push_to_hub(_A ) model.push_to_hub(_A ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) a : int = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
19
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a_ ( unittest.TestCase ): @property def _snake_case ( self : Dict ) ->int: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def _snake_case ( self : Optional[Any] ) ->str: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def _snake_case ( self : List[Any] ) ->Optional[int]: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(__UpperCamelCase ) def _snake_case ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = self.dummy_uncond_unet _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = self.dummy_vq_model _UpperCAmelCase = LDMPipeline(unet=__UpperCamelCase , vqvae=__UpperCamelCase , scheduler=__UpperCamelCase ) ldm.to(__UpperCamelCase ) ldm.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type="""numpy""" ).images _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type="""numpy""" , return_dict=__UpperCamelCase )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) _UpperCAmelCase = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class a_ ( unittest.TestCase ): def _snake_case ( self : List[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(__UpperCamelCase ) ldm.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=5 , output_type="""numpy""" ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _UpperCAmelCase = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) _UpperCAmelCase = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
19
1
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin a : int = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class a_ : def __init__( self : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int]=16 , __UpperCamelCase : Union[str, Any]=13 , __UpperCamelCase : Optional[Any]=7 , __UpperCamelCase : Dict=14 , __UpperCamelCase : Tuple=10 , __UpperCamelCase : Any=19 , __UpperCamelCase : int=5 , __UpperCamelCase : str=4 , __UpperCamelCase : Dict=True , __UpperCamelCase : Optional[int]=16 , __UpperCamelCase : str=2 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : int=4 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Union[str, Any]=[1, 2, 3, 4, 5] , __UpperCamelCase : Tuple=25 , __UpperCamelCase : List[Any]=5 , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = d_model _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = prediction_length _UpperCAmelCase = context_length _UpperCAmelCase = cardinality _UpperCAmelCase = num_time_features _UpperCAmelCase = lags_sequence _UpperCAmelCase = embedding_dimension _UpperCAmelCase = is_training _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = context_length _UpperCAmelCase = prediction_length + label_length _UpperCAmelCase = label_length _UpperCAmelCase = moving_average _UpperCAmelCase = autocorrelation_factor def _snake_case ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def _snake_case ( self : Optional[int] , __UpperCamelCase : Dict ) ->Tuple: '''simple docstring''' _UpperCAmelCase = config.context_length + max(config.lags_sequence ) _UpperCAmelCase = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _UpperCAmelCase = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _UpperCAmelCase = floats_tensor([self.batch_size, _past_length] ) _UpperCAmelCase = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _UpperCAmelCase = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _UpperCAmelCase = floats_tensor([self.batch_size, config.prediction_length] ) _UpperCAmelCase = { """past_values""": past_values, """static_categorical_features""": static_categorical_features, """past_time_features""": past_time_features, """past_observed_mask""": past_observed_mask, """future_time_features""": future_time_features, """future_values""": future_values, } return inputs_dict def _snake_case ( self : Any ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = self.get_config() _UpperCAmelCase = self.prepare_autoformer_inputs_dict(__UpperCamelCase ) return config, inputs_dict def _snake_case ( self : str ) ->List[Any]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def _snake_case ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = AutoformerModel(config=__UpperCamelCase ).to(__UpperCamelCase ).eval() _UpperCAmelCase = model(**__UpperCamelCase ) _UpperCAmelCase = outputs.encoder_last_hidden_state _UpperCAmelCase = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = model.get_encoder() encoder.save_pretrained(__UpperCamelCase ) _UpperCAmelCase = AutoformerEncoder.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = model.create_network_inputs(**__UpperCamelCase ) _UpperCAmelCase ,_UpperCAmelCase = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _UpperCAmelCase = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _UpperCAmelCase = encoder(inputs_embeds=__UpperCamelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) _UpperCAmelCase = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _UpperCAmelCase = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _UpperCAmelCase = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _UpperCAmelCase = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = model.get_decoder() decoder.save_pretrained(__UpperCamelCase ) _UpperCAmelCase = AutoformerDecoder.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase ) _UpperCAmelCase = decoder( trend=__UpperCamelCase , inputs_embeds=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class a_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): a : List[str] = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () a : Any = (AutoformerForPrediction,) if is_torch_available() else () a : Optional[Any] = {'feature-extraction': AutoformerModel} if is_torch_available() else {} a : Optional[int] = False a : List[str] = False a : Optional[int] = False a : Optional[int] = False a : List[Any] = False a : Optional[int] = False def _snake_case ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = AutoformerModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def _snake_case ( self : str ) ->int: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self : Any ) ->int: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__UpperCamelCase ) _UpperCAmelCase ,_UpperCAmelCase = model_class.from_pretrained(__UpperCamelCase , output_loading_info=__UpperCamelCase ) self.assertEqual(info["""missing_keys"""] , [] ) def _snake_case ( self : str ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*__UpperCamelCase ) @unittest.skip(reason="""Model has no tokens embeddings""" ) def _snake_case ( self : Union[str, Any] ) ->int: '''simple docstring''' pass def _snake_case ( self : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase = inspect.signature(getattr(__UpperCamelCase , """forward""" ) ) # The main input is the name of the argument after `self` _UpperCAmelCase = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , __UpperCamelCase ) def _snake_case ( self : Any ) ->str: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = [ """past_values""", """past_time_features""", """past_observed_mask""", """static_categorical_features""", """static_real_features""", """future_values""", """future_time_features""", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("""future_observed_mask""" ) expected_arg_names.extend( [ """decoder_attention_mask""", """head_mask""", """decoder_head_mask""", """cross_attn_head_mask""", """encoder_outputs""", """past_key_values""", """output_hidden_states""", """output_attentions""", """use_cache""", """return_dict""", ] ) self.assertListEqual(arg_names[: len(__UpperCamelCase )] , __UpperCamelCase ) def _snake_case ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True _UpperCAmelCase = getattr(self.model_tester , """seq_length""" , __UpperCamelCase ) _UpperCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , __UpperCamelCase ) _UpperCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , __UpperCamelCase ) _UpperCAmelCase = getattr(self.model_tester , """d_model""" , __UpperCamelCase ) _UpperCAmelCase = getattr(self.model_tester , """num_attention_heads""" , __UpperCamelCase ) _UpperCAmelCase = d_model // num_attention_heads for model_class in self.all_model_classes: _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = True _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _UpperCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase = True _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _UpperCAmelCase = outputs.encoder_attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(__UpperCamelCase , __UpperCamelCase ) # decoder attentions _UpperCAmelCase = outputs.decoder_attentions self.assertIsInstance(__UpperCamelCase , (list, tuple) ) self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _UpperCAmelCase = outputs.cross_attentions self.assertIsInstance(__UpperCamelCase , (list, tuple) ) self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(out_len + 2 , len(__UpperCamelCase ) ) _UpperCAmelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def _snake_case ( self : Union[str, Any] ) ->Tuple: '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def _UpperCamelCase ( _A="train-batch.pt" ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=_A , repo_type="""dataset""" ) _UpperCAmelCase = torch.load(_A , map_location=_A ) return batch @require_torch @slow class a_ ( unittest.TestCase ): def _snake_case ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__UpperCamelCase ) _UpperCAmelCase = prepare_batch() with torch.no_grad(): _UpperCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0] _UpperCAmelCase = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=__UpperCamelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) def _snake_case ( self : int ) ->List[str]: '''simple docstring''' _UpperCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__UpperCamelCase ) _UpperCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _UpperCAmelCase = model( past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state _UpperCAmelCase = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=__UpperCamelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) ) def _snake_case ( self : Dict ) ->int: '''simple docstring''' _UpperCAmelCase = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__UpperCamelCase ) _UpperCAmelCase = prepare_batch("""val-batch.pt""" ) with torch.no_grad(): _UpperCAmelCase = model.generate( static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , ) _UpperCAmelCase = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=__UpperCamelCase ) _UpperCAmelCase = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __UpperCamelCase , rtol=1e-1 ) )
19
"""simple docstring""" import re from filelock import FileLock try: import nltk a : str = True except (ImportError, ModuleNotFoundError): a : List[str] = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def _UpperCamelCase ( _A ) -> str: """simple docstring""" re.sub("""<n>""" , """""" , _A ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_A ) )
19
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch a : Optional[Any] = logging.get_logger(__name__) class a_ ( _UpperCAmelCase ): a : Tuple = ['pixel_values'] def __init__( self : Optional[int] , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_55 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : List[str] , ) ->None: '''simple docstring''' super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {"""shortest_edge""": 2_56} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} _UpperCAmelCase = get_size_dict(__UpperCamelCase , param_name="""crop_size""" ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self : List[str] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , ) ->np.ndarray: '''simple docstring''' _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def _snake_case ( self : Tuple , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , ) ->np.ndarray: '''simple docstring''' _UpperCAmelCase = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCamelCase , **__UpperCamelCase ) def _snake_case ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Optional[Any] ) ->np.ndarray: '''simple docstring''' return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def _snake_case ( self : Optional[int] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , ) ->np.ndarray: '''simple docstring''' return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def _snake_case ( self : Union[str, Any] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : Optional[int] , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase , param_name="""crop_size""" ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {"""pixel_values""": images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase ) def _snake_case ( self : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Tuple] = None ) ->int: '''simple docstring''' _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__UpperCamelCase ): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(__UpperCamelCase ) ): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__UpperCamelCase ) _UpperCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__UpperCamelCase ) else: _UpperCAmelCase = logits.argmax(dim=1 ) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
19
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a : str = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class a_ : a : List[Any] = PegasusConfig a : Dict = {} a : List[Any] = 'gelu' def __init__( self : Any , __UpperCamelCase : Dict , __UpperCamelCase : Tuple=13 , __UpperCamelCase : Tuple=7 , __UpperCamelCase : Tuple=True , __UpperCamelCase : Any=False , __UpperCamelCase : Any=99 , __UpperCamelCase : Optional[int]=32 , __UpperCamelCase : Dict=5 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : Dict=37 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : Optional[Any]=20 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : Optional[int]=1 , __UpperCamelCase : Tuple=0 , ) ->int: '''simple docstring''' _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = bos_token_id def _snake_case ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) _UpperCAmelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCAmelCase = np.concatenate([input_ids, eos_tensor] , axis=1 ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCAmelCase = prepare_pegasus_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, inputs_dict def _snake_case ( self : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase = 20 _UpperCAmelCase = model_class_name(__UpperCamelCase ) _UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] ) _UpperCAmelCase ,_UpperCAmelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) _UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) _UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__UpperCamelCase , ) _UpperCAmelCase = model.decode(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def _snake_case ( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ) ->str: '''simple docstring''' _UpperCAmelCase = 20 _UpperCAmelCase = model_class_name(__UpperCamelCase ) _UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] ) _UpperCAmelCase ,_UpperCAmelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _UpperCAmelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) _UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , __UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) _UpperCAmelCase = model.decode(__UpperCamelCase , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase ) _UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def _UpperCamelCase ( _A , _A , _A , _A=None , _A=None , ) -> int: """simple docstring""" if attention_mask is None: _UpperCAmelCase = np.not_equal(_A , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCAmelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class a_ ( _UpperCAmelCase , unittest.TestCase ): a : List[str] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) a : Any = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () a : Any = True a : int = False a : Union[str, Any] = False a : Optional[int] = False def _snake_case ( self : Union[str, Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = FlaxPegasusModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase ) def _snake_case ( self : Optional[int] ) ->Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self : Optional[int] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def _snake_case ( self : Dict ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def _snake_case ( self : Dict ) ->List[Any]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = model_class(__UpperCamelCase ) @jax.jit def encode_jitted(__UpperCamelCase : List[Any] , __UpperCamelCase : str=None , **__UpperCamelCase : int ): return model.encode(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase ) with self.subTest("""JIT Enabled""" ): _UpperCAmelCase = encode_jitted(**__UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _UpperCAmelCase = encode_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _snake_case ( self : List[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase = model_class(__UpperCamelCase ) _UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) _UpperCAmelCase = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple ): return model.decode( decoder_input_ids=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , encoder_outputs=__UpperCamelCase , ) with self.subTest("""JIT Enabled""" ): _UpperCAmelCase = decode_jitted(**__UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _UpperCAmelCase = decode_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _snake_case ( self : int ) ->int: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=__UpperCamelCase ) _UpperCAmelCase = np.ones((1, 1) ) _UpperCAmelCase = model(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @slow def _snake_case ( self : Dict ) ->List[str]: '''simple docstring''' _UpperCAmelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) _UpperCAmelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) _UpperCAmelCase = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] _UpperCAmelCase = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] _UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors="""np""" , truncation=__UpperCamelCase , max_length=5_12 , padding=__UpperCamelCase ) _UpperCAmelCase = model.generate(**__UpperCamelCase , num_beams=2 ).sequences _UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) assert tgt_text == decoded
19
1
"""simple docstring""" import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class a_ : def __init__( self : Optional[int] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str=13 , __UpperCamelCase : List[Any]=7 , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Tuple=True , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Any=True , __UpperCamelCase : List[Any]=99 , __UpperCamelCase : Optional[Any]=32 , __UpperCamelCase : Dict=5 , __UpperCamelCase : Union[str, Any]=4 , __UpperCamelCase : int=37 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : List[str]=0.1 , __UpperCamelCase : Optional[int]=1_28 , __UpperCamelCase : Any=32 , __UpperCamelCase : List[Any]=16 , __UpperCamelCase : str=2 , __UpperCamelCase : Union[str, Any]=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : Optional[int]=None , ) ->Any: '''simple docstring''' _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def _snake_case ( self : int ) ->Tuple: '''simple docstring''' _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self : Tuple ) ->Optional[int]: '''simple docstring''' return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , ) def _snake_case ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' ( ( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) , ) = self.prepare_config_and_inputs() _UpperCAmelCase = True _UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _snake_case ( self : int , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : int ) ->Any: '''simple docstring''' _UpperCAmelCase = NezhaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase , token_type_ids=__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , ) ->int: '''simple docstring''' _UpperCAmelCase = True _UpperCAmelCase = NezhaModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , ) _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , ) _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _snake_case ( self : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Any ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = NezhaForMaskedLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self : Tuple , __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : int ) ->Any: '''simple docstring''' _UpperCAmelCase = NezhaForNextSentencePrediction(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _snake_case ( self : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = NezhaForPreTraining(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , next_sentence_label=__UpperCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _snake_case ( self : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase = NezhaForQuestionAnswering(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self : Optional[Any] , __UpperCamelCase : int , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] ) ->Tuple: '''simple docstring''' _UpperCAmelCase = self.num_labels _UpperCAmelCase = NezhaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Any , __UpperCamelCase : List[str] , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] ) ->Tuple: '''simple docstring''' _UpperCAmelCase = self.num_labels _UpperCAmelCase = NezhaForTokenClassification(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self : Tuple , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : str ) ->int: '''simple docstring''' _UpperCAmelCase = self.num_choices _UpperCAmelCase = NezhaForMultipleChoice(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , token_type_ids=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class a_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): a : List[str] = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) a : Union[str, Any] = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) a : int = True def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any]=False ) ->Dict: '''simple docstring''' _UpperCAmelCase = super()._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) if return_labels: if model_class in get_values(__UpperCamelCase ): _UpperCAmelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCamelCase ) _UpperCAmelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCamelCase ) return inputs_dict def _snake_case ( self : Optional[int] ) ->Tuple: '''simple docstring''' _UpperCAmelCase = NezhaModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=37 ) def _snake_case ( self : Any ) ->int: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self : str ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _snake_case ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__UpperCamelCase ) def _snake_case ( self : List[Any] ) ->List[str]: '''simple docstring''' ( ( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() _UpperCAmelCase = None self.model_tester.create_and_check_model_as_decoder( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) def _snake_case ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCamelCase ) def _snake_case ( self : Dict ) ->str: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCamelCase ) def _snake_case ( self : Dict ) ->Dict: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*__UpperCamelCase ) def _snake_case ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCamelCase ) def _snake_case ( self : Any ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCamelCase ) def _snake_case ( self : int ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCamelCase ) def _snake_case ( self : Optional[int] ) ->Tuple: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCamelCase ) @slow def _snake_case ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = NezhaModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @slow @require_torch_gpu def _snake_case ( self : Dict ) ->Any: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return _UpperCAmelCase = True _UpperCAmelCase = model_class(config=__UpperCamelCase ) _UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = torch.jit.trace( __UpperCamelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__UpperCamelCase , os.path.join(__UpperCamelCase , """bert.pt""" ) ) _UpperCAmelCase = torch.jit.load(os.path.join(__UpperCamelCase , """bert.pt""" ) , map_location=__UpperCamelCase ) loaded(inputs_dict["""input_ids"""].to(__UpperCamelCase ) , inputs_dict["""attention_mask"""].to(__UpperCamelCase ) ) @require_torch class a_ ( unittest.TestCase ): @slow def _snake_case ( self : Union[str, Any] ) ->Any: '''simple docstring''' _UpperCAmelCase = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) _UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] _UpperCAmelCase = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor([[[0.0_6_8_5, 0.2_4_4_1, 0.1_1_0_2], [0.0_6_0_0, 0.1_9_0_6, 0.1_3_4_9], [0.0_2_2_1, 0.0_8_1_9, 0.0_5_8_6]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1e-4 ) ) @slow def _snake_case ( self : str ) ->Any: '''simple docstring''' _UpperCAmelCase = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) _UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase )[0] _UpperCAmelCase = torch.Size((1, 6, 2_11_28) ) self.assertEqual(output.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[-2.7_9_3_9, -1.7_9_0_2, -2.2_1_8_9], [-2.8_5_8_5, -1.8_9_0_8, -2.3_7_2_3], [-2.6_4_9_9, -1.7_7_5_0, -2.2_5_5_8]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1e-4 ) )
19
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class a_ : def __init__( self : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any]=99 , __UpperCamelCase : Optional[int]=13 , __UpperCamelCase : List[str]=7 , __UpperCamelCase : List[Any]=9 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : str=True , __UpperCamelCase : int=False , __UpperCamelCase : int=32 , __UpperCamelCase : Dict=5 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : List[Any]=8 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : str=0.0_0_2 , __UpperCamelCase : Union[str, Any]=1 , __UpperCamelCase : List[Any]=0 , __UpperCamelCase : Tuple=0 , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Any=None , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = encoder_seq_length _UpperCAmelCase = decoder_seq_length # For common tests _UpperCAmelCase = self.decoder_seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_attention_mask _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = d_ff _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = dropout_rate _UpperCAmelCase = initializer_factor _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = decoder_start_token_id _UpperCAmelCase = None _UpperCAmelCase = decoder_layers def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' return TaConfig.from_pretrained("""google/umt5-base""" ) def _snake_case ( self : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Any=None , __UpperCamelCase : str=None , ) ->int: '''simple docstring''' if attention_mask is None: _UpperCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCamelCase ) if decoder_head_mask is None: _UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase ) if cross_attn_head_mask is None: _UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _snake_case ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = self.get_config() _UpperCAmelCase = config.num_attention_heads _UpperCAmelCase = self.prepare_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, input_dict def _snake_case ( self : Union[str, Any] ) ->Any: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def _snake_case ( self : Dict ) ->List[str]: '''simple docstring''' return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _snake_case ( self : Tuple ) ->Dict: '''simple docstring''' return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _snake_case ( self : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , ) ->List[str]: '''simple docstring''' _UpperCAmelCase = UMTaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model( input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , ) _UpperCAmelCase = model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase ) _UpperCAmelCase = result.last_hidden_state _UpperCAmelCase = result.past_key_values _UpperCAmelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , ) ->str: '''simple docstring''' _UpperCAmelCase = UMTaModel(config=__UpperCamelCase ).get_decoder().to(__UpperCamelCase ).eval() # first forward pass _UpperCAmelCase = model(__UpperCamelCase , use_cache=__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase , use_cache=__UpperCamelCase ) self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) ) self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) + 1 ) _UpperCAmelCase ,_UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = model(__UpperCamelCase )["""last_hidden_state"""] _UpperCAmelCase = model(__UpperCamelCase , past_key_values=__UpperCamelCase )["""last_hidden_state"""] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def _snake_case ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Dict , ) ->List[str]: '''simple docstring''' _UpperCAmelCase = UMTaModel(config=__UpperCamelCase ).to(__UpperCamelCase ).half().eval() _UpperCAmelCase = model(**__UpperCamelCase )["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(__UpperCamelCase ).any().item() ) @require_torch class a_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): a : List[str] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a : Tuple = (UMTaForConditionalGeneration,) if is_torch_available() else () a : Optional[Any] = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) a : Any = True a : Optional[int] = False a : Any = False a : Optional[int] = True a : Optional[Any] = True # The small UMT5 model needs higher percentages for CPU/MP tests a : int = [0.8, 0.9] def _snake_case ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = UMTaModelTester(self ) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""" ) def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = UMTaModel(config_and_inputs[0] ).to(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"""{tmpdirname}/t5_test.onnx""" , export_params=__UpperCamelCase , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def _snake_case ( self : Tuple ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCamelCase ) def _snake_case ( self : Any ) ->Any: '''simple docstring''' _UpperCAmelCase = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = config_and_inputs[0] _UpperCAmelCase = UMTaForConditionalGeneration(__UpperCamelCase ).eval() model.to(__UpperCamelCase ) _UpperCAmelCase = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=__UpperCamelCase ), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ), } for attn_name, (name, mask) in zip(__UpperCamelCase , head_masking.items() ): _UpperCAmelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ) _UpperCAmelCase = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=__UpperCamelCase , return_dict_in_generate=__UpperCamelCase , **__UpperCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step _UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" ) def _snake_case ( self : Tuple ) ->List[Any]: '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" ) def _snake_case ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=__UpperCamelCase ).to(__UpperCamelCase ) _UpperCAmelCase = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=__UpperCamelCase , legacy=__UpperCamelCase ) _UpperCAmelCase = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] _UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors="""pt""" , padding=__UpperCamelCase ).input_ids # fmt: off _UpperCAmelCase = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = model.generate(input_ids.to(__UpperCamelCase ) ) _UpperCAmelCase = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] _UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase )
19
1
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _UpperCamelCase ( _A ) -> Tuple: """simple docstring""" return 1 / (1 + np.exp(-z )) def _UpperCamelCase ( _A , _A ) -> int: """simple docstring""" return (-y * np.log(_A ) - (1 - y) * np.log(1 - h )).mean() def _UpperCamelCase ( _A , _A , _A ) -> Dict: """simple docstring""" _UpperCAmelCase = np.dot(_A , _A ) return np.sum(y * scores - np.log(1 + np.exp(_A ) ) ) def _UpperCamelCase ( _A , _A , _A , _A=7_0_0_0_0 ) -> int: """simple docstring""" _UpperCAmelCase = np.zeros(x.shape[1] ) for iterations in range(_A ): _UpperCAmelCase = np.dot(_A , _A ) _UpperCAmelCase = sigmoid_function(_A ) _UpperCAmelCase = np.dot(x.T , h - y ) / y.size _UpperCAmelCase = theta - alpha * gradient # updating the weights _UpperCAmelCase = np.dot(_A , _A ) _UpperCAmelCase = sigmoid_function(_A ) _UpperCAmelCase = cost_function(_A , _A ) if iterations % 1_0_0 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": a : List[Any] = datasets.load_iris() a : List[str] = iris.data[:, :2] a : Optional[Any] = (iris.target != 0) * 1 a : List[Any] = 0.1 a : Optional[int] = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print('''theta: ''', theta) # printing the theta i.e our weights vector def _UpperCamelCase ( _A ) -> str: """simple docstring""" return sigmoid_function( np.dot(_A , _A ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') ((a) , (a)) : str = (x[:, 0].min(), x[:, 0].max()) ((a) , (a)) : Tuple = (x[:, 1].min(), x[:, 1].max()) ((a) , (a)) : List[str] = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) a : Any = np.c_[xxa.ravel(), xxa.ravel()] a : str = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
19
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class a_ ( _UpperCAmelCase ): def _snake_case ( self : str ) ->str: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self : Any ) ->List[str]: '''simple docstring''' with self.assertRaises(__UpperCamelCase ): _UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def _snake_case ( self : Optional[int] ) ->Tuple: '''simple docstring''' with self.assertRaises(__UpperCamelCase ): _UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) ) def _snake_case ( self : List[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self : str ) ->Dict: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): _UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) ) def _snake_case ( self : Union[str, Any] ) ->str: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self : List[str] ) ->Any: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) def _snake_case ( self : List[Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def _snake_case ( self : List[Any] ) ->Optional[Any]: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): _UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) ) def _snake_case ( self : List[str] ) ->int: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def _snake_case ( self : Optional[int] ) ->Dict: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def _snake_case ( self : str ) ->Optional[Any]: '''simple docstring''' import PIL.Image _UpperCAmelCase = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( """datasets.arrow_writer.cast_to_python_objects""" , side_effect=__UpperCamelCase ) as mock_cast_to_python_objects: _UpperCAmelCase = pa.array(TypedSequence([{"""path""": None, """bytes""": b"""image_bytes"""}, pil_image] , type=Image() ) ) _UpperCAmelCase ,_UpperCAmelCase = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("""optimize_list_casting""" , __UpperCamelCase ) self.assertFalse(kwargs["""optimize_list_casting"""] ) def _UpperCamelCase ( _A , _A ) -> Any: """simple docstring""" _UpperCAmelCase = pa.BufferReader(_A ) if isinstance(_A , pa.Buffer ) else pa.memory_map(_A ) _UpperCAmelCase = pa.ipc.open_stream(_A ) _UpperCAmelCase = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _UpperCamelCase ( _A , _A ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() _UpperCAmelCase = pa.schema(_A ) if fields else None with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() _UpperCAmelCase = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} ) with ArrowWriter(stream=_A , features=_A ) as writer: writer.write({"""labels""": 0} ) writer.write({"""labels""": 1} ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata _UpperCAmelCase = pa.BufferReader(output.getvalue() ) _UpperCAmelCase = pa.ipc.open_stream(_A ) _UpperCAmelCase = f.read_all() _UpperCAmelCase = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(_A ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() with ArrowWriter( stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer: with pytest.raises(_A ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] ) def _UpperCamelCase ( _A ) -> List[Any]: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() with ArrowWriter( stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer: with pytest.raises(_A ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1_0 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=1_0 ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] ) def _UpperCamelCase ( _A ) -> Tuple: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() with ArrowWriter( stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _UpperCamelCase ( _A , _A ) -> List[Any]: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() _UpperCAmelCase = pa.schema(_A ) if fields else None with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) writer.write_batch({"""col_1""": [], """col_2""": []} ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _UpperCamelCase ( _A , _A ) -> Any: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() _UpperCAmelCase = pa.schema(_A ) if fields else None with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer: writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _UpperCamelCase ( _A , _A ) -> List[Any]: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() _UpperCAmelCase = pa.schema(_A ) if fields else None with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer: writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) ) writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _UpperCamelCase ( ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} _UpperCAmelCase = os.path.join(_A , """test.arrow""" ) with ArrowWriter(path=_A , schema=pa.schema(_A ) ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata ) _check_output(_A , 1 ) def _UpperCamelCase ( _A ) -> int: """simple docstring""" if pa.types.is_list(_A ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _UpperCamelCase ( _A , _A ) -> Any: """simple docstring""" if isinstance(lst[0] , _A ): change_first_primitive_element_in_list(lst[0] , _A ) else: _UpperCAmelCase = value @pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _UpperCamelCase ( _A , _A , _A ) -> Dict: """simple docstring""" _UpperCAmelCase = pa.array(TypedSequence(_A , optimized_int_type=_A ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( """col, expected_dtype""" , [ ("""attention_mask""", pa.inta()), ("""special_tokens_mask""", pa.inta()), ("""token_type_ids""", pa.inta()), ("""input_ids""", pa.intaa()), ("""other""", pa.intaa()), ] , ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _UpperCamelCase ( _A , _A , _A ) -> str: """simple docstring""" _UpperCAmelCase = pa.array(OptimizedTypedSequence(_A , col=_A ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications _UpperCAmelCase = copy.deepcopy(_A ) _UpperCAmelCase = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(_A , _A ) _UpperCAmelCase = pa.array(OptimizedTypedSequence(_A , col=_A ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("""raise_exception""" , [False, True] ) def _UpperCamelCase ( _A , _A ) -> Dict: """simple docstring""" _UpperCAmelCase = str(tmp_path / """dataset-train.arrow""" ) try: with ArrowWriter(path=_A ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" _UpperCAmelCase = """mock://dataset-train.arrow""" with ArrowWriter(path=_A , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(_A ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(_A ) def _UpperCamelCase ( ) -> Dict: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() with ParquetWriter(stream=_A ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _UpperCAmelCase = pa.BufferReader(output.getvalue() ) _UpperCAmelCase = pq.read_table(_A ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("""embed_local_files""" , [False, True] ) def _UpperCamelCase ( _A , _A ) -> Any: """simple docstring""" import PIL.Image _UpperCAmelCase = str(tmp_path / """test_image_rgb.jpg""" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_A , format="""png""" ) _UpperCAmelCase = pa.BufferOutputStream() with ParquetWriter( stream=_A , features=Features({"""image""": Image()} ) , embed_local_files=_A ) as writer: writer.write({"""image""": image_path} ) writer.finalize() _UpperCAmelCase = pa.BufferReader(output.getvalue() ) _UpperCAmelCase = pq.read_table(_A ) _UpperCAmelCase = pa_table.to_pydict() if embed_local_files: assert isinstance(out["""image"""][0]["""path"""] , _A ) with open(_A , """rb""" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _UpperCamelCase ( ) -> int: """simple docstring""" _UpperCAmelCase = pa.schema([pa.field("""col_1""" , pa.string() , nullable=_A )] ) _UpperCAmelCase = pa.BufferOutputStream() with ArrowWriter(stream=_A ) as writer: writer._build_writer(inferred_schema=_A ) assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] )
19
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) a : Tuple = logging.getLogger(__name__) @dataclass class a_ : a : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) a : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) a : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) a : Optional[str] = field( default=_UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) a : bool = field(default=_UpperCAmelCase , metadata={'help': 'Whether tp freeze the encoder.'} ) a : bool = field(default=_UpperCAmelCase , metadata={'help': 'Whether to freeze the embeddings.'} ) @dataclass class a_ : a : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) a : Optional[str] = field( default='summarization' , metadata={'help': 'Task name, summarization (or summarization_{dataset} for pegasus) or translation'} , ) a : Optional[int] = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a : Optional[int] = field( default=128 , metadata={ 'help': ( 'The maximum total sequence length for target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for validation target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded. ' 'This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ' 'during ``evaluate`` and ``predict``.' ) } , ) a : Optional[int] = field( default=142 , metadata={ 'help': ( 'The maximum total sequence length for test target text after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) a : Optional[int] = field(default=-1 , metadata={'help': '# training examples. -1 means use all.'} ) a : Optional[int] = field(default=-1 , metadata={'help': '# validation examples. -1 means use all.'} ) a : Optional[int] = field(default=-1 , metadata={'help': '# test examples. -1 means use all.'} ) a : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'Source language id for translation.'} ) a : Optional[str] = field(default=_UpperCAmelCase , metadata={'help': 'Target language id for translation.'} ) a : Optional[int] = field(default=_UpperCAmelCase , metadata={'help': '# num_beams to use for evaluation.'} ) a : bool = field( default=_UpperCAmelCase , metadata={'help': 'If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'} , ) def _UpperCamelCase ( _A , _A , _A ) -> Union[str, Any]: """simple docstring""" logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(_A , os.path.join(_A , F"""{split}_results.json""" ) ) def _UpperCamelCase ( ) -> Tuple: """simple docstring""" _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = parser.parse_args_into_dataclasses() check_output_dir(_A ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , _A ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCAmelCase = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(_A , _A , _A ): assert hasattr(_A , _A ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(_A , _A , getattr(_A , _A ) ) _UpperCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCAmelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=_A , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_A , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _UpperCAmelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_A , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_A , _A ): _UpperCAmelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _UpperCAmelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_A ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _UpperCAmelCase = SeqaSeqDataset # Get datasets _UpperCAmelCase = ( dataset_class( _A , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) _UpperCAmelCase = ( dataset_class( _A , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _UpperCAmelCase = ( dataset_class( _A , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer _UpperCAmelCase = ( build_compute_metrics_fn(data_args.task , _A ) if training_args.predict_with_generate else None ) _UpperCAmelCase = SeqaSeqTrainer( model=_A , args=_A , data_args=_A , train_dataset=_A , eval_dataset=_A , data_collator=SeqaSeqDataCollator( _A , _A , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_A , tokenizer=_A , ) _UpperCAmelCase = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) _UpperCAmelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _UpperCAmelCase = train_result.metrics _UpperCAmelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , _A , training_args.output_dir ) all_metrics.update(_A ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _UpperCAmelCase = trainer.evaluate(metric_key_prefix="""val""" ) _UpperCAmelCase = data_args.n_val _UpperCAmelCase = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , _A , training_args.output_dir ) all_metrics.update(_A ) if training_args.do_predict: logger.info("""*** Predict ***""" ) _UpperCAmelCase = trainer.predict(test_dataset=_A , metric_key_prefix="""test""" ) _UpperCAmelCase = test_output.metrics _UpperCAmelCase = data_args.n_test if trainer.is_world_process_zero(): _UpperCAmelCase = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , _A , training_args.output_dir ) all_metrics.update(_A ) if training_args.predict_with_generate: _UpperCAmelCase = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) _UpperCAmelCase = lmap(str.strip , _A ) write_txt_file(_A , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(_A , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def _UpperCamelCase ( _A ) -> List[str]: """simple docstring""" main() if __name__ == "__main__": main()
19
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : List[Any] = get_logger() a : Optional[dict] = None class a_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self : int , __UpperCamelCase : List[str]=None , __UpperCamelCase : Optional[int]=None , **__UpperCamelCase : int ) ->Tuple: '''simple docstring''' super().__init__(features=__UpperCamelCase ) import jax from jaxlib.xla_client import Device if isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError( f"""Expected {device} to be a `str` not {type(__UpperCamelCase )}, as `jaxlib.xla_extension.Device` """ """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) _UpperCAmelCase = device if isinstance(__UpperCamelCase , __UpperCamelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _UpperCAmelCase = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ f"""device: {str(jax.devices()[0] )}.""" ) _UpperCAmelCase = str(jax.devices()[0] ) _UpperCAmelCase = jnp_array_kwargs @staticmethod def _snake_case ( ) ->Dict[str, "jaxlib.xla_extension.Device"]: '''simple docstring''' import jax return {str(__UpperCamelCase ): device for device in jax.devices()} def _snake_case ( self : Dict , __UpperCamelCase : Any ) ->Union[str, Any]: '''simple docstring''' import jax import jax.numpy as jnp if isinstance(__UpperCamelCase , __UpperCamelCase ) and column: if all( isinstance(__UpperCamelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__UpperCamelCase , axis=0 ) return column def _snake_case ( self : List[str] , __UpperCamelCase : Any ) ->Optional[int]: '''simple docstring''' import jax import jax.numpy as jnp if isinstance(__UpperCamelCase , (str, bytes, type(__UpperCamelCase )) ): return value elif isinstance(__UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _UpperCAmelCase = {} if isinstance(__UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _UpperCAmelCase = {"""dtype""": jnp.intaa} else: _UpperCAmelCase = {"""dtype""": jnp.intaa} elif isinstance(__UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _UpperCAmelCase = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__UpperCamelCase , PIL.Image.Image ): _UpperCAmelCase = np.asarray(__UpperCamelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _UpperCAmelCase = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__UpperCamelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[str] ) ->Any: '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__UpperCamelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__UpperCamelCase , """__array__""" ) and not isinstance(__UpperCamelCase , jax.Array ): _UpperCAmelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__UpperCamelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__UpperCamelCase ) for substruct in data_struct] ) elif isinstance(__UpperCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__UpperCamelCase ) for substruct in data_struct] ) return self._tensorize(__UpperCamelCase ) def _snake_case ( self : List[str] , __UpperCamelCase : dict ) ->int: '''simple docstring''' return map_nested(self._recursive_tensorize , __UpperCamelCase , map_list=__UpperCamelCase ) def _snake_case ( self : Dict , __UpperCamelCase : pa.Table ) ->Mapping: '''simple docstring''' _UpperCAmelCase = self.numpy_arrow_extractor().extract_row(__UpperCamelCase ) _UpperCAmelCase = self.python_features_decoder.decode_row(__UpperCamelCase ) return self.recursive_tensorize(__UpperCamelCase ) def _snake_case ( self : Optional[int] , __UpperCamelCase : pa.Table ) ->"jax.Array": '''simple docstring''' _UpperCAmelCase = self.numpy_arrow_extractor().extract_column(__UpperCamelCase ) _UpperCAmelCase = self.python_features_decoder.decode_column(__UpperCamelCase , pa_table.column_names[0] ) _UpperCAmelCase = self.recursive_tensorize(__UpperCamelCase ) _UpperCAmelCase = self._consolidate(__UpperCamelCase ) return column def _snake_case ( self : Optional[Any] , __UpperCamelCase : pa.Table ) ->Mapping: '''simple docstring''' _UpperCAmelCase = self.numpy_arrow_extractor().extract_batch(__UpperCamelCase ) _UpperCAmelCase = self.python_features_decoder.decode_batch(__UpperCamelCase ) _UpperCAmelCase = self.recursive_tensorize(__UpperCamelCase ) for column_name in batch: _UpperCAmelCase = self._consolidate(batch[column_name] ) return batch
19
1
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset a : Optional[int] = '''bert-base-cased''' a : List[str] = '''google/pegasus-xsum''' a : Optional[int] = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] a : List[str] = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] a : Optional[Any] = '''patrickvonplaten/t5-tiny-random''' a : Tuple = '''sshleifer/bart-tiny-random''' a : List[Any] = '''sshleifer/tiny-mbart''' a : Tuple = '''sshleifer/tiny-marian-en-de''' def _UpperCamelCase ( _A , _A ) -> Dict: """simple docstring""" _UpperCAmelCase = """\n""".join(_A ) Path(_A ).open("""w""" ).writelines(_A ) def _UpperCamelCase ( _A ) -> str: """simple docstring""" for split in ["train", "val", "test"]: _dump_articles(os.path.join(_A , F"""{split}.source""" ) , _A ) _dump_articles(os.path.join(_A , F"""{split}.target""" ) , _A ) return tmp_dir class a_ ( _UpperCAmelCase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def _snake_case ( self : List[Any] , __UpperCamelCase : Any ) ->Any: '''simple docstring''' _UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _UpperCAmelCase = max(len(tokenizer.encode(__UpperCamelCase ) ) for a in ARTICLES ) _UpperCAmelCase = max(len(tokenizer.encode(__UpperCamelCase ) ) for a in SUMMARIES ) _UpperCAmelCase = 4 _UpperCAmelCase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _UpperCAmelCase ,_UpperCAmelCase = """ro_RO""", """de_DE""" # ignored for all but mbart, but never causes error. _UpperCAmelCase = SeqaSeqDataset( __UpperCamelCase , data_dir=__UpperCamelCase , type_path="""train""" , max_source_length=__UpperCamelCase , max_target_length=__UpperCamelCase , src_lang=__UpperCamelCase , tgt_lang=__UpperCamelCase , ) _UpperCAmelCase = DataLoader(__UpperCamelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _UpperCAmelCase = shift_tokens_right(batch["""labels"""] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def _snake_case ( self : List[Any] , __UpperCamelCase : List[Any] ) ->Tuple: '''simple docstring''' _UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _UpperCAmelCase = max(len(tokenizer.encode(__UpperCamelCase ) ) for a in ARTICLES ) _UpperCAmelCase = max(len(tokenizer.encode(__UpperCamelCase ) ) for a in SUMMARIES ) _UpperCAmelCase = 4 _UpperCAmelCase = LegacySeqaSeqDataset( __UpperCamelCase , data_dir=__UpperCamelCase , type_path="""train""" , max_source_length=20 , max_target_length=__UpperCamelCase , ) _UpperCAmelCase = DataLoader(__UpperCamelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def _snake_case ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = AutoTokenizer.from_pretrained("""facebook/mbart-large-cc25""" ) _UpperCAmelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _UpperCAmelCase = tmp_dir.joinpath("""train.source""" ).open().readlines() _UpperCAmelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(__UpperCamelCase , __UpperCamelCase , 1_28 , __UpperCamelCase ) _UpperCAmelCase = {x.name for x in tmp_dir.iterdir()} _UpperCAmelCase = {x.name for x in save_dir.iterdir()} _UpperCAmelCase = save_dir.joinpath("""train.source""" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(__UpperCamelCase ) < len(__UpperCamelCase ) assert len(__UpperCamelCase ) == 1 assert len(packed_examples[0] ) == sum(len(__UpperCamelCase ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="""This test requires fairseq""" ) def _snake_case ( self : Dict ) ->Optional[int]: '''simple docstring''' if not FAIRSEQ_AVAILABLE: return _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = self._get_dataset(max_len=64 ) _UpperCAmelCase = 64 _UpperCAmelCase = ds.make_dynamic_sampler(__UpperCamelCase , required_batch_size_multiple=__UpperCamelCase ) _UpperCAmelCase = [len(__UpperCamelCase ) for x in batch_sampler] assert len(set(__UpperCamelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(__UpperCamelCase ) == len(__UpperCamelCase ) # no dropped or added examples _UpperCAmelCase = DataLoader(__UpperCamelCase , batch_sampler=__UpperCamelCase , collate_fn=ds.collate_fn , num_workers=2 ) _UpperCAmelCase = [] _UpperCAmelCase = [] for batch in data_loader: _UpperCAmelCase = batch["""input_ids"""].shape _UpperCAmelCase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _UpperCAmelCase = np.product(batch["""input_ids"""].shape ) num_src_per_batch.append(__UpperCamelCase ) if num_src_tokens > (max_tokens * 1.1): failures.append(__UpperCamelCase ) assert num_src_per_batch[0] == max(__UpperCamelCase ) if failures: raise AssertionError(f"""too many tokens in {len(__UpperCamelCase )} batches""" ) def _snake_case ( self : Any ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = self._get_dataset(max_len=5_12 ) _UpperCAmelCase = 2 _UpperCAmelCase = ds.make_sortish_sampler(__UpperCamelCase , shuffle=__UpperCamelCase ) _UpperCAmelCase = DataLoader(__UpperCamelCase , batch_size=__UpperCamelCase , collate_fn=ds.collate_fn , num_workers=2 ) _UpperCAmelCase = DataLoader(__UpperCamelCase , batch_size=__UpperCamelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=__UpperCamelCase ) _UpperCAmelCase = tokenizer.pad_token_id def count_pad_tokens(__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any]="input_ids" ): return [batch[k].eq(__UpperCamelCase ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(__UpperCamelCase , k="""labels""" ) ) < sum(count_pad_tokens(__UpperCamelCase , k="""labels""" ) ) assert sum(count_pad_tokens(__UpperCamelCase ) ) < sum(count_pad_tokens(__UpperCamelCase ) ) assert len(__UpperCamelCase ) == len(__UpperCamelCase ) def _snake_case ( self : int , __UpperCamelCase : Tuple=10_00 , __UpperCamelCase : List[Any]=1_28 ) ->str: '''simple docstring''' if os.getenv("""USE_REAL_DATA""" , __UpperCamelCase ): _UpperCAmelCase = """examples/seq2seq/wmt_en_ro""" _UpperCAmelCase = max_len * 2 * 64 if not Path(__UpperCamelCase ).joinpath("""train.len""" ).exists(): save_len_file(__UpperCamelCase , __UpperCamelCase ) else: _UpperCAmelCase = """examples/seq2seq/test_data/wmt_en_ro""" _UpperCAmelCase = max_len * 4 save_len_file(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase ) _UpperCAmelCase = SeqaSeqDataset( __UpperCamelCase , data_dir=__UpperCamelCase , type_path="""train""" , max_source_length=__UpperCamelCase , max_target_length=__UpperCamelCase , n_obs=__UpperCamelCase , ) return ds, max_tokens, tokenizer def _snake_case ( self : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = self._get_dataset() _UpperCAmelCase = set(DistributedSortishSampler(__UpperCamelCase , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=__UpperCamelCase ) ) _UpperCAmelCase = set(DistributedSortishSampler(__UpperCamelCase , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=__UpperCamelCase ) ) assert idsa.intersection(__UpperCamelCase ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def _snake_case ( self : Dict , __UpperCamelCase : Tuple ) ->List[str]: '''simple docstring''' _UpperCAmelCase = AutoTokenizer.from_pretrained(__UpperCamelCase , use_fast=__UpperCamelCase ) if tok_name == MBART_TINY: _UpperCAmelCase = SeqaSeqDataset( __UpperCamelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , src_lang="""EN""" , tgt_lang="""FR""" , ) _UpperCAmelCase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _UpperCAmelCase = SeqaSeqDataset( __UpperCamelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="""train""" , max_source_length=4 , max_target_length=8 , ) _UpperCAmelCase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(__UpperCamelCase ) == 1 if tok_name == BART_TINY else len(__UpperCamelCase ) == 0
19
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Tuple = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
1
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class a_ ( nn.Module ): def __init__( self : List[str] , __UpperCamelCase : int = 16 , __UpperCamelCase : int = 88 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 1 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 32 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : str = "geglu" , __UpperCamelCase : Optional[int] = None , ) ->Dict: '''simple docstring''' super().__init__() _UpperCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__UpperCamelCase , attention_head_dim=__UpperCamelCase , in_channels=__UpperCamelCase , num_layers=__UpperCamelCase , dropout=__UpperCamelCase , norm_num_groups=__UpperCamelCase , cross_attention_dim=__UpperCamelCase , attention_bias=__UpperCamelCase , sample_size=__UpperCamelCase , num_vector_embeds=__UpperCamelCase , activation_fn=__UpperCamelCase , num_embeds_ada_norm=__UpperCamelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _UpperCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _UpperCAmelCase = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _UpperCAmelCase = [1, 0] def _snake_case ( self : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : bool = True , ) ->Tuple: '''simple docstring''' _UpperCAmelCase = hidden_states _UpperCAmelCase = [] _UpperCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _UpperCAmelCase = self.transformer_index_for_condition[i] _UpperCAmelCase = self.transformers[transformer_index]( __UpperCamelCase , encoder_hidden_states=__UpperCamelCase , timestep=__UpperCamelCase , cross_attention_kwargs=__UpperCamelCase , return_dict=__UpperCamelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _UpperCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__UpperCamelCase )
19
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient a : int = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _UpperCamelCase ( _A ) -> List[str]: """simple docstring""" _UpperCAmelCase = test_results.split(""" """ ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. _UpperCAmelCase = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(_A ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _UpperCamelCase ( _A ) -> int: """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = None _UpperCAmelCase = False for line in failures_short_lines.split("""\n""" ): if re.search(R"""_ \[doctest\]""" , _A ): _UpperCAmelCase = True _UpperCAmelCase = line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): _UpperCAmelCase = line _UpperCAmelCase = False return failures class a_ : def __init__( self : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Dict ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = title _UpperCAmelCase = doc_test_results["""time_spent"""].split(""",""" )[0] _UpperCAmelCase = doc_test_results["""success"""] _UpperCAmelCase = doc_test_results["""failures"""] _UpperCAmelCase = self.n_success + self.n_failures # Failures and success of the modeling tests _UpperCAmelCase = doc_test_results @property def _snake_case ( self : int ) ->str: '''simple docstring''' _UpperCAmelCase = [self._time_spent] _UpperCAmelCase = 0 for time in time_spent: _UpperCAmelCase = time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(__UpperCamelCase ) == 1: _UpperCAmelCase = [0, 0, time_parts[0]] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return f"""{int(__UpperCamelCase )}h{int(__UpperCamelCase )}m{int(__UpperCamelCase )}s""" @property def _snake_case ( self : List[Any] ) ->Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _snake_case ( self : Optional[Any] ) ->Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def _snake_case ( self : Union[str, Any] ) ->Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" f""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def _snake_case ( self : List[str] ) ->Dict: '''simple docstring''' _UpperCAmelCase = 40 _UpperCAmelCase = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(__UpperCamelCase , __UpperCamelCase )} _UpperCAmelCase = """""" for category, failures in category_failures.items(): if len(__UpperCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(__UpperCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"""The following examples had failures:\n\n\n{report}\n""", }, } @property def _snake_case ( self : Union[str, Any] ) ->str: '''simple docstring''' _UpperCAmelCase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(__UpperCamelCase ) @staticmethod def _snake_case ( ) ->Any: '''simple docstring''' _UpperCAmelCase = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(__UpperCamelCase )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=__UpperCamelCase , ) def _snake_case ( self : Tuple ) ->Optional[Any]: '''simple docstring''' print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) _UpperCAmelCase = f"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else """All tests passed.""" _UpperCAmelCase = client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=__UpperCamelCase , ) def _snake_case ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase = """""" for key, value in failures.items(): _UpperCAmelCase = value[:2_00] + """ [Truncated]""" if len(__UpperCamelCase ) > 2_50 else value failures_text += f"""*{key}*\n_{value}_\n\n""" _UpperCAmelCase = job_name _UpperCAmelCase = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: _UpperCAmelCase = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _snake_case ( self : int ) ->Optional[Any]: '''simple docstring''' if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) _UpperCAmelCase = self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) _UpperCAmelCase = sorted(self.doc_test_results.items() , key=lambda __UpperCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): _UpperCAmelCase = f"""*Num failures* :{len(job_result["failed"] )} \n""" _UpperCAmelCase = job_result["""failures"""] _UpperCAmelCase = self.get_reply_blocks(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , text=__UpperCamelCase ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=f"""Results for {job}""" , blocks=__UpperCamelCase , thread_ts=self.thread_ts["""ts"""] , ) time.sleep(1 ) def _UpperCamelCase ( ) -> List[str]: """simple docstring""" _UpperCAmelCase = os.environ["""GITHUB_RUN_ID"""] _UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" _UpperCAmelCase = requests.get(_A ).json() _UpperCAmelCase = {} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(_A ): _UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""" , _A ) return {} def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = {} if os.path.exists(_A ): _UpperCAmelCase = os.listdir(_A ) for file in files: try: with open(os.path.join(_A , _A ) , encoding="""utf-8""" ) as f: _UpperCAmelCase = f.read() except UnicodeDecodeError as e: raise ValueError(F"""Could not open {os.path.join(_A , _A )}.""" ) from e return _artifact def _UpperCamelCase ( ) -> int: """simple docstring""" class a_ : def __init__( self : List[Any] , __UpperCamelCase : str ) ->Tuple: '''simple docstring''' _UpperCAmelCase = name _UpperCAmelCase = [] def __str__( self : int ) ->Optional[Any]: '''simple docstring''' return self.name def _snake_case ( self : Dict , __UpperCamelCase : str ) ->int: '''simple docstring''' self.paths.append({"""name""": self.name, """path""": path} ) _UpperCAmelCase = {} _UpperCAmelCase = filter(os.path.isdir , os.listdir() ) for directory in directories: _UpperCAmelCase = directory if artifact_name not in _available_artifacts: _UpperCAmelCase = Artifact(_A ) _available_artifacts[artifact_name].add_path(_A ) return _available_artifacts if __name__ == "__main__": a : Dict = get_job_links() a : Dict = retrieve_available_artifacts() a : Optional[int] = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' a : Dict = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job a : int = github_actions_job_links.get('''run_doctests''') a : Tuple = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] a : Optional[Any] = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: a , a , a : str = handle_test_results(artifact['''stats''']) a : Tuple = failed a : int = success a : Any = time_spent[1:-1] + ''', ''' a : Dict = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): a : List[Any] = line.replace('''FAILED ''', '''''') a : Tuple = line.split()[0].replace('''\n''', '''''') if "::" in line: a , a : Union[str, Any] = line.split('''::''') else: a , a : Optional[Any] = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): a : List[Any] = docs[file_regex] doc_test_results[category]["failed"].append(test) a : Optional[Any] = all_failures[test] if test in all_failures else '''N/A''' a : List[str] = failure break a : List[Any] = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
19
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a : List[str] = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys a : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def _UpperCamelCase ( _A , _A=False ) -> str: """simple docstring""" try: _UpperCAmelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCAmelCase = default else: # KEY is set, convert it to True or False. try: _UpperCAmelCase = strtobool(_A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value a : Union[str, Any] = parse_flag_from_env('''RUN_SLOW''', default=False) a : Tuple = parse_flag_from_env('''RUN_REMOTE''', default=False) a : Union[str, Any] = parse_flag_from_env('''RUN_LOCAL''', default=True) a : int = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression a : List[Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') a : List[Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') a : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio a : int = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam a : Tuple = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility a : Any = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows a : int = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def _UpperCamelCase ( _A ) -> str: """simple docstring""" try: import faiss # noqa except ImportError: _UpperCAmelCase = unittest.skip("""test requires faiss""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Any: """simple docstring""" try: import regex # noqa except ImportError: _UpperCAmelCase = unittest.skip("""test requires regex""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Union[str, Any]: """simple docstring""" try: import elasticsearch # noqa except ImportError: _UpperCAmelCase = unittest.skip("""test requires elasticsearch""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" try: import sqlalchemy # noqa except ImportError: _UpperCAmelCase = unittest.skip("""test requires sqlalchemy""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Union[str, Any]: """simple docstring""" if not config.TORCH_AVAILABLE: _UpperCAmelCase = unittest.skip("""test requires PyTorch""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Optional[Any]: """simple docstring""" if not config.TF_AVAILABLE: _UpperCAmelCase = unittest.skip("""test requires TensorFlow""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> str: """simple docstring""" if not config.JAX_AVAILABLE: _UpperCAmelCase = unittest.skip("""test requires JAX""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" if not config.PIL_AVAILABLE: _UpperCAmelCase = unittest.skip("""test requires Pillow""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> str: """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(_A ) else: return test_case def _UpperCamelCase ( _A ) -> List[Any]: """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(_A ) else: return test_case def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(_A ) else: return test_case def _UpperCamelCase ( _A ) -> int: """simple docstring""" def _require_spacy_model(_A ): try: import spacy # noqa F401 spacy.load(_A ) except ImportError: return unittest.skip("""test requires spacy""" )(_A ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(_A ) )(_A ) else: return test_case return _require_spacy_model def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(_A ) else: return test_case def _UpperCamelCase ( _A ) -> List[Any]: """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(_A ) else: return test_case def _UpperCamelCase ( _A ) -> Any: """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: _UpperCAmelCase = unittest.skip("""test is slow""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Any: """simple docstring""" if not _run_local_tests or _run_local_tests == 0: _UpperCAmelCase = unittest.skip("""test is local""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: _UpperCAmelCase = unittest.skip("""test is packaged""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: _UpperCAmelCase = unittest.skip("""test requires remote""" )(_A ) return test_case def _UpperCamelCase ( *_A ) -> Dict: """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_A ) and name.startswith("""test""" ): for decorator in decorators: _UpperCAmelCase = decorator(_A ) setattr(cls , _A , _A ) return cls return decorate class a_ ( _UpperCAmelCase ): pass class a_ ( _UpperCAmelCase ): a : Any = 0 a : Optional[Any] = 1 a : int = 2 @contextmanager def _UpperCamelCase ( _A=OfflineSimulationMode.CONNECTION_FAILS , _A=1e-16 ) -> List[Any]: """simple docstring""" _UpperCAmelCase = requests.Session().request def timeout_request(_A , _A , _A , **_A ): # Change the url to an invalid url so that the connection hangs _UpperCAmelCase = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) _UpperCAmelCase = timeout try: return online_request(_A , _A , **_A ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _UpperCAmelCase = url _UpperCAmelCase = e.args[0] _UpperCAmelCase = (max_retry_error.args[0].replace("""10.255.255.1""" , F"""OfflineMock[{url}]""" ),) _UpperCAmelCase = (max_retry_error,) raise def raise_connection_error(_A , _A , **_A ): raise requests.ConnectionError("""Offline mode is enabled.""" , request=_A ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" , _A ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" , _A ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" , _A ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def _UpperCamelCase ( *_A , **_A ) -> str: """simple docstring""" _UpperCAmelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_A , **_A ) as tmp_dir: try: os.chdir(_A ) yield finally: os.chdir(_A ) @contextmanager def _UpperCamelCase ( ) -> Any: """simple docstring""" import gc gc.collect() _UpperCAmelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" import gc gc.collect() _UpperCAmelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _UpperCamelCase ( _A , _A ) -> str: """simple docstring""" return deepcopy(_A ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(_A ).integers(0 , 1_0_0 , 1_0 ).tolist() def _UpperCamelCase ( _A ) -> Tuple: """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_A , *_A , **_A ): try: return func(*_A , **_A ) except HTTPError as err: if str(_A ).startswith("""500""" ) or str(_A ).startswith("""502""" ): pytest.xfail(str(_A ) ) raise err return decorator.decorator(_wrapper , _A ) class a_ : def __init__( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] ) ->int: '''simple docstring''' _UpperCAmelCase = returncode _UpperCAmelCase = stdout _UpperCAmelCase = stderr async def _UpperCamelCase ( _A , _A ) -> Union[str, Any]: """simple docstring""" while True: _UpperCAmelCase = await stream.readline() if line: callback(_A ) else: break async def _UpperCamelCase ( _A , _A=None , _A=None , _A=None , _A=False , _A=False ) -> _RunOutput: """simple docstring""" if echo: print("""\nRunning: """ , """ """.join(_A ) ) _UpperCAmelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_A , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCAmelCase = [] _UpperCAmelCase = [] def tee(_A , _A , _A , _A="" ): _UpperCAmelCase = line.decode("""utf-8""" ).rstrip() sink.append(_A ) if not quiet: print(_A , _A , file=_A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda _A : tee(_A , _A , sys.stdout , label="""stdout:""" ) ), _read_stream(p.stderr , lambda _A : tee(_A , _A , sys.stderr , label="""stderr:""" ) ), ] , timeout=_A , ) return _RunOutput(await p.wait() , _A , _A ) def _UpperCamelCase ( _A , _A=None , _A=None , _A=1_8_0 , _A=False , _A=True ) -> _RunOutput: """simple docstring""" _UpperCAmelCase = asyncio.get_event_loop() _UpperCAmelCase = loop.run_until_complete( _stream_subprocess(_A , env=_A , stdin=_A , timeout=_A , quiet=_A , echo=_A ) ) _UpperCAmelCase = """ """.join(_A ) if result.returncode > 0: _UpperCAmelCase = """\n""".join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def _UpperCamelCase ( ) -> Tuple: """simple docstring""" _UpperCAmelCase = os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" ) _UpperCAmelCase = re.sub(R"""^gw""" , """""" , _A , 0 , re.M ) return int(_A ) def _UpperCamelCase ( ) -> Tuple: """simple docstring""" _UpperCAmelCase = 2_9_5_0_0 _UpperCAmelCase = pytest_xdist_worker_id() return port + uniq_delta
19
1
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : str = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys a : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
"""simple docstring""" from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class a_ ( _UpperCAmelCase ): a : List[Any] = '' a : Union[str, Any] = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self : Tuple , __UpperCamelCase : Optional[DatasetInfo] = None , __UpperCamelCase : Optional[str] = None , **__UpperCamelCase : Any , ) ->Any: '''simple docstring''' super().__init__(self , **__UpperCamelCase ) _UpperCAmelCase = repo_info _UpperCAmelCase = token _UpperCAmelCase = None def _snake_case ( self : List[str] ) ->List[str]: '''simple docstring''' if self.dir_cache is None: _UpperCAmelCase = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes _UpperCAmelCase = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(__UpperCamelCase ): {"""name""": str(__UpperCamelCase ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def _snake_case ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : str = "rb" , **__UpperCamelCase : Any , ) ->List[str]: '''simple docstring''' if not isinstance(self.repo_info , __UpperCamelCase ): raise NotImplementedError(f"""Open is only implemented for dataset repositories, but got {self.repo_info}""" ) _UpperCAmelCase = hf_hub_url(self.repo_info.id , __UpperCamelCase , revision=self.repo_info.sha ) return fsspec.open( __UpperCamelCase , mode=__UpperCamelCase , headers=get_authentication_headers_for_url(__UpperCamelCase , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def _snake_case ( self : int , __UpperCamelCase : int , **__UpperCamelCase : Dict ) ->Tuple: '''simple docstring''' self._get_dirs() _UpperCAmelCase = self._strip_protocol(__UpperCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__UpperCamelCase ) def _snake_case ( self : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple=False , **__UpperCamelCase : List[str] ) ->Optional[Any]: '''simple docstring''' self._get_dirs() _UpperCAmelCase = PurePosixPath(path.strip("""/""" ) ) _UpperCAmelCase = {} for p, f in self.dir_cache.items(): _UpperCAmelCase = PurePosixPath(p.strip("""/""" ) ) _UpperCAmelCase = p.parent if root == path: _UpperCAmelCase = f _UpperCAmelCase = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
19
1
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class a_ ( unittest.TestCase ): def __init__( self : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[int]=7 , __UpperCamelCase : Optional[Any]=3 , __UpperCamelCase : Optional[Any]=18 , __UpperCamelCase : Any=30 , __UpperCamelCase : int=4_00 , __UpperCamelCase : str=True , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Optional[Any]=True , ) ->Dict: '''simple docstring''' _UpperCAmelCase = size if size is not None else {"""height""": 18, """width""": 18} _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = image_size _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_normalize def _snake_case ( self : Optional[Any] ) ->List[Any]: '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_8_6_6_4_4_3_6_3_4_0_3_3_2_0_3, 0.6_6_1_8_8_2_9_3_6_9_5_4_4_9_8_3, 0.3_8_9_1_7_4_6_4_0_1_7_8_6_8_0_4], [-0.6_0_4_2_5_5_9_1_4_6_8_8_1_1_0_4, -0.0_2_2_9_5_0_0_8_8_6_0_5_2_8_4_6_9, 0.5_4_2_3_7_9_7_3_6_9_0_0_3_2_9_6], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class a_ ( _UpperCAmelCase , unittest.TestCase ): a : Optional[Any] = ImageGPTImageProcessor if is_vision_available() else None def _snake_case ( self : Any ) ->Any: '''simple docstring''' _UpperCAmelCase = ImageGPTImageProcessingTester(self ) @property def _snake_case ( self : Tuple ) ->str: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self : Dict ) ->str: '''simple docstring''' _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , """clusters""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """size""" ) ) self.assertTrue(hasattr(__UpperCamelCase , """do_normalize""" ) ) def _snake_case ( self : Tuple ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) _UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def _snake_case ( self : List[str] ) ->List[str]: '''simple docstring''' _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(__UpperCamelCase , obj[key] ) ) else: self.assertEqual(obj[key] , __UpperCamelCase ) def _snake_case ( self : Union[str, Any] ) ->int: '''simple docstring''' _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase = os.path.join(__UpperCamelCase , """image_processor.json""" ) image_processor_first.to_json_file(__UpperCamelCase ) _UpperCAmelCase = self.image_processing_class.from_json_file(__UpperCamelCase ).to_dict() _UpperCAmelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__UpperCamelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __UpperCamelCase ) def _snake_case ( self : Tuple ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(__UpperCamelCase ) _UpperCAmelCase = self.image_processing_class.from_pretrained(__UpperCamelCase ).to_dict() _UpperCAmelCase = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__UpperCamelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __UpperCamelCase ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def _snake_case ( self : Any ) ->str: '''simple docstring''' pass def _UpperCamelCase ( ) -> Any: """simple docstring""" _UpperCAmelCase = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) _UpperCAmelCase = Image.open(dataset[4]["""file"""] ) _UpperCAmelCase = Image.open(dataset[5]["""file"""] ) _UpperCAmelCase = [imagea, imagea] return images @require_vision @require_torch class a_ ( unittest.TestCase ): @slow def _snake_case ( self : List[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) _UpperCAmelCase = prepare_images() # test non-batched _UpperCAmelCase = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 10_24) ) _UpperCAmelCase = [3_06, 1_91, 1_91] self.assertEqual(encoding.input_ids[0, :3].tolist() , __UpperCamelCase ) # test batched _UpperCAmelCase = image_processing(__UpperCamelCase , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 10_24) ) _UpperCAmelCase = [3_03, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , __UpperCamelCase )
19
"""simple docstring""" import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness a : Optional[Any] = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' a : List[str] = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' a : Any = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' a : int = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' a : List[Any] = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def _snake_case ( self : Tuple ) ->Tuple: '''simple docstring''' return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def _snake_case ( self : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any]=[1, 10, 1_00] , __UpperCamelCase : Dict=4 , __UpperCamelCase : Tuple=3.0 ) ->Union[str, Any]: '''simple docstring''' if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=__UpperCamelCase ) as executor: _UpperCAmelCase = [] _UpperCAmelCase = Counter() _UpperCAmelCase = 0 _UpperCAmelCase = defaultdict(__UpperCamelCase ) for task_id, (candidates, test_case) in enumerate(zip(__UpperCamelCase , __UpperCamelCase ) ): for candidate in candidates: _UpperCAmelCase = candidate + """\n""" + test_case _UpperCAmelCase = (test_program, timeout, task_id, completion_id[task_id]) _UpperCAmelCase = executor.submit(__UpperCamelCase , *__UpperCamelCase ) futures.append(__UpperCamelCase ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(__UpperCamelCase ): _UpperCAmelCase = future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) _UpperCAmelCase ,_UpperCAmelCase = [], [] for result in results.values(): result.sort() _UpperCAmelCase = [r[1]["""passed"""] for r in result] total.append(len(__UpperCamelCase ) ) correct.append(sum(__UpperCamelCase ) ) _UpperCAmelCase = np.array(__UpperCamelCase ) _UpperCAmelCase = np.array(__UpperCamelCase ) _UpperCAmelCase = k _UpperCAmelCase = {f"""pass@{k}""": estimate_pass_at_k(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def _UpperCamelCase ( _A , _A , _A ) -> Dict: """simple docstring""" def estimator(_A , _A , _A ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(_A , _A ): _UpperCAmelCase = itertools.repeat(_A , len(_A ) ) else: assert len(_A ) == len(_A ) _UpperCAmelCase = iter(_A ) return np.array([estimator(int(_A ) , int(_A ) , _A ) for n, c in zip(_A , _A )] )
19
1
"""simple docstring""" def _UpperCamelCase ( _A ) -> int: """simple docstring""" if divisor % 5 == 0 or divisor % 2 == 0: return 0 _UpperCAmelCase = 1 _UpperCAmelCase = 1 while repunit: _UpperCAmelCase = (1_0 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _UpperCamelCase ( _A = 1_0_0_0_0_0_0 ) -> int: """simple docstring""" _UpperCAmelCase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(_A ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"{solution() = }")
19
"""simple docstring""" from collections.abc import Callable import numpy as np def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> np.array: """simple docstring""" _UpperCAmelCase = int(np.ceil((x_end - xa) / step_size ) ) _UpperCAmelCase = np.zeros((n + 1,) ) _UpperCAmelCase = ya _UpperCAmelCase = xa for k in range(_A ): _UpperCAmelCase = y[k] + step_size * ode_func(_A , y[k] ) _UpperCAmelCase = y[k] + ( (step_size / 2) * (ode_func(_A , y[k] ) + ode_func(x + step_size , _A )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
19
1
"""simple docstring""" from math import pi, sqrt def _UpperCamelCase ( _A ) -> float: """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) if num > 171.5: raise OverflowError("""math range error""" ) elif num - int(_A ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_A ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def _UpperCamelCase ( ) -> None: """simple docstring""" assert gamma(0.5 ) == sqrt(_A ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() a : int = 1.0 while num: a : Tuple = float(input('''Gamma of: ''')) print(F"gamma({num}) = {gamma(num)}") print('''\nEnter 0 to exit...''')
19
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) a : List[str] = logging.getLogger(__name__) a : int = {'''facebook/bart-base''': BartForConditionalGeneration} a : Dict = {'''facebook/bart-base''': BartTokenizer} def _UpperCamelCase ( ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" ) parser.add_argument( """--validation_file""" , type=_A , default=_A , help="""A csv or a json file containing the validation data.""" ) parser.add_argument( """--max_length""" , type=_A , default=5 , help="""The maximum total input sequence length after tokenization.""" , ) parser.add_argument( """--num_beams""" , type=_A , default=_A , help=( """Number of beams to use for evaluation. This argument will be """ """passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.""" ) , ) parser.add_argument( """--model_name_or_path""" , type=_A , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_A , ) parser.add_argument( """--config_name""" , type=_A , default=_A , help="""Pretrained config name or path if not the same as model_name""" , ) parser.add_argument( """--device""" , type=_A , default="""cpu""" , help="""Device where the model will be run""" , ) parser.add_argument("""--output_file_path""" , type=_A , default=_A , help="""Where to store the final ONNX file.""" ) _UpperCAmelCase = parser.parse_args() return args def _UpperCamelCase ( _A , _A="cpu" ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = model_dict[model_name].from_pretrained(_A ).to(_A ) _UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_A ) if model_name in ["facebook/bart-base"]: _UpperCAmelCase = 0 _UpperCAmelCase = None _UpperCAmelCase = 0 return huggingface_model, tokenizer def _UpperCamelCase ( _A , _A , _A , _A , _A ) -> Optional[int]: """simple docstring""" model.eval() _UpperCAmelCase = None _UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_A ) ) with torch.no_grad(): _UpperCAmelCase = """My friends are cool but they eat too many carbs.""" _UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors="""pt""" ).to(model.device ) _UpperCAmelCase = model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=_A , max_length=_A , early_stopping=_A , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _A , ( inputs["""input_ids"""], inputs["""attention_mask"""], num_beams, max_length, model.config.decoder_start_token_id, ) , _A , opset_version=1_4 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={ """input_ids""": {0: """batch""", 1: """seq"""}, """output_ids""": {0: """batch""", 1: """seq_out"""}, } , example_outputs=_A , ) logger.info("""Model exported to {}""".format(_A ) ) _UpperCAmelCase = remove_dup_initializers(os.path.abspath(_A ) ) logger.info("""Deduplicated and optimized model written to {}""".format(_A ) ) _UpperCAmelCase = onnxruntime.InferenceSession(_A ) _UpperCAmelCase = ort_sess.run( _A , { """input_ids""": inputs["""input_ids"""].cpu().numpy(), """attention_mask""": inputs["""attention_mask"""].cpu().numpy(), """num_beams""": np.array(_A ), """max_length""": np.array(_A ), """decoder_start_token_id""": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info("""Model outputs from torch and ONNX Runtime are similar.""" ) logger.info("""Success.""" ) def _UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = parse_args() _UpperCAmelCase = 5 _UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() _UpperCAmelCase = torch.device(args.device ) _UpperCAmelCase ,_UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _A ) if model.config.decoder_start_token_id is None: raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" ) model.to(_A ) if args.max_length: _UpperCAmelCase = args.max_length if args.num_beams: _UpperCAmelCase = args.num_beams if args.output_file_path: _UpperCAmelCase = args.output_file_path else: _UpperCAmelCase = """BART.onnx""" logger.info("""Exporting model to ONNX""" ) export_and_validate_model(_A , _A , _A , _A , _A ) if __name__ == "__main__": main()
19
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer a : List[str] = logging.get_logger(__name__) a : str = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a : Optional[int] = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } a : Any = { '''google/realm-cc-news-pretrained-embedder''': 5_1_2, '''google/realm-cc-news-pretrained-encoder''': 5_1_2, '''google/realm-cc-news-pretrained-scorer''': 5_1_2, '''google/realm-cc-news-pretrained-openqa''': 5_1_2, '''google/realm-orqa-nq-openqa''': 5_1_2, '''google/realm-orqa-nq-reader''': 5_1_2, '''google/realm-orqa-wq-openqa''': 5_1_2, '''google/realm-orqa-wq-reader''': 5_1_2, } a : Optional[int] = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class a_ ( _UpperCAmelCase ): a : Any = VOCAB_FILES_NAMES a : List[str] = PRETRAINED_VOCAB_FILES_MAP a : Optional[Any] = PRETRAINED_INIT_CONFIGURATION a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[Any] = RealmTokenizer def __init__( self : Optional[Any] , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Dict=True , __UpperCamelCase : List[str]="[UNK]" , __UpperCamelCase : Dict="[SEP]" , __UpperCamelCase : Any="[PAD]" , __UpperCamelCase : List[str]="[CLS]" , __UpperCamelCase : Any="[MASK]" , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[int]=None , **__UpperCamelCase : List[Any] , ) ->int: '''simple docstring''' super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , tokenize_chinese_chars=__UpperCamelCase , strip_accents=__UpperCamelCase , **__UpperCamelCase , ) _UpperCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCamelCase ) != tokenize_chinese_chars ): _UpperCAmelCase = getattr(__UpperCamelCase , normalizer_state.pop("""type""" ) ) _UpperCAmelCase = do_lower_case _UpperCAmelCase = strip_accents _UpperCAmelCase = tokenize_chinese_chars _UpperCAmelCase = normalizer_class(**__UpperCamelCase ) _UpperCAmelCase = do_lower_case def _snake_case ( self : str , __UpperCamelCase : List[str] , **__UpperCamelCase : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = PaddingStrategy.MAX_LENGTH _UpperCAmelCase = text _UpperCAmelCase = kwargs.pop("""text_pair""" , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop("""return_tensors""" , __UpperCamelCase ) _UpperCAmelCase = { """input_ids""": [], """attention_mask""": [], """token_type_ids""": [], } for idx, candidate_text in enumerate(__UpperCamelCase ): if batch_text_pair is not None: _UpperCAmelCase = batch_text_pair[idx] else: _UpperCAmelCase = None _UpperCAmelCase = super().__call__(__UpperCamelCase , __UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = encoded_candidates.get("""input_ids""" ) _UpperCAmelCase = encoded_candidates.get("""attention_mask""" ) _UpperCAmelCase = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(__UpperCamelCase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(__UpperCamelCase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(__UpperCamelCase ) _UpperCAmelCase = {key: item for key, item in output_data.items() if len(__UpperCamelCase ) != 0} return BatchEncoding(__UpperCamelCase , tensor_type=__UpperCamelCase ) def _snake_case ( self : int , __UpperCamelCase : int , __UpperCamelCase : Optional[int]=None ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self : Dict , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self : int , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' _UpperCAmelCase = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase )
19
"""simple docstring""" import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def _UpperCamelCase ( _A , _A=None ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = None if token is not None: _UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} _UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" _UpperCAmelCase = requests.get(_A , headers=_A ).json() _UpperCAmelCase = {} try: job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(_A ): _UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" , headers=_A ).json() job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return job_links except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCamelCase ( _A , _A=None ) -> Dict: """simple docstring""" _UpperCAmelCase = None if token is not None: _UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} _UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100""" _UpperCAmelCase = requests.get(_A , headers=_A ).json() _UpperCAmelCase = {} try: artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) _UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(_A ): _UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" , headers=_A ).json() artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} ) return artifacts except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} def _UpperCamelCase ( _A , _A , _A , _A ) -> List[str]: """simple docstring""" _UpperCAmelCase = None if token is not None: _UpperCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} _UpperCAmelCase = requests.get(_A , headers=_A , allow_redirects=_A ) _UpperCAmelCase = result.headers["""Location"""] _UpperCAmelCase = requests.get(_A , allow_redirects=_A ) _UpperCAmelCase = os.path.join(_A , F"""{artifact_name}.zip""" ) with open(_A , """wb""" ) as fp: fp.write(response.content ) def _UpperCamelCase ( _A , _A=None ) -> Dict: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [] _UpperCAmelCase = None with zipfile.ZipFile(_A ) as z: for filename in z.namelist(): if not os.path.isdir(_A ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(_A ) as f: for line in f: _UpperCAmelCase = line.decode("""UTF-8""" ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs _UpperCAmelCase = line[: line.index(""": """ )] _UpperCAmelCase = line[line.index(""": """ ) + len(""": """ ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith("""FAILED """ ): # `test` is the test method that failed _UpperCAmelCase = line[len("""FAILED """ ) :] failed_tests.append(_A ) elif filename == "job_name.txt": _UpperCAmelCase = line if len(_A ) != len(_A ): raise ValueError( F"""`errors` and `failed_tests` should have the same number of elements. Got {len(_A )} for `errors` """ F"""and {len(_A )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some""" """ problem.""" ) _UpperCAmelCase = None if job_name and job_links: _UpperCAmelCase = job_links.get(_A , _A ) # A list with elements of the form (line of error, error, failed test) _UpperCAmelCase = [x + [y] + [job_link] for x, y in zip(_A , _A )] return result def _UpperCamelCase ( _A , _A=None ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = [os.path.join(_A , _A ) for p in os.listdir(_A ) if p.endswith(""".zip""" )] for p in paths: errors.extend(get_errors_from_single_artifact(_A , job_links=_A ) ) return errors def _UpperCamelCase ( _A , _A=None ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = Counter() counter.update([x[1] for x in logs] ) _UpperCAmelCase = counter.most_common() _UpperCAmelCase = {} for error, count in counts: if error_filter is None or error not in error_filter: _UpperCAmelCase = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]} _UpperCAmelCase = dict(sorted(r.items() , key=lambda _A : item[1]["count"] , reverse=_A ) ) return r def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" _UpperCAmelCase = test.split("""::""" )[0] if test.startswith("""tests/models/""" ): _UpperCAmelCase = test.split("""/""" )[2] else: _UpperCAmelCase = None return test def _UpperCamelCase ( _A , _A=None ) -> Any: """simple docstring""" _UpperCAmelCase = [(x[0], x[1], get_model(x[2] )) for x in logs] _UpperCAmelCase = [x for x in logs if x[2] is not None] _UpperCAmelCase = {x[2] for x in logs} _UpperCAmelCase = {} for test in tests: _UpperCAmelCase = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) _UpperCAmelCase = counter.most_common() _UpperCAmelCase = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} _UpperCAmelCase = sum(error_counts.values() ) if n_errors > 0: _UpperCAmelCase = {"""count""": n_errors, """errors""": error_counts} _UpperCAmelCase = dict(sorted(r.items() , key=lambda _A : item[1]["count"] , reverse=_A ) ) return r def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = """| no. | error | status |""" _UpperCAmelCase = """|-:|:-|:-|""" _UpperCAmelCase = [header, sep] for error in reduced_by_error: _UpperCAmelCase = reduced_by_error[error]["""count"""] _UpperCAmelCase = F"""| {count} | {error[:1_0_0]} | |""" lines.append(_A ) return "\n".join(_A ) def _UpperCamelCase ( _A ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = """| model | no. of errors | major error | count |""" _UpperCAmelCase = """|-:|-:|-:|-:|""" _UpperCAmelCase = [header, sep] for model in reduced_by_model: _UpperCAmelCase = reduced_by_model[model]["""count"""] _UpperCAmelCase ,_UpperCAmelCase = list(reduced_by_model[model]["""errors"""].items() )[0] _UpperCAmelCase = F"""| {model} | {count} | {error[:6_0]} | {_count} |""" lines.append(_A ) return "\n".join(_A ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') a : Dict = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) a : Tuple = get_job_links(args.workflow_run_id, token=args.token) a : Tuple = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: a : List[Any] = k.find(''' / ''') a : Tuple = k[index + len(''' / ''') :] a : int = v with open(os.path.join(args.output_dir, '''job_links.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) a : Tuple = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) a : Optional[int] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error a : Union[str, Any] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors a : Optional[int] = counter.most_common(3_0) for item in most_common: print(item) with open(os.path.join(args.output_dir, '''errors.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) a : int = reduce_by_error(errors) a : str = reduce_by_model(errors) a : int = make_github_table(reduced_by_error) a : Optional[int] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, '''reduced_by_error.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa) with open(os.path.join(args.output_dir, '''reduced_by_model.txt'''), '''w''', encoding='''UTF-8''') as fp: fp.write(sa)
19
1
"""simple docstring""" import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : def __init__( self : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any=13 , __UpperCamelCase : str=32 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : Optional[Any]=3 , __UpperCamelCase : Optional[int]=16 , __UpperCamelCase : Union[str, Any]=[32, 64, 1_28] , __UpperCamelCase : str=[1, 2, 1] , __UpperCamelCase : Union[str, Any]=[2, 2, 4] , __UpperCamelCase : List[Any]=2 , __UpperCamelCase : Dict=2.0 , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[int]=0.0 , __UpperCamelCase : Tuple=0.0 , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Any="gelu" , __UpperCamelCase : str=False , __UpperCamelCase : str=True , __UpperCamelCase : Dict=0.0_2 , __UpperCamelCase : Optional[int]=1e-5 , __UpperCamelCase : int=True , __UpperCamelCase : List[str]=None , __UpperCamelCase : Any=True , __UpperCamelCase : Optional[Any]=10 , __UpperCamelCase : List[str]=8 , __UpperCamelCase : Tuple=["stage1", "stage2"] , __UpperCamelCase : List[str]=[1, 2] , ) ->str: '''simple docstring''' _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = hidden_sizes _UpperCAmelCase = depths _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = patch_norm _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = is_training _UpperCAmelCase = scope _UpperCAmelCase = use_labels _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = encoder_stride _UpperCAmelCase = out_features _UpperCAmelCase = out_indices def _snake_case ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def _snake_case ( self : str ) ->Optional[Any]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _snake_case ( self : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Tuple , __UpperCamelCase : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = FocalNetModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _snake_case ( self : List[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase = FocalNetBackbone(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _UpperCAmelCase = None _UpperCAmelCase = FocalNetBackbone(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _snake_case ( self : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] ) ->int: '''simple docstring''' _UpperCAmelCase = FocalNetForMaskedImageModeling(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = FocalNetForMaskedImageModeling(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _snake_case ( self : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] ) ->List[str]: '''simple docstring''' _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = FocalNetForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = FocalNetForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self : Optional[int] ) ->Tuple: '''simple docstring''' _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): a : str = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) a : int = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) a : Optional[Any] = False a : Dict = False a : List[Any] = False a : int = False a : Optional[Any] = False def _snake_case ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = FocalNetModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , embed_dim=37 , has_text_modality=__UpperCamelCase ) def _snake_case ( self : Optional[int] ) ->Optional[int]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _snake_case ( self : Dict ) ->List[Any]: '''simple docstring''' return def _snake_case ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _snake_case ( self : str ) ->Dict: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__UpperCamelCase ) def _snake_case ( self : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCamelCase ) def _snake_case ( self : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def _snake_case ( self : List[Any] ) ->Any: '''simple docstring''' pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def _snake_case ( self : Tuple ) ->List[str]: '''simple docstring''' pass def _snake_case ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _UpperCAmelCase = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def _snake_case ( self : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _UpperCAmelCase = model_class(__UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def _snake_case ( self : Any , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # FocalNet has a different seq_length _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _UpperCAmelCase = outputs.reshaped_hidden_states self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = reshaped_hidden_states[0].shape _UpperCAmelCase = ( reshaped_hidden_states[0].view(__UpperCamelCase , __UpperCamelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _snake_case ( self : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _UpperCAmelCase = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def _snake_case ( self : Tuple ) ->str: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _UpperCAmelCase = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True self.check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , (padded_height, padded_width) ) @slow def _snake_case ( self : Optional[Any] ) ->str: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = FocalNetModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def _snake_case ( self : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(config=__UpperCamelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class a_ ( unittest.TestCase ): @cached_property def _snake_case ( self : Dict ) ->Tuple: '''simple docstring''' return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def _snake_case ( self : Optional[int] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(__UpperCamelCase ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) _UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**__UpperCamelCase ) # verify the logits _UpperCAmelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class a_ ( _UpperCAmelCase , unittest.TestCase ): a : List[str] = (FocalNetBackbone,) if is_torch_available() else () a : Tuple = FocalNetConfig a : Optional[Any] = False def _snake_case ( self : Tuple ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = FocalNetModelTester(self )
19
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class a_ ( _UpperCAmelCase ): a : Any = ['image_processor', 'tokenizer'] a : Optional[int] = 'AutoImageProcessor' a : Any = 'AutoTokenizer' def __init__( self : List[str] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[str]=None , **__UpperCamelCase : List[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __UpperCamelCase , ) _UpperCAmelCase = kwargs.pop("""feature_extractor""" ) _UpperCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.image_processor _UpperCAmelCase = False def __call__( self : Union[str, Any] , *__UpperCamelCase : str , **__UpperCamelCase : Optional[Any] ) ->List[str]: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = kwargs.pop("""images""" , __UpperCamelCase ) _UpperCAmelCase = kwargs.pop("""text""" , __UpperCamelCase ) if len(__UpperCamelCase ) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if images is None and text is None: raise ValueError("""You need to specify either an `images` or `text` input to process.""" ) if images is not None: _UpperCAmelCase = self.image_processor(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) if text is not None: _UpperCAmelCase = self.tokenizer(__UpperCamelCase , **__UpperCamelCase ) if text is None: return inputs elif images is None: return encodings else: _UpperCAmelCase = encodings["""input_ids"""] return inputs def _snake_case ( self : Union[str, Any] , *__UpperCamelCase : int , **__UpperCamelCase : Tuple ) ->Tuple: '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def _snake_case ( self : Tuple , *__UpperCamelCase : int , **__UpperCamelCase : Union[str, Any] ) ->int: '''simple docstring''' return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @contextmanager def _snake_case ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your images inputs, or in a separate call.""" ) _UpperCAmelCase = True _UpperCAmelCase = self.tokenizer yield _UpperCAmelCase = self.image_processor _UpperCAmelCase = False def _snake_case ( self : str , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any]=False , __UpperCamelCase : Union[str, Any]=None ) ->List[str]: '''simple docstring''' if added_vocab is None: _UpperCAmelCase = self.tokenizer.get_added_vocab() _UpperCAmelCase = {} while tokens: _UpperCAmelCase = re.search(r"""<s_(.*?)>""" , __UpperCamelCase , re.IGNORECASE ) if start_token is None: break _UpperCAmelCase = start_token.group(1 ) _UpperCAmelCase = re.search(rf"""</s_{key}>""" , __UpperCamelCase , re.IGNORECASE ) _UpperCAmelCase = start_token.group() if end_token is None: _UpperCAmelCase = tokens.replace(__UpperCamelCase , """""" ) else: _UpperCAmelCase = end_token.group() _UpperCAmelCase = re.escape(__UpperCamelCase ) _UpperCAmelCase = re.escape(__UpperCamelCase ) _UpperCAmelCase = re.search(f"""{start_token_escaped}(.*?){end_token_escaped}""" , __UpperCamelCase , re.IGNORECASE ) if content is not None: _UpperCAmelCase = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node _UpperCAmelCase = self.tokenajson(__UpperCamelCase , is_inner_value=__UpperCamelCase , added_vocab=__UpperCamelCase ) if value: if len(__UpperCamelCase ) == 1: _UpperCAmelCase = value[0] _UpperCAmelCase = value else: # leaf nodes _UpperCAmelCase = [] for leaf in content.split(r"""<sep/>""" ): _UpperCAmelCase = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": _UpperCAmelCase = leaf[1:-2] # for categorical special tokens output[key].append(__UpperCamelCase ) if len(output[key] ) == 1: _UpperCAmelCase = output[key][0] _UpperCAmelCase = tokens[tokens.find(__UpperCamelCase ) + len(__UpperCamelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=__UpperCamelCase , added_vocab=__UpperCamelCase ) if len(__UpperCamelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def _snake_case ( self : Tuple ) ->Optional[int]: '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __UpperCamelCase , ) return self.image_processor_class @property def _snake_case ( self : List[str] ) ->Dict: '''simple docstring''' warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __UpperCamelCase , ) return self.image_processor
19
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : str = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
"""simple docstring""" import colorsys from PIL import Image # type: ignore def _UpperCamelCase ( _A , _A , _A ) -> float: """simple docstring""" _UpperCAmelCase = x _UpperCAmelCase = y for step in range(_A ): # noqa: B007 _UpperCAmelCase = a * a - b * b + x _UpperCAmelCase = 2 * a * b + y _UpperCAmelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _UpperCamelCase ( _A ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return (2_5_5, 2_5_5, 2_5_5) def _UpperCamelCase ( _A ) -> tuple: """simple docstring""" if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(_A , 1 , 1 ) ) def _UpperCamelCase ( _A = 8_0_0 , _A = 6_0_0 , _A = -0.6 , _A = 0 , _A = 3.2 , _A = 5_0 , _A = True , ) -> Image.Image: """simple docstring""" _UpperCAmelCase = Image.new("""RGB""" , (image_width, image_height) ) _UpperCAmelCase = img.load() # loop through the image-coordinates for image_x in range(_A ): for image_y in range(_A ): # determine the figure-coordinates based on the image-coordinates _UpperCAmelCase = figure_width / image_width * image_height _UpperCAmelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width _UpperCAmelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height _UpperCAmelCase = get_distance(_A , _A , _A ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: _UpperCAmelCase = get_color_coded_rgb(_A ) else: _UpperCAmelCase = get_black_and_white_rgb(_A ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure a : List[str] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
19
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class a_ ( unittest.TestCase ): def _snake_case ( self : List[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) _UpperCAmelCase = get_activation("""gelu""" ) self.assertTrue(torch.allclose(gelu_python(__UpperCamelCase ) , torch_builtin(__UpperCamelCase ) ) ) self.assertFalse(torch.allclose(gelu_python(__UpperCamelCase ) , gelu_new(__UpperCamelCase ) ) ) def _snake_case ( self : Optional[int] ) ->Any: '''simple docstring''' _UpperCAmelCase = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) _UpperCAmelCase = get_activation("""gelu""" ) _UpperCAmelCase = get_activation("""gelu_10""" ) _UpperCAmelCase = torch_builtin(__UpperCamelCase ) _UpperCAmelCase = geluaa(__UpperCamelCase ) _UpperCAmelCase = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(__UpperCamelCase ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _snake_case ( self : Dict ) ->Union[str, Any]: '''simple docstring''' get_activation("""gelu""" ) get_activation("""gelu_10""" ) get_activation("""gelu_fast""" ) get_activation("""gelu_new""" ) get_activation("""gelu_python""" ) get_activation("""gelu_pytorch_tanh""" ) get_activation("""linear""" ) get_activation("""mish""" ) get_activation("""quick_gelu""" ) get_activation("""relu""" ) get_activation("""sigmoid""" ) get_activation("""silu""" ) get_activation("""swish""" ) get_activation("""tanh""" ) with self.assertRaises(__UpperCamelCase ): get_activation("""bogus""" ) with self.assertRaises(__UpperCamelCase ): get_activation(__UpperCamelCase ) def _snake_case ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = get_activation("""gelu""" ) _UpperCAmelCase = 1 _UpperCAmelCase = get_activation("""gelu""" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(__UpperCamelCase ): _UpperCAmelCase = acta.a
19
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class a_ ( nn.Module ): def __init__( self : List[str] , __UpperCamelCase : int = 16 , __UpperCamelCase : int = 88 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 1 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 32 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : str = "geglu" , __UpperCamelCase : Optional[int] = None , ) ->Dict: '''simple docstring''' super().__init__() _UpperCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__UpperCamelCase , attention_head_dim=__UpperCamelCase , in_channels=__UpperCamelCase , num_layers=__UpperCamelCase , dropout=__UpperCamelCase , norm_num_groups=__UpperCamelCase , cross_attention_dim=__UpperCamelCase , attention_bias=__UpperCamelCase , sample_size=__UpperCamelCase , num_vector_embeds=__UpperCamelCase , activation_fn=__UpperCamelCase , num_embeds_ada_norm=__UpperCamelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _UpperCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _UpperCAmelCase = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _UpperCAmelCase = [1, 0] def _snake_case ( self : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : bool = True , ) ->Tuple: '''simple docstring''' _UpperCAmelCase = hidden_states _UpperCAmelCase = [] _UpperCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _UpperCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _UpperCAmelCase = self.transformer_index_for_condition[i] _UpperCAmelCase = self.transformers[transformer_index]( __UpperCamelCase , encoder_hidden_states=__UpperCamelCase , timestep=__UpperCamelCase , cross_attention_kwargs=__UpperCamelCase , return_dict=__UpperCamelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _UpperCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _UpperCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__UpperCamelCase )
19
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a : Union[str, Any] = logging.get_logger(__name__) a : List[Any] = { '''shi-labs/nat-mini-in1k-224''': '''https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json''', # See all Nat models at https://huggingface.co/models?filter=nat } class a_ ( _UpperCAmelCase , _UpperCAmelCase ): a : List[str] = 'nat' a : List[Any] = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : str , __UpperCamelCase : Union[str, Any]=4 , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : List[str]=64 , __UpperCamelCase : Tuple=[3, 4, 6, 5] , __UpperCamelCase : Dict=[2, 4, 8, 16] , __UpperCamelCase : Any=7 , __UpperCamelCase : List[str]=3.0 , __UpperCamelCase : int=True , __UpperCamelCase : Optional[Any]=0.0 , __UpperCamelCase : Tuple=0.0 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Tuple="gelu" , __UpperCamelCase : Dict=0.0_2 , __UpperCamelCase : Any=1e-5 , __UpperCamelCase : int=0.0 , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Union[str, Any]=None , **__UpperCamelCase : List[Any] , ) ->str: '''simple docstring''' super().__init__(**__UpperCamelCase ) _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(__UpperCamelCase ) _UpperCAmelCase = num_heads _UpperCAmelCase = kernel_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCAmelCase = int(embed_dim * 2 ** (len(__UpperCamelCase ) - 1) ) _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(__UpperCamelCase ) + 1 )] _UpperCAmelCase ,_UpperCAmelCase = get_aligned_output_features_output_indices( out_features=__UpperCamelCase , out_indices=__UpperCamelCase , stage_names=self.stage_names )
19
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase ( _A , _A , _A ) -> List[Any]: """simple docstring""" _UpperCAmelCase = LxmertConfig.from_json_file(_A ) print(F"""Building PyTorch model from configuration: {config}""" ) _UpperCAmelCase = LxmertForPreTraining(_A ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(_A , _A , _A ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
19
1
"""simple docstring""" # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
19
"""simple docstring""" import argparse import os import re import packaging.version a : str = '''examples/''' a : List[str] = { '''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''), '''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } a : Tuple = { '''init''': '''src/diffusers/__init__.py''', '''setup''': '''setup.py''', } a : List[str] = '''README.md''' def _UpperCamelCase ( _A , _A , _A ) -> Dict: """simple docstring""" with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _UpperCAmelCase = f.read() _UpperCAmelCase ,_UpperCAmelCase = REPLACE_PATTERNS[pattern] _UpperCAmelCase = replace.replace("""VERSION""" , _A ) _UpperCAmelCase = re_pattern.sub(_A , _A ) with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(_A ) def _UpperCamelCase ( _A ) -> Union[str, Any]: """simple docstring""" for folder, directories, fnames in os.walk(_A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(_A , _A ) , _A , pattern="""examples""" ) def _UpperCamelCase ( _A , _A=False ) -> int: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_A , _A , _A ) if not patch: update_version_in_examples(_A ) def _UpperCamelCase ( ) -> Any: """simple docstring""" _UpperCAmelCase = """🤗 Transformers currently provides the following architectures""" _UpperCAmelCase = """1. Want to contribute a new model?""" with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _UpperCAmelCase = f.readlines() # Find the start of the list. _UpperCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _UpperCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): _UpperCAmelCase = lines[index].replace( """https://huggingface.co/docs/diffusers/main/model_doc""" , """https://huggingface.co/docs/diffusers/model_doc""" , ) index += 1 with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_A ) def _UpperCamelCase ( ) -> Optional[int]: """simple docstring""" with open(REPLACE_FILES["""init"""] , """r""" ) as f: _UpperCAmelCase = f.read() _UpperCAmelCase = REPLACE_PATTERNS["""init"""][0].search(_A ).groups()[0] return packaging.version.parse(_A ) def _UpperCamelCase ( _A=False ) -> List[Any]: """simple docstring""" _UpperCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: _UpperCAmelCase = default_version.base_version elif patch: _UpperCAmelCase = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _UpperCAmelCase = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _UpperCAmelCase = input(F"""Which version are you releasing? [{default_version}]""" ) if len(_A ) == 0: _UpperCAmelCase = default_version print(F"""Updating version to {version}.""" ) global_version_update(_A , patch=_A ) def _UpperCamelCase ( ) -> List[Any]: """simple docstring""" _UpperCAmelCase = get_version() _UpperCAmelCase = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _UpperCAmelCase = current_version.base_version # Check with the user we got that right. _UpperCAmelCase = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(_A ) == 0: _UpperCAmelCase = dev_version print(F"""Updating version to {version}.""" ) global_version_update(_A ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": a : Dict = argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') a : Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
19
1
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
19
"""simple docstring""" from __future__ import annotations def _UpperCamelCase ( _A ) -> None: """simple docstring""" create_state_space_tree(_A , [] , 0 , [0 for i in range(len(_A ) )] ) def _UpperCamelCase ( _A , _A , _A , _A , ) -> None: """simple docstring""" if index == len(_A ): print(_A ) return for i in range(len(_A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) _UpperCAmelCase = True create_state_space_tree(_A , _A , index + 1 , _A ) current_sequence.pop() _UpperCAmelCase = False a : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) a : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
19
1
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class a_ ( _UpperCAmelCase ): a : Any = ['vqvae'] def __init__( self : str , __UpperCamelCase : AutoencoderKL , __UpperCamelCase : UNetaDConditionModel , __UpperCamelCase : Mel , __UpperCamelCase : Union[DDIMScheduler, DDPMScheduler] , ) ->int: '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCamelCase , scheduler=__UpperCamelCase , mel=__UpperCamelCase , vqvae=__UpperCamelCase ) def _snake_case ( self : Optional[Any] ) ->int: '''simple docstring''' return 50 if isinstance(self.scheduler , __UpperCamelCase ) else 10_00 @torch.no_grad() def __call__( self : Optional[Any] , __UpperCamelCase : int = 1 , __UpperCamelCase : str = None , __UpperCamelCase : np.ndarray = None , __UpperCamelCase : int = 0 , __UpperCamelCase : int = 0 , __UpperCamelCase : int = None , __UpperCamelCase : torch.Generator = None , __UpperCamelCase : float = 0 , __UpperCamelCase : float = 0 , __UpperCamelCase : torch.Generator = None , __UpperCamelCase : float = 0 , __UpperCamelCase : torch.Tensor = None , __UpperCamelCase : torch.Tensor = None , __UpperCamelCase : Any=True , ) ->Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' _UpperCAmelCase = steps or self.get_default_steps() self.scheduler.set_timesteps(__UpperCamelCase ) _UpperCAmelCase = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: _UpperCAmelCase = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: _UpperCAmelCase = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__UpperCamelCase , device=self.device , ) _UpperCAmelCase = noise _UpperCAmelCase = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.mel.audio_slice_to_image(__UpperCamelCase ) _UpperCAmelCase = np.frombuffer(input_image.tobytes() , dtype="""uint8""" ).reshape( (input_image.height, input_image.width) ) _UpperCAmelCase = (input_image / 2_55) * 2 - 1 _UpperCAmelCase = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: _UpperCAmelCase = self.vqvae.encode(torch.unsqueeze(__UpperCamelCase , 0 ) ).latent_dist.sample( generator=__UpperCamelCase )[0] _UpperCAmelCase = self.vqvae.config.scaling_factor * input_images if start_step > 0: _UpperCAmelCase = self.scheduler.add_noise(__UpperCamelCase , __UpperCamelCase , self.scheduler.timesteps[start_step - 1] ) _UpperCAmelCase = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) _UpperCAmelCase = int(mask_start_secs * pixels_per_second ) _UpperCAmelCase = int(mask_end_secs * pixels_per_second ) _UpperCAmelCase = self.scheduler.add_noise(__UpperCamelCase , __UpperCamelCase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __UpperCamelCase ): _UpperCAmelCase = self.unet(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )["""sample"""] else: _UpperCAmelCase = self.unet(__UpperCamelCase , __UpperCamelCase )["""sample"""] if isinstance(self.scheduler , __UpperCamelCase ): _UpperCAmelCase = self.scheduler.step( model_output=__UpperCamelCase , timestep=__UpperCamelCase , sample=__UpperCamelCase , eta=__UpperCamelCase , generator=__UpperCamelCase , )["""prev_sample"""] else: _UpperCAmelCase = self.scheduler.step( model_output=__UpperCamelCase , timestep=__UpperCamelCase , sample=__UpperCamelCase , generator=__UpperCamelCase , )["""prev_sample"""] if mask is not None: if mask_start > 0: _UpperCAmelCase = mask[:, step, :, :mask_start] if mask_end > 0: _UpperCAmelCase = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance _UpperCAmelCase = 1 / self.vqvae.config.scaling_factor * images _UpperCAmelCase = self.vqvae.decode(__UpperCamelCase )["""sample"""] _UpperCAmelCase = (images / 2 + 0.5).clamp(0 , 1 ) _UpperCAmelCase = images.cpu().permute(0 , 2 , 3 , 1 ).numpy() _UpperCAmelCase = (images * 2_55).round().astype("""uint8""" ) _UpperCAmelCase = list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__UpperCamelCase , mode="""RGB""" ).convert("""L""" ) for _ in images) ) _UpperCAmelCase = [self.mel.image_to_audio(__UpperCamelCase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__UpperCamelCase )[:, np.newaxis, :] ) , **ImagePipelineOutput(__UpperCamelCase ) ) @torch.no_grad() def _snake_case ( self : Optional[Any] , __UpperCamelCase : List[Image.Image] , __UpperCamelCase : int = 50 ) ->np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , __UpperCamelCase ) self.scheduler.set_timesteps(__UpperCamelCase ) _UpperCAmelCase = np.array( [np.frombuffer(image.tobytes() , dtype="""uint8""" ).reshape((1, image.height, image.width) ) for image in images] ) _UpperCAmelCase = (sample / 2_55) * 2 - 1 _UpperCAmelCase = torch.Tensor(__UpperCamelCase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): _UpperCAmelCase = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps _UpperCAmelCase = self.scheduler.alphas_cumprod[t] _UpperCAmelCase = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) _UpperCAmelCase = 1 - alpha_prod_t _UpperCAmelCase = self.unet(__UpperCamelCase , __UpperCamelCase )["""sample"""] _UpperCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * model_output _UpperCAmelCase = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) _UpperCAmelCase = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _snake_case ( __UpperCamelCase : torch.Tensor , __UpperCamelCase : torch.Tensor , __UpperCamelCase : float ) ->torch.Tensor: '''simple docstring''' _UpperCAmelCase = acos(torch.dot(torch.flatten(__UpperCamelCase ) , torch.flatten(__UpperCamelCase ) ) / torch.norm(__UpperCamelCase ) / torch.norm(__UpperCamelCase ) ) return sin((1 - alpha) * theta ) * xa / sin(__UpperCamelCase ) + sin(alpha * theta ) * xa / sin(__UpperCamelCase )
19
"""simple docstring""" import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class a_ : def __init__( self : Union[str, Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int]=2 , __UpperCamelCase : int=32 , __UpperCamelCase : Tuple=16 , __UpperCamelCase : Dict=3 , __UpperCamelCase : Dict=True , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : Optional[Any]=32 , __UpperCamelCase : Any=4 , __UpperCamelCase : Optional[int]=[0, 1, 2, 3] , __UpperCamelCase : str=4 , __UpperCamelCase : Optional[Any]=37 , __UpperCamelCase : str="gelu" , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : Any=0.1 , __UpperCamelCase : Any=0.0_2 , __UpperCamelCase : Optional[int]=3 , __UpperCamelCase : int=[1, 3_84, 24, 24] , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Any=None , ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = backbone_out_indices _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = backbone_featmap_shape _UpperCAmelCase = scope _UpperCAmelCase = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = num_patches + 1 def _snake_case ( self : str ) ->int: '''simple docstring''' _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def _snake_case ( self : List[str] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 1_92, 3_84, 7_68], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def _snake_case ( self : Any , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase = DPTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : List[Any] ) ->int: '''simple docstring''' _UpperCAmelCase = self.num_labels _UpperCAmelCase = DPTForDepthEstimation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def _snake_case ( self : Any , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = self.num_labels _UpperCAmelCase = DPTForSemanticSegmentation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _snake_case ( self : Tuple ) ->Any: '''simple docstring''' _UpperCAmelCase = self.prepare_config_and_inputs() _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = config_and_inputs _UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a_ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): a : Dict = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () a : int = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) a : str = False a : List[str] = False a : Dict = False def _snake_case ( self : Any ) ->Any: '''simple docstring''' _UpperCAmelCase = DPTModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def _snake_case ( self : Optional[int] ) ->Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def _snake_case ( self : Tuple ) ->Tuple: '''simple docstring''' pass def _snake_case ( self : int ) ->Any: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def _snake_case ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(__UpperCamelCase ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def _snake_case ( self : Optional[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _snake_case ( self : str ) ->int: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__UpperCamelCase ) def _snake_case ( self : Any ) ->Tuple: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) def _snake_case ( self : str ) ->Any: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = True if model_class in get_values(__UpperCamelCase ): continue _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() _UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) _UpperCAmelCase = model(**__UpperCamelCase ).loss loss.backward() def _snake_case ( self : List[str] ) ->Dict: '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = False _UpperCAmelCase = True if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing: continue _UpperCAmelCase = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.gradient_checkpointing_enable() model.train() _UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) _UpperCAmelCase = model(**__UpperCamelCase ).loss loss.backward() def _snake_case ( self : Tuple ) ->List[str]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(config=__UpperCamelCase ) # Skip the check for the backbone _UpperCAmelCase = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _UpperCAmelCase = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _snake_case ( self : Dict ) ->Tuple: '''simple docstring''' pass @slow def _snake_case ( self : Optional[int] ) ->List[Any]: '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _UpperCAmelCase = DPTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def _snake_case ( self : List[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = """add""" with self.assertRaises(__UpperCamelCase ): _UpperCAmelCase = DPTForDepthEstimation(__UpperCamelCase ) def _UpperCamelCase ( ) -> int: """simple docstring""" _UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class a_ ( unittest.TestCase ): def _snake_case ( self : Any ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) _UpperCAmelCase = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__UpperCamelCase ) _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=__UpperCamelCase , return_tensors="""pt""" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**__UpperCamelCase ) _UpperCAmelCase = outputs.predicted_depth # verify the predicted depth _UpperCAmelCase = torch.Size((1, 3_84, 3_84) ) self.assertEqual(predicted_depth.shape , __UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , __UpperCamelCase , atol=1e-4 ) )
19
1
"""simple docstring""" from __future__ import annotations def _UpperCamelCase ( _A ) -> bool: """simple docstring""" if len(_A ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) _UpperCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
19
"""simple docstring""" import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a : List[str] = logging.get_logger(__name__) class a_ ( enum.Enum ): a : Optional[Any] = 0 a : Dict = 1 @add_end_docstrings(_UpperCAmelCase ) class a_ ( _UpperCAmelCase ): a : List[Any] = 'generated' def __init__( self : int , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : str ) ->Any: '''simple docstring''' super().__init__(*__UpperCamelCase , **__UpperCamelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def _snake_case ( self : Optional[int] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Any=None , __UpperCamelCase : int=None , __UpperCamelCase : Tuple=None , __UpperCamelCase : Dict=None , **__UpperCamelCase : Any , ) ->Tuple: '''simple docstring''' _UpperCAmelCase = {} if truncation is not None: _UpperCAmelCase = truncation _UpperCAmelCase = generate_kwargs _UpperCAmelCase = {} if return_tensors is not None and return_type is None: _UpperCAmelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: _UpperCAmelCase = return_type if clean_up_tokenization_spaces is not None: _UpperCAmelCase = clean_up_tokenization_spaces if stop_sequence is not None: _UpperCAmelCase = self.tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) if len(__UpperCamelCase ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) _UpperCAmelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _snake_case ( self : int , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->Any: '''simple docstring''' return True def _snake_case ( self : Optional[Any] , *__UpperCamelCase : Any , __UpperCamelCase : Dict ) ->Dict: '''simple docstring''' _UpperCAmelCase = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , __UpperCamelCase ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) _UpperCAmelCase = ([prefix + arg for arg in args[0]],) _UpperCAmelCase = True elif isinstance(args[0] , __UpperCamelCase ): _UpperCAmelCase = (prefix + args[0],) _UpperCAmelCase = False else: raise ValueError( f""" `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`""" ) _UpperCAmelCase = self.tokenizer(*__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self : Dict , *__UpperCamelCase : str , **__UpperCamelCase : Dict ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = super().__call__(*__UpperCamelCase , **__UpperCamelCase ) if ( isinstance(args[0] , __UpperCamelCase ) and all(isinstance(__UpperCamelCase , __UpperCamelCase ) for el in args[0] ) and all(len(__UpperCamelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def _snake_case ( self : List[str] , __UpperCamelCase : Any , __UpperCamelCase : str=TruncationStrategy.DO_NOT_TRUNCATE , **__UpperCamelCase : Optional[int] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = self._parse_and_tokenize(__UpperCamelCase , truncation=__UpperCamelCase , **__UpperCamelCase ) return inputs def _snake_case ( self : str , __UpperCamelCase : Dict , **__UpperCamelCase : Dict ) ->Tuple: '''simple docstring''' if self.framework == "pt": _UpperCAmelCase ,_UpperCAmelCase = model_inputs["""input_ids"""].shape elif self.framework == "tf": _UpperCAmelCase ,_UpperCAmelCase = tf.shape(model_inputs["""input_ids"""] ).numpy() _UpperCAmelCase = generate_kwargs.get("""min_length""" , self.model.config.min_length ) _UpperCAmelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(__UpperCamelCase , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) _UpperCAmelCase = self.model.generate(**__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = output_ids.shape[0] if self.framework == "pt": _UpperCAmelCase = output_ids.reshape(__UpperCamelCase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": _UpperCAmelCase = tf.reshape(__UpperCamelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def _snake_case ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any]=ReturnType.TEXT , __UpperCamelCase : int=False ) ->Any: '''simple docstring''' _UpperCAmelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: _UpperCAmelCase = {f"""{self.return_name}_token_ids""": output_ids} elif return_type == ReturnType.TEXT: _UpperCAmelCase = { f"""{self.return_name}_text""": self.tokenizer.decode( __UpperCamelCase , skip_special_tokens=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase , ) } records.append(__UpperCamelCase ) return records @add_end_docstrings(_UpperCAmelCase ) class a_ ( _UpperCAmelCase ): a : List[Any] = 'summary' def __call__( self : Optional[Any] , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Optional[int] ) ->Any: '''simple docstring''' return super().__call__(*__UpperCamelCase , **__UpperCamelCase ) def _snake_case ( self : str , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->bool: '''simple docstring''' if max_length < min_length: logger.warning(f"""Your min_length={min_length} must be inferior than your max_length={max_length}.""" ) if input_length < max_length: logger.warning( f"""Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is """ """a summarization task, where outputs shorter than the input are typically wanted, you might """ f"""consider decreasing max_length manually, e.g. summarizer('...', max_length={input_length//2})""" ) @add_end_docstrings(_UpperCAmelCase ) class a_ ( _UpperCAmelCase ): a : Optional[int] = 'translation' def _snake_case ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ) ->Any: '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( f"""Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider """ """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def _snake_case ( self : Tuple , *__UpperCamelCase : List[str] , __UpperCamelCase : Tuple=TruncationStrategy.DO_NOT_TRUNCATE , __UpperCamelCase : Tuple=None , __UpperCamelCase : Union[str, Any]=None ) ->Tuple: '''simple docstring''' if getattr(self.tokenizer , """_build_translation_inputs""" , __UpperCamelCase ): return self.tokenizer._build_translation_inputs( *__UpperCamelCase , return_tensors=self.framework , truncation=__UpperCamelCase , src_lang=__UpperCamelCase , tgt_lang=__UpperCamelCase ) else: return super()._parse_and_tokenize(*__UpperCamelCase , truncation=__UpperCamelCase ) def _snake_case ( self : List[str] , __UpperCamelCase : int=None , __UpperCamelCase : int=None , **__UpperCamelCase : Any ) ->int: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = super()._sanitize_parameters(**__UpperCamelCase ) if src_lang is not None: _UpperCAmelCase = src_lang if tgt_lang is not None: _UpperCAmelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. _UpperCAmelCase = kwargs.get("""task""" , self.task ) _UpperCAmelCase = task.split("""_""" ) if task and len(__UpperCamelCase ) == 4: # translation, XX, to YY _UpperCAmelCase = items[1] _UpperCAmelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self : List[str] , *__UpperCamelCase : str , **__UpperCamelCase : Optional[Any] ) ->int: '''simple docstring''' return super().__call__(*__UpperCamelCase , **__UpperCamelCase )
19
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class a_ ( unittest.TestCase , _UpperCAmelCase ): def _snake_case ( self : Any ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = load_tool("""text-classification""" ) self.tool.setup() _UpperCAmelCase = load_tool("""text-classification""" , remote=__UpperCamelCase ) def _snake_case ( self : List[Any] ) ->str: '''simple docstring''' _UpperCAmelCase = self.tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(__UpperCamelCase , """positive""" ) def _snake_case ( self : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase = self.remote_tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(__UpperCamelCase , """positive""" ) def _snake_case ( self : Tuple ) ->Tuple: '''simple docstring''' _UpperCAmelCase = self.tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(__UpperCamelCase , """positive""" ) def _snake_case ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = self.remote_tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(__UpperCamelCase , """positive""" )
19
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a_ ( unittest.TestCase ): @property def _snake_case ( self : Dict ) ->int: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def _snake_case ( self : Optional[Any] ) ->str: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def _snake_case ( self : List[Any] ) ->Optional[int]: '''simple docstring''' torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(__UpperCamelCase ) def _snake_case ( self : List[str] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = self.dummy_uncond_unet _UpperCAmelCase = DDIMScheduler() _UpperCAmelCase = self.dummy_vq_model _UpperCAmelCase = LDMPipeline(unet=__UpperCamelCase , vqvae=__UpperCamelCase , scheduler=__UpperCamelCase ) ldm.to(__UpperCamelCase ) ldm.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type="""numpy""" ).images _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=2 , output_type="""numpy""" , return_dict=__UpperCamelCase )[0] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) _UpperCAmelCase = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class a_ ( unittest.TestCase ): def _snake_case ( self : List[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(__UpperCamelCase ) ldm.set_progress_bar_config(disable=__UpperCamelCase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = ldm(generator=__UpperCamelCase , num_inference_steps=5 , output_type="""numpy""" ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _UpperCAmelCase = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) _UpperCAmelCase = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
19
1
"""simple docstring""" from __future__ import annotations class a_ : def __init__( self : int , __UpperCamelCase : int ) ->None: '''simple docstring''' _UpperCAmelCase = data _UpperCAmelCase = None _UpperCAmelCase = None def _UpperCamelCase ( _A ) -> None: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def _UpperCamelCase ( _A ) -> int: """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def _UpperCamelCase ( _A ) -> bool: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def _UpperCamelCase ( ) -> None: # Main function for testing. """simple docstring""" _UpperCAmelCase = Node(1 ) _UpperCAmelCase = Node(2 ) _UpperCAmelCase = Node(3 ) _UpperCAmelCase = Node(4 ) _UpperCAmelCase = Node(5 ) _UpperCAmelCase = Node(6 ) _UpperCAmelCase = Node(7 ) _UpperCAmelCase = Node(8 ) _UpperCAmelCase = Node(9 ) print(is_full_binary_tree(_A ) ) print(depth_of_tree(_A ) ) print("""Tree is: """ ) display(_A ) if __name__ == "__main__": main()
19
"""simple docstring""" import re from filelock import FileLock try: import nltk a : str = True except (ImportError, ModuleNotFoundError): a : List[str] = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def _UpperCamelCase ( _A ) -> str: """simple docstring""" re.sub("""<n>""" , """""" , _A ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_A ) )
19
1
"""simple docstring""" import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class a_ : def __init__( self : Any , __UpperCamelCase : Optional[int] ) ->Tuple: '''simple docstring''' if isinstance(__UpperCamelCase , __UpperCamelCase ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden _UpperCAmelCase = deepcopy(__UpperCamelCase ) elif os.path.exists(__UpperCamelCase ): with io.open(__UpperCamelCase , """r""" , encoding="""utf-8""" ) as f: _UpperCAmelCase = json.load(__UpperCamelCase ) else: try: _UpperCAmelCase = baseaa.urlsafe_baadecode(__UpperCamelCase ).decode("""utf-8""" ) _UpperCAmelCase = json.loads(__UpperCamelCase ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) _UpperCAmelCase = config self.set_stage_and_offload() def _snake_case ( self : Tuple ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = self.get_value("""zero_optimization.stage""" , -1 ) # offload _UpperCAmelCase = False if self.is_zeroa() or self.is_zeroa(): _UpperCAmelCase = set(["""cpu""", """nvme"""] ) _UpperCAmelCase = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: _UpperCAmelCase = True def _snake_case ( self : Optional[int] , __UpperCamelCase : Optional[int] ) ->str: '''simple docstring''' _UpperCAmelCase = self.config # find the config node of interest if it exists _UpperCAmelCase = ds_key_long.split(""".""" ) _UpperCAmelCase = nodes.pop() for node in nodes: _UpperCAmelCase = config.get(__UpperCamelCase ) if config is None: return None, ds_key return config, ds_key def _snake_case ( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict=None ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.find_config_node(__UpperCamelCase ) if config is None: return default return config.get(__UpperCamelCase , __UpperCamelCase ) def _snake_case ( self : int , __UpperCamelCase : int , __UpperCamelCase : List[Any]=False ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = self.config # find the config node of interest if it exists _UpperCAmelCase = ds_key_long.split(""".""" ) for node in nodes: _UpperCAmelCase = config _UpperCAmelCase = config.get(__UpperCamelCase ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(__UpperCamelCase ) def _snake_case ( self : str , __UpperCamelCase : str ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = self.get_value(__UpperCamelCase ) return False if value is None else bool(__UpperCamelCase ) def _snake_case ( self : Optional[Any] , __UpperCamelCase : Dict ) ->str: '''simple docstring''' _UpperCAmelCase = self.get_value(__UpperCamelCase ) return False if value is None else not bool(__UpperCamelCase ) def _snake_case ( self : List[str] ) ->List[Any]: '''simple docstring''' return self._stage == 2 def _snake_case ( self : List[Any] ) ->Dict: '''simple docstring''' return self._stage == 3 def _snake_case ( self : Any ) ->List[str]: '''simple docstring''' return self._offload class a_ : def __init__( self : List[str] , __UpperCamelCase : Any ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = engine def _snake_case ( self : Optional[Any] , __UpperCamelCase : Optional[Any] , **__UpperCamelCase : Optional[Any] ) ->str: '''simple docstring''' self.engine.backward(__UpperCamelCase , **__UpperCamelCase ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class a_ ( _UpperCAmelCase ): def __init__( self : List[str] , __UpperCamelCase : Tuple ) ->Union[str, Any]: '''simple docstring''' super().__init__(__UpperCamelCase , device_placement=__UpperCamelCase , scaler=__UpperCamelCase ) _UpperCAmelCase = hasattr(self.optimizer , """overflow""" ) def _snake_case ( self : Dict , __UpperCamelCase : str=None ) ->Optional[int]: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def _snake_case ( self : Optional[Any] ) ->List[str]: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def _snake_case ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' if self.__has_overflow__: return self.optimizer.overflow return False class a_ ( _UpperCAmelCase ): def __init__( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Optional[Any] ) ->List[Any]: '''simple docstring''' super().__init__(__UpperCamelCase , __UpperCamelCase ) def _snake_case ( self : Tuple ) ->Any: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class a_ : def __init__( self : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : int=0.0_0_1 , __UpperCamelCase : Dict=0 , **__UpperCamelCase : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase = params _UpperCAmelCase = lr _UpperCAmelCase = weight_decay _UpperCAmelCase = kwargs class a_ : def __init__( self : str , __UpperCamelCase : int , __UpperCamelCase : Tuple=None , __UpperCamelCase : List[Any]=0 , **__UpperCamelCase : List[str] ) ->int: '''simple docstring''' _UpperCAmelCase = optimizer _UpperCAmelCase = total_num_steps _UpperCAmelCase = warmup_num_steps _UpperCAmelCase = kwargs
19
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a : str = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class a_ : a : List[Any] = PegasusConfig a : Dict = {} a : List[Any] = 'gelu' def __init__( self : Any , __UpperCamelCase : Dict , __UpperCamelCase : Tuple=13 , __UpperCamelCase : Tuple=7 , __UpperCamelCase : Tuple=True , __UpperCamelCase : Any=False , __UpperCamelCase : Any=99 , __UpperCamelCase : Optional[int]=32 , __UpperCamelCase : Dict=5 , __UpperCamelCase : List[str]=4 , __UpperCamelCase : Dict=37 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Dict=0.1 , __UpperCamelCase : Optional[Any]=20 , __UpperCamelCase : Tuple=2 , __UpperCamelCase : Optional[int]=1 , __UpperCamelCase : Tuple=0 , ) ->int: '''simple docstring''' _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = bos_token_id def _snake_case ( self : Union[str, Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) _UpperCAmelCase = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCAmelCase = np.concatenate([input_ids, eos_tensor] , axis=1 ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCAmelCase = prepare_pegasus_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, inputs_dict def _snake_case ( self : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Any] ) ->Any: '''simple docstring''' _UpperCAmelCase = 20 _UpperCAmelCase = model_class_name(__UpperCamelCase ) _UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] ) _UpperCAmelCase ,_UpperCAmelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) _UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) _UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__UpperCamelCase , ) _UpperCAmelCase = model.decode(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def _snake_case ( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Union[str, Any] ) ->str: '''simple docstring''' _UpperCAmelCase = 20 _UpperCAmelCase = model_class_name(__UpperCamelCase ) _UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] ) _UpperCAmelCase ,_UpperCAmelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _UpperCAmelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _UpperCAmelCase = model.init_cache(decoder_input_ids.shape[0] , __UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCAmelCase = model.decode( decoder_input_ids[:, :-1] , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) _UpperCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) _UpperCAmelCase = model.decode( decoder_input_ids[:, -1:] , __UpperCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__UpperCamelCase , decoder_position_ids=__UpperCamelCase , ) _UpperCAmelCase = model.decode(__UpperCamelCase , __UpperCamelCase , decoder_attention_mask=__UpperCamelCase ) _UpperCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def _UpperCamelCase ( _A , _A , _A , _A=None , _A=None , ) -> int: """simple docstring""" if attention_mask is None: _UpperCAmelCase = np.not_equal(_A , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCAmelCase = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class a_ ( _UpperCAmelCase , unittest.TestCase ): a : List[str] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) a : Any = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () a : Any = True a : int = False a : Union[str, Any] = False a : Optional[int] = False def _snake_case ( self : Union[str, Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = FlaxPegasusModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase ) def _snake_case ( self : Optional[int] ) ->Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _snake_case ( self : Optional[int] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def _snake_case ( self : Dict ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def _snake_case ( self : Dict ) ->List[Any]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = model_class(__UpperCamelCase ) @jax.jit def encode_jitted(__UpperCamelCase : List[Any] , __UpperCamelCase : str=None , **__UpperCamelCase : int ): return model.encode(input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase ) with self.subTest("""JIT Enabled""" ): _UpperCAmelCase = encode_jitted(**__UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _UpperCAmelCase = encode_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _snake_case ( self : List[Any] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase = model_class(__UpperCamelCase ) _UpperCAmelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) _UpperCAmelCase = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple ): return model.decode( decoder_input_ids=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , encoder_outputs=__UpperCamelCase , ) with self.subTest("""JIT Enabled""" ): _UpperCAmelCase = decode_jitted(**__UpperCamelCase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): _UpperCAmelCase = decode_jitted(**__UpperCamelCase ).to_tuple() self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _snake_case ( self : int ) ->int: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=__UpperCamelCase ) _UpperCAmelCase = np.ones((1, 1) ) _UpperCAmelCase = model(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @slow def _snake_case ( self : Dict ) ->List[str]: '''simple docstring''' _UpperCAmelCase = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) _UpperCAmelCase = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) _UpperCAmelCase = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] _UpperCAmelCase = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] _UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors="""np""" , truncation=__UpperCamelCase , max_length=5_12 , padding=__UpperCamelCase ) _UpperCAmelCase = model.generate(**__UpperCamelCase , num_beams=2 ).sequences _UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) assert tgt_text == decoded
19
1
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a_ ( _UpperCAmelCase ): a : Any = ['image_processor', 'tokenizer'] a : List[str] = 'AutoImageProcessor' a : Dict = 'AutoTokenizer' def __init__( self : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Any ) ->List[str]: '''simple docstring''' super().__init__(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = self.image_processor def __call__( self : int , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : str=None , __UpperCamelCase : Tuple=None , **__UpperCamelCase : str ) ->Optional[Any]: '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: _UpperCAmelCase = self.tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if images is not None: _UpperCAmelCase = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if text is not None and images is not None: _UpperCAmelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase ) def _snake_case ( self : Optional[Any] , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : Union[str, Any] ) ->Any: '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def _snake_case ( self : Optional[int] , *__UpperCamelCase : Dict , **__UpperCamelCase : Optional[Any] ) ->List[Any]: '''simple docstring''' return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def _snake_case ( self : Any ) ->Any: '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
19
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class a_ : def __init__( self : Tuple , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any]=99 , __UpperCamelCase : Optional[int]=13 , __UpperCamelCase : List[str]=7 , __UpperCamelCase : List[Any]=9 , __UpperCamelCase : List[Any]=True , __UpperCamelCase : str=True , __UpperCamelCase : int=False , __UpperCamelCase : int=32 , __UpperCamelCase : Dict=5 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : Any=37 , __UpperCamelCase : List[Any]=8 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : str=0.0_0_2 , __UpperCamelCase : Union[str, Any]=1 , __UpperCamelCase : List[Any]=0 , __UpperCamelCase : Tuple=0 , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Any=None , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = encoder_seq_length _UpperCAmelCase = decoder_seq_length # For common tests _UpperCAmelCase = self.decoder_seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_attention_mask _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = d_ff _UpperCAmelCase = relative_attention_num_buckets _UpperCAmelCase = dropout_rate _UpperCAmelCase = initializer_factor _UpperCAmelCase = eos_token_id _UpperCAmelCase = pad_token_id _UpperCAmelCase = decoder_start_token_id _UpperCAmelCase = None _UpperCAmelCase = decoder_layers def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' return TaConfig.from_pretrained("""google/umt5-base""" ) def _snake_case ( self : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Any=None , __UpperCamelCase : str=None , ) ->int: '''simple docstring''' if attention_mask is None: _UpperCAmelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _UpperCAmelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _UpperCAmelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__UpperCamelCase ) if decoder_head_mask is None: _UpperCAmelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase ) if cross_attn_head_mask is None: _UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__UpperCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _snake_case ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _UpperCAmelCase = input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) _UpperCAmelCase = self.get_config() _UpperCAmelCase = config.num_attention_heads _UpperCAmelCase = self.prepare_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, input_dict def _snake_case ( self : Union[str, Any] ) ->Any: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def _snake_case ( self : Dict ) ->List[str]: '''simple docstring''' return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _snake_case ( self : Tuple ) ->Dict: '''simple docstring''' return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _snake_case ( self : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , ) ->List[str]: '''simple docstring''' _UpperCAmelCase = UMTaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model( input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase , attention_mask=__UpperCamelCase , decoder_attention_mask=__UpperCamelCase , ) _UpperCAmelCase = model(input_ids=__UpperCamelCase , decoder_input_ids=__UpperCamelCase ) _UpperCAmelCase = result.last_hidden_state _UpperCAmelCase = result.past_key_values _UpperCAmelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__UpperCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , ) ->str: '''simple docstring''' _UpperCAmelCase = UMTaModel(config=__UpperCamelCase ).get_decoder().to(__UpperCamelCase ).eval() # first forward pass _UpperCAmelCase = model(__UpperCamelCase , use_cache=__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase , use_cache=__UpperCamelCase ) self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) ) self.parent.assertTrue(len(__UpperCamelCase ) == len(__UpperCamelCase ) + 1 ) _UpperCAmelCase ,_UpperCAmelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = model(__UpperCamelCase )["""last_hidden_state"""] _UpperCAmelCase = model(__UpperCamelCase , past_key_values=__UpperCamelCase )["""last_hidden_state"""] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def _snake_case ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Dict , ) ->List[str]: '''simple docstring''' _UpperCAmelCase = UMTaModel(config=__UpperCamelCase ).to(__UpperCamelCase ).half().eval() _UpperCAmelCase = model(**__UpperCamelCase )["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(__UpperCamelCase ).any().item() ) @require_torch class a_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): a : List[str] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a : Tuple = (UMTaForConditionalGeneration,) if is_torch_available() else () a : Optional[Any] = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) a : Any = True a : Optional[int] = False a : Any = False a : Optional[int] = True a : Optional[Any] = True # The small UMT5 model needs higher percentages for CPU/MP tests a : int = [0.8, 0.9] def _snake_case ( self : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = UMTaModelTester(self ) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""" ) def _snake_case ( self : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = UMTaModel(config_and_inputs[0] ).to(__UpperCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __UpperCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"""{tmpdirname}/t5_test.onnx""" , export_params=__UpperCamelCase , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def _snake_case ( self : Tuple ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__UpperCamelCase ) def _snake_case ( self : Any ) ->Any: '''simple docstring''' _UpperCAmelCase = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() _UpperCAmelCase = config_and_inputs[0] _UpperCAmelCase = UMTaForConditionalGeneration(__UpperCamelCase ).eval() model.to(__UpperCamelCase ) _UpperCAmelCase = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=__UpperCamelCase ), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ), } for attn_name, (name, mask) in zip(__UpperCamelCase , head_masking.items() ): _UpperCAmelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": _UpperCAmelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=__UpperCamelCase ) _UpperCAmelCase = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=__UpperCamelCase , return_dict_in_generate=__UpperCamelCase , **__UpperCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step _UpperCAmelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" ) def _snake_case ( self : Tuple ) ->List[Any]: '''simple docstring''' pass @require_torch @require_sentencepiece @require_tokenizers class a_ ( unittest.TestCase ): @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" ) def _snake_case ( self : Optional[Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=__UpperCamelCase ).to(__UpperCamelCase ) _UpperCAmelCase = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=__UpperCamelCase , legacy=__UpperCamelCase ) _UpperCAmelCase = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] _UpperCAmelCase = tokenizer(__UpperCamelCase , return_tensors="""pt""" , padding=__UpperCamelCase ).input_ids # fmt: off _UpperCAmelCase = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(__UpperCamelCase , __UpperCamelCase ) _UpperCAmelCase = model.generate(input_ids.to(__UpperCamelCase ) ) _UpperCAmelCase = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] _UpperCAmelCase = tokenizer.batch_decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase )
19
1
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class a_ ( unittest.TestCase ): @slow def _snake_case ( self : int ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase = FlaxMTaForConditionalGeneration.from_pretrained("""google/mt5-small""" ) _UpperCAmelCase = AutoTokenizer.from_pretrained("""google/mt5-small""" ) _UpperCAmelCase = tokenizer("""Hello there""" , return_tensors="""np""" ).input_ids _UpperCAmelCase = tokenizer("""Hi I am""" , return_tensors="""np""" ).input_ids _UpperCAmelCase = shift_tokens_right(__UpperCamelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) _UpperCAmelCase = model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase ).logits _UpperCAmelCase = optax.softmax_cross_entropy(__UpperCamelCase , onehot(__UpperCamelCase , logits.shape[-1] ) ).mean() _UpperCAmelCase = -(labels.shape[-1] * loss.item()) _UpperCAmelCase = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
19
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class a_ ( _UpperCAmelCase ): def _snake_case ( self : str ) ->str: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self : Any ) ->List[str]: '''simple docstring''' with self.assertRaises(__UpperCamelCase ): _UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def _snake_case ( self : Optional[int] ) ->Tuple: '''simple docstring''' with self.assertRaises(__UpperCamelCase ): _UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) ) def _snake_case ( self : List[Any] ) ->Dict: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self : str ) ->Dict: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): _UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) ) def _snake_case ( self : Union[str, Any] ) ->str: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self : List[str] ) ->Any: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) def _snake_case ( self : List[Any] ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def _snake_case ( self : List[Any] ) ->Optional[Any]: '''simple docstring''' with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): _UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) ) def _snake_case ( self : List[str] ) ->int: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def _snake_case ( self : Optional[int] ) ->Dict: '''simple docstring''' _UpperCAmelCase = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def _snake_case ( self : str ) ->Optional[Any]: '''simple docstring''' import PIL.Image _UpperCAmelCase = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( """datasets.arrow_writer.cast_to_python_objects""" , side_effect=__UpperCamelCase ) as mock_cast_to_python_objects: _UpperCAmelCase = pa.array(TypedSequence([{"""path""": None, """bytes""": b"""image_bytes"""}, pil_image] , type=Image() ) ) _UpperCAmelCase ,_UpperCAmelCase = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("""optimize_list_casting""" , __UpperCamelCase ) self.assertFalse(kwargs["""optimize_list_casting"""] ) def _UpperCamelCase ( _A , _A ) -> Any: """simple docstring""" _UpperCAmelCase = pa.BufferReader(_A ) if isinstance(_A , pa.Buffer ) else pa.memory_map(_A ) _UpperCAmelCase = pa.ipc.open_stream(_A ) _UpperCAmelCase = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _UpperCamelCase ( _A , _A ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() _UpperCAmelCase = pa.schema(_A ) if fields else None with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() _UpperCAmelCase = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} ) with ArrowWriter(stream=_A , features=_A ) as writer: writer.write({"""labels""": 0} ) writer.write({"""labels""": 1} ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata _UpperCAmelCase = pa.BufferReader(output.getvalue() ) _UpperCAmelCase = pa.ipc.open_stream(_A ) _UpperCAmelCase = f.read_all() _UpperCAmelCase = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(_A ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() with ArrowWriter( stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer: with pytest.raises(_A ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] ) def _UpperCamelCase ( _A ) -> List[Any]: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() with ArrowWriter( stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer: with pytest.raises(_A ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1_0 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=1_0 ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 1_0] ) def _UpperCamelCase ( _A ) -> Tuple: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() with ArrowWriter( stream=_A , writer_batch_size=_A , hash_salt="""split_name""" , check_duplicates=_A , ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _UpperCamelCase ( _A , _A ) -> List[Any]: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() _UpperCAmelCase = pa.schema(_A ) if fields else None with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) writer.write_batch({"""col_1""": [], """col_2""": []} ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _UpperCamelCase ( _A , _A ) -> Any: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() _UpperCAmelCase = pa.schema(_A ) if fields else None with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer: writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 1_0] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def _UpperCamelCase ( _A , _A ) -> List[Any]: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() _UpperCAmelCase = pa.schema(_A ) if fields else None with ArrowWriter(stream=_A , schema=_A , writer_batch_size=_A ) as writer: writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) ) writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: _UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def _UpperCamelCase ( ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = {"""col_1""": pa.string(), """col_2""": pa.intaa()} _UpperCAmelCase = os.path.join(_A , """test.arrow""" ) with ArrowWriter(path=_A , schema=pa.schema(_A ) ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(_A , metadata=writer._schema.metadata ) _check_output(_A , 1 ) def _UpperCamelCase ( _A ) -> int: """simple docstring""" if pa.types.is_list(_A ): return get_base_dtype(arr_type.value_type ) else: return arr_type def _UpperCamelCase ( _A , _A ) -> Any: """simple docstring""" if isinstance(lst[0] , _A ): change_first_primitive_element_in_list(lst[0] , _A ) else: _UpperCAmelCase = value @pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _UpperCamelCase ( _A , _A , _A ) -> Dict: """simple docstring""" _UpperCAmelCase = pa.array(TypedSequence(_A , optimized_int_type=_A ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( """col, expected_dtype""" , [ ("""attention_mask""", pa.inta()), ("""special_tokens_mask""", pa.inta()), ("""token_type_ids""", pa.inta()), ("""input_ids""", pa.intaa()), ("""other""", pa.intaa()), ] , ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def _UpperCamelCase ( _A , _A , _A ) -> str: """simple docstring""" _UpperCAmelCase = pa.array(OptimizedTypedSequence(_A , col=_A ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications _UpperCAmelCase = copy.deepcopy(_A ) _UpperCAmelCase = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(_A , _A ) _UpperCAmelCase = pa.array(OptimizedTypedSequence(_A , col=_A ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("""raise_exception""" , [False, True] ) def _UpperCamelCase ( _A , _A ) -> Dict: """simple docstring""" _UpperCAmelCase = str(tmp_path / """dataset-train.arrow""" ) try: with ArrowWriter(path=_A ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" _UpperCAmelCase = """mock://dataset-train.arrow""" with ArrowWriter(path=_A , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(_A ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(_A ) def _UpperCamelCase ( ) -> Dict: """simple docstring""" _UpperCAmelCase = pa.BufferOutputStream() with ParquetWriter(stream=_A ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) _UpperCAmelCase ,_UpperCAmelCase = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _UpperCAmelCase = pa.BufferReader(output.getvalue() ) _UpperCAmelCase = pq.read_table(_A ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("""embed_local_files""" , [False, True] ) def _UpperCamelCase ( _A , _A ) -> Any: """simple docstring""" import PIL.Image _UpperCAmelCase = str(tmp_path / """test_image_rgb.jpg""" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(_A , format="""png""" ) _UpperCAmelCase = pa.BufferOutputStream() with ParquetWriter( stream=_A , features=Features({"""image""": Image()} ) , embed_local_files=_A ) as writer: writer.write({"""image""": image_path} ) writer.finalize() _UpperCAmelCase = pa.BufferReader(output.getvalue() ) _UpperCAmelCase = pq.read_table(_A ) _UpperCAmelCase = pa_table.to_pydict() if embed_local_files: assert isinstance(out["""image"""][0]["""path"""] , _A ) with open(_A , """rb""" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def _UpperCamelCase ( ) -> int: """simple docstring""" _UpperCAmelCase = pa.schema([pa.field("""col_1""" , pa.string() , nullable=_A )] ) _UpperCAmelCase = pa.BufferOutputStream() with ArrowWriter(stream=_A ) as writer: writer._build_writer(inferred_schema=_A ) assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] )
19
1
"""simple docstring""" import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class a_ ( pl.LightningModule ): def __init__( self : List[str] , __UpperCamelCase : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__() _UpperCAmelCase = model _UpperCAmelCase = 2 _UpperCAmelCase = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _snake_case ( self : List[Any] ) ->Optional[Any]: '''simple docstring''' pass def _UpperCamelCase ( _A , _A , _A ) -> str: """simple docstring""" _UpperCAmelCase = LongformerModel.from_pretrained(_A ) _UpperCAmelCase = LightningModel(_A ) _UpperCAmelCase = torch.load(_A , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model _UpperCAmelCase = LongformerForQuestionAnswering.from_pretrained(_A ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_A ) print(F"""Conversion successful. Model saved under {pytorch_dump_folder_path}""" ) if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
19
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib a : List[Any] = get_logger() a : Optional[dict] = None class a_ ( TensorFormatter[Mapping, 'jax.Array', Mapping] ): def __init__( self : int , __UpperCamelCase : List[str]=None , __UpperCamelCase : Optional[int]=None , **__UpperCamelCase : int ) ->Tuple: '''simple docstring''' super().__init__(features=__UpperCamelCase ) import jax from jaxlib.xla_client import Device if isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError( f"""Expected {device} to be a `str` not {type(__UpperCamelCase )}, as `jaxlib.xla_extension.Device` """ """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) _UpperCAmelCase = device if isinstance(__UpperCamelCase , __UpperCamelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _UpperCAmelCase = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ f"""device: {str(jax.devices()[0] )}.""" ) _UpperCAmelCase = str(jax.devices()[0] ) _UpperCAmelCase = jnp_array_kwargs @staticmethod def _snake_case ( ) ->Dict[str, "jaxlib.xla_extension.Device"]: '''simple docstring''' import jax return {str(__UpperCamelCase ): device for device in jax.devices()} def _snake_case ( self : Dict , __UpperCamelCase : Any ) ->Union[str, Any]: '''simple docstring''' import jax import jax.numpy as jnp if isinstance(__UpperCamelCase , __UpperCamelCase ) and column: if all( isinstance(__UpperCamelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__UpperCamelCase , axis=0 ) return column def _snake_case ( self : List[str] , __UpperCamelCase : Any ) ->Optional[int]: '''simple docstring''' import jax import jax.numpy as jnp if isinstance(__UpperCamelCase , (str, bytes, type(__UpperCamelCase )) ): return value elif isinstance(__UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _UpperCAmelCase = {} if isinstance(__UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: _UpperCAmelCase = {"""dtype""": jnp.intaa} else: _UpperCAmelCase = {"""dtype""": jnp.intaa} elif isinstance(__UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _UpperCAmelCase = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__UpperCamelCase , PIL.Image.Image ): _UpperCAmelCase = np.asarray(__UpperCamelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: _UpperCAmelCase = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__UpperCamelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def _snake_case ( self : Union[str, Any] , __UpperCamelCase : List[str] ) ->Any: '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__UpperCamelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__UpperCamelCase , """__array__""" ) and not isinstance(__UpperCamelCase , jax.Array ): _UpperCAmelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__UpperCamelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__UpperCamelCase ) for substruct in data_struct] ) elif isinstance(__UpperCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__UpperCamelCase ) for substruct in data_struct] ) return self._tensorize(__UpperCamelCase ) def _snake_case ( self : List[str] , __UpperCamelCase : dict ) ->int: '''simple docstring''' return map_nested(self._recursive_tensorize , __UpperCamelCase , map_list=__UpperCamelCase ) def _snake_case ( self : Dict , __UpperCamelCase : pa.Table ) ->Mapping: '''simple docstring''' _UpperCAmelCase = self.numpy_arrow_extractor().extract_row(__UpperCamelCase ) _UpperCAmelCase = self.python_features_decoder.decode_row(__UpperCamelCase ) return self.recursive_tensorize(__UpperCamelCase ) def _snake_case ( self : Optional[int] , __UpperCamelCase : pa.Table ) ->"jax.Array": '''simple docstring''' _UpperCAmelCase = self.numpy_arrow_extractor().extract_column(__UpperCamelCase ) _UpperCAmelCase = self.python_features_decoder.decode_column(__UpperCamelCase , pa_table.column_names[0] ) _UpperCAmelCase = self.recursive_tensorize(__UpperCamelCase ) _UpperCAmelCase = self._consolidate(__UpperCamelCase ) return column def _snake_case ( self : Optional[Any] , __UpperCamelCase : pa.Table ) ->Mapping: '''simple docstring''' _UpperCAmelCase = self.numpy_arrow_extractor().extract_batch(__UpperCamelCase ) _UpperCAmelCase = self.python_features_decoder.decode_batch(__UpperCamelCase ) _UpperCAmelCase = self.recursive_tensorize(__UpperCamelCase ) for column_name in batch: _UpperCAmelCase = self._consolidate(batch[column_name] ) return batch
19
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore a : Dict = ''' Human: <<task>> Assistant: ''' a : List[str] = '''huggingface-tools/default-prompts''' a : Union[str, Any] = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def _UpperCamelCase ( _A , _A , _A="run" ) -> List[str]: """simple docstring""" if prompt_or_repo_id is None: _UpperCAmelCase = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("""\\s""" , _A ) is not None: return prompt_or_repo_id _UpperCAmelCase = cached_file( _A , PROMPT_FILES[mode] , repo_type="""dataset""" , user_agent={"""agent""": agent_name} ) with open(_A , """r""" , encoding="""utf-8""" ) as f: return f.read()
19
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Tuple = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
19
1
"""simple docstring""" # Imports import numpy as np class a_ : def __init__( self : List[str] , __UpperCamelCase : Dict=None , __UpperCamelCase : str=None , __UpperCamelCase : str=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : Optional[Any]=None ) ->Union[str, Any]: '''simple docstring''' self.set_matricies(red=__UpperCamelCase , green=__UpperCamelCase , blue=__UpperCamelCase , red_edge=__UpperCamelCase , nir=__UpperCamelCase ) def _snake_case ( self : str , __UpperCamelCase : Dict=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : str=None , __UpperCamelCase : int=None ) ->Any: '''simple docstring''' if red is not None: _UpperCAmelCase = red if green is not None: _UpperCAmelCase = green if blue is not None: _UpperCAmelCase = blue if red_edge is not None: _UpperCAmelCase = red_edge if nir is not None: _UpperCAmelCase = nir return True def _snake_case ( self : Tuple , __UpperCamelCase : List[str]="" , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Dict=None ) ->Optional[Any]: '''simple docstring''' self.set_matricies(red=__UpperCamelCase , green=__UpperCamelCase , blue=__UpperCamelCase , red_edge=__UpperCamelCase , nir=__UpperCamelCase ) _UpperCAmelCase = { """ARVI2""": self.arvaa, """CCCI""": self.ccci, """CVI""": self.cvi, """GLI""": self.gli, """NDVI""": self.ndvi, """BNDVI""": self.bndvi, """redEdgeNDVI""": self.red_edge_ndvi, """GNDVI""": self.gndvi, """GBNDVI""": self.gbndvi, """GRNDVI""": self.grndvi, """RBNDVI""": self.rbndvi, """PNDVI""": self.pndvi, """ATSAVI""": self.atsavi, """BWDRVI""": self.bwdrvi, """CIgreen""": self.ci_green, """CIrededge""": self.ci_rededge, """CI""": self.ci, """CTVI""": self.ctvi, """GDVI""": self.gdvi, """EVI""": self.evi, """GEMI""": self.gemi, """GOSAVI""": self.gosavi, """GSAVI""": self.gsavi, """Hue""": self.hue, """IVI""": self.ivi, """IPVI""": self.ipvi, """I""": self.i, """RVI""": self.rvi, """MRVI""": self.mrvi, """MSAVI""": self.m_savi, """NormG""": self.norm_g, """NormNIR""": self.norm_nir, """NormR""": self.norm_r, """NGRDI""": self.ngrdi, """RI""": self.ri, """S""": self.s, """IF""": self._if, """DVI""": self.dvi, """TVI""": self.tvi, """NDRE""": self.ndre, } try: return funcs[index]() except KeyError: print("""Index not in the list!""" ) return False def _snake_case ( self : Any ) ->Union[str, Any]: '''simple docstring''' return -0.1_8 + (1.1_7 * ((self.nir - self.red) / (self.nir + self.red))) def _snake_case ( self : Optional[Any] ) ->Optional[int]: '''simple docstring''' return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def _snake_case ( self : Optional[int] ) ->Dict: '''simple docstring''' return self.nir * (self.red / (self.green**2)) def _snake_case ( self : int ) ->str: '''simple docstring''' return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def _snake_case ( self : Dict ) ->str: '''simple docstring''' return (self.nir - self.red) / (self.nir + self.red) def _snake_case ( self : Optional[Any] ) ->str: '''simple docstring''' return (self.nir - self.blue) / (self.nir + self.blue) def _snake_case ( self : Dict ) ->Any: '''simple docstring''' return (self.redEdge - self.red) / (self.redEdge + self.red) def _snake_case ( self : Optional[Any] ) ->Any: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green) def _snake_case ( self : Tuple ) ->Any: '''simple docstring''' return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def _snake_case ( self : Optional[Any] ) ->Any: '''simple docstring''' return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def _snake_case ( self : Union[str, Any] ) ->Tuple: '''simple docstring''' return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def _snake_case ( self : Optional[int] ) ->Any: '''simple docstring''' return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def _snake_case ( self : Optional[Any] , __UpperCamelCase : List[str]=0.0_8 , __UpperCamelCase : Any=1.2_2 , __UpperCamelCase : Optional[int]=0.0_3 ) ->str: '''simple docstring''' return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def _snake_case ( self : List[Any] ) ->Dict: '''simple docstring''' return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def _snake_case ( self : List[Any] ) ->List[str]: '''simple docstring''' return (self.nir / self.green) - 1 def _snake_case ( self : Any ) ->Dict: '''simple docstring''' return (self.nir / self.redEdge) - 1 def _snake_case ( self : Union[str, Any] ) ->Tuple: '''simple docstring''' return (self.red - self.blue) / self.red def _snake_case ( self : Tuple ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def _snake_case ( self : Dict ) ->List[Any]: '''simple docstring''' return self.nir - self.green def _snake_case ( self : Optional[int] ) ->Union[str, Any]: '''simple docstring''' return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def _snake_case ( self : int ) ->Dict: '''simple docstring''' _UpperCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.2_5 * n) - (self.red - 0.1_2_5) / (1 - self.red) def _snake_case ( self : Dict , __UpperCamelCase : Union[str, Any]=0.1_6 ) ->Optional[int]: '''simple docstring''' return (self.nir - self.green) / (self.nir + self.green + y) def _snake_case ( self : Optional[Any] , __UpperCamelCase : Optional[int]=0.5 ) ->Any: '''simple docstring''' return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def _snake_case ( self : List[Any] ) ->Union[str, Any]: '''simple docstring''' return np.arctan( ((2 * self.red - self.green - self.blue) / 3_0.5) * (self.green - self.blue) ) def _snake_case ( self : Dict , __UpperCamelCase : int=None , __UpperCamelCase : Dict=None ) ->int: '''simple docstring''' return (self.nir - b) / (a * self.red) def _snake_case ( self : List[Any] ) ->Tuple: '''simple docstring''' return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def _snake_case ( self : Optional[Any] ) ->Dict: '''simple docstring''' return (self.red + self.green + self.blue) / 3_0.5 def _snake_case ( self : int ) ->int: '''simple docstring''' return self.nir / self.red def _snake_case ( self : Union[str, Any] ) ->str: '''simple docstring''' return (self.rvi() - 1) / (self.rvi() + 1) def _snake_case ( self : Dict ) ->int: '''simple docstring''' return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def _snake_case ( self : str ) ->Optional[int]: '''simple docstring''' return self.green / (self.nir + self.red + self.green) def _snake_case ( self : List[str] ) ->Optional[int]: '''simple docstring''' return self.nir / (self.nir + self.red + self.green) def _snake_case ( self : Optional[int] ) ->Optional[int]: '''simple docstring''' return self.red / (self.nir + self.red + self.green) def _snake_case ( self : List[Any] ) ->Any: '''simple docstring''' return (self.green - self.red) / (self.green + self.red) def _snake_case ( self : str ) ->str: '''simple docstring''' return (self.red - self.green) / (self.red + self.green) def _snake_case ( self : int ) ->List[str]: '''simple docstring''' _UpperCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) _UpperCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def _snake_case ( self : List[str] ) ->Dict: '''simple docstring''' return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def _snake_case ( self : Dict ) ->str: '''simple docstring''' return self.nir / self.red def _snake_case ( self : Dict ) ->int: '''simple docstring''' return (self.ndvi() + 0.5) ** (1 / 2) def _snake_case ( self : Tuple ) ->Any: '''simple docstring''' return (self.nir - self.redEdge) / (self.nir + self.redEdge)
19
"""simple docstring""" import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient a : int = WebClient(token=os.environ['''CI_SLACK_BOT_TOKEN''']) def _UpperCamelCase ( _A ) -> List[str]: """simple docstring""" _UpperCAmelCase = test_results.split(""" """ ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. _UpperCAmelCase = expressions[-2] if """=""" in expressions[-1] else expressions[-1] for i, expression in enumerate(_A ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def _UpperCamelCase ( _A ) -> int: """simple docstring""" _UpperCAmelCase = {} _UpperCAmelCase = None _UpperCAmelCase = False for line in failures_short_lines.split("""\n""" ): if re.search(R"""_ \[doctest\]""" , _A ): _UpperCAmelCase = True _UpperCAmelCase = line.split(""" """ )[2] elif in_error and not line.split(""" """ )[0].isdigit(): _UpperCAmelCase = line _UpperCAmelCase = False return failures class a_ : def __init__( self : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Dict ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase = title _UpperCAmelCase = doc_test_results["""time_spent"""].split(""",""" )[0] _UpperCAmelCase = doc_test_results["""success"""] _UpperCAmelCase = doc_test_results["""failures"""] _UpperCAmelCase = self.n_success + self.n_failures # Failures and success of the modeling tests _UpperCAmelCase = doc_test_results @property def _snake_case ( self : int ) ->str: '''simple docstring''' _UpperCAmelCase = [self._time_spent] _UpperCAmelCase = 0 for time in time_spent: _UpperCAmelCase = time.split(""":""" ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(__UpperCamelCase ) == 1: _UpperCAmelCase = [0, 0, time_parts[0]] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 36_00 + minutes * 60 + seconds _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase = total_secs // 36_00, (total_secs % 36_00) // 60, total_secs % 60 return f"""{int(__UpperCamelCase )}h{int(__UpperCamelCase )}m{int(__UpperCamelCase )}s""" @property def _snake_case ( self : List[Any] ) ->Dict: '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def _snake_case ( self : Optional[Any] ) ->Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": f"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def _snake_case ( self : Union[str, Any] ) ->Dict: '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( f"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" f""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } @property def _snake_case ( self : List[str] ) ->Dict: '''simple docstring''' _UpperCAmelCase = 40 _UpperCAmelCase = {k: v["""failed"""] for k, v in doc_test_results.items() if isinstance(__UpperCamelCase , __UpperCamelCase )} _UpperCAmelCase = """""" for category, failures in category_failures.items(): if len(__UpperCamelCase ) == 0: continue if report != "": report += "\n\n" report += f"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(__UpperCamelCase ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": f"""The following examples had failures:\n\n\n{report}\n""", }, } @property def _snake_case ( self : Union[str, Any] ) ->str: '''simple docstring''' _UpperCAmelCase = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(__UpperCamelCase ) @staticmethod def _snake_case ( ) ->Any: '''simple docstring''' _UpperCAmelCase = [ { """type""": """section""", """text""": { """type""": """plain_text""", """text""": """There was an issue running the tests.""", }, """accessory""": { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """Check Action results""", """emoji""": True}, """url""": f"""https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}""", }, } ] print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(__UpperCamelCase )} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text="""There was an issue running the tests.""" , blocks=__UpperCamelCase , ) def _snake_case ( self : Tuple ) ->Optional[Any]: '''simple docstring''' print("""Sending the following payload""" ) print(json.dumps({"""blocks""": json.loads(self.payload )} ) ) _UpperCAmelCase = f"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else """All tests passed.""" _UpperCAmelCase = client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , blocks=self.payload , text=__UpperCamelCase , ) def _snake_case ( self : List[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Any , __UpperCamelCase : Any , __UpperCamelCase : List[str] ) ->str: '''simple docstring''' _UpperCAmelCase = """""" for key, value in failures.items(): _UpperCAmelCase = value[:2_00] + """ [Truncated]""" if len(__UpperCamelCase ) > 2_50 else value failures_text += f"""*{key}*\n_{value}_\n\n""" _UpperCAmelCase = job_name _UpperCAmelCase = {"""type""": """section""", """text""": {"""type""": """mrkdwn""", """text""": text}} if job_link is not None: _UpperCAmelCase = { """type""": """button""", """text""": {"""type""": """plain_text""", """text""": """GitHub Action job""", """emoji""": True}, """url""": job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def _snake_case ( self : int ) ->Optional[Any]: '''simple docstring''' if self.thread_ts is None: raise ValueError("""Can only post reply if a post has been made.""" ) _UpperCAmelCase = self.doc_test_results.pop("""job_link""" ) self.doc_test_results.pop("""failures""" ) self.doc_test_results.pop("""success""" ) self.doc_test_results.pop("""time_spent""" ) _UpperCAmelCase = sorted(self.doc_test_results.items() , key=lambda __UpperCamelCase : t[0] ) for job, job_result in sorted_dict: if len(job_result["""failures"""] ): _UpperCAmelCase = f"""*Num failures* :{len(job_result["failed"] )} \n""" _UpperCAmelCase = job_result["""failures"""] _UpperCAmelCase = self.get_reply_blocks(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , text=__UpperCamelCase ) print("""Sending the following reply""" ) print(json.dumps({"""blocks""": blocks} ) ) client.chat_postMessage( channel=os.environ["""CI_SLACK_CHANNEL_ID_DAILY"""] , text=f"""Results for {job}""" , blocks=__UpperCamelCase , thread_ts=self.thread_ts["""ts"""] , ) time.sleep(1 ) def _UpperCamelCase ( ) -> List[str]: """simple docstring""" _UpperCAmelCase = os.environ["""GITHUB_RUN_ID"""] _UpperCAmelCase = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" _UpperCAmelCase = requests.get(_A ).json() _UpperCAmelCase = {} try: jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) _UpperCAmelCase = math.ceil((result["""total_count"""] - 1_0_0) / 1_0_0 ) for i in range(_A ): _UpperCAmelCase = requests.get(url + F"""&page={i + 2}""" ).json() jobs.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} ) return jobs except Exception as e: print("""Unknown error, could not fetch links.""" , _A ) return {} def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = {} if os.path.exists(_A ): _UpperCAmelCase = os.listdir(_A ) for file in files: try: with open(os.path.join(_A , _A ) , encoding="""utf-8""" ) as f: _UpperCAmelCase = f.read() except UnicodeDecodeError as e: raise ValueError(F"""Could not open {os.path.join(_A , _A )}.""" ) from e return _artifact def _UpperCamelCase ( ) -> int: """simple docstring""" class a_ : def __init__( self : List[Any] , __UpperCamelCase : str ) ->Tuple: '''simple docstring''' _UpperCAmelCase = name _UpperCAmelCase = [] def __str__( self : int ) ->Optional[Any]: '''simple docstring''' return self.name def _snake_case ( self : Dict , __UpperCamelCase : str ) ->int: '''simple docstring''' self.paths.append({"""name""": self.name, """path""": path} ) _UpperCAmelCase = {} _UpperCAmelCase = filter(os.path.isdir , os.listdir() ) for directory in directories: _UpperCAmelCase = directory if artifact_name not in _available_artifacts: _UpperCAmelCase = Artifact(_A ) _available_artifacts[artifact_name].add_path(_A ) return _available_artifacts if __name__ == "__main__": a : Dict = get_job_links() a : Dict = retrieve_available_artifacts() a : Optional[int] = collections.OrderedDict( [ ('''*.py''', '''API Examples'''), ('''*.md''', '''MD Examples'''), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' a : Dict = { v: { '''failed''': [], '''failures''': {}, } for v in docs.values() } # Link to the GitHub Action job a : int = github_actions_job_links.get('''run_doctests''') a : Tuple = available_artifacts['''doc_tests_gpu_test_reports'''].paths[0] a : Optional[Any] = retrieve_artifact(artifact_path['''name''']) if "stats" in artifact: a , a , a : str = handle_test_results(artifact['''stats''']) a : Tuple = failed a : int = success a : Any = time_spent[1:-1] + ''', ''' a : Dict = extract_first_line_failure(artifact['''failures_short''']) for line in artifact["summary_short"].split('''\n'''): if re.search('''FAILED''', line): a : List[Any] = line.replace('''FAILED ''', '''''') a : Tuple = line.split()[0].replace('''\n''', '''''') if "::" in line: a , a : Union[str, Any] = line.split('''::''') else: a , a : Optional[Any] = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): a : List[Any] = docs[file_regex] doc_test_results[category]["failed"].append(test) a : Optional[Any] = all_failures[test] if test in all_failures else '''N/A''' a : List[str] = failure break a : List[Any] = Message('''🤗 Results of the doc tests.''', doc_test_results) message.post() message.post_reply()
19
1
"""simple docstring""" def _UpperCamelCase ( _A , _A , _A , _A ) -> bool: """simple docstring""" if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def _UpperCamelCase ( _A , _A , _A ) -> bool: """simple docstring""" if curr_ind == len(_A ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_A ) ): if valid_connection(_A , _A , _A , _A ): # Insert current vertex into path as next transition _UpperCAmelCase = next_ver # Validate created path if util_hamilton_cycle(_A , _A , curr_ind + 1 ): return True # Backtrack _UpperCAmelCase = -1 return False def _UpperCamelCase ( _A , _A = 0 ) -> list[int]: """simple docstring""" _UpperCAmelCase = [-1] * (len(_A ) + 1) # initialize start and end of path with starting index _UpperCAmelCase = _UpperCAmelCase = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_A , _A , 1 ) else []
19
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def _UpperCamelCase ( _A , _A=False ) -> str: """simple docstring""" try: _UpperCAmelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCAmelCase = default else: # KEY is set, convert it to True or False. try: _UpperCAmelCase = strtobool(_A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value a : Union[str, Any] = parse_flag_from_env('''RUN_SLOW''', default=False) a : Tuple = parse_flag_from_env('''RUN_REMOTE''', default=False) a : Union[str, Any] = parse_flag_from_env('''RUN_LOCAL''', default=True) a : int = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression a : List[Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') a : List[Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') a : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio a : int = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam a : Tuple = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility a : Any = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows a : int = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def _UpperCamelCase ( _A ) -> str: """simple docstring""" try: import faiss # noqa except ImportError: _UpperCAmelCase = unittest.skip("""test requires faiss""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Any: """simple docstring""" try: import regex # noqa except ImportError: _UpperCAmelCase = unittest.skip("""test requires regex""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Union[str, Any]: """simple docstring""" try: import elasticsearch # noqa except ImportError: _UpperCAmelCase = unittest.skip("""test requires elasticsearch""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" try: import sqlalchemy # noqa except ImportError: _UpperCAmelCase = unittest.skip("""test requires sqlalchemy""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Union[str, Any]: """simple docstring""" if not config.TORCH_AVAILABLE: _UpperCAmelCase = unittest.skip("""test requires PyTorch""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Optional[Any]: """simple docstring""" if not config.TF_AVAILABLE: _UpperCAmelCase = unittest.skip("""test requires TensorFlow""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> str: """simple docstring""" if not config.JAX_AVAILABLE: _UpperCAmelCase = unittest.skip("""test requires JAX""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" if not config.PIL_AVAILABLE: _UpperCAmelCase = unittest.skip("""test requires Pillow""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> str: """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(_A ) else: return test_case def _UpperCamelCase ( _A ) -> List[Any]: """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(_A ) else: return test_case def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(_A ) else: return test_case def _UpperCamelCase ( _A ) -> int: """simple docstring""" def _require_spacy_model(_A ): try: import spacy # noqa F401 spacy.load(_A ) except ImportError: return unittest.skip("""test requires spacy""" )(_A ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(_A ) )(_A ) else: return test_case return _require_spacy_model def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(_A ) else: return test_case def _UpperCamelCase ( _A ) -> List[Any]: """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(_A ) else: return test_case def _UpperCamelCase ( _A ) -> Any: """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: _UpperCAmelCase = unittest.skip("""test is slow""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Any: """simple docstring""" if not _run_local_tests or _run_local_tests == 0: _UpperCAmelCase = unittest.skip("""test is local""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: _UpperCAmelCase = unittest.skip("""test is packaged""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: _UpperCAmelCase = unittest.skip("""test requires remote""" )(_A ) return test_case def _UpperCamelCase ( *_A ) -> Dict: """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_A ) and name.startswith("""test""" ): for decorator in decorators: _UpperCAmelCase = decorator(_A ) setattr(cls , _A , _A ) return cls return decorate class a_ ( _UpperCAmelCase ): pass class a_ ( _UpperCAmelCase ): a : Any = 0 a : Optional[Any] = 1 a : int = 2 @contextmanager def _UpperCamelCase ( _A=OfflineSimulationMode.CONNECTION_FAILS , _A=1e-16 ) -> List[Any]: """simple docstring""" _UpperCAmelCase = requests.Session().request def timeout_request(_A , _A , _A , **_A ): # Change the url to an invalid url so that the connection hangs _UpperCAmelCase = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) _UpperCAmelCase = timeout try: return online_request(_A , _A , **_A ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _UpperCAmelCase = url _UpperCAmelCase = e.args[0] _UpperCAmelCase = (max_retry_error.args[0].replace("""10.255.255.1""" , F"""OfflineMock[{url}]""" ),) _UpperCAmelCase = (max_retry_error,) raise def raise_connection_error(_A , _A , **_A ): raise requests.ConnectionError("""Offline mode is enabled.""" , request=_A ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" , _A ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" , _A ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" , _A ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def _UpperCamelCase ( *_A , **_A ) -> str: """simple docstring""" _UpperCAmelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_A , **_A ) as tmp_dir: try: os.chdir(_A ) yield finally: os.chdir(_A ) @contextmanager def _UpperCamelCase ( ) -> Any: """simple docstring""" import gc gc.collect() _UpperCAmelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" import gc gc.collect() _UpperCAmelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _UpperCamelCase ( _A , _A ) -> str: """simple docstring""" return deepcopy(_A ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(_A ).integers(0 , 1_0_0 , 1_0 ).tolist() def _UpperCamelCase ( _A ) -> Tuple: """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_A , *_A , **_A ): try: return func(*_A , **_A ) except HTTPError as err: if str(_A ).startswith("""500""" ) or str(_A ).startswith("""502""" ): pytest.xfail(str(_A ) ) raise err return decorator.decorator(_wrapper , _A ) class a_ : def __init__( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] ) ->int: '''simple docstring''' _UpperCAmelCase = returncode _UpperCAmelCase = stdout _UpperCAmelCase = stderr async def _UpperCamelCase ( _A , _A ) -> Union[str, Any]: """simple docstring""" while True: _UpperCAmelCase = await stream.readline() if line: callback(_A ) else: break async def _UpperCamelCase ( _A , _A=None , _A=None , _A=None , _A=False , _A=False ) -> _RunOutput: """simple docstring""" if echo: print("""\nRunning: """ , """ """.join(_A ) ) _UpperCAmelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_A , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCAmelCase = [] _UpperCAmelCase = [] def tee(_A , _A , _A , _A="" ): _UpperCAmelCase = line.decode("""utf-8""" ).rstrip() sink.append(_A ) if not quiet: print(_A , _A , file=_A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda _A : tee(_A , _A , sys.stdout , label="""stdout:""" ) ), _read_stream(p.stderr , lambda _A : tee(_A , _A , sys.stderr , label="""stderr:""" ) ), ] , timeout=_A , ) return _RunOutput(await p.wait() , _A , _A ) def _UpperCamelCase ( _A , _A=None , _A=None , _A=1_8_0 , _A=False , _A=True ) -> _RunOutput: """simple docstring""" _UpperCAmelCase = asyncio.get_event_loop() _UpperCAmelCase = loop.run_until_complete( _stream_subprocess(_A , env=_A , stdin=_A , timeout=_A , quiet=_A , echo=_A ) ) _UpperCAmelCase = """ """.join(_A ) if result.returncode > 0: _UpperCAmelCase = """\n""".join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def _UpperCamelCase ( ) -> Tuple: """simple docstring""" _UpperCAmelCase = os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" ) _UpperCAmelCase = re.sub(R"""^gw""" , """""" , _A , 0 , re.M ) return int(_A ) def _UpperCamelCase ( ) -> Tuple: """simple docstring""" _UpperCAmelCase = 2_9_5_0_0 _UpperCAmelCase = pytest_xdist_worker_id() return port + uniq_delta
19
1